Higher codimension MCF and the search for stable structures

Tobias Holck Colding

August 27, 2020
Overview

Joint work with Bill Minicozzi.

- Much less is known than for hypersurfaces.

- Some of the new ideas from function theory on manifolds.
Joint work with Bill Minicozzi.

- Much less is known than for hypersurfaces.
- Some of the new ideas from function theory on manifolds.
Mean curvature flow: n-dimensional submanifolds $M_t \subset \mathbb{R}^N$ evolving by

$$\frac{\partial x}{\partial t} = -H.$$

H is the mean curvature vector of M_t at x.

Tobias Holck Colding
University of Copenhagen
If $M_t \subset \mathbb{R}^N$ is a MCF, then the position vector \mathbf{x} satisfies

$$\partial_t \mathbf{x} = \Delta_{M_t} \mathbf{x}.$$

This is a heat equation with a time-varying metric.

It is nonlinear since Δ_{M_t} depends on M_t.
If $M_t \subset \mathbb{R}^N$ is a MCF, then the position vector \mathbf{x} satisfies

$$\partial_t \mathbf{x} = \Delta_{M_t} \mathbf{x}.$$

This is a heat equation with a time-varying metric.

It is nonlinear since Δ_{M_t} depends on M_t.

Tobias Holck Colding
University of Copenhagen
If $M_t \subset \mathbb{R}^N$ is a MCF, then the position vector x satisfies

$$\partial_t x = \Delta_{M_t} x.$$

This is a heat equation with a time-varying metric.

It is nonlinear since Δ_{M_t} depends on M_t.

Producing new flows

- Translating in space and time.

- Parabolic scaling:
 \[\tilde{M}_t = c M_{c^{-2} t} . \]

- Limits of these, for instance, as \(c \to \infty \).
Producing new flows

- Translating in space and time.

- Parabolic scaling:
 \[\tilde{M}_t = c M_{c^{-2} t} . \]

- Limits of these, for instance, as \(c \to \infty \).
Producing new flows

- Translating in space and time.
- Parabolic scaling:

\[\tilde{M}_t = c M_{c^{-2} t} \].

- Limits of these, for instance, as \(c \to \infty \).
Shrinkers

- Blow ups around a fixed point in space-time give a shrinker (Huisken, Ilmanen, White).

- Shrinker evolves by rescaling $M_t = \sqrt{-t} M_{-1}$.

- Shrinkers (M_{-1}) satisfies the elliptic eq.:

\[H = \frac{x^\perp}{2}. \]
Shrinkers

- Blow ups around a fixed point in space-time give a shrinker (Huisken, Ilmanen, White).

- Shrinker evolves by rescaling \(M_t = \sqrt{-t} M_{-1} \).

- Shrinkers \((M_{-1})\) satisfies the elliptic eq.:

\[
H = \frac{x \perp}{2}.
\]
Shrinkers

- Blow ups around a fixed point in space-time give a shrinker (Huisken, Ilmanen, White).

- Shrinker evolves by rescaling $M_t = \sqrt{-t} M_{-1}$.

- Shrinkers (M_{-1}) satisfies the elliptic eq.:

\[H = \frac{x \perp}{2}. \]
Examples of shrinkers

- Round cylinders: $\mathbb{S}^{k}_{\sqrt{2k}} \times \mathbb{R}^{n-k} \subset \mathbb{R}^N$.

- Minimal submanifolds of spheres:

 If $\Sigma^n \subset \partial B_{\sqrt{2n}} \subset \mathbb{R}^N$ is minimal in $\partial B_{\sqrt{2n}}$, then Σ^n is a shrinker.
Examples of shrinkers

- Round cylinders: $S^{k}_{\sqrt{2k}} \times \mathbb{R}^{n-k} \subset \mathbb{R}^{N}$.

- Minimal submanifolds of spheres:
 If $\Sigma^{n} \subset \partial B_{\sqrt{2n}} \subset \mathbb{R}^{N}$ is minimal in $\partial B_{\sqrt{2n}}$, then Σ^{n} is a shrinker.
Very little is known in higher codimension:

- What are the possible singularities?
- What does this say about flow?

Key here: Coordinate functions are linear growth solutions of the heat equation.
Singularities in higher codimension

Very little is known in higher codimension:

- What are the possible singularities?
- What does this say about flow?

Key here: Coordinate functions are linear growth solutions of the heat equation.
Singularities in higher codimension

- Very little is known in higher codimension:
 - What are the possible singularities?
 - What does this say about flow?

- Key here: Coordinate functions are linear growth solutions of the heat equation.
Singularities in higher codimension

Very little is known in higher codimension:

- What are the possible singularities?
- What does this say about flow?

Key here: Coordinate functions are linear growth solutions of the heat equation.
One consequence:

- Generic shrinkers have:

 Entropy bound + low codimension.
One consequence:

- Generic shrinkers have:

 Entropy bound + low codimension.
Caloric and Harmonic functions

- $u(x, y, t)$ is *caloric* if $u_t = \Delta u$. (Heat eqn).

- $u(x, y)$ is *harmonic* if $\Delta u = 0$. (Laplace eqn).
Caloric and Harmonic functions

- $u(x, y, t)$ is caloric if $u_t = \Delta u$. (Heat eqn).

- $u(x, y)$ is harmonic if $\Delta u = 0$. (Laplace eqn).
Classical Liouville theorem: A bounded harmonic function on all of \mathbb{R}^n must be constant.

Early 1970s, S.T. Yau vastly generalized:

Liouville for manifolds with $\text{Ric} \geq 0$.
Classical Liouville theorem: A bounded harmonic function on all of \mathbb{R}^n must be constant.

Early 1970s, S.T. Yau vastly generalized:
Liouville for manifolds with $\text{Ric} \geq 0$.
The space \mathcal{H}_d

$\mathcal{H}_d(M) = \text{harmonic functions of polynomial growth at most } d:\$

$$\Delta u = 0 \text{ and for some } p \in M \text{ and constant } C_u$$

$$\sup_{B_R(p)} |u| \leq C_u (1 + R)^d \text{ for all } R.$$

This is a linear space. What is its dimension?
The space \mathcal{H}_d

$\mathcal{H}_d(M) = \text{harmonic functions of polynomial growth at most } d:$

$$\Delta u = 0 \text{ and for some } p \in M \text{ and constant } C_u$$

$$\sup_{B_R(p)} |u| \leq C_u (1 + R)^d \text{ for all } R .$$

This is a linear space. What is its dimension?
Harmonic polynomials

- $\mathcal{H}_d(\mathbb{R}^n)$ consists of harmonic polynomials of degree d.

- In particular, $\mathcal{H}_d(\mathbb{R}^n)$ is finite dimensional for each d.
Harmonic polynomials

\[H_d(\mathbb{R}^n) \] consists of harmonic polynomials of degree \(d \).

In particular, \(H_d(\mathbb{R}^n) \) is finite dimensional for each \(d \).
In 1974, S.T. Yau conjectured the stronger Liouville property:

Yau conjectured: If $\text{Ric}_M \geq 0$, then $\dim \mathcal{H}_d(M) < \infty$ for each d.

CM97: Yau’s conjecture holds: $\dim \mathcal{H}_d(M^n) \leq C d^{n-1}$.

The exponent $(n - 1)$ is sharp on \mathbb{R}^n.
In 1974, S.T. Yau conjectured the stronger Liouville property:

Yau conjectured: If $\text{Ric}_M \geq 0$, then $\dim \mathcal{H}_d(M) < \infty$ for each d.

CM97: Yau’s conjecture holds: $\dim \mathcal{H}_d(M^n) \leq C d^{n-1}$.

The exponent $(n - 1)$ is sharp on \mathbb{R}^n.
In 1974, S.T. Yau conjectured the stronger Liouville property:

Yau conjectured: If $\text{Ric}_M \geq 0$, then $\dim \mathcal{H}_d(M) < \infty$ for each d.

CM97: Yau’s conjecture holds: $\dim \mathcal{H}_d(M^n) \leq C d^{n-1}$.

The exponent $(n - 1)$ is sharp on \mathbb{R}^n.
CM97 proved \(\dim \mathcal{H}_d(M) < \infty \) under weaker assumptions:

1. A volume doubling bound.

- (1) and (2) hold for \(\text{Ric} \geq 0 \).

- (1) and (2) require less regularity and are quite flexible.
CM97 proved \(\dim \mathcal{H}_d(M) < \infty \) under weaker assumptions:

1. A volume doubling bound.

- (1) and (2) hold for \(\text{Ric} \geq 0 \).
- (1) and (2) require less regularity and are quite flexible.
Earlier work related to Yau’s conjecture by Avellaneda-Lin, Cheeger-Colding-Minicozzi, Donnelly-Fefferman, Kasue, Kazdan, Li-Tam, Moser-Struwe and many others.

Shalom-Tao (2010) used this for a finitary version of Gromov’s theorem.
The space \mathcal{P}_d

\[u \in \mathcal{P}_d(M) \text{ if } \partial_t u = \Delta u \text{ and for some constant } C_u \]

\[
\sup_{B_R(p) \times [-R^2,0]} |u| \leq C_u \left(1 + R\right)^d \text{ for all } R.
\]

Calle’s 2006 thesis.
Caloric polynomials

$\mathcal{P}_d(\mathbb{R}^n) =$ caloric polynomials.

Generalizations of Hermite polynomials.

$\dim \mathcal{P}_d(\mathbb{R}^n) \approx d^n.$
CM, 2019: If $\text{Vol}(B_R(p)) \leq C (1 + R)^{d_V}$ for all $R > 0$, then
\[
\dim \mathcal{P}_{2k}(M) \leq (k + 1) \dim \mathcal{H}_{2k}(M).
\]

If $\text{Ric}_M \geq 0$, then this and **CM97** give $\dim \mathcal{P}_d(M) \leq C d^n$.

The exponent n is sharp on \mathbb{R}^n.
CM, 2019: If Vol($B_R(p)$) \(\leq C (1 + R)^{d_v}\) for all $R > 0$, then
\[
\dim \mathcal{P}_{2k}(M) \leq (k + 1) \dim \mathcal{H}_{2k}(M).
\]

If Ric$_M \geq 0$, then this and CM97 give $\dim \mathcal{P}_d(M) \leq C d^n$.

The exponent n is sharp on \mathbb{R}^n.
Recently, F.H. Lin and Q.S. Zhang, adapted the methods of CM97 to get the bound d^{n+1}.
The coordinate functions on an MCF are in \mathcal{P}_1.

$\dim \mathcal{P}_1$ bounds the codimension of the MCF.

The Laplacian is now time-varying.
The coordinate functions on an MCF are in \mathcal{P}_1.

$\dim \mathcal{P}_1$ bounds the codimension of the MCF.

The Laplacian is now time-varying.
The coordinate functions on an MCF are in \mathcal{P}_1.

$\dim \mathcal{P}_1$ bounds the codimension of the MCF.

The Laplacian is now time-varying.
Gaussian area F of Σ:

$$F(\Sigma) = (4\pi)^{-\frac{n}{2}} \int_{\Sigma} e^{-\frac{|x|^2}{4}}.$$

$(4\pi)^{-\frac{n}{2}}$ is so $F(\mathbb{R}^n) = 1$.

Tobias Holck Colding
University of Copenhagen
Gaussian area F of Σ:

$$F(\Sigma) = (4\pi)^{-\frac{n}{2}} \int_{\Sigma} e^{-\frac{|x|^2}{4}}.$$

$(4\pi)^{-\frac{n}{2}}$ is so $F(\mathbb{R}^n) = 1$.
Entropy $\lambda = \sup F$ over all translations and dilations

$$\lambda(\Sigma) = \sup_{c,x_0} F(c\Sigma + x_0).$$

- CM12 using Huisken: $\lambda(M_t) \downarrow$ for a MCF.

- CM12: If Σ is a shrinker, then $\lambda(\Sigma) = F(\Sigma)$.
Entropy: $\lambda = \sup F$ over all translations and dilations

$$\lambda(\Sigma) = \sup_{c,x_0} F(c\Sigma + x_0).$$

CM12 using Huisken: $\lambda(M_t) \downarrow$ for a MCF.

CM12: If Σ is a shrinker, then $\lambda(\Sigma) = F(\Sigma).$
Entropy: \(\lambda = \sup F \) over all translations and dilations

\[\lambda(\Sigma) = \sup_{c,x_0} F(c\Sigma + x_0). \]

- **CM12 using Huisken:** \(\lambda(M_t) \downarrow \) for a MCF.

- **CM12:** If \(\Sigma \) is a shrinker, then \(\lambda(\Sigma) = F(\Sigma) \).
\textbf{Stone: }F, and thus λ, of spheres \downarrow in dim

\[
\sqrt{2} \leq \lambda(S^n) < \lambda(S^{n-1}) < \cdots < \lambda(S^1) = \sqrt{\frac{2\pi}{e}} \approx 1.52.
\]

\[\lambda(\Sigma \times \mathbb{R}) = \lambda(\Sigma).\]
Stone: \(F \), and thus \(\lambda \), of spheres \(\downarrow \) in dim

\[
\sqrt{2} \leq \lambda(S^n) < \lambda(S^{n-1}) < \cdots < \lambda(S^1) = \sqrt{\frac{2\pi}{e}} \approx 1.52.
\]

\(\lambda(\Sigma \times \mathbb{R}) = \lambda(\Sigma) \).
CM-Ilmanen-White ’13: \mathbb{S}^n least λ for closed shrinker in \mathbb{R}^{n+1}.

Bernstein-Wang ’17: In \mathbb{R}^3 spheres and cylinders are the lowest λ shrinkers.

Conjecture: True in all codimension, for $n \leq 4$.
CM-Ilmanen-White ’13: S^n least λ for closed shrinker in \mathbb{R}^{n+1}.

Bernstein-Wang ’17: In \mathbb{R}^3 spheres and cylinders are the lowest λ shrinkers.

Conjecture: True in all codimension, for $n \leq 4$.
• CM-Ilmanen-White ’13: S^n least λ for closed shrinker in \mathbb{R}^{n+1}.

• Bernstein-Wang ’17: In \mathbb{R}^3 spheres and cylinders are the lowest λ shrinkers.

• Conjecture: True in all codimension, for $n \leq 4$.
Ancient flows

- $M_t \subset \mathbb{R}^N$ MCF.

- $\lambda(M_t) \leq \lambda$ at the initial time $= \lambda_0$.

- Any blow-up limit gives an ancient flow (exists for all prior times) with $\lambda \leq \lambda_0$.
$M_t \subset \mathbb{R}^N$ MCF.

$\lambda(M_t) \leq \lambda$ at the initial time $= \lambda_0$.

Any blow-up limit gives an ancient flow (exists for all prior times) with $\lambda \leq \lambda_0$.
$M_t \subset \mathbb{R}^N$ MCF.

$\lambda(M_t) \leq \lambda$ at the initial time $= \lambda_0$.

Any blow-up limit gives an ancient flow (exists for all prior times) with $\lambda \leq \lambda_0$.
CM19: If $M^n_t \subset \mathbb{R}^N$ is an ancient MCF with $\lambda(M_t) \leq \lambda_0$, then
\[\dim \mathcal{P}_d \leq C_n \lambda_0 d^n . \]

Dependence on d is sharp on \mathbb{R}^n.
Finite dimensionality of \mathcal{P}_d

CM19: If $M^n_t \subset \mathbb{R}^N$ is an ancient MCF with $\lambda(M_t) \leq \lambda_0$, then

$$\dim \mathcal{P}_d \leq C_n \lambda_0 d^n.$$

Dependence on d is sharp on \mathbb{R}^n.
When $d = 1$, we get a bound for the codimension:

CM19: If $M_t^n \subset \mathbb{R}^N$ is an ancient MCF, then it is contained in a Euclidean subspace of $\dim \leq C_n \sup_t \lambda(M_t)$.

The dimension is the number of independent x_i's.
When $d = 1$, we get a bound for the codimension:

CM19: If $M^n_t \subset \mathbb{R}^N$ is an ancient MCF, then it is contained in a Euclidean subspace of dim $\leq C_n \sup_t \lambda(M_t)$.

The dimension is the number of independent x_i's.
When $d = 1$, we get a bound for the codimension:

CM19: If $M_t^n \subset \mathbb{R}^N$ is an ancient MCF, then it is contained in a Euclidean subspace of dim $\leq C_n \sup_t \lambda(M_t)$.

The dimension is the number of independent x_i’s.
Let $\Sigma^n \subset \mathbb{R}^N$ be a shrinker.

- Gaussian L^2 inner product $\int_{\Sigma} u v e^{-\frac{|x|^2}{4}}$.

- Drift Laplacian (Ornstein-Uhlenbeck) $\mathcal{L} = \Delta - \frac{1}{2} \nabla x^T$ is Gaussian self-adjoint.

- Coordinates are eigenfunctions $\mathcal{L} x_i = -\frac{1}{2} x_i$.
Let $\Sigma^n \subset \mathbb{R}^N$ be a shrinker.

- Gaussian L^2 inner product $\int_{\Sigma} u \ v \ e^{-\frac{|x|^2}{4}}$.

- Drift Laplacian (Ornstein-Uhlenbeck) $\mathcal{L} = \Delta - \frac{1}{2} \nabla x^T$ is Gaussian self-adjoint.

- Coordinates are eigenfunctions $\mathcal{L} x_i = -\frac{1}{2} x_i$.
Let $\Sigma^n \subset \mathbb{R}^N$ be a shrinker.

- Gaussian L^2 inner product $\int_{\Sigma} u \, v \, e^{-\frac{|x|^2}{4}}$.

- Drift Laplacian (Ornstein-Uhlenbeck) $\mathcal{L} = \Delta - \frac{1}{2} \nabla x^T$ is Gaussian self-adjoint.

- Coordinates are eigenfunctions $\mathcal{L} x_i = -\frac{1}{2} x_i$.

Tobias Holck Colding
University of Copenhagen
Let $\Sigma^n \subset \mathbb{R}^N$ be a shrinker.

- Gaussian L^2 inner product $\int_\Sigma u \, v \, e^{-\frac{|x|^2}{4}}$.

- Drift Laplacian (Ornstein-Uhlenbeck) $\mathcal{L} = \Delta - \frac{1}{2} \nabla x^T$ is Gaussian self-adjoint.

- Coordinates are eigenfunctions $\mathcal{L} \, x_i = -\frac{1}{2} \, x_i$.
Shrinking curves are planar

$\gamma^1 \subset \mathbb{R}^N$ a shrinking curve.

- Coordinates x_i satisfy ODE $\mathcal{L} x_i = -\frac{1}{2} x_i$.
- 2nd order ODE \rightarrow 2-dim’l space of solutions.
- Thus, only two linearly independent x_i’s $\rightarrow \gamma$ in a plane.
\(\gamma^1 \subset \mathbb{R}^N \) a shrinking curve.

- Coordinates \(x_i \) satisfy ODE \(\mathcal{L} x_i = -\frac{1}{2} x_i \).

- 2nd order ODE \(\rightarrow \) 2-dim’l space of solutions.

- Thus, only two linearly independent \(x_i \)'s \(\rightarrow \gamma \) in a plane.
Shrinking curves are planar

$\gamma^1 \subset \mathbb{R}^N$ a shrinking curve.

- Coordinates x_i satisfy ODE $\mathcal{L} x_i = -\frac{1}{2} x_i$.

- 2nd order ODE \rightarrow 2-dim’l space of solutions.

- Thus, only two linearly independent x_i’s $\rightarrow \gamma$ in a plane.
Shrinking curves are planar

$\gamma^1 \subset \mathbb{R}^N$ a shrinking curve.

- Coordinates x_i satisfy ODE $L x_i = -\frac{1}{2} x_i$.

- 2nd order ODE \rightarrow 2-dim’l space of solutions.

- Thus, only two linearly independent x_i’s $\rightarrow \gamma$ in a plane.
Let $\Sigma^n \subset \mathbb{R}^N$ be a shrinker.

CM19: L^2 eigenfunctions grow polynomially with degree twice the eigenvalue.

Precisely: If $\mathcal{L} u = -\mu u$ and $\|u\|_{L^2} < \infty$, then

$$u^2(x) \leq C \|u\|_{L^2}^2 (4 + |x|^2)^2 \mu.$$

This is sharp on \mathbb{R}^n.
Let $\Sigma^n \subset \mathbb{R}^N$ be a shrinker.

CM19: L^2 eigenfunctions grow polynomially with degree twice the eigenvalue.

Precisely: If $\mathcal{L} u = -\mu u$ and $\|u\|_{L^2} < \infty$, then

$$u^2(x) \leq C \|u\|_{L^2}^2 (4 + |x|^2)^2 \mu .$$

This is sharp on \mathbb{R}^n.

Tobias Holck Colding
University of Copenhagen
Let $\Sigma^n \subset \mathbb{R}^N$ be a shrinker.

CM19: L^2 eigenfunctions grow polynomially with degree twice the eigenvalue.

Precisely: If $\mathcal{L}u = -\mu u$ and $\|u\|_{L^2} < \infty$, then

$$u^2(x) \leq C \|u\|_{L^2}^2 (4 + |x|^2)^{2\mu}.$$

This is sharp on \mathbb{R}^n.
$\Sigma^n \subset \mathbb{R}^N$ a shrinker.

Set $\mathcal{N}(\mu) =$ number of L^2-eigenvalues $\leq \mu$ with multiplicity.

CM19: $\mathcal{N}(\mu) \leq C_n \lambda(\Sigma) \mu^n$.

Exponent n is sharp on \mathbb{R}^n.
$\Sigma^n \subset \mathbb{R}^N$ a shrinker.

Set $\mathcal{N}(\mu) =$ number of L^2-eigenvalues $\leq \mu$ with multiplicity.

CM19: $\mathcal{N}(\mu) \leq C_n \lambda(\Sigma) \mu^n$.

Exponent n is sharp on \mathbb{R}^n.
$\Sigma^n \subset \mathbb{R}^N$ a shrinker.

Set $\mathcal{N}(\mu) =$ number of L^2-eigenvalues $\leq \mu$ with multiplicity.

CM19: $\mathcal{N}(\mu) \leq C_n \lambda(\Sigma) \mu^n$.

Exponent n is sharp on \mathbb{R}^n.
$\Sigma^n \subset \mathbb{R}^N$ a shrinker.

Taking $\mu = \frac{1}{2}$ gives a bound for codimension:

CM19: Σ is in a Euclidean space of dim $\leq C_n \lambda(\Sigma)$.

When Σ is minimal in a sphere, follows from Cheng-Li-Yau ’84.
$\Sigma^n \subset \mathbb{R}^N$ a shrinker.

Taking $\mu = \frac{1}{2}$ gives a bound for codimension:

CM19: Σ is in a Euclidean space of dim $\leq C_n \lambda(\Sigma)$.

When Σ is minimal in a sphere, follows from Cheng-Li-Yau ’84.
\[\Sigma^n \subset \mathbb{R}^N \text{ a shrinker.} \]

Taking \(\mu = \frac{1}{2} \) gives a bound for codimension:

CM19: \(\Sigma \) is in a Euclidean space of \(\text{dim} \leq C_n \lambda(\Sigma) \).

When \(\Sigma \) is minimal in a sphere, follows from Cheng-Li-Yau ’84.
CM19: Cylinders are rigid in a very strong sense:

Any shrinker, even in a large dimensional space, that is sufficiently close to a cylinder on a large enough, but compact, set is itself a cylinder.
1. Shrinker close to cylinder must be a hypersurface.

2. By CIM15, cylinders are rigid as hypersurfaces.
1. Shrinker close to cylinder must be a hypersurface.

2. By CIM15, cylinders are rigid as hypersurfaces.
If $M_t \subset \mathbb{R}^N$ is an ancient MCF and $\sup_t \lambda(M_t) < \infty$, then M_t is asymptotic to a shrinker at $-\infty$.

We will call the shrinker a tangent flow at $-\infty$.
If $M_t \subset \mathbb{R}^N$ is an ancient MCF and $\sup_t \lambda(M_t) < \infty$, then M_t is asymptotic to a shrinker at $-\infty$.

We will call the shrinker a tangent flow at $-\infty$.

Tobias Holck Colding
University of Copenhagen
Let $M_t^n \subset \mathbb{R}^N$ be an ancient MCF.

CM19: If one tangent flow at $-\infty$ is a cylinder, then M_t is a flow of hypersurfaces in a Euclidean subspace.
Let $M^n_t \subset \mathbb{R}^N$ be an ancient MCF.

CM19: If one tangent flow at $-\infty$ is a cylinder, then M_t is a flow of hypersurfaces in a Euclidean subspace.
Examples

- The bowl soliton is ancient convex solution asymptotic to cylinders at $-\infty$ (Altschuler-Wu, 1994).

Examples

- The bowl soliton is ancient convex solution asymptotic to cylinders at \(-\infty\) (Altschuler-Wu, 1994).

CM 19: $\Sigma^2 \subset \mathbb{R}^N$ is a closed stable genus γ shrinker, $N \geq C \lambda(\Sigma)$, then

$$\lambda(\Sigma) \leq C (1 + \gamma).$$

There is no analog of this result for minimal surfaces even in \mathbb{R}^4; cf. results of Micallef.
CM 19: $\Sigma^2 \subset \mathbb{R}^N$ is a closed stable genus γ shrinker, $N \geq C \lambda(\Sigma)$, then

$$\lambda(\Sigma) \leq C (1 + \gamma).$$

There is no analog of this result for minimal surfaces even in \mathbb{R}^4; cf. results of Micallef.
CM 19: $\Sigma^2 \subset \mathbb{R}^N$ is a closed stable genus γ shrinker, $N \geq C \lambda(\Sigma)$, then

$$\lambda(\Sigma) \leq C (1 + \gamma).$$

There is no analog of this result for minimal surfaces even in \mathbb{R}^4; cf. results of Micallef.
CM 19: $\Sigma \subset W$ where W is a linear subspace with

$$\dim W \leq C(1 + \gamma).$$
CM 19: $\Sigma \subset W$ where W is a linear subspace with

$$\text{dim } W \leq C (1 + \gamma) .$$