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Abstract

The purpose of the present paper is an investigation of Seifert fibered manifolds. These
are constructed from scratch through definitions and deductions of the fundamental objects:
manifolds and fibre-bundles. The main results are (1) The base space of a Seifert manifold can
be given the structure of a smooth surface where the projection map is smooth thus obtaining a
form analogous to a generalized smooth circle bundle. (2) Given a base surface with finitely many
points marked, one can construct a Seifert fibered manifold whose space of fibres is precisely
this surface, and whose multiple fibres produce the prescribed labelled points. The notation
M(g;α1/β1, . . . , αk/β/k) for a Seifert manifold is introduced. The theory is exemplified through
the Lens spaces.

Resumé

Form̊alet med nærværende skrivelse er en undersøgelse af Seifert fibrerede mangfoldigheder.
Disse opbygges fra grunden gennem definitioner og udledninger om de grundlæggende objekter:
mangfoldigheder og fiberbundter. Hovedresultaterne er: (1) Baserummet for en Seifert mang-
foldighed kan udstyres med en struktur for en glat flade, hvor projektionsafbildningen er glat,
hvorved man opn̊ar en fremstilling som er analogt med et generaliseret glat cirkelbundt. (2) Gi-
vet en baseflade med endeligt mange punkter markeret, kan man konstruere en Seifert fibreret
mangfoldighed hvis rum af fibre præcis er denne flade, og hvis multiple fibre giver de fore-
skrevne afmærkede punkter. Notationen M(g;α1/β1, . . . , αk/β/k) for en Seifert mangfoldighed
introduceres. Teorien er eksemplificeret gennem Linserummene.
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Preface

Seifert manifolds, or Seifert fibered spaces, are a special class of manifolds consisting of spaces which
are among the best understood 3-manifolds, that is spaces which locally resembles regular Euclidean
three-dimensional space. A Seifert manifold consists of disjoint simple closed curves called circles
or fibres, arranged in a specific way. The purpose of looking at these spaces originates from the
classification problem of 3-manifolds, in which the famous Poincaré conjecture belongs. Instead
of investigating a complete system of topological invariants of 3-dimansional manifolds, one could
search for a system of invariants for fiber preserving maps of fibered 3-manifolds. This was carried
out in the 1930’s mainly by Herbert Seifert in his dissertation ‘Topologie 3-dimensionaler gefaserter
Räume’ from 1933 [Sei33] where he explicitly classified all Seifert manifolds [Sei80]. It turns out that
most ‘small’ 3-manifolds and all spherical manifolds are Seifert fibered spaces, and they account for
all compact oriented manifolds in 6 of the 8 Thurston geometries of the geometrization conjecture
[Sco83, p. 403], [Mil04]. This paper will focus on the creation of these Seifert fibered spaces.

Section 1 covers abstract manifolds. These are given a smooth structure, which allows us to define
smooth maps and diffeomorphisms between such spaces, and we show a number of important prop-
erties needed for the construction of Seifert manifolds. Thereafter we focus on how to construct
compact connected 2-manifolds, or surfaces, by polygonal regions. In particular the g-fold torus
is considered, and its fundamental group is computed. We end the section by considering group
actions on manifolds and show that, under certain conditions, this is again a manifold. One such
object is the Lens space Lp/q which we introduce to illustrate the theory and show is a 3-manifold.

The theme of section 2 is fibre bundles. We encounter the Möbius strip as a first example
and show that covering spaces are fibre bundles with discrete fibres, arming us with a number of
new examples. Then we focus on circle bundles, which play a prominent role in the theory of
Seifert fibered spaces. We give a couple of examples including the Klein Bottle and the historically
important Hopf fibration.

Section 3 gives an introduction to Seifert manifolds. We show how to construct the model Seifert
fibration, functioning as the local model and work out a couple of its important properties. Then
we go on to define Seifert manifolds emphasizing its relationship with smooth circle bundles and
work out a couple of results on central concepts such as multiplicities and embeddings of model
Seifert fibrations. This is followed by an investigation of what happens when fibres are projected to
a base space. We show that this space can be given the structure of a smooth surface such that the
projection map is smooth.

Finally section 4 focusses on how to create new Seifert fibered manifolds from given base sur-
faces. We show that given such a surface with finitely many multiple fibres marked, there ex-
ists a Seifert fibered manifold whose space of fibres is precisely the given surface, and work out
how to construct such a Seifert manifold explicitly. This allows us to introduce the notation
M(g, α1/β1, . . . , αk/βk) for a Seifert fibered space. We define the notion of isomorphic Seifert
manifolds and give a summary of the proof that every orientable Seifert manifold is isomorphic to
one of the models M(g, α1/β1, . . . , αk/βk), including a sufficient and necessary condition for this
to happen, thus giving a complete classification of Seifert fiberings. The theory developed is then
exemplified for the Lens spaces.

The material is aimed to be self contained, however it is recommended that the reader is familiar
with point set topology, abstract algebra, basic complex analysis and beginning algebraic topology.
Each section as well as subsection will contain explicit information of where the material is drawn
from. Where such description is not given, the results are due to the author.

I would like to express my wholehearted gratitude to my advisor, without whom this project would
have never gotten its present depth and form, let alone dared being commenced in the first place.
Thanks for keeping the spirits high, always taking the time to listen to my questions and for showing
an inspiring approach to mathematics in general. I owe a great deal of appreciation to my fellow
students Birger Brietzke, Jóhan V. Gunnarsson and Sune Jakobsen for having made it a joy to study
mathematics over the last three years, and to professor Ian Stewart for giving me ‘Math Hysteria’.
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1 Manifolds

In this section we introduce the concept of manifolds which, in the simplest terms, are spaces that
locally look like some Euclidean space Rm. We furthermore impose a smooth structure on these
spaces which allows one to apply calculus thereon thus making the notion of diffeomorphisms well
defined. Definitions are inspired from Schlichtkrull [Sch07], Madsen [MT97] and Milnor [Mil65]. In
the following let M be a Hausdorff topological space, and let m ∈ N be fixed.

1.1 Charts, atlases and definition

Definition 1. An m-dimensional smooth atlas on M is a collection of triples A = {(Vi, Ui, σi)}i∈I
where (Vi)i∈I is a collection of open sets Vi in M such that M =

⋃
i∈I Vi and (Ui)i∈I is a collection

of open sets in Rm and furthermore σi : Vi → Ui = σi(Vi) is a collection of homeomorphisms,
called charts, with the property of smooth transitions on overlaps: For each pair i, j ∈ I the map
σj ◦ σ−1

i : σi(Vi ∩ Vj) → σj(Vi ∩ Vj) ⊂ Rm is smooth. Two smooth atlases of M are said to
be compatible if their union is again an atlas1. Compatibility is an equivalence relation and an
equivalence class is called a smooth structure on M .

Definition 2. An abstract manifold M of dimension m is a Hausdorff topological space equipped
with a smooth structure. In the following we simply denote these as m-manifolds.

Lemma 1. A given m-dimensional smooth atlas can be replaced by one in which all the Ui are
B(0, ε) for some ε > 0 or Rm. The new atlas is compatible with the old.

Proof. Let x ∈M be given. By definition of a smooth atlas on M we can find Vi′ ∈ (Vi)i∈I such that
x ∈ Vi′ . But then this is homeomorphic to Ui′ ⊂ Rm by σi′ . Since Ui′ is open we can find an ε > 0
such that K = Bd(σi′(x), ε) ⊂ Ui′ . The restriction σ−1

i′ |K of the homeomorphism σ−1
i′ to this ball is

still a homeomorphism [Mun00, 18.4 (d)]. Furthermore Ni′ = σ−1
i′ |K(K) ⊂ Vi′ is a neighborhood of

x in M . Therefore we can define φi′ : Ni′ → B(0, ε) by φi′(t) = (σ−1
i′ |K)−1(t)− σi′(x) which is then

a homeomorphism from a neighborhood of x to B(0, ε) as required and clearly these neighborhoods
constitute M .

M R2

Vi′
Ni′

Ui′

B(σi′(x), ε)x

σi′

Figure 1: The chart σ′i carrying neighborhoods of M to neighborhoods of R2.

We must show that the collection (φi)i∈I satisfies the property of smooth transition on overlaps.
The map φj ◦ φ−1

i : φi(Ni ∩Nj)→ φj(Ni ∩Nj) is given by

φj(φ−1
i (t)) = φj

(
σ−1
i |K(t+ σi(x))

)
= (σ−1

j |K)−1(σ−1
i |K(t+ σi(x)))− σi(x) (1)

= σj |Nj (σ−1
i |K(t+ σi(x)))− σj(x). (2)

Since we have φi(Ni ∩ Nj) + σi(x) = σi|Ni(Ni ∩ Nj) − σi(x) + σi(x) ⊂ σi(Ni ∩ Nj) ⊂ σi(Vi ∩ Vj)
and σj ◦ σ−1

i is smooth on this set by definition, the restriction to φi(Ni ∩ Nj) + σi(x) must be
smooth as well and addition of the constant in (2) does not alter this hence φj ◦ φ−1

i satisfies the
desired property. Compatibility follows by the same reasoning by noting that given some i, j ∈ I2

the map σj ◦ φ−1
i : φi(Ni ∩ Vj) → σj(Ni ∩ Vj) is given by σj(σ−1

i |K(t + σi(x))) and hence smooth.
We conclude that these atlases defines the same smooth structure on M as required.

To see that this also holds for Rm, define the smooth homeomorphism h : B(0, ε)→ Rm by h(t) =
t

ε−‖t‖2 . Then the map ϕi′ : Ni′ → Rm given by ϕi′(t) = h◦φi′(t) is the required homeomorphism. To
see that the collection (ϕi)i∈I satisfies the property of transition on overlaps, it is sufficient to note
that compositions of smooth maps preserves smoothness and we have ϕj ◦ ϕ−1

i = h ◦ φj ◦ φ−1
i ◦ h−1

which by the first part is seen to be smooth on ϕi(Ni ∩Nj) = h ◦ φi(Ni ∩Nj) as required.
1Equivalently every chart from one atlas has smooth transition on its overlap with every chart from the other.
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Example 1. For m ∈ N the m-sphere Sm is a compact m-manifold. To see this note that by
definition Sm = {x ∈ Rm+1 | ‖x‖ = 1} which is a closed and bounded subset of a metric space and
therefore Hausdorff and compact [Mun00, 27.3]. Let n = (0, . . . , 0, 1) ∈ Rm+1 and s = (0, . . . , 0,−1)
be the ‘north’ and ‘south’ pole of Sm respectively. Define the stereographic projection f :
(Sm − n)→ Rm given by

f(x) = f(x1, . . . , xm+1) =
1

1− xm+1
(x1, . . . , xm) (3)

which is then clearly well-defined and continuous. The mapping f−1 : Rm → (Sm − n) given by

f−1(y) = f−1(y1, . . . , ym) =
( 2

1 + ‖y‖2
y1, . . . ,

2
1 + ‖y‖2

ym, 1−
2

1 + ‖y‖2
)

(4)

is also continuous and it is the inverse of f . Therefore (Sm − n) is homeomorphic to Rm. Sim-
ilarly we can define the projection from the ‘south’ pole g : (Sm − s) → Rm given by g(x) =
g(x1, . . . , xm+1) = 1

1+xm+1
(x1, . . . , xm) with inverse g−1 : Rm → (Sm − s) given by g−1(y) =

g(y1, . . . , ym) = ( 2
1+‖y‖2 y1, . . . ,

2
1+‖y‖2 − 1) and we conclude that (Sm − s) is homeomorphic to Rm

as well. We now have the smooth atlas A = {((Sm − n),Rm, f), ((Sm − s),Rm, g)}. The transition
map is g ◦ f−1 : Rm − {0} → Rm − {0} given by

g ◦ f−1(y) = g
( 2

1 + ‖y‖2
y1, . . . ,

2
1 + ‖y‖2

ym, 1−
2

1 + ‖y‖2
)

(5)

=
1

1 + (1− 2
1+‖y‖2 )

( 2
1 + ‖y‖2

y1, . . . ,
2

1 + ‖y‖2
ym

)
(6)

=
( y1

1 + ‖y‖2 − 1
, . . . ,

ym
1 + ‖y‖2 − 1

)
=

y
‖y‖2

(7)

hence it is clearly smooth as required.

y

n

s

f−1(y)

g ◦ f−1(y)
Rm

Rm+1n

s

Rm

Rm+1

f(x)

x

Figure 2: Geometric interpretation of stereographic projection and the transition map.

Lemma 2. Let M1 be an m1-manifold and M2 an m2-manifold. Then the product M1 ×M2 is an
m1 +m2-manifold.

Proof. Since M1 and M2 are manifolds they are in particular Hausdorff hence the product M1×M2

is Hausdorff as well [Mun00, 17.11]. It also follows that we have collections of open sets (Vi)i∈I and
(Vj)j∈J in M1 and M2 respectively where M1 = ∪i∈IVi and M2 = ∪j∈JVj along with collections of
open sets (Ui)i∈I and (Uj)j∈J in Rm1 and Rm2 respectively. Furthermore there are charts σi : Vi →
Ui and σj : Vj → Uj with the property of smooth transitions on overlaps. We can now simply for
each chart σi : Ui → Vi and each chart σj : Vj → Uj define the map

σi × σj : Vi × Vj → Ui × Uj by σi × σj(x, y) = (σi(x), σj(y)). (8)

Then clearly (Vi × Vj)(i,j)∈I×J is a collection of open sets such that ∪(i,j)∈I×JVi × Vj = M1 ×M2

and (Ui × Uj)(i,j)∈I×J is a collection of open sets in Rm1 × Rm2 = Rm1+m2 with the defined maps
as charts already fulfilling the property of smooth transitions since we have for i′ ∈ I and j′ ∈ J

(σi′ × σj′) ◦ (σi × σj)−1 = (σi′ ◦ σ−1
i )× (σj′ ◦ σ−1

j ) (9)

which is a product of smooth maps hence smooth. Thus M1×M2 is Hausdorff and has an m1 +m2-
dimensional smooth atlas. It is in other words it is an m1 +m2-manifold.
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1.2 Smooth maps and diffeomorphisms

The smooth structure given to the manifold makes it possible for us to give the following definitions
and lemmas which will turn out to be useful when constructing Seifert fibered manifolds.

Definition 3. Let M1 and M2 be manifolds with atlases A1 = {(Vi, Ui, σi)} and A2 = {(Wi, Oi, τi)}
respectively. The map f : M1 →M2 is said to be smooth if for any charts σi and τj the map

τj ◦ f ◦ σ−1
i : σi(Vi ∩ f−1(Wj))→ τj(Wj) (10)

is smooth. If in addition f is a homeomorphism with smooth inverse, it is called a diffeomorphism.

Smoothness is in fact a local property as the next lemma shows.

Lemma 3. Let f : M1 → M2 be a map between manifolds, and suppose each point p ∈ M1 has a
neighborhood N such that f |N is smooth. Then f is smooth.

Proof. We have an open cover of M1 by the neighborhoods N ; call this N . Let A1 = {(Vi, Ui, σi)}
and A2 = {(Wi, Oi, τi)} be atlases for M1 and M2 respectively. We must show that the map
τj ◦ f ◦ σ−1

i |σi(f−1(Wj)∩Vi) is smooth. Since {σi(N ∩ Vi) |N ∈ N} is an open cover of Ui ⊂ Rm it
suffices, by locality of smoothness in Euclidean space, to show that, for some given N ∈ N , the map
τj ◦f ◦σ−1

i |σi(f−1(Wj)∩Vi∩N) is smooth. We have an atlas for N given by {(Vi∩N,Ui∩σi(N), σi|N )}.
Since f |N is smooth we have by definition that the map

τj ◦ f |N ◦ (σi|N )−1 : σi|N (Vi ∩N ∩ f |−1
N (Wj))→ τ(Wj) (11)

is smooth. Since f = f |N on this domain, (σi|N )−1 = σ−1
i |σi(N) and f |−1

N (Wj) = f−1(Wj) ∩N we
can rewrite 11 as follows

τj ◦ f ◦ σ−1
i : σi|N (Vi ∩N ∩ f−1(Wj))→ τ(Wj) (12)

which we recognize as the map to be proven smooth.

Note 1. One could, due to lemma 3 equivalently state that f is smooth at x ∈M1 if there exists
charts σ : V1 → U1 and τ : V2 → U2 on M1 and M2 respectively with x ∈ V1 and f(x) ∈ V2 such
that the composite map

τ ◦ f ◦ σ−1 : σ(f−1(V2))→ U2 (13)

is smooth, and then declare f smooth, if it satisfies the property at all x, compare with [MT97]. We
also see that smoothness of real-valued functions is a special case: Taking M2 = Rn and τ = id we
would get the function f : M1 → Rn which is smooth if for all charts σ in a smooth atlas for M1

the composite map f ◦ σ−1 is smooth.

Lemma 4. Let M be a Hausdorff topological space and let U, V ⊂ M be open with U ∪ V = M .
Let λ : M1 → U be a homeomorphism from a manifold M1 to U , and let µ : M2 → V be a
homeomorphism from a manifold M2 to V . Suppose that the ‘transition map’

λ−1(µ(M2))
λ|→ λ(M1) ∩ µ(M2)

µ−1|→ µ−1(λ(M1)) (14)

is a diffeomorphism. Then M admits the structure of a smooth manifold. The resulting smooth
structures on U and V make both λ and µ into diffeomorphisms.

Proof. Since M1 and M2 are manifolds we can find smooth atlases A1 = {(Vi, Ui, σi)}i∈I1 and A2 =
{(Wi, Oi, τi)}i∈I2 say for these respectively. We claim that we can turn them into a smooth atlas of
M by the homeomorphisms λ and µ, which gives us B = {(λ(Vi), Ui, σi ◦λ−1)}i∈I1 ∪{(µ(Wi), Oi, τi ◦
µ−1)}i∈I2 . The λ(Vi) and µ(Wi) constitute an open cover of M since

⋃
i∈I1 λ(Vi) ∪

⋃
i∈I2 µ(Wi) =

λ(
⋃
i∈I1 Vi) ∪ µ(

⋃
i∈I2(Wi) = λ(M1) ∪ µ(M2) = U ∪ V = M . It is smooth because for i, j ∈ I1,

(σj ◦ λ−1) ◦ (σi ◦ λ−1)−1 = σj ◦ σ−1
i (15)

which is smooth by the assumption that A1 is a smooth atlas. In the same way we see that for
i, j ∈ I2 the transition map is smooth. Finally if i ∈ I1 and j ∈ I2 we have

(τj ◦ µ−1) ◦ (σi ◦ λ−1)−1 = τj ◦ µ−1 ◦ λ ◦ σ−1
i (16)

which is smooth by the assumption that µ−1 ◦ λ is a diffeomorphism cf. definition 3. To see that λ
is a diffeomorphism we note that the composite map becomes σi ◦ λ−1 ◦ λ ◦ σ−1

j = σi ◦ σ−1
j which

is smooth and likewise the inverse map is smooth. Similarly we see that µ is a diffeomorphism as
required.
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1.3 Surfaces as manifolds

Before turning to 3-manifolds in generality let’s get a feeling of how 2-manifolds, called surfaces,
are looking. We give a detailed example of the torus and then move on to a general scheme for
creating compact oriented surfaces. These will play a key role in the theory of Seifert fibered spaces.

Example 2. The torus T 2 = I×I/∼ is a 2-manifold. To see this note that the equivalence relation
∼ is given by pasting opposite edges of the unit square together hence the equivalence classes are

{(x, y)}, (x, y) ∈ Int (I × I) {(x, 0), (x, 1)}, x ∈ (0, 1) (17)
{(0, y), (1, y)}, y ∈ (0, 1) {(0, 0), (0, 1), (1, 1), (1, 0)}. (18)

Define the quotient map p : I × I → I × I/∼ by p(x, y) = [(x, y)]. Furthermore define the sets:

U1 = Int (I × I), U2 = (0, 1)× [[0, 1/2) ∪ (1/2, 1]] (19)
U3 = [[0, 1/2) ∪ (1/2, 1]]× (0, 1), U4 = [[0, 1/2) ∪ (1/2, 1]]× [[0, 1/2) ∪ (1/2, 1]]. (20)

These are all quickly seen to be open in I×I with the subspace topology and saturated with respect
to p. Since p is a quotient map the spaces p(U1), . . . p(U4) are open in I × I/∼. Furthermore since
I × I =

⋃4
i=1 Ui we have I × I/∼=

⋃4
i=1 p(Ui). We now show that every p(Ui) is homeomorphic to

Int (I × I) ⊂ R2. Define the map f1 as the identity and maps fi for i = 2, 3 by shuffling around two
sections of Int I × I in a similar way as the following last one, f4, with four sections:

f4 : U4 → Int (I × I) by f4(x, y) =


(x+ 1/2, y − 1/2) if x < 1/2, y > 1/2
(x− 1/2, y − 1/2) if x > 1/2, y > 1/2
(x+ 1/2, y + 1/2) if x < 1/2, y < 1/2
(x− 1/2, y + 1/2) if x > 1/2, y < 1/2

(21)

One can easily verify that these are all well defined, continuous and constant on each p−1([x, y])
thus we get induced continuous maps f̄i : p(Ui)→ Int (I × I) [Mun00, 22.2].

Ui

p

��

fi

%%KKKKKKKKKKKK

p(Ui)
f̄i

// Int (I × I)

These have inverse maps ḡi, i = 1 . . . , 4 of forms quite similar to

ḡ4 : Int (I × I)→ p(U2) by ḡ4(x, y) =


[(x+ 1/2, y − 1/2)] if x ≤ 1/2, y ≥ 1/2
[(x− 1/2, y − 1/2)] if x ≥ 1/2, y ≥ 1/2
[(x+ 1/2, y + 1/2)] if x ≤ 1/2, y ≤ 1/2
[(x− 1/2, y + 1/2)] if x ≥ 1/2, y ≤ 1/2

(22)

which is well defined since ḡ4(1/2, 1/2) = [(1, 0)] = [(0, 0)] = [(1, 1)] = [(0, 1)], while for x < 1/2 we
have ḡ4(x, 1/2) = [(x+ 1/2, 0)] = [(x+ 1/2, 1)] and for x > 1/2 we have ḡ4(x, 1/2) = [(x− 1/2, 0)] =
[(x− 1/2, 1)]. Exactly the same argument holds for the cases y < 1/2 and y > 1/2. We furthermore
conclude that ḡi is continuous by the pasting lemma hence f̄i is a homeomorphism. We now have a
2-dimensional atlas given by A = {p(Ui), Int (I × I), f̄i}i∈{1,...,4}. To see that it is smooth we must
show that the maps f̄i, i = 1, . . . , 4 satisfies the property of smooth transition on overlaps. Again
we only look at one example of the twelve potentially interesting cases. Pick i = 4 and j = 2 say.
Then the map f̄4 ◦ f̄−1

2 : f̄2(p(U4) ∩ p(U2))→ f̄4(p(U4) ∩ p(U2)) is given by

f̄4 ◦ f̄−1
2 (x, y) =


(x+ 1/2, y) if x < 1/2, y > 1/2
(x− 1/2, y) if x > 1/2, y > 1/2
(x+ 1/2, y) if x < 1/2, y < 1/2
(x− 1/2, y) if x > 1/2, y < 1/2

(23)

which is smooth on each of the disjoint parts and hence smooth. The other transition maps follows
the same pattern of shuffling around parts of Int (I×I). That I×I/∼ is Hausdorff follows by lemma
5 below thus T 2 is a 2-manifold.

Note 2. We actually knew this from earlier. The torus T 2 can be written as S1 × S1 and since
by example 1, S1 is a 1-manifold we conclude by lamma 2 that T 2 is a 2-manifold. The point
of including the example is that this is the simplest case of a more general way to construct new
2-manifolds.
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1.3.1 Construction by polygonal regions

We will now show how to construct a number of compact connected surfaces in a similar way to
example 2 and we compute their fundamental groups. This closely follows [Mun00, §74].

Definition 4. Given a point c ∈ R2 and r > 0 consider the circle of radius r and center c. Given
a finite sequence θ0 < · · · < θn of real numbers, where n ≥ 3 and θn = θ0 + 2π, consider the points
pi = c + r(cos θi, sin θi) on the circle. Denote the half-plane containing the points pk, made by the
line through pi−1 and pi, by Hi. Then the space P = H1 ∩ · · · ∩Hn is called the polygonal region
determined by the points pi.

p0

p1

p2p3

c

P

The positive linear map h : [a, b] → [c, d] defined by (1 − s)a + sb 7→ (1 − s)c + sd is a home-
omorphism. If Q is also a polygonal region with the same number of edges as P , we can find a
homeomorphism of P to Q by using the fact that P is star-convex with respect to any point in IntP
hence P is the union of all the line segments from p ∈ IntP to points in BdP and we can then
just expand the positive linear map to these going from [p, x] to [q, h(x)] for a given q ∈ IntQ and
x ∈ BdP . It is therefore only the number of points, not their position which matters.

Definition 5. A labeling of the edges of P is a map ` : P → S where S is the set of labels. An
orientation of a line segment is an ordering of its end points. Given a labeling and orientation of
the edges of P , we define an equivalence relation ∼ on P as follows: Each point of IntP is equivalent
only to itself. Given any two edges of P that have the same label, let h be the positive linear map
of one onto the other and relate each point x of the first to h(x) on the other. The quotient space
X obtained from this equivalence class is said to have been obtained by pasting the edges of P
together according to the labels and orientations.

Definition 6. Let P be a polygonal region with successive vertices p0, . . . , pn, where p0 = pn.
Given orientations and labeling of the edges of P let, write ak for the label assigned to pk−1pk, and
write εk = +1 or −1 according to the orientation. Then the number of edges, their orientation and
labeling are completely specified by

w = (a1)ε1(a2)ε2 . . . (an)εn (24)

called the labeling scheme of length n for the edges of P . Clearly a cyclic permutation in the
scheme will only change the space X up to homeomorphism.

Example 3. The labeling scheme aba−1b−1 gives rise to the torus in example 2, abac to the Möbius
band and abab−1 to the Klein bottle both of which we will encounter later in sections 2.1 and 2.2
respectively. It is in fact possible to create surfaces of all genus g, see appendix B.4, by labeling a
4g sided polygonal region P according to the following scheme (a1b1a

−1
1 b−1

1 ) . . . (agbga−1
g b−1

g ). The
space is called the g-fold connected sum of tori and is denoted T] . . . ]T , cf. B.3. The famous
classification theorem for surfaces states, that this does in fact account for all compact orientable
surfaces, see appendix B.4.

Note 3. Notice that in the case of the g-fold torus every corner of the polygon gets sent to the same
point under the quotient map. To see that these are manifolds we could go through exactly the
same procedure as in example 2. It is however intuitively clear if one defines U1 = IntP , the set U2

as the polygonal region with straight lines going between opposite corners subtracted and U3 as the
polygonal region with straight lines going between midpoints of opposite edges subtracted. These
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a1

b1

a1

b1

a2
b2

a2

b2
a1

b1

a2

b2

Figure 3: The labeled octagon and the resulting double torus T]T

are all open and saturated and we can find continuous maps going to open subsets of R2 by shuffling
the ‘slices’ around, just as in example 2 such that it is constant on each p−1([x, y]). This would
give us the desired induced homeomorphisms, and one could then easily check that the transition
property is satisfied to conclude that they are indeed manifolds, since they are also Hausdorff by
the following theorem.

Lemma 5. Let X be the space obtained from a finite collection of polygonal regions by pasting edges
together according to some labelling scheme. Then X is a compact Hausdorff space. Cf. [Mun00].

Proof. For simplicity we treat the case where X is formed by a single polygonal region. Since any
polygonal region is compact, being a closed and bounded set of a metric space, we know that since
the quotient map is continuous, X is compact [Mun00]. To show that X is Hausdorff it suffices
by lemma 21, since P is a compact Hausdorff space, to show that the quotient map π is a closed
map. We must therefore show that for each closed set C of P , the set π−1π(C) is closed in P . Now
π−1π(C) consists of the points of C and all the points of P which are pasted to points of C by π.
These points can be determined; for each edge e of P , let Ce denote the compact subspace C ∩ e of
P . If ei is an edge of P that is pasted to e, and if hi : ei → e is the pasting homeomorphism, then
the set De = π−1π(C) ∩ e contains the space hi(Cei). Indeed De equals the union of Ce and the
spaces hi(Cei) as ei ranges over the edges of P that are pasted to e. This (finite) union is compact
hence closed in e and in P . Since π−1π(C) is the union of the set C and the sets De, as e ranges
over all edges of P , it is closed in P as required.

Theorem 1. Let P be a polygonal region; let w = (a1)ε1 . . . (an)εn be a labeling scheme for the
edges of P . Let X be the resulting quotient space and π : P → X the quotient map. If π maps all
the vertices of P to a single point x0 of X and if a1, . . . , ak are the distinct labels that appear in
the labeling scheme, then π1(X,x0) is isomorphic to the quotient of the free group on k generators
α1, . . . , αk by the least normal subgroup containing the element (α1)ε1 . . . (αn)εn

Proof. By lemma 5 we see that X is Hausdorff. Since π maps all vertices of P to a single point x0

of X the set W = π(BdP ) is a so called wedge of k circles, see appendix C.1, and it is clearly a path
connected subspace of X. Furthermore π is by definition of the quotient topology continuous and
it maps IntP bijectively, by the identity, onto X −W and BdP to W . Let p ∈ BdP be a vertice.

For each i, choose an edge of P labelled ai. Define the map fi from I to this edge by the
positive linear map and furthermore define gi = π ◦ fi. Then gi is a loop and hence represents
a generator for π1(W,x0) and the loops g1 . . . gk represent a system of free generators for the free
group π1(W,x0) [Mun00, 71.1]. The loop f running around BdP once in the positive direction
generates the fundamental group of BdP and the loop π ◦ f equals the loop (g1)ε1 ∗ · · · ∗ (gk)εn . In
other words the map k : (BdP, p)→ (W,x0) defined by restricting π has image [g1]ε1 ∗ · · · ∗ [gk]εn .

Then lemma 26 tells us that the homomorphism i∗ : π1(W,x0)→ π1(X,x0) induced by inclusion
is surjective and its kernel, N , is the least normal subgroup of π1(W,x0) containing the image of
k∗ : π1(BdP, p)→ π1(W,x0). This can be reformulated using the first isomorphism theorem [Tho07,
p. 98] giving us the isomorphism

π1(X,x0) ' π1(W,x0)/N (25)

and by the above calculations π1(W,x0) is the free group on the k generators [g1] . . . , [gk] while the
image of k∗(π1(P, p)) is [g1]ε1 . . . [gn]εn which is the required statement with g’s replaced by α’s.
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Corollary 1. Let X denote the g-fold torus, which is the space obtained from the labeling scheme
(a1b1a

−1
1 b−1

1 ) . . . (agbga−1
g b−1

g ). Then π1(X,x0) is isomorphic to the quotient of the free group on the
2g generators α1, β1, . . . , αg, βg by the least normal subgroup containing [α1, β1][α2, β2] . . . [αg, βg].

Proof. It is fairly easy to check that all vertices in a polygonal region P with the labeling scheme
(a1b1a

−1
1 b−1

1 ) . . . (agbga−1
g b−1

g ) are mapped by π to the same point in X; one could simply note,
that since this is the case for the torus it follows by induction for the general g-fold torus. The
distinct labels are two for each genus, aj , bj say, hence there are 2g i all. Theorem 1 now tells us
that π1(X,x0) is isomorphic to the quotient of the free group on 2g generators α1β1 . . . αgβg by the
least normal subgroup containing the element (α1)ε1 . . . (αn)εn = (α1β1α

−1
1 β−1

1 ) . . . (αgβgα−1
g β−1

g ) =
[α1, β1] . . . [αg, βg] as required.

Note 4. Since every orientable surface has the form of a g-fold torus by the classification theorem,
cf. appendix B.4, this gives us a recipe for computing the genus of any such space, since g can be
extracted from the presentation of π1.

1.4 Lens spaces

We will now turn to an investigation of the so called Lens spaces Lp/q, introduced by Heinrich Tietze
in 1908 [Tie08]. These will serve as our main examples of Seifert manifolds, and we shall return
to them later on as well. The original geometric formulation goes as follows: A lens is a region of
3-space bounded by two spherical caps which meet in an equatorial circle. Divide the equatorial
circle into q equal segments. Its two caps then become q-gons. Then Lp/q is obtained from this by
a reflection in the plane containing the rim of the lens, taking one face to the other, followed by a
rotation of this face through the angle 2πp/q. See Hatcher [Hat02] and Seifert [ST80] for further
details on this geometric representation.

Figure 4: The solid lens-shaped 3-ball with two equivalent points.

We will not go further into the geometric description, instead we define the lens space formally in
the following way, which can be shown to be equivalent to the one sketched out above, see [Hat02].

Definition 7. The Lens space Lp/q is defined by Lp/q = S3/∼ where p, q are coprime and ∼ is
generated by (u, v) ∼ (e2πi/qu, e2πip/qv). Compare with [Hat07, p.12].

Note that Lp/1 ' S3 for all p ∈ Z by insertion. We are going to use the language of group actions
to show that the Lens space Lp/q is a 3-manifold. Definitions are from [Tho07].

1.4.1 Group action terminology

Definition 8. Let Γ be a fixed group. It is said to act on the set M if there is a map Γ×M →M
denoted (g, x) 7→ g.x such that for x ∈M and g, h ∈ Γ we have

e.x = x and (gh).x = g.(h.x). (26)

For a given g ∈ Γ we define the bijective map ρg : M → M by x 7→ g.x. Suppose Γ acts on M .
Two elements x, y ∈M are said to be Γ-equivalent, written x ∼ y, if x = g.y for some g ∈ Γ. The
equivalence classes are called orbits. For a given x ∈M we can consider the orbit through x given
by Γ.x = {g.x | g ∈ Γ}. A group Γ acts freely if the only element of Γ that fixes any element of M
is the identity: g.x = x for some x ∈M implies g = e.

Definition 9. If M is a space we say that the action is continuous if the corresponding maps
ρg : M →M for g ∈ Γ are continuous (thus homeomorphism with inverse ρg−1). We give the orbit
space M/Γ the quotient topology and write p : M →M/Γ for the quotient map.
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Definition 10. Let M be a manifold. Then the action is said to be smooth if the map Γ×M →M
is smooth, that is if ρg(x) depends smoothly on (g, x). If this is the case then for each g ∈ Γ the
map ρg : M →M is a diffeomorphism.

1.4.2 The orbit space as a manifold

The central theorem is the following which requires some lemmas before it can be proved. This will
in principle enable us to create a vast number of new 3-manifolds, and we start by applying it to
show that the Lens spaces belong to this category.

Theorem 2. Let Γ be a finite group acting smoothly and freely on a compact m-manifold M . Then
M/Γ is a compact m-manifold.

Corollary 2. The Lens space Lp/q is a compact 3-manifold.

Proof. S3 is a compact 3-manifold by example 1. The group 〈e2πi/q〉 ' Cq is finite and acts freely
on S3: Define the map Cq×S3 → S3 by (g, (u, v)) 7→ g.(u, v) = (e2πig/qu, e2πigp/qv). Using additive
notation we have

0.(u, v) = (e2πi0/qu, e2πi0p/qv) = (u, v) (27)

(g + h).(u, v) = (e2πi(g+h)/qu, e2πi(g+h)p/qv) = g.(h.(u, v)) (28)

hence it is an action and we can define ρg : S3 → S3 by ρg(u, v) = (e2πig/qu, e2πigp/qv). If ρg(u, v) =
(u, v) then e2πig/qu = u hence g ≡ 0 (mod q) or u = 0. In the last case we must have |v| = 1 in
particular v 6= 0. Therefore e2πigp/q = 1 hence gp ≡ 0 (mod q) which implies g ≡ 0 (mod q) since q
and p are coprime. In any case we see that g = e thus Cq acts freely. Since S3 is a manifold and ρg
is clearly smooth, the action is smooth as well. The equivalence relation (u, v) ∼ (e2πi/qu, e2πip/qv)
gives rise to precisely the equivalence classes [(u, v)] = {g.(u, v) | g ∈ Cq} = Cq.(u, v) in other words
the orbits. By theorem 2 we conclude that Lp/q = S3/Cq = S3/ ∼ is a compact 3-manifold.

We now move back to show a series of lemmas leading to the proof of theorem 2. These will
furthermore find applications later on when we return to examine the Lens spaces further.

Lemma 6. If the group Γ is finite then the quotient map p : M →M/Γ is open and closed.

Proof. Let U ⊂M be open. We must show that p(U) is open in M/Γ or equivalently that p−1(p(U))
is open in M . But we have

p−1(p(U)) = {g.(U) | g ∈ Γ} =
⋃
g∈Γ

g.(U) =
⋃
g∈Γ

ρg(U) (29)

and since ρg is a homeomorphism we conclude that p−1(p(U)) is a union of open sets hence open.
By the same argument we conclude, since the union is finite and p is a quotient map, that p−1(p(V ))
is closed for V ⊂M closed.

Lemma 7. If M is a compact Hausdorff space and Γ is finite, then M/Γ is compact Hausdorff.

Proof. The quotient map p : M → M/Γ defined by p(x) = [x] is, by definition of the quotient
topology, continuous [Mun00, p. 138]. Since M/Γ = p(M) it is a continuous image of the compact
space M hence compact [Mun00, 26.5]. We must show that it fulfills the Hausdorff condition. Pick
[x], [y] ∈ M/Γ where [x] 6= [y]. Then p−1([x]) = {g.x | g ∈ Γ} = Γ.x and p−1([y]) = {g.y | g ∈ Γ} =
Γ.y are disjoint in M . Since Γ is finite so is Γ.x and Γ.y and they are therefore also compact. By
lemma 20 it follows that we can find disjoint open sets U and V containing Γ.x and Γ.y respectively.
Therefore the complements M − U and M − V are closed and by lemma 6 we see that p(M − U)
and p(M − V ) are closed. Define

A = M/Γ− p(M − U) and B = M/Γ− p(M − V ) (30)

which are then obviously open and contain [x] and [y] respectively. Finally we have

A ∩B = M/Γ− p((M − U) ∪ (M − V )) = M/Γ− p(M − (U ∩ V )) = M/Γ− p(M) = ∅ (31)

hence the Hausdorff condition is satisfied as required.
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Lemma 8. Let Γ be a finite group acting freely on a Hausdorff space M. For any x ∈M there exists
a neighborhood, A, such that for g 6= e we have A ∩ g.A = ∅.

Proof. Without loss of generality we can write the finite group as Γ = {g1, . . . , gk} where g1 = e.
Since Γ acts freely gj .x = x if and only if gj = e and we conclude, as ρg is bijective, that g1.x, . . . , gk.x
are distinct in M . We can now, due to M being Hausdorff, find pairwise disjoint neighborhoods
A1, . . . Ak of these points (use lemma 20 k times and take intersections). Define

A =
k⋂
i=1

g−1
i .Ai =

k⋂
i=1

ρg−1
i

(Ai) (32)

which, due to ρg−1
i

being a homeomorphism, is a neighborhood of x in M . We see that A =

A1 ∩ (
⋂k
i=2 g

−1
i .Ai) hence A ⊂ A1. Letting gi act on (32) furthermore leaves us with gi.A =⋂k

j=1 gi.g
−1
j .Aj hence gi.A ⊂ Ai. But then A ∩ gi.A ⊂ A1 ∩Ai = ∅.

Proof of theorem 2. The compact m-manifold M is by definition Hausdorff hence by lemma 7 M/Γ
is compact Hausdorff. We need to find a smooth atlas of M/Γ, that is show that every point of M/Γ
has a neighborhood homeomorphic to an open set in Rm. Let [x] ∈M/Γ be given. By lemma 8 we
can find a neighborhood A of the representative x such that A ∩ g.A = ∅ for g 6= e. Since M is a
manifold we can by lemma 1 find a neighborhood V of x which is diffeomorphic to Rm: σ : V → Rm.
Now W = V ∩A is open in V hence σ(W ) is open in Rm. Furthermore W is an open neighborhood
of x in A.

We wish to show that p(W ) is the desired neighborhood of [x] in M/Γ. The mapping p|W :
W → p(W ) is by definition surjective. To see that it is injective suppose p|W (y1) = p|W (y2) for
y1, y2 ∈ W . Then [y1] = [y2] which by definition implies that y1 = gt.y2 for some gt ∈ Γ. Therefore
y1 ∈ W ∩ gt.W ⊂ A ∩ gt.A hence we must have gt = e by the above assumption which gives us
y1 = y2 as required for injectivity.

Since p : M → M/Γ is open by lemma 6 and continuous the restriction p|W is open and
continuous [Mun00, 18.2 (d)] and therefore a homeomorphism. But then p(W ) is homeomorphic to
W which by the above is homeomorphic to Rm and clearly [x] ∈ p(W ) as required.

Finally we need to check that the property of smooth transitions on overlaps is satisfied. De-
fine ψi : p(Wi) → Rm by ψi(x) = σi ◦ p|−1

Wi
(x). Then we have an atlas of M/Γ given by

{(p(Wi),Rm, ψi)}i∈M and the transition map

ψj ◦ ψ−1
i : ψi(p(Wi) ∩ p(Wj))→ ψj(p(Wi) ∩ p(Wj)) is given by (33)

ψj ◦ ψ−1
i (x) = (σj ◦ p|−1

Wj
) ◦ (σi ◦ p|−1

Wi
)−1(x) = σj ◦ σ−1

i (x) (34)

and thus seen to be smooth since by definition σj ◦ σ−1
i satisfies the property.

Lemma 9. Let M be a set and Γ a finite group acting freely on M . Then any quotient map
π : M →M/Γ is a covering map.

Proof. We claim that the quotient map π : M → M/Γ given by π(x) = [x] is a covering map. To
see this note by lemma 8 we can for any x ∈M find a neighborhood A such that for g 6= e we have
A ∩ g.A = ∅. Thus for x, y ∈ A we see that if π(x) = π(y) then x = y in other words the restriction
π|A : A → M/Γ is injective and therefore bijective. Furthermore we see from lemma 6 that π|A is
an open map thus we conclude that π|A is a homeomorphism. We have

π−1(π(A)) =
⋃
g∈Γ

g.A =
⊔
g∈Γ

g.A (35)

which is a disjoint union of open sets, since it follows by lemma 8 that g1.A ∩ g2.A = ∅ for g1 ≡/ g2

(mod q) and g.A = ρg(A). We now note that for any g ∈ Cq the map π|g.A : g.A → π(A) is
given by π|g.A(x) = π|A ◦ ρg−1(x) which is a composition of homeomorphisms hence π|g.A is a
homeomorphism as well. We conclude that the open set π(A) is evenly covered thus π is a covering
map as required.
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2 Fibrations and fibre bundles

In order to impose some structure on a given space we introduce the concept of a fibre bundle. This is
intuitively a space E which locally looks like a product space B×F , but may have a global structure
which differs. We give a number of examples including the class of circle bundles, among which we
encounter the Hopf fibration, named after Heinz Hopf who first described it in 1931 [Hop31]. These
will furthermore illustrate the general thought behind the theory of Seifert manifolds. Definitions
are inspired from Hatcher [Hat02] and Madsen and Tornehave [MT97].

2.1 Definitions and examples

Definition 11. A fibre bundle structure on a total space E with fibre F and base space B,
consists of a projection map p : E → B such that each point of B has a neighborhood U for which
there is a homeomorphism h : p−1(U)→ U × F making the diagram below commute.

p−1(U)

p
##FFFFFFFFF
h // U × F

π1
||yyyyyyyyy

U

Commutativity of the diagram means that h carries each fibre Fb = p−1(b) homeomorphically onto
the copy {b}×F of F . Thus fibres are arranged locally as the product B×F . The homeomorphism
h is called a local trivialization of the bundle, compare with [Hat02]. A fibre bundle is said to
be smooth, if E,F and B are manifolds, p is a smooth map, and h above can be chosen to be a
diffeomorphism, see also [MT97]. We write the fibre bundle as F → E → B.

2.1.1 The Möbius strip

As one of the most simple non-trivial examples of a fibre bundle we have the Möbius strip. Let
S1 = {z ∈ C | |z| = 1}. We then define

M = {(z, w) | z ∈ S1, w ∈ C, w2 = λz, λ ∈ [0, 1]}. (36)

Then M is the Möbius strip. We claim that it is a fibre bundle [−1, 1] → M → S1. To see
this define p : M → S1 by p(z, w) = z. Define U = S1 − {1}. We can choose the function
ρ2(z) =

√
|z|ei

Arg0(z)
2 which is a holomorphic branch of the square root on the cut plane C0, see

[Ber10, § 5]. Define
√
z = ρ2(z). By restriction to U we get a continuous square root function

U → S1. Define h : p−1(U)→ U × [−1, 1] by h(z, w) = (z, w/
√
z). Note that w/

√
z ∈ [−1, 1] since

(w/
√
z)2 = w2/z = λ ∈ [0, 1]. Furthermore h is a homeomorphism with inverse (z, t) 7→ (z, t

√
z).

Similarly we can trivialize over V = S1−{−1} by using the usual branch of the square root. Clearly
S1 = U ∪ V thus M is the desired fibre bundle. In other words a Möbius strip is locally a product
space. This is intuitively right since we can cut it open along a fibre Fb = {b} × [−1, 1] and untwist
it to a rectangle. The Möbius strip is not globally a product space however since this would result
in a cylinder.

z = 1, w ∈ [−1, 1]
z = −1, w ∈ [−i, i]

z = i, w ∈ [−1, 1]e
iπ
4

z = i, w ∈ [−1, 1]e
3iπ
4

Figure 5: The Möbius strip, M , seen as a subset of C2
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2.1.2 Covering spaces as fibre bundles

It turns out that we actually know a lot of fibre bundles since any covering space whose fibres have
constant cardinality, is a fibre bundle. We state this as a theorem and give a couple of examples.

Theorem 3. Let p : E → B be a covering map whose fibres p−1(b) are all bijective with a given set
F . Then p : E → B is a fibre bundle with discrete fibre F .

Proof. Let b ∈ B. By definition of a covering space [Mun00, p. 336] we can find a neighborhood
U of b which is evenly covered by p. Again by definition we can then write p−1(U) as the disjoint
union of open sets Vα, such that p|Vα : Vα → U is a homeomorphism for each α. In particular each
Vα contains precisely one point of p−1(b) which is then seen to be discrete. We now define h as

h : p−1(U) // U × p−1(b)

tVα

55kkkkkkkkkkkkkkkk

that is h is the map sending v ∈ Vα to (p(v), b̃) where b̃ is the element of p−1(b) inside Vα. Then h is
continuous [Mun00, Theorem 18.4]. Furthermore it has the inverse map g : U ×p−1(b)→ tVα given
by g(u, b̃) = (p|Vα)−1(u) where α is chosen such that b̃ ∈ Vα. Therefore h is a homeomorphism. We
now see that the diagram

p−1(U)

p
##FFFFFFFFF
h // U × p−1(b)

π1
zztttttttttt

U

commutes: π1 ◦ h(v) = π1(p(v), b̃) = p(v) as required. Finally choose a bijection ϕb : p−1(b) → F
which is possible by assumption. Then the composite

p−1(U) h // U × p−1(b)
Id×ϕb // U × F

is the required trivialization and the bijection ϕb insures that F is discrete.

Example 4. The map p : R → S1 given by p(x) = (cos 2πx, sin 2πx) is a covering map [Mun00].
For any b ∈ S1 we have the fibre p−1(b) ' Z. By theorem 3 we conclude that p : R→ S1 is a fibre
bundle with fibre Z. Alternatively we can write this fibre bundle as Z→ R→ S1.

Example 5. The map q : S1 → S1 given by q(z) = zn is a fibre bundle with fibre F = {w ∈
C |wn = 1}. To see this it is enough by theorem 3 to show that p is a covering map whose fibres
are all bijective with F . Let p be the covering map from example 4 and define the homeomorphism
h : R → R by h(x) = nx. Pick w ∈ S1 and define U = S1 − {w}. Choose x ∈ p−1(a) and define
Wα = (x+ α, x+ α+ 1), Zα = (x+α

n , x+α+1
n ) and Vα = p(Zα). Then q−1(U) = {z ∈ S1 | zn 6= w} =⊔n−1

α=0 Vα and we have the commutative diagrams:

R
p

��

h // R
p

��
S1

q
// S1

Zα

p|Zα
��

h|Zα // Wi

p|Wα
��

Vi
q|Vα

// U

The restriction q|Vα : Vα → U is a homeomorphism for each α, being the composite of three
homeomorphisms. It is clear that every point b ∈ S1 has such a neighborhood U we just have to
pick w 6= b hence q is a covering map. If we let b = eiθ for some θ ∈ [0, 2π) then we see that the fibres
are q−1(b) = {z ∈ S1 | zn = b} = {eiθk | θk = θ

n + k 2π
n , k = 0, . . . , n − 1} which is homeomorphic to

F by the homeomorphism g : q−1(b)→ F defined by g(z) = ze−iθ/n. We conclude that S1 is a fibre
bundle over S1 with fibre F , that is F → S1 → S1 as required.
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Example 6. Define E = {(A,v) |A ∈ GL(n,R),v ∈ Rn, A−1v ∈ Re1}. Then p : E → GL(n,R)
given by p(A,v) = A is a fibre bundle with fibre Re1. To see this we simply note that since the
determinant map is continuous and GL(n,Rn) is the inverse image of this map on the open set R−0,
it is itself open. We can write E = GL(n,R)× {v ∈ Rn |A−1v ∈ Re1} since for any matrix we can
simply pair it with the 0-vector. Now it is clear that we have a fibre bundle with the homeomorphism
h : E → GL(n,Rn)×Re1 given by h(A, v) = (A,A−1v). We can write it as Re1 → E → GL(n,Rn).

2.2 Circle-bundles and the Hopf map

Circle bundles are, as the name suggests, fibre bundles where the fibres are circles. They will play
a prominent role in the following sections, since circle bundles over surfaces are a special case of
Seifert fibered spaces.

Example 7. As a first example we will look at the Klein bottle, K2. We claim that K2 is the
total space of a circle bundle S1 → K2 → S1. To see this we will exploit our knowledge of polygonal
regions. Let K2 = I×I/∼ where ∼ is given by pasting the edges together according to the following
scheme

a

b

a

b

Figure 6: The Klein bottle immersed in 3 dimensions

Then K2 is the Klein Bottle. Let I/∼ be the unit interval (mod 1) which is clearly homeomorphic
to the circle S1, one could simply note that the continuous and surjective map fS : I → S1 given
by p(x) = (cos(2πx), sin(2πx)) descends to a homeomorphism f̄S : I/∼→ S1. Let the projection
maps I × I → K2 and I → I/∼ be denoted π and π′ respectively. Define the map p : K2 → I/∼ by
p([(x, y)]) = [x]. Now let U = {[x] |x 6= 1/2} and V = {[x] |x ∈ (0, 1)}. Then I/∼= U ∪ V and we
claim that these are both homeomorphic to the open unit interval (0, 1). To see this we note that
we have the diagrams

[0, 1/2) ∪ (1/2, 1]

π′

��

fU

''OOOOOOOOOOOOO

U
f̄U

// (0, 1)

(0, 1)

π′

��

fV

##GGGGGGGGG

V
f̄V

// (0, 1)

where fU (x) = 1[0,1/2)(x) 1
2 − 1(1/2,1](x) 1

2 and fV is the identity. It is easy to verify, by the same
methods as in example 2, that these do in fact induce homeomorphisms f̄U : U → (0, 1) and
f̄V : V → (0, 1) [Mun00, 22.2]. Furthermore we have

p−1(U) = {[(x, y)] ∈ K2 |x 6= 1/2} and p−1(V ) = {[(x, y)] ∈ K2 |x ∈ (0, 1)}. (37)

These are both homeomorphic to Int I × I/∼ since we have the diagrams

[0, 1/2) ∪ (1/2, 1]× [0, 1]

π

��

f

))SSSSSSSSSSSSSSSSS

p−1(U)
f̄

// Int I × I/∼

(0, 1)× [0, 1]

π

��

g

''OOOOOOOOOOOOO

p−1(V )
ḡ

// Int I × I/∼

where f(x, y) = (x+ 1/2, π′(y))1[0,1/2)(x) + (x−1/2, π′(y))1(1/2,1] and g(x, y) = (x, π′(y)) which are
clearly continuous [Mun00, 18.2 (f)]. Along the lines of the previous verifications, one can easily see
that we get induced homeomorphisms as stated.
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Now we define the homeomorphisms hU : p−1(U) → U × S2 by hU (x, y) = (f̄−1
U × f̄S) ◦ f̄ and

hV : p−1(V )→ V ×S1 by hV (x, y) = (f̄−1
V × f̄S)◦ ḡ which are the desired local trivializations. Thus

we have a circle bundle S1 → K2 → S2 as required.

Note 5. Notice that the Klein bottle is not a product space - the corresponding one would be
S1 × S1, the torus. This relationship can in fact be exploited to give a broader definition of Seifert
manifolds, than the one we are going to use, see [Sco83, p. 428]. Furthermore we note, that the
Klein bottle is an example of a closed nonorientable manifold – a ‘horizontal’ path in the square
corresponds to a Möbius strip.

2.2.1 The Hopf Fibration

In this section we will show that S3 is the total space of a fibre bundle S1 → S3 → S2 called the
Hopf fibration. In order to define the projection φ : S3 → S2, which is called the Hopf map,
it will be useful to decompose the base space S2, which we recognize as the Riemann sphere, into
the two subsets Up = S2 − {p} and Uq = S2 − {q} where p = (0, 0, 1) and q = (0, 0,−1) are the
‘north’ and ‘south’ pole respectively. Recall that the 3-sphere can be written as S3 = {(z, w) ∈
C2 | |z|2 + |w|2 = 1}. Then we can define the functions

fp : Up → C by fp(x, y, z) =
x+ iy

1− z
and fq : Uq → C by fq(x, y, z) =

x− iy
1 + z

. (38)

We recognize these as slight variations of the stereographic projection maps from example 1 hence
just as we did there one can show that they are homeomorphisms. Now the transition map fq ◦ gp :
C− {0} → C− {0}

C− {0}
gp // S2 − {p, q}

fq // C− {0}

is given by z 7→ z−1 as can be verified by inserting in the functions from example 1, hence it is just
an inversion and therefore a Möbius transformation [Ber10, §9]. We can now define the Hopf map,
φ : S3 → S2 by

φ(z, w) =
{
gp(z/w) if w 6= 0
gq(w/z) if z 6= 0 (39)

It is well defined since for w, z 6= 0 we have

gq(w/z) = gq

( 1
z/w

)
= gq ◦ fq ◦ gp(z/w) = gp(z/w) (40)

as required. Furthermore it is continuous and surjective [Mun00, 18.2 (f)]. One can easily check
that the fibres are circles. For example

φ−1(1, 0, 0) = φ−1(gp(1)) = {(z, w) ∈ S3 | z/w = 1} = {(z/
√

2, z/
√

2), | |z| = 1}. (41)

In fact φ makes S3 into a circle bundle over S2 since we have

φ−1(Up) = {(z, w) ∈ S3 | gp(z/w) ∈ S2 − {p}, w 6= 0} = {(z, w) ∈ S3 |w 6= 0} (42)

and we can define the following function

hp : {(z, w) ∈ S3 |w 6= 0} → Up × S1 by hp(z, w) = (gp(z/w), w/|w|) (43)

which is continuous since gp is a homeomorphism [Mun00, 18.4]. Furthermore it has inverse given
by h−1

p (gp(u), v) = ( uv√
1+|u|2

, v√
1+|u|2

) which is also continious hence hp is a homeomorphism. We

now see that the diagram

φ−1(Up)

φ ##GGGGGGGGG

hp // Up × S1

π1
{{wwwwwwwww

Up
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Figure 7: The Hopf Fibration, http://www.nilesjohnson.net/ppics.html

commutes: π1 ◦ hp(z, w) = π1(gp(z/w), w/|w|) = gp(z/w) = φ(z, w). Likewise we have for the
remaining neighborhood Uq that φ−1(Uq) = {(z, w) ∈ S3 | z 6= 0}. Following the approach above
with the function hq defined in an analogous way as hp we see that φ−1(Uq) and Uq × S1 are
homeomorphic. We have now obtained the Hopf fibration S1 → S3 → S2. Every point of the
two-sphere comes from a distinct circle on the 3-sphere.

It can be shown that the stereographic projection sends circles to circles. Therefore the preimage
under the Hopf map of each circle of lattitude on the 2-sphere results in a union of circles on the
3-sphere which is still a union of circles after stereographic projection. It turns out that this union
is actually a torus, see figure 7. By changing the lattitude of the circle on the 2-sphere we get nested
tori which fill up 3-dimensional space. See [Lyo03] for more implications of the Hopf map, as well
as a quick and dirty exposition of the Hopf Fibration using quaternions.

The 3-sphere S3 is not globally a product space S2 × S1 though since we have π1(S3) = e be-
cause S3 is simply connected [Mun00, 59.3] and π1(S2 × S1) = e × Z ' Z by the fact that the
fundamental group of a product space is isomorphic to the product of the fundamental groups of
each space [Mun00, 60.1].
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3 Seifert Manifolds

A Seifert fibered space is a 3-manifold which is a union of pairwise disjoint circles, called fibres,
arranged in a specific way. It is thus like an ordinary smooth circle bundle, but allows for a finite
number of ‘multiple’ fibres where the local model incorporates a ‘twist’. We are therefore capable
of creating a much broader family of manifolds than just smooth circle bundles. These spaces were
first investigated by Herbert Seifert in the 1930’s [Sei80]. We will take a more modern approach
inspired by Hatcher [Hat07].

3.1 Model Seifert fibration

Just as an m-manifold is defined by each point being homeomorphic to the local model Rm, a Seifert
fibred space is defined using a collection of local models for neighborhoods of fibres each of which is
a circle. The local models are called ‘model Seifert fiberings’ which we will now construct explicitly
followed by a derivation of several of their important properties.

3.1.1 Construction

First choose p, q ∈ Z, q 6= 0. Let D2 = {z ∈ C | ‖z‖ ≤ 1} be the unit complex disc and decompose
[0, 1]×D2 into the segments [0, 1]×{z} for z ∈ D2. Define τ : D2 → D2 by τ(z) = ze2πip/q so that
τ turns D2 by p/q of a full circle. Clearly τ is a homeomorphism and it is completely determined
by the rational number p/q (mod 1). Therefore we can without loss of generality assume that p and
q are co-prime and 0 ≤ p < q. Define the equivalence relation ∼ on [0, 1]×D2 by

(t1, z1) ∼ (t2, z2)⇔
{

(t1, z1) = (t2, z2)
(0, z1) = (1, τ−1(z2)) (44)

Then the model Seifert fibering is defined as the quotient space [0, 1]×D2/∼.
z

{1} ×D2{0} ×D2

Figure 8: The space [0, 1]×D2 with a segment [0, 1]× {z}

For a given z ∈ D2 − {0} there is a finite number of images under powers of τ . To see this note
that τk ◦τn(z) = τ l(z) where l = k+n (mod q) since the equation is satisfied if and only if for a ∈ Z
we have p(k+n)

q + a = pl
q which since p and q are coprime is if and only if l − (k + n) = qa which

is l ≡ k + n (mod q) by definition. Furthermore τ q(z) = z. We conclude that there are exactly q
different elements in an orbit. For z = 0 the orbit is clearly just 0. We can now describe the model
Seifert fibering as a union of circles. Define arcs Az = {[(t, z)] | t ∈ [0, 1]} for fixed z ∈ D2. Then A0

is a circle and for z 6= 0 the union of arcs
⋃q−1
i=0 Aτ i(z) constitute a circle and Aτ i(z) = Aτj(z) ⇔ i ≡ j

(mod q). These circles are called fibres.

Lemma 10. The model Seifert fibering [0, 1]×D2/∼ is homeomorphic to the solid torus S1 ×D2.

Proof. Define the quotient map p : [0, 1]×D2 → [0, 1]×D2/∼ by p(t, z) = [(t, z)] and the continuous
map g : [0, 1]×D2 → S1×D2 by g(t, z) = (e2πit, ze2πitp/q). Then g is constant on each set p−1([t, z])
since we have

g(1, z1) = (e2πi·1, z1e
2πip/q·1) = (1, τ(z1)) = (e2πi·0, τ(z1)e2πip/q·0) = g(0, τ(z1)) (45)

It now follows by [Mun00, 22.2] that g induces a continuous map fp/q : [0, 1] × D2/∼ → S1 × D2

such that fp/q ◦ p = g hence fp/q([t, z]) = (e2πit, ze2πitp/q). Define h : S1 ×D2 → [0, 1]×D2/∼ by
h(w, z) = [(Log(w)

2πi , ze−2πip/q)] where Log denotes the principal logarithm. This is continuous, see
[Ber10, §5] and one easily checks that it is inverse to fp/q.
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Note 6. The fibres in [0, 1]×D2/ ∼ are as noted earlier the union of the arcs Az = {[(t, z)] | t ∈ [0, 1]}
for fixed z ∈ D2. Now Az gets sent by fp/q to fp/q(Az) = {(e2πit, ze2πitp/q) | t ∈ [0, 1]} and similarly,

fp/q

( q−1⋃
i=0

Aτ i(z)

)
= {fp/q([(t, z)]) | t ∈ [0, q]} = {(e2πit, ze2πitp/q) | t ∈ [0, q]}. (46)

These sets are called the circles of slope p/q. Therefore the model Seifert fibration is exactly
S1×D2 fibered by the circles of slope p/q. We can now define the model Seifert fibering in another
more concise manner:

Definition 12. The model Seifert fibering with parameter p/q where p, q ∈ Z are coprime is
the decomposition of S1 ×D2 into the circles

Cz = {(e2πit, e2πitp/qz) | t ∈ [0, q]} (47)

for z ∈ D2. Cz is the fibre through (1, z) and C0 is called the core. The open model Seifert fibering
with parameter p/q is S1 × IntD2 with the induced decomposition into circles.

z

Figure 9: The model Seifert fibration with the circle Cz

Note 7. In definition 12 we have omitted the condition that 0 ≤ p < q. This is due to the following
obervation. Let p/q, p′/q′ ∈ Q where each pair p, q and p′, q′ are coprime. Suppose that p/q ≡ p′/q′
(mod 1) but that p/q 6= p′/q′. Then the model Seifert fibration with parameter p/q, Mp/q, and
the model Seifert fibration with parameter p′/q′, Mp′/q′ , are not strictly equal. However there is a
diffeomorphism ϕ : Mp/q → Mp′/q′ sending fibres to fibres. Writing p′/q′ = p/q + r for r ∈ Z let it
be given by ϕ(x, z)→ (x, xrz). Then we have ϕ(e2πit, e2πip/qz) = (e2πit, e2πip′/q′) thus ϕ does send
circles of slope p/q to circles of slope p′/q′. The point is however that ϕ does not fix the boundary.
This does not matter for the model Seifert fibration alone, but it does impact the general setting.
We shall return to this in section 4.2.

Lemma 11. The boundary circle of slope p/q in S1 × S1, defined as the circle that lifts to the
line y = p

qx in R2, is uniquely determined by the set of pairs (e2πix, e2πip/qx) for x ∈ R.

Proof. To see this we note that by [Mun00] we have a covering map of the torus given by

P = p× p : R2 → S1 × S1 (48)

where p : R → S1 is the usual covering map of the circle given by p(x) = (cos 2πx, sin 2πx). We
thus have the following using Eulers formulas [Ber10, §1]

P (x1, x2) = (cos 2πx1, sin 2πx1, cos 2πx2, sin 2πx2) ' (e2πix1 , e2πix2). (49)

Define the map f̃ : R→ R2 by f̃(x) = (x, pqx). Now by definition of a lifting the diagram

R2

P

��
R

f̃
;;wwwwwwwww

f
// S1 × S1

must commute hence we must have P ◦ f̃ = f where f : R→ S1×S1 is given by f(x) = P (x, pqx) =
(e2πix, e2πip/qx) which was what we wanted. Uniqueness follows by the uniqueness of liftings upon
specification of a point e0 ∈ R2 [Mun00, 54.1].
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Figure 10: The lines and circles of slope p/q in the special case of slope 1.

3.2 Definition and properties of Seifert fibered manifolds

We will now define Seifert fibered manifolds as well as some central notions for these including
multiplicities of fibres. Then we exploit our knowledge of model Seifert fibrations to obtain some
structure on a Seifert fibered space through embeddings.

3.2.1 Definition, multiplicities and imbedding

Definition 13. A Seifert fibered manifold is a 3-manifold M decomposed into circles called
fibres such that each circle has a neighborhood diffeomorphic to an open model Seifert fibering and
the diffeomorphism sends fibres to fibres.

Definition 14. Each fibre circle Cz in a Seifert fibering has a multiplicity given by the number
of times a small disk transverse to Cz meets each nearby fibre. Fibres of multiplicity 1 are called
regular while the others are called multiple. Compare with [Hat07].

Lemma 12. The multiplicity of a fibre is well defined and the multiple fibres are isolated in the
interior of the Seifert fibered manifold.

Proof. By definition of a Seifert fibered manifold, each neighborhood of a fibre is diffeomorphic to the
open model Seifert fibering hence it is sufficient to look at this case. Given Cz′ , for z′ ∈ IntD2−{0},
in the model Seifert fibration we must find an open disc with centre z′, which only intersects each
nearby fibre once. We can write z′ = r′e2πit′ . Since applying τ to z′ corresponds to multiplication
by e2πip/q, that is with a turn in p/q of a full circle, we can define the slice

S = {re2πit | t ∈ (t′ − 1
2q
, t′ +

1
2q

), r ∈ (0, 1)} ⊂ IntD2. (50)

This is an open set hence by definition we can find an open ball, B(z′, ε) for some ε > 0, contained
in S. Furthermore S satisfies that for any point in S the remaining corresponding orbit is disjoint
from S i.e. τk(S) ∩ τn(S) = ∅ or τk(S) = τn(S) for k ≡/ n (mod q) and k ≡ n (mod q) respectively.
To see this we first note that S ‘spans’ an argument of 1/q of a full circle thus τ j(S) is clearly either
S or ∅. It is therefore sufficient to see when the ‘endpoint’ t′− 1

2q + kp
q ≡ t

′− 1
2q + np

q (mod 1). This
happens if and only if kp

q ≡
np
q (mod 1). By definition of the equivalence class this happens if and

only if 1|p(k−n)
q that is if and only if q|(k − n) since p, q are coprime, thus k ≡ n (mod q) as stated.

We conclude that every point in IntD2 − {0} has a small disc transverse to it which meets every
nearby fibre exactly once. The centre z′ = 0 has a special role. Since τ preserves the modulus, every
orbit in the disc around 0 is fully contained there hence every fibre is intersected exactly q times
which gives z′ multiplicity q.

A given multiple fibre has in particular a neighborhood diffeomorphic to an open model Seifert
fibering hence we conclude that any multiple fibre must be the core fibre, and since this is the only
multiple one it is clearly isolated.

Lemma 13. Every fibre can be considered as the core of a possibly trivial model Seifert fibration.

Proof. Given z ∈ D2 − {0} define the imbedding [Mun00, p. 105] λz : S1 × D2 ↪→ S1 × D2

of a trivial open model Seifert fibering in the open model Seifert fibering with parameter p/q by
λz(u, v) = (uq, vqε + z) where ε is the radius of the disc found in lemma 12. Then λz(C0) =
λz(u, 0) = (uq, z) = (e2πiqt, ze2πip) = (e2πit′ , ze2πit′p/q) = Cz where t′ = t/q. We thus see that the
core gets sent to the fibre through (1, z). We furthermore see that {wε+ z|w ∈ D2} = B(z, ε) hence
in general λz sends fibres to fibres and λz({(u,w) |w ∈ D2}) = S1 ×D2 is the trivial model Seifert
fibration.
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3.3 The base surface

In this section we will show that by projecting each fibre of a Seifert fibered manifold to a point
in the base space B, we obtain a surface. We can then mark this manifold with certain points,
namely the points corresponding to multiple fibres, which are isolated by lemma 12. The label given
is the parameter p/q of the local model for the fibre. We will furthermore use this to explain the
connection to general smooth circle bundles.

3.3.1 Projecting fibres

Definition 15. Let M be a Seifert fibered manifold. Define B to be the space of fibres of M , that
is B = M/∼ where ∼ is defined by m ∼ m′ ⇔ m,m′ lie on the same fibre. We furthermore define
the quotient map π : M → B by π(m) = [m].

Lemma 14. The base space for the open model Seifert fibering can be identified with IntD2.

Proof. Let M be the open model Seifert fibering with parameter p/q. Since M clearly is diffeomor-
phic to a an open subset of a Seifert manifold, it is itself Seifert fibered by lemma 24. Define

πp/q : S1 × IntD2 → IntD2 by πp/q(u, v) = u−pvq (51)

Then πp/q(e2πit, e2πitp/qz) = zq hence we see that πp/q(Cz) = zq. In other words πp/q is a quotient
map since it is surjective and sends saturated closed sets to closed sets. We can therefore identify π
with πp/q and B with IntD2. The same argument applies for model Seifert fiberings, the base space
being D2.

We see that in this case B is a smooth surface. In fact this happens in general:

Theorem 4. The base space B can be given the structure of a smooth surface in such a way that
the projection mapping π becomes a smooth map.

Before proving the theorem, let us show the following technical lemma guaranteeing the existence
of a map from the base space to the open model Seifert fibration.

Lemma 15. For any x ∈ IntD2 − {0} there exists a neighborhood U on which there is a smooth
function η : U → S1 × IntD2 with the property that πp/q ◦ η = idU .

Proof. Pick x ∈ D2−{0} and write x = |x|eiα+π. Define the cut plane Cα = C−{reiα | r ≥ 0} and
the neighborhood U = Cα ∩ IntD2. Then we have a holomorphic branch of the q’th root function:

ρq|U : U →
{
z ∈ C− {0} | |Argαz| <

π

q

}
∩ IntD2 defined by ρq|U (z) = q

√
|z|ei

Argαz
q . (52)

This is furthermore bijective with inverse z 7→ zq hence it is a homeomorphism. Now choose t′ ∈ [0, 1)
and define η|U : U → S1 × IntD2 by

η|U (x) = (e2πit′ , e2πit′p/qρq|U (x)). (53)

Then we obviously have πp/q(η|U (x)) = x as required. Since both coordinates of ρU are smooth so
is η|U . We thus see that every point x ∈ IntD2−{x} has a neighborhood U such that η|U is smooth
and has the desired property.

Proof of theorem 4. To prove Hausdorffness of B let a, b be distinct fibres in M . Since fibres are com-
pact and M is Hausdorff it follows by lemma 20 that we can find disjoint open sets U, V containing a
and b respectively. By definition of a Seifert fibered manifold we can find a neighborhood N of a such
that N is diffeomorphic by ϕ to an open model Seifert fibration, and by lemma 13 we can without
loss of generality assume that a is the core. Now define Ω = N ∩U which is then a neighborhood of
a in M thus ϕ(Ω) is a neighborhood of the core S1 × {0} in S1 × IntD2. We claim that there is a
δ > 0 such that S1×B(0, δ) is contained in ϕ(Ω). To see this note that S1 is compact and the open
set ϕ(Ω) of the product space S1× IntD2 contains the slice S1×{0} thus by [Mun00, Tube lemma]
ϕ(Ω) contains some ‘tube’ S1×B(0, δ) for δ > 0. Note that this ‘tube’ is saturated by construction
of the model Seifert fibration. But then Ω = N ∩ U contains the set U ′ = ϕ−1(S1 ×B(0, δ)) which
is saturated since ϕ sends fibres to fibres. In the same way we can find a saturated neighborhood
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V ′ of b contained in V . It now follows by definition of the quotient topology that π(U ′) and π(V ′)
are open subsets of B containing a and b respectively and that π(U ′)∩π(V ′) = ∅ thus B is Hausdorff.

Pick [x] ∈ B. We must find a neighborhood Wx of [x] which is diffeomorphic to an open set in
R2. Since M is Seifert fibered we can find a neighborhood Vx of x consisting of points constituting
fibres which is diffeomorphic by ϕx to the open model Seifert fibration. By lemma 13 we can without
loss of generality assume that x is contained in the core fibre. Vx is saturated since it contains the
entire fibres and since π is a quotient map we conclude that π(Vx) = Wx is an open neighborhood
of [x] ∈ B. We furthermore see that gx = πp/q ◦ ϕx is continuous and surjective and that

Wx = {g−1
x ({z}) | z ∈ IntD2}. (54)

We conclude, since gx is a quotient map, that gx induces a homeomorphism fx : Wx → IntD2 by
fx([y]) = πp/q ◦ ϕx(y) and because IntD2 is Hausdorff so is Wx [Mun00, 22.3].

B

M

π

ϕi
S1 × IntD2

IntD2fi

πp/q

Vi

Wi

Figure 11: The Seifert fibered space M and the base space B with corresponding maps.

We must show that the collection {fi | i ∈ B} satisfies the transition on overlaps criterion, namely
that the following function, remembering that Wi = π(Vi), is smooth for any i, j ∈ B:

fj ◦ f−1
i : fi((π(Vi) ∩ π(Vj))→ fj((π(Vi) ∩ π(Vj)). (55)

The open set Vi ∩ Vj consists of fibres, since by definition of a model Seifert manifold the fibres are
disjoint. Furthermore the intersection does not contain any multiple fibre if i 6= j, since an open
model Seifert fibering has only one multiple fibre. We have fi(π(Vi) ∩ π(Vj)) = fi(π(Vi ∩ Vj)) =
πp/q(ϕi(Vi ∩ Vj)) ⊂ IntD2 − {0}. By lemma 15 we see that for any point x here, we can find a
neighborhood Ux on which there exists a smooth function η|U such that πp/q ◦ η|U = idU hence we
have the diagram:

S1 × IntD2

πp/q

��

M

π

��

ϕioo ϕj // S1 × IntD2

πp′/q′

��
U ⊂

η|U

66

IntD2 B
fi

oo
fj

// IntD2

It is now evident that the transition map can be rewritten as follows

(fj ◦ f−1
i )|U = fj ◦ f−1

i ◦ πp/q ◦ η|U = fj ◦ π ◦ ϕ−1
i ◦ ηU = πp′/q′ ◦ ϕj ◦ ϕ−1

i ◦ η|U (56)

which is smooth since it is the composition of η|U and πp′/q′ which are smooth by definition, and ϕk
for k ∈ B are smooth being diffeomorphisms. Since smoothness is a local property by lemma 3 we
see that fj ◦ f−1

i is smooth as desired. We thus conclude that A = {(Wi, IntD2, fi)}i∈B is a smooth
atlas hence B has the structure of a smooth surface as required. It follows by commutativity of the
diagram above, that π is a composition of smooth maps π = f−1 ◦ πp/q ◦ ϕ hence smooth itself as
required.
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Lemma 16. M is connected if and only if B is connected. M is compact if and only if B is compact
in which case there are only finitely many multiple fibres.

Proof. If the Seifert manifold M is connected, then B is connected since the projection map π is
continuous. To prove the converse assume that M is not connected. Then by definition we can
write M = M1 tM2 for M1,M2 open and nonempty. Since the fibres of M are connected, each one
lies entirely within M1 or M2. Therefore M1 and M2 are saturated, open and disjoint sets, making
π(M1) and π(M2) open and disjoint sets in B. We conclude that B is not connected.

If M is compact, so is B since π is continuous. Suppose B is compact. Let A be a covering of
M consisting of all open model Seifert fibrations. The projection of these gives us an open covering
of B, and since B is compact it follows that we can find a finite subcollection still covering B.
Therefore finitely many open model Seifert fibrations cover M , and in particular the corresponding
model Seifert fibrations cover M . We see that M is now the union of finitely many compact sets
hence itself compact. In particular we see that since the open model Seifert fibrations only contains
one multiple fibre, M does only contain finitely many multiple fibres and B only finitely many
marked points.

3.3.2 Connections with circle bundles

Note 8. We can now explain what the differences between smooth circle bundles and Seifert fibered
spaces are. In theorem 4 we showed that the base space B is a surface, hence the definition of a
Seifert manifold can be stated as the following commutative diagram, where ϕ is a diffeomorphism
and πp/q is the map from note 14:

M ⊃ p−1(IntD2)

π ))SSSSSSSSS
ϕ // S1 × IntD2

πp/qvvmmmmmmmm

IntD2

∩
B

Since π0/1 = π2 we see by comparing with the definition of smooth circle bundles that the Seifert
fibered spaces are more general. In other words any smooth circle bundle over a surface is a Seifert
manifold. In particular a space of the form Σ × S1 is a trivial circle bundle, the homeomorphism
being the identity, hence Seifert fibered. We state this as a lemma, compare with [Sco83]:

Lemma 17. Let Σ be a surface. Then Σ×S1 is a Seifert fibered manifold. In fact any circle bundle
over a surface is a Seifert fibre space.

Furthermore the projection π : M → B is an ordinary fibre bundle on the complement of the
multiple fibres. In the model Seifert fibration case we simply have

M − C0

πp/q| &&NNNNNNNNNNN
h // S1 × (IntD2 − {0})

π2uulllllllllllll

IntD2 − {0}

Where C0 denotes the core fibre and the homeomorphism h : M −C → S1× (IntD2−{0}) is given
by h(u, v) = (u, u−pvq). It follows that this will be the general case for any Seifert fibered manifold
since by definition we can find a neighborhood of any fibre which is diffeomorphic to M −C above.
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4 Creating Seifert fibered manifolds from the base surfaces

Let M be a Seifert fibered manifold and let B be its space of fibres, which by theorem 4 is a smooth
surface. We can mark the surface B with certain points, namely the points corresponding to multiple
fibres. These are isolated by lemma 12, and we can label them with the parameter p/q of the local
model for the fibre. We will reverse this to construct new Seifert fibered spaces.

p/q
p′/q′

p′′/q′′

Figure 12: The base surface B with labeled points corresponding to multiple fibres.

4.1 The main theorem

Theorem 5. Suppose we are given a (compact, oriented) surface B marked with finitely many
points, each with a label of the form p/q for p, q coprime and 0 < q. Then there exists a Seifert fibered
manifold M whose space of fibres is precisely B, and whose multiple fibres produce the prescribed
labelled points on B.

Let us begin with the following preliminary lemma.

Lemma 18. Let D ⊂ B be a closed disc around x. There is a homeomorphism

ψ̄ : S1 × (D − {x})→ S1 × (D2 − {0}) (57)

with the following properties:

i. It restricts to a diffeomorphism ψ : S1 × ∂D → S1 × S1.

ii. It sends circles S1 × {d} to circles of slope p/q.

iii. It restricts to a diffeomorphism ψ′ : S1 × (IntD − {x})→ S1 × (IntD2 − {0}).

Proof. Since B is a smooth surface we can find a diffeomorphism ω : D2 → D such that ω(0) = x,
IntD = ω(IntD2) and ∂D = ω(S1). Given p, q coprime and 0 < q we can by corollary 3.9 in Thorup
[Tho07], find b, d ∈ Z such that the condition qd− bp = 1 is satisfied, that is such that the matrices

A =
(
q p
b d

)
and A−1 =

(
d −p
−b q

)
(58)

have determinant 1. In practice b and d can be found explicitly using Euclid’s algorithm backwards.
Now define the map ψ̄ : S1× (D−{x})→ S1× (D2−{0}) by ψ̄(u, v′) = ψ̄(u, ω(rv)) = (uqvb, rupvd)
where v ∈ S1 and r ∈ (0, 1]. By A−1 above we see that it has an inverse given by ψ̄−1(u, v) =
(udv−brb, u−pvqr−q) thus it is a homeomorphism.

i. The restriction to r = 1 gives us ry ∈ S1 and since ∂D = ω(S1) we have the restricted map
ψ : S1 × ∂D → S1 × S1 given by ψ(x, y′) = ψ(x, ω(y)) = (xqyb, xpyd) which is quickly seen to
be smooth, thus it is a diffeomorphism as required.

ii. We can write S1×{d} = S1×{ω(rvq)} for some unique vq ∈ S1 and we see that ψ(e2πit, ω(rvq)) =
(e2πiqtvbq, re2πiptvqd). Write v = e2πiΛ, possible since v ∈ S1. Then using qd − bp = 1 we
see that (e2πiqtvbq, re2πiptvqd) = (e2πiqte2πiΛbq, re2πipte2πiΛqd) = (e2πiq(t+Λb), re2πip(t+bΛ)v) =
(e2πit′ , re2πip/qt′v), letting t′ = (t+ Λb)q. We recognize this as Crv hence ψ̄ does actually send
‘meridians’ S1 × {d} to circles of slope p/q as required.

iii. The restriction to r ∈ (0, 1) gives us ry ∈ IntD2 and since IntD = ω(IntD2) we have the
restricted map ψ′ : S1 × (IntD − {x}) → S1 × (IntD2 − {0}) which is a diffeomorphism by
the same arguments as in (i).
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Before proving theorem 5 in its full generality, we will tackle the case where the base surface B
has precisely one marked point, corresponding to a single multiple fibre.

Theorem 6. Given a surface B with a single point labelled with the parameter p/q for p, q coprime,
q < 0. Then one can construct a Seifert fibered manifold M by attaching a model Seifert fibration.

Proof. Take a surface B with a point x labeled with multiplicity p/q and choose a closed disc D ⊂ B
around x. Since B is a 2-manifold we can by definition find a diffeomorphism ω : D2 → D such that
ω(0) = x, IntD = ω(D2) and ∂D = ω(S1). Define B′ = B − IntD. Then B = B′ ∪

∂D
D. Define the

circle bundle M ′ = S1 × B′. This is by lemmas 2 and 24 a compact manifold everywhere except
along S1 × ∂D, thus by lemma 20 it is normal. By the same lemma we see that the space S1 ×D2

is normal as well. Now form the space M by adjoining a Seifert fibered torus to M ′ as follows

M = (S1 ×B′) ∪ψ (S1 ×D2) (59)

where ψ is the diffeomorphism from lemma 18 (i), that is we identify (x, y′) ∈ S1 × ∂D with
ψ(x, y′) ∈ S1 × S1. Then M is an adjunction space, see appendix A.2, and thus normal itself by
lemma 22, in particular Hausdorff. We claim that this identifies the part of M ′ over ∂D with the
part of S1 ×D2 over ∂D such that fibres are identified with fibres.

M

π

��

M ′ ∪ψ S1 ×D2

πp/q

��
S1 ×B′

π2

��

D2

ω

��
B B′ ∪

∂D D

The part of M ′ over ∂D is S1 × ∂D while the part of S1 ×D2 over ∂D is S1 × S1. The part of M ′

over d ∈ ∂D is then S1 × {ω(vq)} = S1 × {d} ⊂ S1 × ∂D for some unique vq ∈ S1, in other words
they are ‘meridians’. The part of S1 × S1 over d = ω(vq) is by the above diagram seen to be the
fibre or the circle of slope p/q if one prefers:

Cv = {(e2πit, ve2πitp/q) | t ∈ [0, q]}. (60)

It follows by lemma 18 (ii) that ψ precisely sends the fibres S1 × {d} to the fibres Cv as required.

CvS1 × {d}

S1 × ∂D S1 × S1

Figure 13: A meridian and the corresponding circle of slope p/q.

We need to show that M is a smooth manifold. Take U ⊂M given by U = (S1 ×B′) ∪ψ (S1 ×
(D2 − {0})) which is open in M since we can write U = M − (S1 × {0}), and define

λ : S1 × (B − {x})→ (S1 ×B′) ∪ψ (S1 × (D2 − {0})) by λ(u, z) =
{

(u, z) if z ∈ B′
ψ̄(u, z) if z ∈ D − {x}

This is well defined since for z ∈ ∂D we have ψ̄(u, z) ∼ (u, z) by definition of the adjunction space.
We furthermore see that the sets S1×B′ and S1× (D−{x}) are both closed in the domain with the
subspace topology thus we conclude that λ is continuous [Mun00, Pasting lemma]. Furthermore,
since both branches are homeomorphisms so is λ. Define V ⊂M as an open model Seifert fibration
V = S1 × IntD2 and let µ : V → V be the identity map. Then U ∪ V = M and the ‘transition
property’ from lemma 4 boils down to

λ−1(S1 × (IntD2 − {0})) λ|→ λ(S1 × (B − {x})) ∩ S1 × IntD2 (61)

26



which we can rewrite to the following

S1 × (IntD − {x}) ψ′→ S1 × (IntD2 − {0}) (62)

which is a diffeomorphism by lemma 18 (iii). Thus M is a smooth manifold by lemma 4. Finally
we need to show that M is Seifert fibered. To see this it is sufficient to note that the map λ :
S1× (B−{x}) ↪→M − (S1×{0}) is a diffeomorphism sending trivial fibres S1×{b} for b ∈ B−{x}
to fibres. Thus all fibres except S1 × {0} are the cores of a trivial model Seifert fibration. It
remains to show that S1 × {0} is the core of a model Seifert fibration, but this follows form the
construction.

Proof of theorem 5. Take a surfaceB labelled with points x1, . . . xk each with some given multiplicity
and choose disjoint discs D1, . . . , Dk containing these respectively. Define B′ = B−

⋃k
i=1 IntDi and

the circle bundle M ′ = S1 ×B′. Then we form the space M = (S1 ×B′) ∪ψ1 (S1 ×D2) ∪ψ2 · · · ∪ψk
(S1×D2) where ψi is the restriction of ψ̄i defined by ψ̄i : S1×(Di−{xi})→ S1×(D2−{0}) similar
to lemma 18. Using lemma 22 inductively k times we see that M is Hausdorff. It now follows by
slight modifications, obvious from what we have already defined, that the procedure in theorem 6
goes through thus showing that M is Seifert fibered.

4.2 Isomorphic Seifert fibered spaces

Definition 16. We use the notation M(g;α1/β1, . . . , αk/βk) for a Seifert-fibered manifold M con-
structed as in section 4 where g is the genus of the surface B and αi/βi is the unique parameter
corresponding to the i’th adjoined model Seifert fibration. Two Seifert fiberings are isomorphic if
there is a diffeomorphism carrying fibers of the first to fibres of the second.

Note 9. The notation used in definition 16 differs from standard. Normally one would write
M(±g, b;α1/β1, . . . αk/βk) for a Seifert fibered manifold with + if B is orientable and − if B is
nonorientable, see appendix B.2, and where b is the number of boundary components of B, compare
with [Hat07]. Since we are only dealing with orientable surfaces, the notation introduced in the
definition is sufficient. Seifert originally used the notation Oo,On,No,Nn,NnI,NnII and NnIII,
see [Sei80, p. 391] for details.

Theorem 7. Every compact and orientable Seifert manifold is isomorphic to one of the models
M(g, α1/β1, . . . , αk/βk). Seifert fiberings M(g, α1/β1, . . . , αk/βk) and M(g, α′1/β

′
1, . . . , α

′
k/β

′
k) are

isomorphic by an orientation-preserving diffeomorphism if and only if, after possibly permuting
indices, αi/βi ≡ α′i/β′i (mod 1) for each i and

∑
i αi/βi =

∑
i α
′
i/β
′
i. Cf. [Hat07, Prop. 2.1].

Proof. The proof of this theorem lies well outside the scope of this paper, however we will give a
summary of the main ideas from Hatcher [Hat07]. Given a compact oriented Seifert manifold M ,
it has by note 16 a finite number of multiple fibres, C1, . . . , Ck. We can by definition find disjoint
open model Seifert fibrations around these with the multiple fibre as the core, call these S1, . . . , Sk.

Choose a cross section s of M ′ → B′ i.e. a continuous map s : B′ → M ′ such that π(s(x)) = x
for all x ∈ B′. It is a ‘standard’ fact from algebraic topology, that an oriented circle bundle over
a connected surface with nonempty boudary is trivial. Therefore we can choose a diffeomorphism
∆ : M ′ → B′ × S1. Thus

M ∼= M ′ ∪
∂S1,...,∂Sk

(S1 t · · · t Sk) ∼= S1 ×B′ ∪
∂ϕ1,...,∂ϕk

(S1 ×D2 t · · · t S1 ×D2) (63)

where ϕ1, . . . , ϕk are now some diffeomorphisms ϕi : S1 × ∂Di → S1 × S1. It turns out that any
such diffeomorphism ϕi is isotopic to one determined by a matrix as in the proof of theorem 5, and
that this is sufficient to show that they have the required form. Thus M ∼= M(g; p1/q1, . . . , pk/qk).

Suppose that M(g;α1/β1, . . . , αk/βk) ∼= M(g′;α′1/β
′
1, . . . , α

′
k/β

′
k) by some diffeomorphism Φ.

Then k = k′ since the number of multiple fibres must be the same. Moreover B ' B′, since Φ
send fibres to fibres, and thus g = g′ since genus is a topological invariant. Without loss we can
assume that Φ sends the i’th multiple fibre to the i’th multiple fibre. Now by an examination of the
local structure of the model Seifert fibration it is possible to show that we must have αi/βi ≡ α′i/β′i
(mod 1). It remains to argue that

∑
i αi/βi =

∑
i α
′
i/β
′
i. This, we believe, follows by computing the

fundamental groups of M and M ′.
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Note 10. This gives the complete isomorphism classification of Seifert fiberings since g is determined
by the isomorphism class of a fibering, which determines the base surface B, and the Seifert fiberings
M(g, α1/β1, . . . , αk/βk) and M(g, α1/β1, . . . , αk/βk, 0) are the same.

4.2.1 Classification of Seifert Manifolds

One can, in the general setting described in note 9, prove the following main theorem, see [Hat07]
for details and (part of) proof.

Theorem 8. Seifert fiberings of orientable Seifert manifolds are unique up to isomorphism, with
the exception of the following fiberings:

i. M(0, 1;α/β), the various Seifert fiberings of S1 ×D2.

ii. M(0,1;1/2,1/2)=M(-1,1;), two fiberings of S1 × S1 × I.

iii. M(0;α1/β1, α2/β2), various fiberings of S3, S1 × S2 and Lens spaces

iv. M(0, 0; 1/2,−1/2, α/β) = M(−1, 0;β/α)

v. M(0, 0; 1/2, 1/2,−1/2,−1/2) = M(−2, 0; ), two fiberings of S1 × S1 × S1

Note 11. Suppose one is interested in classifying all 3-manifolds up to diffeomorphism. To make
life easier one could decide to concentrate on just those 3-manifolds that admit a Seifert fibering,
and ask for a classification of these up to diffeomorphism. Now theorem 7 tells us how to create an
exhaustive list of all of these manifolds on the form M(g;α1/β1, . . . , αk/βk). It tells us by a specific
condition exactly when two of these objects are isomorphic, but not when they are diffeomorphic.
Theorem 8 fills this gap, by telling us when two non-isomorphic Seifert fibered manifolds are in fact
diffeomorphic. Accidentally this only happens for short list of deviants. We shall look at one such
case now.

Example 8. Different fibrations of S3. Let α, β ∈ Z be coprime. We claim that we can fibre
S3 by the circles (e2πiαtu, e2πiβtv) such that S3 = M(0, α/β, β/α). Recall that S3 = {(u, v) ∈
C2 | |u|2 + |v|2 = 1}. Define S3

L = {(u, v) ∈ S3 | |u| ≥ |v|} and S3
R = {(u, v) ∈ S3 | |u| ≤ |v|}. These

are both diffeomorphic to a solid torus since we have

ϕL : S3
L → S1 ×D2 defined by ϕL(u, v) =

( u
|u|
,
√

2v
)

(64)

ϕR : S3
R → D2 × S1 defined by ϕR(u, v) =

(√
2u,

v

|v|

)
(65)

where the inverses are ϕ−1
L (x, z) = (

√
1− |z|2 x,

z√
2
) and similarly for ϕ−1

R . Furthermore we define

the map on the overlap ϕLR : S3
L ∩ S3

R → S1 × S1 by ϕLR(u, v) = (
√

2u,
√

2v). Then we have

S3 = S1 ×D2 ∪
S1×S1

D2 × S1 (66)

because the inverse map of ϕLR is the inclusion ϕ−1
LR : S1×S1 ↪→ S3 defined by ϕ−1

LR(x, z) = ( x√
2
, z√

2
).

Note that this is well defined since we have | x√
2
|2 + | z√

2
|2 = 1. Therefore ϕ−1

LR(S1 × S1) = {(u, v) ∈
S3 | |u| = |v|}.

We furthermore define the modified open sets Š3
L = {(u, v) ∈ S3 | |u| > |v|}, Š3

R = {(u, v) ∈
S3 | |u| < |v|} and let ϕ̌L and ϕ̌R be the restricted diffeomorphisms going onto S1 × IntD2. Finally
we define the open set Š3

N = {(u, v) ∈ S3 | |u| 6= 0} and the diffeomorphism ϕ̌N : Š3
N → S1 × IntD2

by ϕ̌N (u, v) = ( u
|u| , v) with inverse ϕ̌−1

N : S1 × IntD2 → Š3
N given by ϕ̌N (x, z) = (

√
1− |z|2x, z)

which is then clearly well defined. Now the circle (e2πitαu, e2πitβv) ∈ Š3
L gets sent by ϕ̌L to

ϕ̌L(e2πitαu, e2πitβv) = (e2πitα u

|u|
,
√

2e2πitβv) = (e2πitαx, e2πitβz) (67)
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for some (x, y) ∈ S1 ×D2. Letting t = t′α we recognize this as the circle of slope β/α thus Š3
L is

diffeomorphic to the open model Seifert fibration with parameter β/α. The same argument using
ϕ̌N tells us that this holds for ŠN . Similarly the circle (e2πitαu, e2πitβv) ∈ Š3

L gets sent by ϕ̌R to

ϕ̌R(e2πitαu, e2πitβv) = (
√

2e2πitαu, e2πitβ v

|v|
) = (e2πitαz, e2πitβx) (68)

for some (x, z) ∈ S1 × D2. By transposing the factors and letting t′ = tβ we see that this is
actually (e2πitx, e2πitα/βz) ∈ S1 × IntD2 which we recognize as the circle of slope α/β thus Š3

R is
diffeomorphic to the open model Seifert fibration with parameter α/β. Since Š3

N ∪ Š3
R = S3 we see

that every fibre has a neighborhood diffeomorphic to an open model Seifert fibration sending fibres
to fibres thus S3 is a Seifert fibred manifold by definition.

S3

π

��

S3
L

ϕL

��

∪ S3
R

ϕR

��
S1 ×D2

πβ/α

��

∪µ D2 × S1

πtα/β
��

S2 D2 ∪ν D2

We have seen that S3 is Seifert fibred. Now let us show that it is in fact the manifold M(0, α/β, β/α).
The map µ : S1×S1 → S1×S1 which respects the identifications in the diagram is just ϕ−1

LR◦ϕLR =
idS1×S1 . Define the tansposed map πtp/q : D2 × S1 → D2 by πtp/q(u, v) = πp/q(v, u). We can now
similarly find a map ν : S1 → S1 respecting the diagram, that is such that πβ/a(u, v) = u−βvα is
sent to πtα/β = v−αuβ . We conclude that ν : S1 → S1 given by ν(z) = z−1 is the desired map.
Since this corresponds to a flip it is clear that pasting the two discs together along their boundary
according to ν results in a space homeomorphic to S2, which is then the base surface. The multiple
fibres are by definition of the projection maps from the model Seifert firbations sent to the centres
of the two discs D2 thus they lie at the ‘south’ and ‘north’ pole respectively. The genus of S2 is 0
hence we can write S3 = M(0;α/β, β/α).

4.3 Lens spaces revisited

In this section we will return to the Lens spaces defined in section 1.4, in order to give an example
of the theory derived above. In particular we will show that Lp/q is a Seifert manifold, that the base
surface B is S2 and that we can give it a representation of the form M(g;α1/β1, . . . , αk/βk). We
will furthermore work out the fundamental group of these spaces.

Lemma 19. There exists an a ∈ Z such that the orbits of the action determined by θ : (u, v) 7→
(e2πi/qu, e2πip/qv) are the same as the orbits of the action defined by φ : (u, v) 7→ (e2πia/qu, e2πi/qv).

Proof. Since p, q are coprime we can find a, b ∈ Z such that ap+ bq = 1. Then a ≡ p−1 (mod q) and
a
q + b

a = 1
qa . Therefore we have, letting w = e2πi/q:

(wu,wpv) = (wapwbqu,wpv) = (wapu,wpv) = ((wa)p, (wp)v) (69)

hence θ = φp and similarly φ = θa because both w and wp are primitive q-th roots of unity. By
definition we have x ∼ y ⇔ x = θi(y) for some i which, by inserting the previous expressions, is if
and only if x = φj(y) for some j. Define this equivalence relation ≈. We conclude that the orbits
emanating from the two actions are the same.

Theorem 9. The Lens space Lp/q is Seifert fibred with circles [(e2πit/qu, e2πitp/qv)] for fixed u, v.

Proof. By definition of the Lens space Lp/q = S3/∼ we have (u, v) ∼ (wu,wpv) for w = e2πi/q.
Assume |u| ≥ |v| then we obtain the following, using the function ϕL from example 8:

(u, v) � ϕL //

�O
�O
�O

( u
|u| ,
√

2v)

�O
�O
�O

(wu,wpv) � // (wu|u| ,
√

2wpv)
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This gives us a homeomorphism ψL : S3
L/∼→ S1×D2/∼ given by ψL([u, v]) = ϕL(u, v). We claim

that S1×D2/∼ is in fact homeomorphic to S1×D2. To see this define the map f : S1×D2 → S1×D2

by f(x, y) = (xq, x−py). Then f(x, y) = f(x′, y′) ⇔ (x, y) ∼ (x′, y′). Assume (x, y) ∼ (x′, y′) then
we must have (x′, y′) = (wx,wpy) hence

f(x′, y′) = f(wx,wpy) = ((wx)q, (wx)−pwpy) = (wqxq, x−py) = (xq, x−py) = f(x, y) (70)

On the other hand suppose f(x, y) = f(x′, y′) then (xq, x−py) = (x′q, x′−py′) hence x′ = wix for
some i ∈ {0, . . . , q−1}. Therefore x−py = (wix)−py′ = w−ipx−py′ hence y′ = wipy and we conclude
that (x, y) ∼ (x′, y′) as required. It is immediately seen that f is continuous and surjective hence
by [Mun00, 22.3] we conclude that f descents to a homeomorphism f̂ : S1 ×D2/∼ → S1 ×D2 as
stated. Assume |u| ≤ |v|. By lemma 19 we see that S3

R/∼= S3
R/≈ thus by the same approach as

above we obtain a homeomorphism between S3
R/∼ and D2×S1/∼. To see that it is homeomorphic

to D2 × S1 define the map h : D2 × S1 → D2 × S1 by h(x, y) = (y−ax, yq). Then exactly the same
approach as above gives the required homeomorphism.

As in example 8 we define the modified open sets Š3
L/∼= {[u, v] ∈ Lp/q | |u| > |v|}, Š3

R/∼=
{[u, v] ∈ Lp/q | |u| < |v|} and Š3

N/∼= {[u, v] ∈ Lp/q | |u| 6= 0}. Now the circle (e2πit/qu, e2πitp/qv) ∈
Š3
L/∼ gets sent by f̂ ◦ ψL to

f̂ ◦ ψL(e2πit/qu, e2πitp/qv) = (e2πit u
q

|u|q
,
√

2v
u−p

|u|−p
) = (e2πitx, y) (71)

for (x, y) ∈ S2×IntD2. We recognize this as a circle of slope 0/1. This actually holds on Š3
N/∼ using

the map f̂ ◦ψN thus we conclude that Š3
N/∼ is diffeomorphic to the open model Seifert fibration with

parameter 0/1 with fibres going to fibres. Similarly we see that the circle (e2πit/qu, e2πitp/qv) ∈ S3
R/∼

gets sent by ĥ ◦ ψR to

ĥ ◦ ψR(e2πit/qu, e2πitp/qv) = (e2πit(1−aq)/qy, e2πitpx) = (e2πitby, e2πitpx) (72)

for some (x, y) ∈ S1 × D2, where we have used that ap + bq = 1. By transposing the factors and
letting t′ = tp we see that this is actually (e2πitx, e2πitb/py) ∈ S1 × IntD2 which we recognize as
the fibre Cy in the open model Seifert fibration with parameter b/p. We conclude that S3

R/∼ is
diffeomorphic to the model Seifert fibration with parameter b/p with fibres going to fibres. Now
Lp/q = Š3

N/∼ ∪Š3
R/∼ hence every circle in Lp/q has a neighborhood diffeomorphic to an open model

Seifert fibration where the diffeomorphism sends fibres to fibres, thus Lp/q is by definition a Seifert
manifold as required.

Corollary 3. The Lens space Lp/q can be written M(0; p−1/q).

Proof. By the previous theorem we see that the only a multiple fibre is at [(0, v)] where |v| = 1, and
that it has multiplicity b/p. Since we have ap + bq = 1 we see that b ≡ q−1 (mod p) thus we can
write the multiplicity as q−1/p. From example 8 we see that we can write

Lp/q = S3/∼= S3
L/∼ ∪S3

R/∼' S1 ×D2 ∪µ D2 × S1 (73)

for some function µ : S1 × S1 → S1 × S1 sending fibres to fibres. The part of S3
L/ ∼ over vq ∈ S1

is then ψ−1
L ◦ f̂−1(Cv) = [( 1√

2
e2πit/q, v√

2
e2πitp/q)] ∈ S3

L/ ∼ ∩S3
R/ ∼. This gets sent by ĥ ◦ ψR to

ĥ ◦ ψR([(
1√
2
e2πit/q,

v√
2
e2πitp/q)]) = (v−ae2πitb, ve2πitp). (74)

Since v ∈ S1 we recognize this as the circle with slope b/p, thus the map µ : S1 × S1 → S1 × S1

given by µ(α, β) = ĥ ◦ϕLR ◦ (f̂ ◦ϕLR)−1(α, β) = ĥ ◦ f̂−1(α, β) = (αbβ−a, αpβq) is a diffeomorphism
sending fibres to fibres; the inverse is µ−1(α, β) = (αqβa, α−1βb).

M

π

��

S3
L/ ∼

f̂◦ψL
��

∪ S3
R/ ∼

ĥ◦ψR
��

S1 ×D2

π0/1

��

∪µ D2 × S1

πtb/p
��

B D2 ∪ν D2
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To find the map ν : S1 → S1 satisfying the diagram we calculate the image of a point (x, z) ∈ S1×S1

going to the two discs:

π0/1(x, z) = z and πtb/p ◦ µ(x, z) = πtb/p(x
bz−a, xpzq) = z−1 (75)

This has to hold for all (x, z) thus we conclude that ν is given by ν(z) = z−1. This just corresponds
to a flip of one of the discs thus we see that by adjoining these along the their boundary, S1, according
to ν, gives us S2. The only multiple fibre is sent to the centre of one of the discs thus we can depict
it as being at the ‘south’ pole on S2. Since the genus of S2 is 0 we have Lp/q = M(0; q−1/p).

q−1/p α/β

β/α
S2 S2

Figure 14: The base space B = S2 of the Lens space, Lp/q, and the three-sphere, S3.

Note 12. We could alternatively show directly that B is homeomorphic to S2 by defining the map

ξ : Lp/q → S2 by ξ([u, v]) =
{
gp(u−pv) if u 6= 0
gp(upv−1) if v 6= 0 (76)

where gp : C → S2 is the inverse map of the stereographic projection defined in section 2.2.1. We
would furthermore need to verify that ξ̄ : B → S2 is a diffeomorphism. This is not an obvious
fact since it has been shown that two homeomorphic differentiable manifolds are not necessarily
diffeomorphic, see [Mun60]. By definition 3 we would have to look at the composite of three rather
unpleasant functions hence we stick with the first approach.

Theorem 10. The fundamental group of the Lens space Lp/q is isomorphic to Z/q.

Proof. One way to go is by the Seifert-Van Kampen theorem. We have from the proof of the
preceding theorem that we can write

Lp/q ' S1 ×D2 ∪µ D2 × S1 (77)

thus it is sufficient to examine the adjunction space. Define U = S1 × D2 and V = D2 × S1.
Although these are not open in Lp/q, they admit open neighborhoods of which they are deformation
retracts, and thus the Seifert-van Kampen theorem applies without modifications. Clearly U and V
are, as well as the intersection S1 × S1, path connected. Let x0 ∈ U ∩ V . Let G be a group, and let

φ1 : π1(S1 ×D2, x0) = Z→ G and φ2 : π1(D2 × S1, x0) = Z→ G (78)

be homomorphism given by φ1(1) = g1 and φ2(1) = g2. Let i1, i2, j1, j2 be the homomorphisms
indicated in the following diagram, each induced by inclusion.

π1(S1 ×D2, x0)

j1

��

φ1

%%LLLLLLLLLLLL

π1(S1 × S1, x0) //

i2 ((RRRRRRRRRRRRR

i1

66lllllllllllll
π1(Lp/q, x0)

Φ
// G

π1(D2 × S1, x0)

φ2

99rrrrrrrrrrrr
j2

OO

Z

j1
��

φ1

%%JJJJJJJJJJJJ

Z× Z //

µ∗

&&MMMMMMMMMMMM

π1

88qqqqqqqqqqqq
π1(Lp/q, x0)

Φ
// G

Z
φ2

99tttttttttttt

j2

OO

Then we have µ∗ : Z × Z → Z given by µ∗(x, y) = xp + yq and i∗(x, y) = π1(x, y) = x. We see
that φ1 ◦ i∗(x, y) = φ2 ◦ µ∗(x, y) for all (x, y) ∈ Z × Z if and only if gx1 = gxp+yq2 . In particular
we have 1 = gq2 and g1 = gp2 . By the Seifert-van Kampen theorem we see that a homomorphism
π1(Lp/q, x0) → G determines and is determined by g2 ∈ G such that gq2 = 1. We conclude that
π1(Lp/q, x0) ∼= Cq as required.
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Alternative proof of theorem 10. We can give a more intuitive and thorough proof using lifting cor-
respondences. Since Cq acts freely on S3 as shown in the proof of corollary 2, we conclude by lemma
9 that the quotient map π : S3 → S3/Cq = Lp/q given by π(x) = [x] is a covering map. The
fact that Cq acts freely on S3 furthermore tells us that the fibres f−1(b0) for any b0 ∈ Lp/q have
cardinality q. Choose e0 ∈ S3 such that π(e0) = b0 and let f̃ be the lifting of f to a path in S3

beginning at e0. Then we have a well defined lifting correspondence

φ : π1(Lp/q, b0)→ π−1(b0) (79)

sending [f ] to the endpoint f̃(1) of f̃ . Since S3 is simply connected [Mun00, 59.3] we see that the
lifting correspondence φ is bijective [Mun00, 54.4]. Therefore we have, letting λ be the generator of
Cq such that λ.(u, v) = (wu,wpv), the following:

π1(Lp/q, b0) ∼= π−1(b0) = {e0, λ.e0 . . . , λ
q−1.e0} (80)

Define g0, . . . , gq−1 by gi 7→ λi.e0. We claim that gigj = gk where k ≡ i + j (mod q). To see this
let f̃i and f̃j be paths from e0 to λi.e0 and λj .e0 respectively. Since the lifting correspondence is
bijective we have gi = [π ◦ f̃i] and gj = [π ◦ f̃j ] = [π ◦ λi.f̃j ]. Note that λi.f̃j is now a path from
λi.e0 to λi.λj .e0 = λk.e0. We now have gk = [π ◦ f̃k] = [π ◦ (f̃i ∗ λi.f̃j)] = [π ◦ f̃i ∗ π ◦ λi.f̃j ] =
[π ◦ f̃i] ∗ [π ◦ λi.f̃j ] = gi ∗ gj . Since the lifting correspondence is an isomorphism we might as well
write this as gigj = gk thus π1(Lp/q, b0) ∼= Z/q.

32



A Miscellaneous topological results

We need a couple of technical topological results which we cover here. These center around the
properties of Hausdorffness, normality and regularity which are important features in proving that
a given space, including adjunction spaces, is a candidate for a manifold.

A.1 Some useful definitions and lemmas

Definition 17. Suppose that one-point sets are closed in X. Then X is said to be regular if for
each pair consisting of a point x and a closed set B disjoint form x, there exists disjoint open sets
containing x and B respectively. The space X is said to be normal if for each pair A,B of disjoint
closed sets of X, there exists disjoint open sets containing A and B respectively. Clearly a normal
space is regular, and a regular space is Hausdorff.

Lemma 20. Let A and B be disjoint compact subspaces of the Hausdorff space X. Then there exists
disjoint open sets U and V containing A and B, respectively.

Proof. Since B is a compact subspace of the Hausdorff space X and A∩B = ∅ it follows from lemma
26.4 [Mun00] that for any a ∈ A there exists disjoint open sets Ua and Va of X containing a and B
respectively.

The collection A = {Ua | a ∈ A} is an open cover of A. Since A is assumed compact it follows
by definition that A contains a finite subcover, that is finitely many Ua’s cover A:

U = Ua1 ∪ · · · ∪ Uan ⊃ A. (81)

Clearly U is open since it is a union of open sets. We claim that the intersection of the corresponding
Va’s contains B and is disjoint from U . To see this we define

V = Va1 ∩ · · · ∩ Van (82)

which is an open set because it is a finite intersection of open sets. Since each Vai contains B it
is clear that V ⊃ B. Furthermore U ∩ V = ∅ since if z ∈ U then z ∈ Uai for some i but we have
Uai ∩ Vai = ∅ hence z /∈ Vai and we conclude that z /∈ V . We are now left with the two disjoint and
open sets U and V containing A and B respectively as required.

Note 13. If X is compact, then any two disjoint closed sets A and B are compact [Mun00, 26.2]
and since every compact subspace of a Hausdorff space is closed [Mun00, 26.3], this lemma states
that if X is a compact Hausdorff space, then it is normal.

Lemma 21. Let π : E → X be a closed quotient map. If E is normal, then so is X. Cf. [Mun00].

Proof. Assume that E is normal. One-point sets are closed in X since one-point sets are by definition
closed in the normal space E. Now let A and B be disjoint closed sets of X. Then π−1(A) and
π−1(B) are disjoint closed sets of E since π is continuous. Choose disjoint open sets U and V of E
containing π−1(A) and π−1(B) respectively.

Let C = E − U and D = E − V . Because C and D are closed sets of E, the sets π(C) and
π(D) are closed in X. Since C ∩ π−1(A) = ∅ we see that π(C) ∩ A = ∅. Then U0 = X − π(C)
is an open set of X containing A and similarly V0 = X − π(D) is an open set of X containing B.
Furthermore U0 and V0 are disjoint: If x ∈ U0, then π−1(x) is disjoint from C hence it is contained
in U . Similarly if x ∈ V0 then π−1(x) ∈ V . Since U and V are disjoint, so are U0 and V0.

A.2 Adjunction space

Definition 18. Let X and Y be disjoint normal spaces with A ⊂ X. Let f : A→ Y be continuous.
Then the adjunction space, denoted X∪AY or X∪f Y , is defined to be the quotient space obtained
from X t Y by identifying each point a of A with the point f(a) and all the points f−1({f(a)}),
compare with [Mun00, p. 224].

Theorem 11 (Tietze Theorem). If X is normal and A ⊂ X is closed, then any continuous function
f : A→ [0, 1] extends to a continuous function g : X → [0, 1].
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Corollary 4. If P and Q are disjoint closed subsets of a normal space X, then there is a continuous
function g : X → [0, 1] with the property that P ⊂ g−1(0) and Q ⊂ g−1(1).

Proof. The set A = P ∪Q is a closed subset of X, and the function f : A→ [0, 1] defined by

f(x) =
{

0, x ∈ P
1, x ∈ Q (83)

is continuous [Mun00, Pasting lemma]. By the Tietze theorem, f extends to a continuous function
g : X → [0, 1] which clearly has the claimed properties.

Lemma 22. The adjunction space X ∪f Y is normal.

Proof. We claim that one-point sets in X ∪f Y are closed. To see this note that since X and Y are
normal spaces they are in particular Hausdorff, thus one-point sets are closed in these [Mun00, 17.8].
Pick [z] ∈ X ∪f Y such that z /∈ A ∪ f(A). Then the singleton {z} is closed and equals [z]. Pick
[z] ∈ X ∪f Y such that z ∈ A∪f(A). Then we can find an a ∈ A such that [z] = f−1({f(a)})∪f(a),
and since f is continuous this is closed.

Let P and Q be disjoint closed sets in X∪f Y . We must by definition find disjoint open subsets U
and V such that P ⊂ U and Q ⊂ V . It will suffice to find a continuous function g : X ∪f Y → [0, 1]
such that P ⊂ g−1(0) and Q ⊂ g−1(1) because then the sets U = g−1[0, 1/2) and V = g−1(1/2, 1]
has the wanted properties.

Let PX , QX ⊂ X denote the preimages of P and Q in X, and let PY , QY ⊂ Y denote the
preimages of P and Q in Y . Since P and Q are disjoint and closed so are, by definition of the
quotient map, PY and QY . It now follows by 4 that there is a continuous function gY : Y → [0, 1]
with the property that PY ⊂ g−1

Y (0) and QY ⊂ g−1
Y (1). Now the function gY ◦ f : A→ [0, 1], being

a composition of continuous maps, is continuous with the properties that

gY ◦ f(A ∩ PX) = {0} and gY ◦ f(A ∩QX) = {1} (84)

since f(A ∩ PX) ⊂ PY and f(A ∩QX) ⊂ QY . It follows that the function

ψ : PX ∪A ∪QX → [0, 1] given by ψ(x) =

 0 x ∈ PX
gY ◦ f(x) x ∈ A

1 x ∈ QX
(85)

is well defined and continuous [Mun00, Pasting lemma]. Since PX ∪ A ∪ QX is a closed subset of
X, the map ψ extends by the Tietze theorem to a continuous map χ : X → [0, 1]. Now the map
χt gY : X tY → [0, 1] clearly respects the equivalence relation on X tY hence we have an induced
map g [Mun00, 22.2] making the diagram

X t Y
p

��

χtgY

$$IIIIIIIIII

X ∪f Y g
// [0, 1]

commute and since χt gY is continuous so is g. We have g−1(0) = χ−1(0)∪ g−1
Y (0) ⊃ PX ∪PY = P

and similarly g−1(1) ⊃ Q as required. Now take U and V as defined above.
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B Manifold vocabulary

In this section we will, for the sake of completeness, look at some of the central notions when dealing
with manifolds in generality. This will mostly be an informal survey touching upon orientability,
manifolds with boundary, connected sums and genus. We will furthermore show some essential
lemmas supporting the approach taken in section 1.

Lemma 23. Compatibility of atlases is an equivalence relation.

Proof. Reflexibility follows easily by noting that A∪A = A and symmetry follows by commutativity
of the union; if A ∼ B then A ∪ B = B ∪ A hence B ∼ A. We can thus focus on transitivity. Let
A = (Vi, Ui, σi)i∈I1 , B = (Wi, Oi, τi)i∈I2 and C = (Pi, Ni, ϕi)i∈I3 be smooth atlases of a manifold
M . Assume A ∼ B and B ∼ C then it is enough to show that the transition map

ϕj ◦ σ−1
i |σ(Ok) : σi(Vi ∩ Pj ∩Ok)→ ϕj(Vi ∩ Pj ∩Ok) (86)

is smooth, since we have Ui ⊂
⋃
k∈I2 σ(Ok) and by lemma 3 smoothness is a local property. Further-

more choosing charts originating from the same atlas would result in a smooth map by assumption.
We can write the transition map as follows

ϕj ◦ σ−1
i |σ(Ok) = (ϕj ◦ τ−1

k ) ◦ (τk ◦ σ−1
i |σ(Ok)) (87)

which is smooth by assumption that A ∼ B and B ∼ C. Thus A ∼ C as required.

Lemma 24. Any open subset of an m-manifold is an m-manifold.

Proof. The proof is straightforward and therefore omitted. See [Sch07, p. 19] for details.

B.1 Manifold with boundary and closed manifold

Definition 19. An m-manifold with boundary is a Hausdorff space such that each point has
an open neighborhood homeomorphic to either an open disc IntDm or to the space

{(x1, . . . , xm) ∈ IntDm : x1 ≥ 0} (88)

The set of all points that have an open neighborhood homeomorphic to IntDm is called the inte-
rior points, while the set of points p that have an open neighborhood V such that there exists a
homeomorphism h of V onto {x ∈ IntDm : x1 ≥ 0} with h(p) = (0, . . . , 0) is called the boundary of
the manifold, compare with [Mas67]. A closed manifold is a compact manifold without boundary.

Note 14. Throughout this paper we will make it explicit if we are not dealing with closed manifolds.
One should be aware of the contrasting terms. The notion of closed manifold must not be confused
with a closed set. A closed disc for example is a closed set, but not a closed manifold2. A compact
manifold is a topological space which is compact, but could have a boundary. A manifold with
boundary is intuitively a manifold with an edge. The boundary of an m-manifold with boundary
can be shown to be an (m− 1)-manifold.

B.2 Orientability

We will first give an intuitive description of what orientability is, which can be found in [Mas67].
This is then followed by a more formal approach in a reduced setting. Connected m-manifolds
are, for m > 1 divided into two kinds: orientable and nonorientable. In the plane we can, at
a given point, define which of the two possible kinds of coordinate systems we will consider as
right-handed and which we will consider left-handed. This can then by a relevant homeomorphism
be transferred to any connected 2-manifold. An orientation-reversing path is a path with the
property that going along it will reverse the original orientation. We then define a connected 2-
manifold as nonorientable if an orientation reversing path exists. The same approach can be
taken for 3-manifolds – where a path is orientation-reversing if it mixes up left and right – but for
general m-dimensional space we need to take a more formal stand:

2When cosmologists speak of the universe as being ‘open’ or ‘closed’, they most commonly are referring to yet
another property namely its curvature.
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Definition 20. Let V be a finite dimensional vector space. Two ordered bases are said to be
equally oriented if the transition matrix S has positive determinant. Being equally oriented is an
equivalence relation among bases, for which there are precisely two equivalence classes. The space
V is said to be oriented if a specific class has been chosen. This class is then called the orientation
of V , and its member bases are called positive.

Note 15. Tthe tangent space at p, TpM , is a linear subspace which, if M ⊂ Rn can be seen as
the m-dimensional hyperplane through the origin in Rn which is parallel to the hyperplane which
best approximates M near p. The linear mapping dfp : TpM1 → Tf(p)M2 is called the derivative.
See [Mil65] for details. By the Whitney embedding theorem, see [Sch07, ch. 2] or [MT97, 8.11],
the restriction to manifolds in Rn is still quite general, however for an arbitrary abstract manifold
another approach is required, see [Sch07, ch. 3] for further details.

Definition 21. An orientation of a manifold M is an orientation of each tangent space TpM ,
p ∈M , such that there exists an atlas of M in which all charts induce the given orientation on each
tangent space. The manifold is called orientable if there exists an orientation. If an orientation
has been chosen we say that M is an oriented manifold and we call a chart positive if it induces
the proper orientation on each tangent space. A smooth map f : M1 → M2 between oriented m-
manifolds is said to be orientation preserving if for each p ∈M , the differential dfp maps positive
bases for TpM1 to positive bases for Tf(p)M2.

Note 16. As examples of orientable manifolds we have all the g-fold tori explicitly created in section
1.3.1 along with the sphere and in general the m-sphere. Examples of nonorientable manifolds
include the Klein bottle, see example 7, which is a closed 2-manifold, and the Möbius strip which is
a 2-manifold with boundary, the boundary being S1, a 1-manifold.

B.3 Connected sum

Definition 22. Let S1 and S2 be disjoint surfaces. Their connected sum, denoted by S1]S2 is
constructed as follows. Choose closed discs D1 ⊂ S1 and D2 ⊂ S2. Let S′i = Si −Di for i = 1, 2.
Choose a homeomorphism h : ∂D2 → ∂D2. Then S1]S2 is the adjunction space S′1∪hS2 cf. [Mas67].
This can be done smoothly as in [KM63].

Note 17. It is clear that S1]S2 is again a surface and it can be proven that it is independent of
the choice of the discs D1 and D2 of the homomorphism h. Furthermore we see that S2 is a neutral
element with respect to this composition. The connected sum of two oriented surfaces is again
orientable. If either one of the surfaces is nonorientable then so is S1]S2, see [Mas67].

B.4 Genus

The classification theorem for compact surfaces states that any compact surface is either homeo-
morphic to a sphere or to a connected sum of tori or to a connected sum of projective planes. Since
projective planes are nonorientable we have in other words actually, in section 1.3.1, shown how to
compute any compact orientable surface.

Definition 23. The genus of a connected, orientable surface is an integer representing the maximum
number of cuttings along non-intersecting closed simple curves without rendering the resultant
manifold disconnected.

Note 18. We see that the genus for a surface can be described as the number of handles on it,
which again is equal to the number of tori attached under the connected sum. As examples we have
the sphere S2 with genus 0, the tori with genus 1, the double torus with genus 2 and so on. In this
way the genus completely determines the shape of the orientable surface up to homeomorphism.
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C The free product and the free group

In this section we give a brief definition of the free product and the free group, which appear in the
Seifert-van Kampen theorem and thus also in the derivation of fundamental groups for the compact
surfaces. This follows [Mun00, §69] closely, where more details can be found.

Definition 24. Let G be a group. If {Gα}α∈J is a family of subgroups of G we say that these
groups generate G if every element x ∈ G can be written as a finite product of elements of the
groups Gα. Such a finite sequence (x1, . . . , xn) = x is called a word. It is said to represent x ∈ G.

Similarly if {aα}α∈J is a family of elements of G we say that the elements generate G if every
element in G can be written as a product of powers of the elements aα.

Note 19. We do not assume commutativity, but if xi and xi+1 belongs to the same Gα we can
group the elements thus obtaining the word (x1, . . . , xixi+1, . . . , xn). If xi = e we can erase it from
the word. In this way we gat a so called reduced word.

Definition 25. Let G be a group, let {Gα}α∈J be a family of subgroups of G that generates G.
Suppose Gα ∩Gβ = e whenever α 6= β. G is the free product of the groups Gα, written

G =
∗∏

α∈J
Gα, (89)

if for each x ∈ G, there is only one reduced word in the groups that represents x.

Definition 26. Let {aα} be a family of elements of a group G. Suppose each aα generates an
infinite cyclic subgroup Gα of G. If G is the free product of the groups {Gα}, then G is said to be
a free group, and the family {aα} is called a system of free generators.

C.1 Wedge of circles and adjoining a 2-cell

The basic lemmas needed to show the results in section 1.3.1 are covered here. We only state these
as the detailed proofs can be found in [Mun00].

Definition 27. Let X be a Hausdorff space that is the union of the subspaces S1, . . . , Sn, each of
which is homeomorphic to the unit circle S1. Assume that Si ∩ Sj = {p} for some p ∈ X whenever
i 6= j. Then X is called the wedge of the circles S1, . . . , Sn.

Lemma 25. Let X be the wedge of the circles S1, . . . , Sn; let p be the common point. Then π1(X, p)
is a free group. If fi is a loop in Si that represents a generator of π1(Si, p), then the loops f1, . . . , fn
represents a system of free generators for π1(X, p).

Example 9. This gives us a way to calculate the fundamental group of the figure-eight space
which can be seen as a union of two circles with a point in common. The fundamental group is thus
a free group with two generators which we can write as Z ∗ Z.

Lemma 26. Let X be a Hausdorff space; let A be a closed path-connected subspace of X. Suppose
there is a continuous map h : B2 → X that maps IntB2 bijectively onto X−A and maps S1 = BdB2

into A. Let p ∈ S1 and let a = h(p); let k : (S1, p) → (A, a) be the map obtained by restricting h.
Then the homomorphism

i∗ : π1(A, a)→ π1(X, a) (90)

induced by inclusion is surjective and its kernel is the least normal subgroup of π1(A, a) containing
the image of k∗ : π1(S1, p)→ π1(A, a).

Proof. Munkres pp. 439-441. Note that it uses the Seifert-van Kampen theorem.
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D The Seifert-van Kampen theorem

In this section we will give a proof of the Seifert-van Kampen theorem, which states that if X is the
union of open path connected sets, then π1(X,x0) is in fact completely determined by the groups
π1(U, x0) and π2(V, x0), and the various homeomorphisms of these groups induced by inclusion. It
will enable us to compute the fundamental groups of a number of spaces including the compact
2-manifolds, the Lens space Lp/q and certain circle bundles. The proof is due to J. Munkres, see
[Mun00] for details and alternative formulations.

Theorem 12 (Seifert-van Kampen). Let X = U ∪ V , where U and V are open in X; assume U, V
and U ∩ V are path connected; let x0 ∈ U ∩ V . Let H be a group, and let

φ1 : π1(U, x0)→ H and φ2 : π1(V, x0)→ H (91)

be homomorphisms. Let i1, i2, j1, j2 be the homomorphisms indicated in the following diagram, each
induced by inclusion.

π1(U, x0)

j1

��

φ1

##HHHHHHHHHH

π1(U ∩ V, x0) //

i2 ''OOOOOOOOOOO

i1

77ooooooooooo
π1(X,x0)

Φ
// H

π1(V, x0)
φ2

;;vvvvvvvvv
j2

OO

If φ1 ◦ i1 = φ2 ◦ i2, then there is a unique homomorphism Φ : π1(X,x0)→ H such that Φ ◦ j1 = φ1

and Φ ◦ j2 = φ2, and Φ is completely determined this way.

Proof. We show uniqueness of Φ first. We know that π1(X,x0) is generated by the images of j1
and j2 [Mun00, 59.1]. The value of Φ on the generator j1(g1) must be equal to φ1(g1) and on
the generator j2(g2) it must equal φ2(g2). Therefore Φ is completely determined from the given
homomorphisms φ1 and φ2.

In order to show existence of Φ we introduce the following notation: Given a path f in X, [f ]
denotes its path-homotopy class in X. If f happens to lie in U , then [f ]U is the path-homotopy
class in U and likewise for [f ]V and [f ]U∩V .

Step 1. Define the set map ρ that to each loop f based at x0 and lying in either U or V , assigns
an element of the group H by

ρ(f) = φ1([f ]U ) if f lies in U (92)
ρ(f) = φ1([f ]V ) if f lies in V (93)

The map is well defined since if f lies in both U and V then

φ1([f ]U ) = φ1(i1([f ]U∩V )) = φ1 ◦ i1([f ]U∩V )
hypothesis︷︸︸︷

= φ2 ◦ i2([f ]U∩V ) = φ2(i2([f ]U∩V )) = φ2([f ]V )

as required. The set map ρ satisfies the following conditions

i. If [f ]U = [g]U or if [f ]V = [g]V then ρ(f) = ρ(g)

ii. If both f and g lies in U , or if they both lie in V then ρ(f ∗ g) = ρ(f) · ρ(g)

The first follows since ρ(f) = φ1([f ]U ) = φ1([g]U ) = ρ(g) and likewise for V . The second follows
since if whithout loss of generalization we have f and g in U and hence ρ(f ∗ g) = φ1([f ∗ g]U ) =
φ1([f ]U ∗ [g]U ) = φ1([f ]U ) · φ1([g]U ) = ρ(f) · ρ(g) where we use that φ1 is a homomorphism.

Step 2. We extend ρ to a set map σ that assigns, to each path f in U or V , an element of H,
such that (i) is satisfied and (ii) holds when f ∗ g is defined.

Choose for each x ∈ X a path αx from x0 to x as follows: If x = x0, let αx be the constant path
at x0. If x ∈ U ∩ V , let αx be a path in U ∩ V . If x is in U or V but not in U ∩ V let αx be a
path in U or V respectively. Then for any path f in U or in V we define a loop L(f) in U or V ,
respectively by the equation

L(f) = αx ∗ (f ∗ ᾱy) (94)
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where x is the initial point of f and y the final point. This is possible since U, V and U ∩ V are
assumed path connected. Finally define

σ(f) = ρ(L(f)) (95)

First we show that σ is an extension of ρ. If f is a loop based at x0 lying in either U or V then

L(f) = ex0 ∗ (f ∗ ex0) (96)

where αx0 is the constant path at x0. Then L(f) is clearly path homotopic to f in either U or V ,
so that ρ(L(f)) = ρ(f) by condition (i) and hence σ(f) = ρ(f).

To check condition (i), let f and g be path homotopic in U or in V . Without loss of generalization
we assume [f ]U = [g]U . Then we have [L(f)]U = [αx ∗ (f ∗ ᾱy)]U = [αx]U ∗ [f ]U ∗ [ᾱy]U =
[αx]U ∗ [g]U ∗ [ᾱy]U = [L(g)]U hence σ(f) = σ(g) i.e. condition (i) applies. To check (ii), let f and
g be arbitrary paths in U or in V such that f(1) = g(0). We have

L(f) ∗ L(g) = (αx ∗ (f ∗ ᾱy)) ∗ (αy ∗ (g ∗ ᾱz)) (97)

for appropriate points x, y and z. This is a loop which clearly is path homotopic to L(f ∗ g). Then

ρ(L(f ∗ g))
(i)︷︸︸︷
= ρ(L(f) ∗ L(g))

(ii)︷︸︸︷
= ρ(L(f)) · ρ(L(g)) (98)

Therefore we conclude that σ(f ∗ g) = σ(f) · σ(g) i.e. condition (ii) is satisfied.
Step 3. Finally we extend σ to a set map τ that assigns, to an arbitrary path f of X, an element

of H. We want it to satisfy

i. If [f ] = [g] then τ(f) = τ(g).

ii. τ(f ∗ g) = τ(f) · τ(g) if f ∗ g is defined.

Given f , choose a subdivision s0 < · · · < sn of [0, 1]. This can be done as follows: Since f : [0, 1]→ X
is continuous and {U, V } is an open covering of X we see that A = {f−1(U), f−1(V )} is an open
covering of the compact and metric space [0, 1]. By the Lebesgue number lemma [Mun00], we can
then find a δ > 0 such that for each subset of [0, 1] having diameter less that δ, there exists an
element of the open covering A containing it. Thus we can choose a subdivision s0, . . . , sn of [0, 1]
such that for each i the set f([si−1, si]) is contained in either U or V by letting |si−1 − si| < δ. Let
fi denote the positive linear map of [0, 1] onto [si−1, si] followed by f . Then fi is a path in U or V
and

[f ] = [f1] ∗ · · · ∗ [fn] (99)

[Mun00, 51.2]. If τ is to be an extension of σ and satisfy (i) and (ii) we must have

τ(f) = τ(f1 ∗ · · · ∗ fn) = τ(f1) · · · · · τ(fn) = σ(f1) · · · · · σ(fn) (100)

We use this as our definition of τ . We must show that it is well defined i.e. that it dies not depend on
the choice of subdivision. It suffices to show that τ(f) is unchanged if we adjoin a single additional
point p to the subdivision. Let i be the index such that si−1 < p < si. If we compute τ(f) using this
subdivision we have σ(fi) is substituted with σ(f ′i) ·σ(f ′′i ) where f ′i and f ′′i are equal to the positive
linear map from [si−1, p] and [p, si] respectively to [0, 1] followed by f . But fi is path homotopic to
f ′i ∗ f ′′i in U or V hence σ(fi) = σ(f ′i) · σ(f ′′i ) by conditions (i) and (ii). Therefore τ is well defined.
Furthermore it is an extension of σ since if f lies in U or V we can use the trivial subdivision of
[0, 1] to define τ(f); then τ(f) = σ(f) by definition.

Step 4. We prove condition (i) for τ . First we look at a special case: Let f and g be paths in
X from x to y and let F be a path homotopy between them. Assume that there is a subdivision
s0, . . . , sn of [0, 1] such that F carries each rectangle Ri = [si−1, si]× I into either U or V . We show
that in this case τ(f) = τ(g).

Given i consider the positive linear map of [0, 1] onto [si−1, si] followed by f or by g; call these
paths fi and gi respectively. The restriction of F to Ri gives a homotopy3 from fi to gi in either U

3Not a path homotopy since the endpoints may differ
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or V . Let us consider the pats traced out by the endpoints during the homotopy. Define βi to be
the path βi(t) = F (si, t). Then βi is a path in X from f(si) to g(si). The paths β0 and βn are the
constant paths at x and y respectively. We show that for each i,

fi ∗ βi 'p βi−1 ∗ gi (101)

with the path homotopy taking place in either U or V . In the rectangle Ri take the broken-line
path that runs along the bottom and right edges of Ri from (si+1, 0) to (si, 0) to (si, 1); taking F
on this we obtain fi ∗ βi. Similarly we get βi−1 ∗ gi by taking the broken-line along the left and top
of Ri followed by F . Since Ri is convex we can find a path homotopy between these broken lines
and hence if we follow by F we obtain a path homotopy between fi ∗ βi and βi−1 ∗ gi that takes
place in U or V as desired.

We furthermore have

σ(fi) · σ(βi) = σ(fi ∗ βi)
(i)︷︸︸︷
= σ(βi−1 ∗ gi) = σ(βi−1) · σ(gi) hence σ(fi) = σ(βi−1) · σ(gi) · σ(βi)−1

And similarly we have, since β0 and βn are constant paths that

σ(β0) = σ(β0 ∗ β0) = σ(β0) · σ(β0) hence σ(β0) = 1 (102)
σ(βn) = σ(βn ∗ βn) = σ(βn) · σ(βn) hence σ(βn) = 1 (103)

We can now insert this in our definition of τ :

τ(f) = σ(f1) · · · · · σ(fn) = σ(g1) · · · · · σ(gn) = τ(g) (104)

as wanted. To prove it in the general case we do as follows: Given f and g and a path homotopy F
between them, let us choose subdivisions s9, . . . , sn and t0, . . . , tm of [0, 1] such that F maps each
subrectangle [si−1, si] × [tj−1, tj ] into either U or V . This is possible due to the Lebesgue number
lemma. Let fj be the path fj(s) = F (s, tj); then f0 = f and fm = g. The pair of paths fj−1 and
fj satisfy the requirements of our special case hence τ(fj−1) = τ(fj) for each j. It follows that
τ(f) = τ(f0) = τ(fm) = τ(g) as required.

Step 5. Now we prove condition (ii) for τ . Given a path f ∗ g in X, let us choose a subdivision
s0 < · · · < sn of [0, 1] containing the point 1/2 as a subdivision point, such that f ∗ g carries each
subinterval into either U or V , again possible due to the Lebesgue number lemma. Let k be the
index such that sk = 1/2. For i = 1, . . . , k the positive linear map of [0, 1] to [si−1, si] followed by
f ∗ g, is the same as the positive linear map of [0, 1] to [2si−1, 2si] followed by f ; call this map fi.
Similarly for i = k+1, . . . , n the positive linear map of [0, 1] to [si−1, si] followed by f ∗g is the same
as the positive linear map of [0, 1] to [2si−1− 1, 2si− 1] followed by g; call this map gi−k. Using the
subdivision s0, . . . , sn for the domain of the path f ∗ g, we have

τ(f ∗ g) = τ(f1 ∗ · · · ∗ fk ∗ g1 ∗ · · · ∗ gn−k) = σ(f1) . . . σ(fk) · σ(g1) . . . σ(gn−k) (105)

Using the subdivision 2s0, . . . , 2sk for f and 2sk − 1, . . . , 2sn − 1 for g we have

τ(f) = σ(f1) . . . σ(fk) and τ(g) = σ(g1) . . . σ(gn−k) (106)

Hence (ii) is also satisfied. Step 6. We prove the theorem. For each loop f in X based at x0, define

Φ([f ]) = τ(f) (107)

Conditions (i) and (ii) shows that Φ is a well defined homomorphism. To show that Φ ◦ j1 = φ1, let
f be a loop in U . Then

Φ(j1([f ]U )) = Φ([f ]) = τ(f) = ρ(f) = φ1([f ]U ) (108)

Similarly for a loop g in V we have Φ ◦ j2 = φ2

Φ(j2([f ]V )) = Φ([f ]) = τ(f) = ρ(f) = φ2([f ]V ) (109)

which was what we wanted.
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238.

[Sei80] , Topology of 3-dimensional fibered spaces, Academic Press, 1980.

[ST80] H. Seifert and W. Threlfall, Textbook of topology, Academic Press, 1980.

[Tho07] Anders Thorup, Algebra, 3rd ed., Matematisk Afdeling, University of Copenhagen, 2007.
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