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Summary

In this article we will study a generalization of the homotopy theory we know
from algebraic topology. We discuss the abstract tools needed for this general-
ization, namely model categories and their homotopy categories. We will apply
our general setting to topological spaces to find the familiar homotopy theory.
Afterwards we will look at the application to simplicial sets and see that their

homotopy category is equivalent to that of topological spaces.
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1 Introduction

The aim of this article is to study a general setting for homotopy theories, by the use of cat-
egory theory. Specifically by defining model categories and their homotopy categories. The
author was not familiar with category theory before writing this article, but due to the formal
character of the subject decided to add this material as an appendix. So the reader might
decide for himself whether or not to read this before starting on the article. Furthermore the

reader is assumed to know some algebraic topology.

In algebraic topology we know the definition of homotopic maps and homotopy equivalences.
In this article we will study homotopy theories at a more general level and we will see that this
abstract definition applied to the category of topological spaces coincides with the familiar
notion. Let us first recall those definitions from algebraic topology. Two maps fo, f1: X — Y
are called homotopic if we can deform them continuously into each other. In other words if we
can find amap H : X x [ — Y with H(z,0) = fo and H(z,1) = fi. Furthermore recall that
amap f: X — Y is called a homotopy equivalence if it has a ’homotopy inverse’, g : Y — X,
a map such that the compositions are homotopic to the relative identity maps. The notion
of being homotopic is a generalization of being homeomorphic (e.g. X, Y homeomorphic if
there are maps f and g as before where the compositions are the identities). When the maps

f and ¢ form a homotopy equivalence, g is the inverse of f up to homotopy.

The main example of a model category that we will discuss in this article is the example
on topological spaces. The general construction of homotopy that we will use allows us to
talk about homotopy theories in many other settings though. We will only describe one of
these setting, namely the case of simplicial sets. Other examples can for example be found in
[Hov99] and [DS95].

As named before we will be using category theory to make this generalization possible. A
category is a collection of objects plus a collection of morphisms between all those objects
that satisfy some rather weak axioms. For the precise definition of a category we refer to the
appendix. The appendix deals with basic concepts and examples from category theory. It is

meant to be self-contained and we will refer to it when necessary.

Since the axioms for a category are weak, we can find them everywhere in mathematics.
Categories (and functors) make it possible to compare different fields in mathematics in a
formal way. Lets look at some examples of categories first. In topology, we are interested
in topological spaces and continuous maps. In differential geometry we study manifolds and

smooth maps. In basic set theory we study sets and maps between them. In the three



situations above, we would in categorical language say, that we study objects and morphisms
between objects. A category is defined to be a collection of objects with a collection of arrows

between each two objects.
In a category each object a has an identity arrow, id,, if we are in the following setting;

e Co2a D

and if fg = id, and gf = idy, we will call the objects a and b isomorphic, as usual. Isomorphic
objects will have some common properties, depending on the category. For example in the
setting of sets as before isomorphisms are just bijections and the sets that are isomorphic
will have the same cardinality. The isomorphic objects in the homotopy category that we
are going to construct will be homotopic’ objects. We use commas because we will actu-
ally define those objects as homotopic objects, and afterwards we will see that this notion
of homotopic applied to topological spaces coincides with the concept familiar to us. To be
able to define the homotopy category of a model category, we of course need to define what a
model category is first. We start section one by introducing the axioms for a model category,
afterwards we will study certain objects in a model category that will be suitable for defining
homotopy relations. This will enable us to finish the first section by defining the homotopy

category.

All this is very general and abstract, so we will continue the article by studying two appli-
cations. We will put model category structures on both the category of topological spaces
and simplicial sets. The verifying of the axioms of a model category will turn out to be a
big task. This is why we will only verify the model category structure on topological spaces
in detail. We will do this in section two. Then in the third and last section we will define
the model category structure on simplicial sets. Unfortunately the proof of this lies outside
the scope of this project. The model category structure on simplicial sets is defined with
help of topological spaces. Simplicial sets can be used as an approximation to topological
spaces. This is useful because it is easier to work with simplicial sets since they are purely
combinatorial objects. We will end the article by stating a well known theorem that tells us

that the homotopy categories of simplicial sets and topological spaces are equivalent.



2 Model Categories and their Homotopy Category

In this section we start by giving the axioms for a model category. These axioms are rather
strong, as mentioned in the introduction. Since checking them in different situations will be a
hard task, we will only look at some formal examples in this section. After these examples we
will see that the axioms for a model category are over determined. This allows us to introduce
cofibrantly generated model categories. It is easier to check that a category is a cofibrantly
generated model category so this gives us a more convenient tool for proving that a category

has a model category structure on it.

In a model category there are three distinguished types of maps, weak equivalences, fibrations
and cofibrations. We would like to find an inverse for the weak equivalences, we will see that
the homotopy category Ho(C) of a model category C is suitable for this in the second part of
this section. The weak equivalences in the model category will map to the isomorphisms in
the homotopy category, under a functor v. The homotopy category will have the same objects
as the model category we constructed it from, so will differ from it concerning the morphisms
only. In Ho(C) the morphisms will be classes of morphisms from C. For Homp,c)(4, X)
the morphisms will be classes of maps between these objects itself or closely related objects.
This depends, as we will see, on the properties of A and X. The classes will be our abstractly
defined homotopy classes. In case of topological spaces these will be the conventional homo-
topy classes, but we will see this in section three. At the end of this section we will state a

theorem that will give a condition for homotopy categories to be equivalent.

2.1 Model Categories

Model categories were introduced by Quillen in 1967 as closed model categories. We will

study one type only, so we simply call them model categories.

We start by giving the following definition of lifting properties, which we will need to define

the model category structure;
Definition 2.1.1: Given a commutative diagram;

f

A—X
| b
B¢

*)Y



a lift or a lifting is a map h : B — X such that the resulting diagram commutes;

f

A——

L2

B—1sy

Thus such that hi = f and ph = ¢g. The map i is said to have the left lifting property, LLP
with respect to p, and p has the right lifting property RLP with respect to .

Definition 2.1.2: A model category is a category C with three distinguished types of maps;
(i) weak equivalences (—)
(ii) fibrations (—)

(iii) cofibrations (<)

The sets of those maps are closed under composition and all contain the identity maps. A map
which is both a fibration/cofibration is called an acyclic fibration/cofibration. The category

C has to obey the following axioms;

MC1: Finite limits and colimits exist in C

MC2: If f and g are maps in C such that fg is defined, then if two of the three maps are
weak equivalences, so is the third. (2 out of 3)

MC3: If f is a retract of g and g is a weak equivalence, fibration or cofibration, then so is f.
(retracts)

MC4: Given a commutative diagram of the form (*), a lift exists in either of the following
two situations: (i) 7 is a cofibration and p is an acyclic fibration, or (ii) 7 is an acyclic cofibra-
tion and p is a fibration. (lifting)

MC5: Any map f can be factored as f = pi in the following two ways: (i) i is a cofibration
and p is an acyclic fibration, or (ii) 7 is an acyclic cofibration and p is a fibration. (factoriza-

tion)

Note: If we let J be the empty category, then the colimit [A.27] of a functor J — C is an
initial object in C. We get a unique map to every object in C. Similarly, the limit of F' is a
terminal object. So the first axiom guaranties that a model category C has an initial and a
terminal object, denoted by () and * relatively. We call an object A in C cofibrant if the map
() — A is a cofibration and dually we call an object X fibrant if the map X — x is a fibration.

Example 2.1.3: Let C be a category with all finite colimits and limits. Let all morphisms

in C be fibrations and cofibrations and let f : X — Y in C be a weak equivalence if it is an



isomorphism. With these choices of maps C is a model category. The first axiom we assumed,
the second axiom is obvious since isomorphisms have the 2 out of 3 property. The third axiom
is clear for the cofibrations and fibrations. We will state the case of weak equivalences as a

lemma;

Lemma 2.1.4: If g is an isomorphism in C and f is a retract of g, then f is an isomorphism

as well.

Proof: By definition of a retract [A.21] we have the following commuting diagram for f and

g;
c*i>d*7q>c
o
C,;>d/;>cl

where 77 = id,. and r’t’ = id., now since g is an isomorphism we have an arrow in the oppo-
site direction g~'. We claim that rg~!4’ is the inverse of f. We find r¢~'¢'f = ri = id. and
frg Vi =r'i' =id. O.

The fourth axiom requires liftings in the following two diagrams;

Atox  4tox
n .7 h 7
zfz S ¥ IJ e zip

In the diagram at the left we take h(b) = fi~!(b) and in the right diagram we take h(b) =
p~lg(2).
Now the fifth and last axiom is easy since all maps are cofibrations and fibrations we can

factor f : X — Y as foix and iy o f. So we found a model category structure on C.

Equally easy model category structures on C can be found by either letting all maps be weak
equivalences and fibrations and letting the cofibrations be the isomorphisms or dually, letting

all maps be weak equivalences and cofibrations and letting the fibrations be the isomorphisms.

Our next example shows that the axioms of a model category are self dual. That is if C is a
model category then C° is a model category as well. This means that every theorem about

model categories has a dual theorem. We can prove the dual theorem by simply dualizing the



original proof. See appendix A for a more elaborate discussion of duality.

Example 2.1.5: If C is a model category then so is C if we let f°P? : d — ¢ in C? be
(i) a weak equivalence if f : ¢ — d is a weak equivalence in C,
(ii) a fibration if f : ¢ — d is a cofibration in C, and
(iii) a cofibration if f: ¢ — d is a fibration in C.

Let’s check the axioms,

MC1: A colimit in C°P corresponds to a limit in C and a limit in C°P corresponds to a colimit
in C. Thus the fact that all finite limits and finite colimits exist in C directly implies that the
same holds for C°.

MC2: Let fP : d — ¢,g°? : e — d in C°? such that fP¢°? : e — c is defined. Now
FPgP = (gf)P. And;

fP is a weak equivalence < f is a weak equivalence
g°? is a weak equivalence < f is a weak equivalence

f°Pg°P is a weak equivalence < g¢f is a weak equivalence

So if two out of three of the maps are weak equivalences in C°? so are two out of three in C
and thus all of them in C and then also all three in C°P.

MC3: The morphism f° is a retract of g°? if and only if f is a retract of g, since you only
change the direction of the vertical arrows in the diagram in [A.16] formally. When ¢ is a
weak equivalence, fibration or cofibration, so is g by definition, and thus f and also f°P.

MC4: Now given the following commutative diagram:

fo?
A—B

op op
90 91

fP

C—
where g’ is a cofibration and ¢7¥ an acyclic fibration, this gives the following diagram in C
A<l p
gUT g1
f1
C<—D

With gy a fibration and ¢g; an acyclic cofibration, thus there exist a lift h : B — C and this

gives a lift in the first diagram h°? : C' — B. The proof for the second condition is similar



and left as an exercise.

MC5: Since any f in C can be factored as pi, any f° in C°° can be factored as ¢°Pp°P. In
case (i) i is a cofibration and p an acyclic fibration, so p°? is an acyclic cofibration and i is
a fibration, so it gives (i) for the opposite category. Similarly in case (ii) p°? is a cofibration

and ¢°P is an acyclic fibration.

Example 2.1.6: If C is a model category then for x € C a terminal object, the over category
C | * [A.23] can be given a model category structure by defining (k, id,) : (¢ — %) — (¢’ — %)
in C | * to be

(i) a weak equivalence if k : ¢ — ¢’ is a weak equivalence in C,
(ii) a fibration if k : ¢ — ¢ is a fibration in C, and
(iii) a cofibration if k : ¢ — ¢’ is a cofibration in C.

This over category can be visualized as follows;

(k.
ovi(Clw) Hom(C | *) \/

*
see example [A.23] as well. Now let us start checking the model category axioms. Let
F:J — C | % be a functor from a finite category J. To find a colimit of F' we can look at
the functor F’ : J — C that sends an object in J to the object X instead of X — *. Then

colim(F") is an object in C | * by the universal property of colimits

A——colim(F')<— B

\
*

then the object colim(F") — * in C | x is the colimit for F'. For the limit we have to be a bit
more careful because we do not get a map to * automatically.

Again we are given a functor F': J — C | *. Now let 7’ be J with an extra terminal object
x. Let G : J' — C again be a functor induced by F and G(x) = *, G(A — %) = F(A) — *.
Now lim(G) — x is the limit of F.



The second and third axiom follow easily from the fact that C is a model category. Now for

the fourth axiom we have to find a lift in the following commutative diagram;

* *

NS

HX

N

p

<.
B

Sy

HY

SN

* *

when i is a cofibration, p is a fibration and one of them is acyclic, we can find the lift in C

and we see from the above diagram that we find a commutative triangle;
B—— X
*
so we have a morphism in C | .
For the fifth axiom we want to find a factorization for a morphism in (f,i,) in C | *. We can

factor f as pi with p a fibration and i a cofibration, and one of them acyclic. Now we want a

map h to make the following diagram to commute;

Xx—tsx Loy
*

But this is forced, since * is a terminal object so the maps are unique.

Now we have seen a couple of abstract examples of model categories. In section two and
three we will study ’real’” examples as promised before. As we said before the axioms of a
model category are over determined in some sense. If we know the weak equivalences and the
fibrations/cofibrations then the cofibrations/fibrations are determined as well. The following

proposition states this formally.

Proposition 2.1.7: Let C be a model category.
(i) The fibrations in C are the maps that have the RLP with respect to all acyclic cofibrations.
(ii) The acyclic fibrations in C are the maps that have the RLP with respect to all cofibrations.



Dually:

(iii) The cofibrations in C are the maps that have the LLP with respect to all acyclic fibra-
tions.

(iv) The acyclic cofibrations in C are the maps that have the LLP with respect to all fibra-

tions.

Proof: We will only prove the first two statements since the other two follow by duality.
By the lifting axiom we see that the (acyclic) fibrations have the RLP with respect to the
(acyclic) cofibrations so we have to prove that a map that has the RLP with respect to
(acyclic) cofibrations is a (acyclic) fibration.

Now let f : X — Y have the RLP with respect to all acyclic cofibrations. We can factor
f=pias X S X »Y by the factorization axiom. Now we can find a lift in the following

diagram

iK

K—">K
~ i
K ——L

This makes f into a retract of p;

K—K —K
I
i ir
L——L——1L
so with the retract axiom we find that f is a fibration. The proof when f has the RLP with
respect to all fibrations is similar, we take the other factorization of f, X — Y’ 5 Y and

then continue the argument in the same way.

Now that we know that the model category structure is over determined we can look at
cofibrantly generated model categories. We could as well look at fibrantly generated model
categories, but according to Hovey [Hov99] this definition is much less useful. The idea of a
cofibrantly generated model category is that we pick a subcategory of C which will contain
all weak equivalences, and we pick two sets of maps, I and J, the generating cofibrations
and the generating acyclic cofibrations. So we even get away with picking a collection of the
cofibrations instead of all of them. The class of fibrations will be the class of maps that have

the RLP with respect to all maps in J, the generating acyclic cofibrations. Similarly the class

10



of acyclic fibrations will be the class of maps with the RLP with respect to all maps in I. Now
by the proposition above we see that the (acyclic) cofibrations have to be the class of maps
that have the LLP with respect to the (acyclic) fibrations. In general this class is bigger then
the class of generating (acyclic) cofibrations. The author did not study cofibrantly generated
categories thoroughly and will not use them while constructing the model category structure
on topological spaces. In case of simplicial sets we will use them though. But as said before
we will only define the model category structure there. We will defer the further discussion
of cofibrantly generated model categories until section three. This is because some of the
terminology that comes up there we will use while proving the model category structure on
topological spaces. The abstract definitions will be more readable after having seen the ap-

plication to topological spaces.

Before we can continue this section with discussing the homotopy category we need to define
homotopy relations on the model category structure. We will use the axioms of a model
category C to construct suitable homotopy relations on the sets of morphisms home (A, X).
We will define a notion of right homotopy and a dual notion of left homotopy. To define right
homotopy we will introduce path objects and for left homotopy we will construct cylinder
objects. We will give the definitions of left, right and normal homotopy now and discuss some

important properties that we need in order to be able to construct the homotopy category.
Definition 2.1.8: A path object for X € C is an object X! of C together with a diagram
~ P
X—X—=XxX
which factors the diagonal map (idy,idyx) : X — X x X. So the following diagram commutes;

X—N>XI

p
idx% J,

X x X

Definition 2.1.9: Two maps f,g: A — X are said to be right homotopic if the product map
(f,g) : A— X x X can be lifted to a map H : A — X as illustrated in the diagram;

XI

A—= : (f’g)X x X

11



Notation; f ~ g.

Now dually we define;
Definition 2.1.10: A cylinder object for A is an object A A I of C together with a diagram;

AJJA—>ANT =>4
which factors the map ida4 +ida : A[[A — A.

Definition 2.1.11: Two maps f,g : A — X are said to be left homotopic if the sum map
f4+9g:A]]A — X can be extended to a map H : AN I — X as illustrated in the diagram;

f+g

7
ANT

Notation; f L g.

Both left and right homotopy are relations on maps and we denote the equivalence classes
of Hom(A, X) under the equivalence relation generated by these relation as 7'(A, X) and
(A, X). When A is cofibrant and X is fibrant left and right homotopy coincide and we
write (A, X). [B.13]

In the construction of a homotopy category of a model category C we want to look at a sub-
category where the objects are all cofibrant and the morphisms are right homotopy classes of
maps. To be able to do this we need the composition of right homotopic maps to be defined.
This is the case for cofibrant objects, see [B.10]. We can also form the dual subcategory,
with fibrant objects and classes of left homotopic morphisms. Finally we can look at the
subcategory with objects that are both fibrant and cofibrant and classes of homotopic maps

by the note above.

Two final observations we will need for the construction of the homotopy category is that
when A is cofibrant (X is fibrant) and p : ¥ — X is an acyclic fibration (i : A — B is an
acyclic cofibration), then composition with p (i) induces a bijection on left (right) homotopy
groups. And in this situation f : A — X is a weak equivalence if and only if it has a homotopy
inverse.

The proofs of the above statements and more can be found in appendix B. Now we are ready

for the construction of the homotopy category.

12



2.2 Homotopy Categories

Here we will construct the homotopy category of a model category. The objects will be the
same but the morphisms will be classes of objects. Because of the strong structure that a
model category has we find that there is a functor ~ from the model category to its homotopy
category that is a localization of the model category with respect to the weak equivalences. So

we can formally invert the weak equivalences in our model category and get a nice category.

We just saw that for a morphism between objects that are both fibrant and cofibrant the
notion of being a weak equivalences and homotopic coincides. We want to define a category
where the isomorphisms are ’homotopy equivalences’. Recall that in Top those are defined
to be the maps with a homotopy inverse fg and ¢gf are homotopic to the relative identities.
We can define homotopy equivalences in a model category in the precise same way, now with

the abstract definition of homotopic maps.

So to define a homotopy category of a model category it should not be surprising that we
are interested in cofibrant and fibrant objects. Not all objects in a model category, C, are
both fibrant and cofibrant though. We start this paragraph by associating a fibrant and a
cofibrant object to every object in X.

Recall that a model category has an initial and terminal object. There is a morphism () — X
in C for each object X € C. By MC5 we can factor this morphism as a composition of an
acyclic fibration with a cofibration. Let ()X be the cofibrant object in this factorization,
furthermore write px : QX S5X X already was cofibrant we let QX = X. In similar
fashion we define RX to be the fibrant object in the factorization X < RX —» x, and when
X was already fibrant RX = X. We call the first map in the factorization ix.

Now for the construction of the homotopy category we want to use the following categories,
associated to a model category C;

Cc - the full subcategory [A.3] of C generated by the cofibrant objects.

Cy - the full subcategory of C generated by the fibrant objects.

C.f - the full subcategory of C generated by the objects of C that are both fibrant and
cofibrant.

7C, - the category with objects the cofibrant objects and whose morphisms are right homotopy
classes of maps [B.7].

7Cy - the category with objects the fibrant objects and whose morphisms are left homotopy
classes of maps.

wCc.f - the category with objects the objects of C that are both fibrant and cofibrant, whose

morphisms are the homotopy classes of maps.

13



As mentioned before we want the homotopy category to have the homotopy equivalences as
its isomorphisms, this means that we want the morphisms in Ho(C') to be classes of homotopy
equivalent maps. We will construct a functor ' : C — 7C.s, and then let the morphisms
between X and Y in Ho(C) be Homgc,,(X,Y). To get this functor we will first construct
two functors R :C — 7Cy and @ : C — 7wC.. The following lemmas tell us how to do this.

Lemma 2.2.1: Given a map f : X — Y in C there exists a map f : RX — RY such that

the following diagram commutes;

X Y
inN iN
I
RX —RY

The map f depends up to right homotopy only on f, and is a weak equivalence if and only
if f is. If X is cofibrant, then f depends up to right homotopy or up to left homotopy only
on the right homotopy class of f.

Proof: We get the map f by applying MC4 to the following diagram;

—_—
7
Indeed we have fix = iy f. The uniqueness statements follow from some properties of the
homotopy relations. [B.8][B.9][B.13].

Lemma 2.2.2: Given a map f : X — Y in C there exists a map f : QX — QY such that

the following diagram commutes;

ox L~y
PX\LN PY\LN
x—1 .y

The map f depends up to right homotopy only on f, and is a weak equivalence if and only
if fis. If Y is fibrant, then f depends up to right homotopy or up to left homotopy only on
the right homotopy class of f.

Proof: The proof is completely dual to the previous one.

14



Now we can construct the following functors; R : C — 7y and @ : C — wC. as follows. Send
an object X of C to the fibrant object RX defined before. Send a map f : X — Y to the
left homotopy class [f] € n'(RX, RY). We have to check that this indeed is a functor. Let

f =idx, then idrx makes the diagram commute;

idx

X—X

inN Z-Xlw

idRrx

RX — RX

thus for any f <~ idx. So indeed R(idx) = [idgX]. Now let f : X — Y and g:YV — Z,
and h = gf. Similarly, since both kA and ¢gf make the diagram with ¢f on top commute,
they are left homotopic to each other thus and thus R(h) = R(g)R(f). Analogously we
define the functor @) : C — wC., which sends objects X to cofibrant objects @X and maps

f: X — Y to the right homotopy classes [f] € 7"(QX,QY). These functors are called the

fibrant replacement functor and the cofibrant replacement functor respectively

Lemma 2.2.3: The restriction of the functor @ : C — 7C. to Cy induces a functor @' :
7Cr — mCcr. And dually the restriction of the functor R : C — 7Cy to C. induces a functor
Q' : mCc — mCey.

We state this lemma without proving it. Now we can finally define the homotopy category.
Definition 2.2.4: The homotopy category Ho(C), of a model category C is the category with
the same objects as C and with;

Homyoi)(X,Y) = Homee, f(RQX, RQY) = m(RQX, RQY)

The classes of homotopic maps from objects closely related to X and Y. When X and Y are
both fibrant and cofibrant 7(RQX, RQY) = n(X,Y)

The functor v that will give a localization of a model category C with respect to the weak
equivalences in C can now be defined. Let v : C — Ho(C) be the identity on objects and let
it send a morphism f: X — Y to the morphism R'Q(f): R'Q(X) — R'Q(Y).

By theorem 6.2 from [DS97] we see that v is a localization of C with respect to the weak
equivalences. This means that we can control the formal inversion of the weak equivalences

neatly by the structure we get from the fibrations and cofibrations.

15



2.3 Quillen Equivalence

In this paragraph we will define what is meant by a Quillen equivalence. We will state a
theorem that gives us a condition for a Quillen equivalence, but we will not prove this. We
will only explain what the conditions are. In order to do this we will introduce total left
and right derived functors, LF' : Ho(C) — Ho(D) and RF : Ho(C) — Ho(D), of a functor
F:C—D.

Definition 2.3.1: A Quillen equivalence between C < D is an adjoint pair [A.15] of functors
F:C <= D : G such that:

(i) F preserves cofibrations and G preserves fibrations and,

(ii) the derived functors LF' : Ho(C) <= Ho(D) : RG induce an equivalence of categories
[A.14].

The first condition implies that the total left and right derived functors exist, as stated in
the following theorem. In addition the theorem gives a condition on C and D to get a Quillen

equivalence.

Theorem 2.3.2: Let C and D be model categories, and;
F:C<D:d

be a pair of adjoint functors. Suppose that;

(i) F preserves cofibrations and G preserves fibrations, then the total derived functors exist
and form an adjoint pair; LF' : Ho(C) <= Ho(D) : RG

(ii) If in addition we have that the following condition holds for each cofibrant object A € C
and fibrant object X € D and a map f : A — G(X); f is a weak equivalence in C if and
only if its adjoint f* : F(A) — X is a weak equivalence in D. Then F : C <= D : G gives a

Quillen equivalence.

Here the adjoint map comes from the bijection between hom sets that an adjunction of
functors gives us [A.15.]. The proof of this theorem can be found in [DS95][pg. 43-45]. We
continue by defining those total left and right derived functors. To do this we first have to
define the left and right derived functors. The definitions are each others duals, so we will
focus on right derived functors.

Definition 2.3.3: Let C be a model category, and F' : C — D a functor. Look at pairs (G,0)
with;

G : Ho(C) — D, a functor, and o : F — G, a natural transformation.

Now a right derived functor is an object (RF, ) like this that is universal from the right. By

universal we mean that for every other pair (G, o) there is a unique natural transformation
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o' : RF — @G such that the composite natural transformation;
F L RFy 2 Gy
is the natural transformation o.

Definition 2.3.4: A left derived functor is an object (LF,T) as above but now with a
universal property from the left. So for every other pair (G, o) there is a unique natural

transformation o’ : G — LF such that the composite natural transformation;
Gy LFy L F
is the natural transformation o.

Definition 2.3.5: A total left derived functor LF for a functor F' : C — D between model
categories, is a functor

LF : Ho(C) — Ho(D)

which is a left derived functor for the composition vpF : C — Ho(D). Similarly a total right
derived functor RF is a functor RF : Ho(C) — Ho(D) that is a right derived functor for vpF.

With this theorem as a tool, the Quillen equivalence between the Top and sSet can be
established, as we will see at the end of section three. But first we will study the application

to topological spaces in the next section.
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3 The Model Category Structure on Topological Spaces

In this chapter we assume that the reader has some knowledge of algebraic topology. We
start by recalling some definitions. A good introduction to the subject is given in [AHO1].
Afterwards we will continue by pointing out collections of maps in Top that are our weak
equivalences, fibrations and cofibrations. We proof that those choices define a model category
structure on Top and finally show that this model category structure leads to the conven-

tional homotopy relations in the homotopy category.

3.1 Definitions from Algebraic Topology

We will just recall some definitions from algebraic topology that we are going to use directly,

for further reading we refer to [AHO1].

Definition 3.1.1: A map between topological spaces, f : A — B is called a weak homotopy
equivalence if it induces isomorphisms on homotopy groups f.m;(A,ag) — m;i(B, f(ao)), for

i > 0.
Definition 3.1.2: In the following diagram;

ko

A——

7

s lg
o k1

B——Y

where there exist a lift A, the map f is said to have the right lifting property also RLP with

respect to g and similarly, g has the left lifting property or LLP with respect to f.

Definition 3.1.3: A map p: X — Y is called a Serre fibration if it has the RLP with respect
to the inclusion i : A x {0} — A x [0, 1], for each CW-complex A.

3.2 Model Category Structure on Topological Spaces

Before we start with pointing out the special maps in Top, we want to note that there are
several possible choices. We want to get a model category structure on Top such that the ho-
motopy category consist of equivalence classes of maps, with respect to regular homotopy. It
turns out that there are different model category structures realizable on Top with the same

homotopy category. We will focus on one choice only, as described in chapter 8 of [DS95].

Proposition 3.2.1: The category Top of topological spaces can be given a model category

18



structure by defining f : A — B to be;

(i) a weak equivalence if f is a weak homotopy equivalence,
(ii) a fibration if f is a Serre fibration, and
(iii) a cofibration if it has the LLP with respect to acyclic cofibrations.

Proof: The first thing we need to do is to check if the just defined classes all contain identity
maps and are closed under composition. The identity map is a weak homotopy equivalence.
Furthermore weak homotopy equivalences are closed under composition since 7; is a functor
and thus m;(go f) = mi(g) omi(f). The identity map has the RLP with respect to every map,
by just taking h = k; in (*). To show that a Serre fibrations are closed under composition
look at the following diagram;
Ax0—X
, Ei
!
N
Y
4
Ax[0,1]] —=Z
Where A is a CW-complex and ¢ the inclusion map, both f and g are Serre fibrations. We
start out with the diagram without the dotted arrows. Now in step 1 we construct a map
from A x {0} to Y by composition. Since g is a Serre fibration we find a lift of this map in
step 2, and finally in step 3 we use the fact that f is a Serre fibration too, and we get the
wanted lift from A x [0,1] to X. It should be clear now that the class of cofibrations contains

the identities and is closed under composition too.

MC1: This axiom follows from the fact that the category of topological spaces, Top contains
all small limits and colimits. [ML71][pg. 128§]

MC2: For f : X - Y, ¢g:Y — Z and gf we have as before, m;(gf) = mi(g)m:(f) so when

two out of three of the those are isomorphisms so is the third.

MC3: Lets look at the case of weak equivalences first. By lemma [2.1.4] we know that
a retract of an isomorphism is an isomorphism. Now by functorality of m; the commuting

diagram from definition [A.19] induces a commuting diagram like this;

i (7) mi(r)

mi(c) —= mi(d) —— mi(c)

Wi(f)i
(i)

() —= mi(d') — 1 ()



So when g is a weak equivalence the middle map is an isomorphism for all ¢ and thus m;(f)

is an isomorphism for all i, so f is a weak equivalence too.

Now the cases of cofibrations and fibrations have a similar proof, so we will only look at
fibrations. For each CW-complex A we get the following commutative diagram since g is a

fibration;

Ax {0} 4

fl e lg

A x [0,1]IL>d’

Now look at the following diagram;

Ax{O}kO c ijd "sc

AN

Axo, )t sy Lo gy

Again we get h since g is a fibration and the diagram commutes. Claim rh : A x [0,1] — ¢
is a lift in the left diagram. We find rhj = rikg = ko and frh = r'gh = v'i'k; = k1. So we
found a lift for ki with respect to f and f indeed is a fibration.

The proofs of MC4 and MC5 are more complicated. We will need to introduce the Infinite
Gluing Construction and to proof a couple of lemmas before we are ready to proof those
axioms.

Lemma 3.2.2: Let p: X — Y be a map in Top, then p is a Serre fibration if and only if p
has the RLP with respect to the inclusions D" x {0} — D" x [0, 1]

Proof: 7 =7 is trivial since D™ is a CW-complex.

7 <7 We will proof a slightly more general lemma here of which the previous statement is a
special case. Namely the RLP with respect to inclusions D™ x {0} — D" x [0, 1] implies the
RLP with respect to inclusions X x {0} U A x [0,1] — X x [0, 1] where (X, A) is a CW-pair
[AHO1][pg. 7]. Then the special case where we take (D™, () as our CW-"pair’ reduces to our
lemma.

Note that the following pairs are homeomorphic (D™ x [0,1], D™ x {0}), (D™ x [0, 1], D™ X
{0}UoD"™ x [0, 1]), which means that the RLP with respect to the two inclusions is equivalent.
We can use induction over the skeleta of X and just lift one cell of X — A at a time. Those

lifts reduce to the lifting of disks by composing with the characteristic map [AHO1][pg. 7] of
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the cell & : D™ — X, as we can see in the following diagram;

X x {0} UA x0,1]

d
DF x {0y UdD* x [0,1] ~ = X
P
DEx[01] Y
@ /
X % [0,1]

The upper and lower left map being restrictions of the characteristic map, where we know
®(ODF x [0,1]) € A x [0,1] since the boundary of an n + 1-cell attaches to the n-skeleta and
we are making A bigger in every step of the induction. The dotted horizontal maps are just
composition maps and we find a lift. Since ® is an inclusion we can inductively construct a

lift for the whole of X with this construction [J.

Definition 3.2.3: A relative CW-pair (X, A) is a pair of topological spaces such that X is

obtained from A by attaching a finite number of cells.

Now we continue by defining the Gluing Construction and the Infinite Gluing Construction,

we will use this construction afterwards to proof the following lemma;

Lemma 3.2.4: Every map p: X — Y in Top can be factored as pioo, Where i, is a weak
homotopy equivalence which has the LLP with respect to all Serre fibrations and p is a

Serre fibration.

So we would like to construct a factorization of p : X — X’ — Y where the second map
has the RLP with respect to a certain collection of maps, namely the inclusion maps from
A x {0} — A x [0,1] or equally for the inclusions D" x {0} — D" x [0,1]. To achieve this
we could of course just choose X’ to be Y, but we also want X’ to resemble X quite a lot,
we want those spaces to be weakly homotopy equivalent. So we need to be more subtle, this
aim will be reached by using the previously named Infinite Gluing Construction that we now

finally will define.

Definition 3.2.5: Let F = {f; : A; — B;} be a set of maps in C. Let p: X — Y be the map

we want to factor as a composite X — X’ — Y. Now for each i € 7 consider the set S(i) of
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pairs of maps (g, h) that make the following diagram commute;
I x

A
fil P
B

_h oy

By

~

Now the Gluing Construction, G'(F,p), is the pushout of the following diagram;

Fit(g.n)9

HieZ H(g,h)eS(i) A X
il fii le
+it( ,h)h
[iez Hignyesw Bi — G (F,p)

So what we are doing is gluing a copy of B; to X along A; for every commuting diagram
as above. The map i; is natural, by definition of a pushout [A.27]. Now by universality of

colimits [A.27] we find a map p; such that the following diagram commutes;

+i+(9,h)g
HiGI H(g,h)ES(i) A (

I fil
+itg,h)h
HieI H(g,h)ES(i) B;

X

+itg.h)k

Now to get the Infinite Gluing Construction we are going to repeat the process to construct
G*(F,p) and maps py from this space to Y. We repeat the Gluing Construction but now
replacing p by p1, so let G*(F,p) = G'(F,p1), p2 = (p1)1 and continue in this fashion.
More generally G*(F,p) = GY(F,pr_1) and pr = (pr_1)1. This results in the following

commutative diagram;

X 2 G F,p) == GA(F,p) e 2 GH(F )

pi ml ml pkl

Y Y Y Y

Now define G*°(F,p), the Infinite Gluing Construction to be the colimit of the upper row,
thus by universality of the colimit, there are natural maps is : X — G*°(F,p) and p :
G*®(F,p) — Y such that poico =p
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X*>G1}"p*>G2]:p

7

Now for pso to obey the desired lifting property, we have to put an extra condition on the set

of maps F = {f; : A; — B;}. To do this, let us first look at the following canonical map.

Let C be a small category, e.g. a category that contains all small limits and colimits. For
B a functor from {0 — 1 — 2 — 3 — ...} to C, we can take the sequential colimit [A.31],

colim,, B(n), this gives us a commuting diagram;

B(0)

B(1)

~

colim, B(n)

B(2) — .

For A an object of C we can define the covariant hom-functor [A.12], hom¢(A, —) : C — sSet.

By functorality this induces a new commutative diagram;

home (A, B(0)) home(A, B(1)) home(A, B(2)) — - -

home (A, colim, B(n))

Now we can take the colimit of the upper row in this diagram, colim,hom¢(A, B(n)). By

universality of the colimit we find a map;
colim,hom¢(A, B(n)) — home(A, colim, By,)

Now we will use this map in the following proposition.

Proposition 3.2.6: When we are in the situation of [3.2.5] and suppose that for each i € Z,
the object A; has the property that,

COhmnhomC(Ai7 Gn(fa p)) - homC(AhCOhmnGn(]:a p)) = hOmC(Ai7 Goo(j:a p))

is a bijection, then the map po, has the RLP with respect to each of the maps in the family
F.
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Proof: The lifting problem is illustrated in the following diagram for a map from F

L

B —" .y

The bijection from colim, hom¢(A4;, G"(F,p)) — home(A;, colim, G™((F,p)) gives us an inte-
ger k, for which there is a map ¢’ : A; — G*(F, p) such that composing with the natural map
GF(F,p) — G(F,p) gives us g.

We can enlarge the previous commutative diagram to;

A — GE(F,p) —> GEHY(F,p) —= G™=(F,p)

l " pki pl lpm

B; Y Y Y

Where g is the composite of the top row. The pair (¢’, h) is contained in the set of maps S(i)
in the construction of G¥*1(F,p) from G*(F,p). So there is a map from B; to G*+1(F, p)
making the diagram commute. We can compose this map with the last map in the upper

row, to get the wanted lift [J.

Lemma 3.2.7: Suppose that X : {0 - 1 — 2 — 3 — ...} — Top has the property that
for each n > 0 the space X,, is a subspace of X,,+1 and the pair (X,+1,X,) is a relative
CW-complex. If A is a finite CW-complex then

colim, homrop (4, Xy) — hommrep(A, colim, X,,)

is a bijection.

Proof: The colimit of a sequence of topological spaces or of sets is a quotient of the dis-
joint union of them. The identifications are being made by identifying points in X; to their
image in X;41. For colim,(X,) the maps are inclusions and we just get the union of all the
spaces X,. All inclusions are between CW-complexes, so actually the colimit is the CW-
complex X with n-skeletons X,. On the left hand side we have colim, homrop(A, Xy) =
LL, homrop(A, X5)/ ~.

Now we start by showing that the map, call it u is surjective. If we have a map f: A —
colim, (X,,) then since A is finite, A is compact and so f(A) is compact. Now by [AHO01, A.1]
we find that f(A) is contained in a finite skeleton of X, so for a certain k, f can be factored
as A — X — X where the last map is gotten while taking the colimit. For the first map we
write f. This map lies in the disjoint union of hom sets on the left hand side, and the first

map is u. So u is surjective.
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homroep > ?
i
!
colimnhomfop(A, X))o f
\
\

W
homrop (A, colim, X,)

Now for injectivity, we take two maps f;, g; : A — X;, they lie in the quotient of the coproduct
of homsets (e.g. in the colimit). We can take them to the same set X; cause we can always
compose the one with lowest index with all the inclusions to make it a map to the same space.
Now assume that they take the same value on X when composed with u. So Va € A. Call
those functions; f;,g; : A — X; — X, again we see that the image of f; and g; lies in a finite
skeleton, say X,,. But this means that the maps take the same value after inclusions and thus

are the same in the quotient, that is the colimit.

Lemma 3.2.8: Let p: X — Y be a map between spaces, then the following conditions are
equivalent;

(i) p is both a Serre fibration and a weak equivalence,

(ii) p has the RLP with respect to inclusion maps A — B where (B, A) is a relative CW-pair,
(iii) p has the RLP with respect to the maps j, : S"~! — D" for n > 0

Proof: (i) = (iii): (D™, S""!) is a relative CW-pair so this implication is obvious.
"(iii) = (ii)”: p has the RLP with respect to all j, : S"~! — D", just as in the proof of [3.2.2]

we can use induction on the skeleton of B — A and lift by using the characteristic maps;

gn-1-2 > 4 —=X
T
Dt >p——>Y
We can use these lifts to get a lift h from B to X by taking h(b) = ki~1(b) since i is injective.
'(iii),(ii) = (i): p has the RLP with respect to inclusions of CW-pairs, in particular with
respect to (D™ x [0,1], D™) and thus is a Serre fibration by lemma [3.2.2]. To see that it
induces bijections on homotopy groups we check injectivity first. A map f : S?" ! — X get
send to pf : "' — Y, now if pf is homotopic to a constant map, we have to show f is
too. But this means that pf can be extended to a map from D" to Y so we get the following
diagram;
g1t x

Lk

Dt ——Y
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There is a lift in the diagram by condition (iii), so f extends to a map from D" and is
homotopic to a constant map. Now for surjectivity we start with a map f: S ' — Y and
we want to show that there is a map f : S"~! — X such that pf ~ f. We can find f as a lift
in the following diagram;

%X

k

;7
l f lp
n S f

st ——Y
this lift exists since (S™71, ) is relative CW-pair, and so by condition (ii) the map on the
right has the RLP with respect to p.

'(i) = (iii)’: If we have a commutative diagram like this;

Si—l f*> X
| lp
. g
D'——Y
with p a Serre fibration and a weak homotopy equivalence, and i the inclusion. The map
pf:S! — Y is homotopic to a constant map since it extends over the disc D?. Since p is a

weak homotopy equivalence, this means that f : S*~! — X is homotopic to a constant map

as well, and thus extends over the disc D’ + 1, so p has the RLP with respect to all maps j;.

Proof of lemma [3.2.4]: Let F be the set of maps {D" x {0} — D™ x [0, 1]},,>0 and construct
G (F,p). We obtain G (F,p) by gluing many solid cylinders D™ x [0, 1] to X along one end
of those cylinders. So it follows that (G!(F,p), X) is a relative CW-pair and in fact i1 is a
deformation retraction since a solid cylinder is contractible, so 7 is a homotopy equivalence.
This map 47 is a relative CW inclusion and a weak homotopy equivalence so it follows from
the definition of a Serre fibration that it has the LLP with respect to all Serre fibrations.

By the same arguments the map i1 : GF(F,p) — GF¥+1(F, p) is a homotopy equivalence and

has the LLP with respect to all Serre fibrations for each k. Now consider the factorization;

X3 GoF,p =
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obtained by the Infinite Gluing Construction. To see that i, has the LLP with respect to all

Serre fibrations we look at the following commuting diagram, where ¢ is a Serre fibration;

G (F,p) X E

S ]

7

G*(F,p)

We can find a lift from G'(F,p) to E, since i; has the LLP with respect to Serre fibrations,
but then we can use this to get a lift from G2(F, p) to E, and we can repeat this process to get
maps from all G"(F,p) to E, which define a natural transformation. Thus by the universal
property of G*°(F,p) we finally get the wanted lift, from G*(F,p) to E.
Now to show that p is a Serre fibration, we use [3.2.6]. The problem reduces to showing
that;

colim,, homrop (D', G"(F, p) — homrep (D', G*(F,p))

is a bijection. This is the case by lemma [3.2.7].

Now the last thing we need to show is that i, is a weak homotopy equivalence. We again
use lemma [3.2.7], but now with S? as our finite CW-complex. So we see that every map
St — G*°(F,p) lands in one of the subsets G¥(F,p) for a certain k. Now since all the maps

i} are weak equivalences, S0 iS 4o.
Now we are finally ready to proof MC4 and MCS5.

Proof of MC5: Part (ii) is an immediate consequence from the just proved lemma, we saw
that we can construct a factorisation pi for every map f € Top where p is a Serre fibration
(thus a fibration) and ¢ is a weak homotopy equivalence and has the LLP with respect to all

Serre fibrations (and thus is an acyclic cofibration).

To prove (i) we use a similar construction. Let p be a map in Top and let F = {j, :
S"=1 — D"}. Now use the Infinite Gluing Construction to find the factorization psyiso. We
see that G""1(F,p) is obtained from G"(F,p) by attaching n-cells along there boundary,
so (G"Y(F,p), GPTY(F,p)) is a relative CW-pair. From lemma [3.2.8] we observe that the
maps in11 : G"(F,p) — G"1(F,p) have the LLP with respect to all Serre fibration that are
also weak equivalences, since those have the RLP with respect to inclusion maps of relative

CW-pairs. Now let k in the following diagram be a weak homotopy equivalence and a Serre
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fibration;

GY(F,p) X E

> )

G*(F,p) —=G>*(F,p) —= B

7

G*(F,p)

Again by induction we can find lifts from G*(F,p) to E for all k and by the universality of
the colimit we get a lift from G¥(F,p) to E, so i has the LLP with respect to all Serre
fibrations that are also weak homotopy equivalences and thus is a cofibration. And again by
lemma [3.2.7] and proposition [3.2.6] we find that ps, has the RLP with respect to all maps in
the set F and thus is a Serre fibration and a weak homotopy equivalence, which is a acyclic

fibration in our model category structure. [

Proof of MC4: Condition (i) is clear, by definition the cofibrations have the RLP with respect
to acyclic Serre fibrations. Now for condition (ii) let f : A — B be an acyclic cofibration.
We have to show that it has the LLP with respect to all fibrations. By lemma [3.2.4] we can
factor f as pi, where p is a fibration and ¢ a weak equivalence that has the LLP with respect
to all fibrations. We want to show that f is a retract of ¢, since this lifting property is closed
under taking of retracts. So if we manage to show this, f has the LLP with respect to all
fibrations and we will be done.

To achieve this we look at the following diagram:;

A > !/

A
E4
12
“idg

B——B

7

g

We can find a lift g that makes the diagram commute since f is a cofibration and p is an
acyclic fibration, where p is a weak equivalence because ¢ and f are. So we find the following
commutative diagram;

id id
A4 4 A

1] i

B—— A —
The composition p o g equals the identity on B by the first diagram, so indeed f is a retract

of i.
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So after some work we now have established a model category structure on Top. We want to
look at the associated homotopy category, and we will prove that for maps f : A — X, with
A a CW-complex, we get the same homotopy relations as we normally work with in usual

homotopy relations from algebraic topology [see introduction].

Proposition 3.2.9: Let A, X € Top, where A is a CW-complex. The set hom g,(op) (4, X)
is in natural bijective correspondence with the set of usual homotopy classes of maps f : A —
X.

Proof: First we want to establish that A is cofibrant and X is cofibrant, because in that case
hom go(Top) (A, X) is naturally isomorphic to 7(A, X). So then the proof reduces to showing
that this is equal to the usual homotopy classes.
Since (A, 0) is a relative CW-pair, we find by [3.2.8] that the inclusion map () — A has the
LLP w.r.t. weak homotopy equivalences that are also Serre fibration, thus acyclic fibrations,
this means that ) — A is a cofibration, so indeed A is cofibrant.
To see that X is fibrant we need to show that X — x is a Serre fibration. So we want a lift
h in the following diagram;

Ax{oyL—x

|

Ax[0,1] ——=x
(A a CW-complex). We can just take h(a,t) = f(a,0). This obviously makes the upper
triangle commute. And since the maps to * are all unique the whole diagram commutes. So
indeed X is fibrant.
Now we want to show that A x [0,1] is a good cylinder object [B.11], for A. This comes
down to showing that (id4,id4) factors trough AJJA — A x [0,1] — A with the first map
a cofibration and the second a weak equivalence. For the first map we just include the two
copies of A at the bottom and the top of the cylinder. The second map will send (a,t) to
a, for every a. This indeed factors (id4,id). The first map is a cofibration because it is an
inclusion of CW — complexes and we can use lemma [3.2.8], the second map is a homotopy
equivalence, so it is definitely a weak homotopy equivalence. Now since A is cofibrant and X
is fibrant we find for this fixed cylinder object that maps f,g: A — X are homotopic if and
only if they are left homotopic through this cylinder object. So in our case f ~ g iff there is
an extension of the map f+g: AJ[ A — X like this;

AT[A S x

Ax[0,1]
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This is exactly what it means to be homotopic in the conventional case, there is a map
H : Ax]0,1] — X such that H(a,0) = f and H(a,1) = g. This is the case here, since we
chose the map AJ[ A — A x [0,1] to be the inclusions at the bottom and top.

Another thing that we find is Whiteheads theorem. When A and X are CW-complexes, they
are both fibrant and cofibrant objects. This implies that f : A — X is a weak equivalence if
and only if it has a homotopy inverse. Whiteheads theorem [AHO1, 4.5] tells us that a weak
homotopy equivalence between CW-complexes is a homotopy equivalence, so this is the ’only

if” direction.

30



4 The Model Category Structure on Simplicial Sets

In this section we are going to study simplicial sets. We start by giving two definitions of
simplicial sets and show that they are equal. We will point out the weak equivalences and a
set of generating cofibrations and acyclic cofibrations. We will see that the model structure
on simplicial sets resembles the model structure on topological spaces and state the theorem
which says that the categories are Quillen equivalent. For the proof of the model structure of

the simplicial sets and the Quillen equivalence we refer to [Hov99] and [GJ99].

4.1 Simplicial Sets

We will give the two definitions of simplicial sets in this paragraph. The first one will be
rather explicit whereas the second will be categorical and more abstract. Afterwards we will
discuss some examples of simplicial sets and we end the paragraph with showing that the two

definitions are equal.

Definition 4.1.1: A simplicial set is a graded set X, indexed on the non-negative integers,

together with maps, d; : Xy — Xi_1 and s; : X — X411 which satisfy:

(i) didj = dj_1d; 1<
(ii) S§iSj = §5j4154 1 S]
(111) diSj = Sj—ldi 1< ]

dij =id = dj+18j

dZ‘Sj = 5j+1di 1>7+1

Where we’ll call the maps, d;, s; boundary and degeneracy maps respectively. We will call a

simplex y degenerate if there is a simplex x such that y = s;(x) for some i.

Definition 4.1.2: A simplicial map is a map between simplicial sets, f : X — Y, that sends
n-simplices of X to n-simplices of ¥ and commutes with the face and degeneracy maps. So

we can write f as a collection of functions f, : X,, — Y, and the following identities hold:
frn—1d; = d; fp and fni18; = Sifn.

Example 4.1.3: Let K be a simplicial complex, thus a set of finite subsets of a set K
with the property that every nonempty subset of a complex in K is again a complex in K.
A simplicial complex already resembles a simplicial set in ways, the complex is a graded set
where K, is the set of n-simplices. A boundary map can be defined by simply removing the
i-th element of a simplex. Problems arise though when we try to define the degeneracy maps,
we can’t be sure if we land in K again.

But we can construct a simplicial set in the following way. Let an m-simplex in K be a set
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(ag, ...am) of simplices in K such that the union Uogigm a; is a n-simplex of K where n < m.

Now we can define the boundary and degeneracy maps to be;

di((agy -y @m)) = (A0, ey Qim1yAig1y -eey Q)

si((agy .cyam)) = (@, .ey @iy Ay ooy Qi)

It’s easy to check that those maps satisfy the wanted identities (from def 1.1.1). So we have

constructed a simplicial set K.
Let us first introduce the simplicial category;

Definition 4.1.4: A, the simplicial category is a subcategory of Set as well. Now the objects
are subsets of the natural numbers in the following form, [n] = (0,1, ...,n), with n > 0. The

morphism are all monotonic weakly increasing functions, (thus i < j implies f(i) < f(4))-

Definition 4.1.5: The category of simplicial sets is a functor category for the functors,
X : A — Set, where A is the opposite category of A [A.5],[A.7]. A simplicial set is an
object in this category, a covariant functor X : A°P — Set, or equally a contravariant functor
X : A — Set.

Note that the morphisms in sSet are simplicial maps [4.1.2]. The commutative diagrams

bellow illustrate this.

[n] X[n] Y[n] [n] X([n] Y[n]
a;"’l \Ldz - dzl ggpl l B l
[n —1] X[n—1]—=Y[n—1] n+1] X[n+1]—=Y[n+1]

Lemma 4.1.6: The two definitions of simplicial sets in 3.1.2 and 3.1.6 are equivalent.

Proof: A graded set is a union of sets indexed on the integers
X = UnENXn

In the case of definition 3.1.2. we the set is indexed by the nonnegative integers. So X assigns
a set to each nonnegative integer. This is exactly what the functor in definition 3.1.6. does

to the objects in A.
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Lemma: all the morphisms in A are generated by morphisms of the following two types:

0 : [n—1] —[n]
0,1,....n—=1)— (0,1,...,i— 1,i+1,...,n)

oi + [n+1] —[n]
0,1,...,n+1)— (0,1,...,4,4,...,n)

Proof:  Recall that the morphisms in A are the monotonic weakly increasing functions
f:[n] — [m] in A. The function f is determined by its image, a subset of [m] and by the
subset of [n] of the points where f does not increase. Let i;...i5 be the points in [m] that are
not in the image of f, and let j, ..., j; be the points in [n] with the property f(j;) = f(ji+1)-
Now;

0;, 0...00; 004, 0...00,

It’s easy to check that the maps above obey the following identities:

(i) 8]‘&‘ = &'aj_l 1<
(11) 005 = 00541 7 S]
(iii) Ujai = 82'03'_1 1< ]

ajﬁj =id = Uj8j+1
aj&:é?icrjﬂ 1>74+1
Those conditions are dual to the ones in definition 3.1.2, and are sometimes called the cosim-

plicial identities. Now we check the first identity of the third conditions. The checking of the

others is similar and left to the reader.

0,...,n) 0,.i—1,i+1,...,n+1)

i i

(0yeeeyi = Lyi 4 1y = 1, = 1, eeyn) = (0, = 1,5 = 1,y — 1)

So when we start out with a functor, the morphisms in Set that are the images of 0; and o;
are the boundary and degeneracy maps. And if we start out with a graded set we can define

the functor on those generating maps only, and send them to our face and degeneracy maps.

Example 4.1.7: The standard n-simplex, A™ is defined by;
A" = homa,_[n]
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Where hom.(—, [n]) is the contravariant hom-functor from example [A.10] This is a contravari-

ant functor from A to Set indeed.

Example 4.1.8: Another important example of a simplicial set is A", boundary of A™. The

functor OA™ takes [k] to the set of non identity injective order preserving maps [k] — [n] in A.

Example 4.1.9: For 0 < r < n we define the r-horn of A™. This functor A} sends [k] to the
set of all non identity injective order preserving maps [k] — [n] except the map [n — 1] LN [n]

whose image does not contain r.

We can interpreter the above three examples geometrically, strictly speaking by taking the
geometric realization, we will define the geometric realization functor in the next paragraph.
But we can already think about for example the standard 3-simplex as a solid tetraheder, the
boundary as an empty tetraheder and the r-horn as an empty tetraheder missing the interior
of its 7 face.

Example 4.1.10: A final example of a simplicial set is the nerve of a small category N (C).

Again we’ll give two definitions, one more explicit and one more formal.

(i) Let the zero-simplices be the objects in C, Cy = Obj(C)

and Cy = Hom(C)
Cy = C1 X, C1
and similarly Cpn = C1 X¢y - X, C1, (n times)

where C x ¢, C is the pullback in the following diagram;

C1 Xgy C1 —=C4

L,k

Cy . Co

So the C4 is the set of pairs of composable arrows in C, since Cy = {(f1, f2) € C1 x C1|s(f1) =
t(f2)}. Now C), is the iterated pull-back. This is well defined since composition of morphism
is associative.

Since C is a small category we got a graded set now. We just have to define boundary and

degeneracy maps. Those are:
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0; : C,— Cp,_1

(fa5 s fu), ifi=1
(Fiyoos fn) = & (fraees fi 0 firts oo ), fl<i<n o
(f1;-ees fr1), ifi=n
Cn — Cnia
(idy(f1)s frsoes fr) ifi=1

(f1s oo fu) = { (f1y s fisidg(gys oo fn) 10> 1

again it is an easy exercise, although quite long, to check that the maps satisfy the equations

from definition 4.1.1.
(ii) The second definition is more formal but gives a nice visualization of the construction.
We need to define another functor H : A — Cat first.

H :[n| — H[n]

H{n] is the category with objects the elements from [n] so the numbers 0 till n and a mor-

phism a — b whenever a > b. Below we visualize H|[2]
\
b1
O
Furthermore H maps the nondecreasing functions of A to functors in Cat in the following

way:
a— afa)
a— b ala) — ab)

This is well defined since we only have an arrow from a to b when a > b and this implies that

a(a) > a(b) so there is an arrow in H[n] from «a(a) to a(b). Now the nerve of C, is a functor;

N(C) : A°P —  Set
[n] ) — {f:H[n] - X(in C)}
[n]a—>[m] = foa, ax,=H(a)
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So it sends the objects of A to functors in the category of categories. Below we see a drawing

of such a functor (for [3]):

2 \ X|[2]
I — X|[3]
0=———1 X10] X[1]

So here we get a serie of composable morphisms, plus some extra morphisms which might or

might not be the composition of the other ones.

4.2 Model Category Structure on Simplicial Sets

In this paragraph we will define a model category structure on the category of simplicial sets.
First of all we will discuss a cofibrantly generated model structure in some more detail. Af-
terwards we will define the geometric realization functor |.| : sSet — Top and what it means
for a map in sSet to be a Kan fibration. Then we have defined the right terms to pick the
weak equivalences and sets of generating cofibrations and acyclic cofibrations. Finally we will
define the singular functor and proof that this functor is adjoint to the geometric realization

functor, a modest start to proving the Quillen equivalence between Top and sSet.

So we start out by giving a tool for checking that a model category is cofibrantly generated.
We will use some new terms to do this, which we will explain roughly afterwards. For a

detailed discussion we refer to [Hov99).

Proposition 4.2.1: Let C be a category with all finite limits and colimits. Suppose W is a
subcategory and I and J are sets of maps of C. Then there is a cofibrantly generated model

category structure on C as described above if and only if the following conditions are satisfied.
(i) The subcategory W has the two out of three property and is closed under retracts.
(ii) The domains of I are small relative to I-cell.
(iii) The domains of J are small relative to J-cell.
(iv) J-cell C WU I-cof.
(v) I-inj C WU J-inj.
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(vi) Either WU I-cof C J-cell or WU J-inj C I-inj.

In the definition we use I-cell, this is a class of maps that are called relative I-cell complexes.
A relative I-cell complex is a generalization of a relative CW-complex in several ways. For
a relative CW-complex (X, A) we are attaching disks along there boundary to A in order of
their dimension. That is, to construct the 'n-skeleton’ of (X, A), we take the pushout in the
following diagram:;

[, S8 —=AU(X — A)py

=

I Da Xy,

For an I-cell we take an arbitrary collection of maps, I, instead of just S"~! — D™ and there

is no ordering involved. Besides that Hovey allows to take transfinite compositions while with
CW-complexes the compositions are countable. So I-cell is a collection of relative I-cells, a

map from an object X to an object constructed from X by taking pushouts with maps from
I

For an object A in C to be small relative to I-cell, means that for a transfinite sequence and
some ordinal A;

X0—>X1—>X2—>...

such that the map Xg — X4 € I-cell if §+ 1 < A, the following map [3.2.7];
colimg)\C(A, X3) — C(A, colimgXp)

is an isomorphism.

The other new terms in our definition are easier to grasp, I-cof stands for the collection of
maps that have the LLP with respect to all maps that have the RLP with respect to all maps
in I. So this will be our collection of cofibrations. I-inj is the collection of maps that have
the RLP with respect to all maps in I, or our acyclic cofibrations. And similar J-inj will be

our fibrations.

The first property in the proposition is needed for axiom two and three of a model category.
The second and third property are being used in the small object argument to construct
functorial factorizations. The argument is similar to the one we used with topological spaces.
Then the fourth property implies that the maps in J — cell are acyclic cofibrations. In the
case of topological spaces this means that the relative CW-inclusions that are weak homotopy

equivalences have the RLP with respect to the Serre fibrations. The fifth property implies
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that the acyclic fibrations are weak equivalences and fibrations. The last property gives the
converse statement to the fourth or fifth property, so the last three properties are needed for

axiom four.

Now before picking our weak equivalences and generating (acyclic) cofibrations we need the

definition of the geometric realization functor.

Definition 4.2.2: The geometric realization |X| of a simplicial set X is the topological space
constructed in the following way. Give X the discrete topology and let X = J,,»o Xn X |A"],

where |A"| is the standard topological n-simplex;

n
1=0

Now define an equivalence relation by:

(din, un—1) ~ (Tn, Oupn — 1) for z, € X,, and u,_1 € |A" |
(8iTn, Uni1) ~ (T, Oitny1) for z, € X, and u, 11 € A"
Now | X| =X/ ~.

We can make the geometric realization into a functor; |.| : sSet — Top. We let the simplicial
sets X € sSet map to the just defined geometric realization |X| and the simplicial maps

f:X — Y get mapped to
Ifl (X[ =Y
|, un| = [ f(2n), unl

Since we gave X and Y the discrete topology, this is a continuous map. Furthermore

lix|(|zn, unl) = |zn, un| = i‘X|(|xn,un|). And when f: X —-Y,g:Y — Z, we find that;

|f °9|(|$naun|) = |fog(wn),un| = |f|(|g|(wn),un) =|flo |9|($naun)
So |.| indeed is a functor.
Theorem 4.2.3: Let sSet be the category of simplicial sets, define I to consist of the inclu-
sions OA™ — A" for n > 0. Define J to consist of the inclusions A} — A" for n > 0 and

0 <r<n. And let f € W if and only if |f| is a weak equivalence in Top. These definitions

give sSet a cofibrantly generated model category structure.
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The fibrations of sSet are called the Kan fibrations, the maps that have the LLP with respect
to the inclusions A} — A". The acyclic cofibrations, the maps that have the RLP with
respect to all Kan fibrations are called the anodyne extensions. In chapter 3 of [Hov99] the
above theorem is proved. We will only point out some resemblances to topological spaces and

leave the proof.

As mentioned in the previous part of this section we can view the 3-simplex as a solid tetra-
heder. This is homotopic to a solid cylinder. The boundary of the tetraheder is homotopic to
the empty cylinder and the r-horn is homotopic to the empty cylinder without a top. This
is again homotopic to the 2-sphere. So the Kan fibrations are similar to the Serre fibrations
since they have the LLP w.r.t. A7 — A" which in a topological setting is equivalent to having
the RLP w.r.t. S"~! — D™ which is the property of a Serre fibration. The strict setting of
simplicial sets makes the proofs a lot more difficult though.

Recall the following theorem from section 2.3.;

Theorem 2.3.2: Let C and D be model categories, and;

F:C<—D:G

be a pair of adjoint functors. Suppose that;

(i) F preserves cofibrations and G preserves fibrations, then the total derived functors exist
and form an adjoint pair; LF' : Ho(C) <= Ho(D) : RG

(ii) If in addition we have that the following condition holds for each cofibrant object A € C
and fibrant object X € D and a map f : A — G(X); f is a weak equivalence in C if and
only if its adjoint f* : F(A) — X is a weak equivalence in D. Then F : C <= D : G gives a

Quillen equivalence.

Definition 4.2.4: The singular complex functor is the functor Sing : Top — sSet that
sends a topological space A to the graded set;

Sing(A) = {f : |A"| — A| fcontinuous,n € N* }.

So Sing,,(A) are all the continuous maps from |A"| to A.

The functor sends g : A — B to;
Sing(g) : Sing(A) — Sing(B)
(f:1A" = A) = (g0 f:]A" — A — B)
So indeed Sing(is) = iging(a) and Sing(h o g) = Sing(h) o Sing(g). Thus Sing indeed is a

(covariant) functor.
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Proposition 4.2.5: The geometric realization and singular complex functor are adjoint func-

tors [A.11]

Proof: We will construct functions ¢ : Homsget (X, Sing(A)) — Homrop(|X|, A), and ¥ :
Hommop(|X|, A) — Homsset(X, Sing(A)) to get the natural bijection on hom sets. Let;

So f : X — Sing(A) gets send to ¢(f) : |X| — A which send |z, u,| to the value of
f(zp) : |A"] — A at wy,.

Y(9)(wn)(un) = glwn, un|

Here g : |X| — A gets send to ¥(g) : X — Sing(A) which sends z,, € X to the function
¥(g)(xy) : |A™ — A and this function ¢ (g)(zy) sends uy, to g|T,, uy|.

To check that those function indeed give an adjunction, we have to check that they give rise

to a bijection, this is easy;

¢501/1((9)(33n)(un)) = ¢(9)‘xnaun| = g(xn)(un)
o ¢((f)|xnaun’) = () (@n)(un) = flon, unl

Now we just want to show that ¢ is natural in X and A. So we have to check that for

h:Y — X and k : A — B the following diagrams commute:

Homsses(X, Sing(A)) 2 Hommop(|X], A)

h*i lw*

Homsset (Y, Sing(A)) -~ Homrop(|Y], A)

Homgset (X, Sing(A)) *— Homrop(|X|, A)
Sing(k)*l \Lk
Homsset(X, Sing(B)) -~ Homrop(|X|, B)
Now for the first diagram, let us walk down and then right first, we find f — foh — ¢(foh).
Now when we walk right first and then down, we find f — &(f) — &(f) o |h|]. Now
O(f) o [hllyn, vn| = ¢(F)|A(yn),vnl = (f © B)(Yn)(un) = &(f © h)|yn, un|. So the first dia-

gram does indeed commute.

For the second diagram we will walk down and then right to get, f — Sing(k) o f +—
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¢(Sing(k)of), since Sing(k) is just composition with k we find f — kof(k,) : |A"| - A — B.
And when we now walk first right and the down we get f — ¢(f) — koo(f), thus the diagram
commutes. So indeed |.| : sSet < Top : Sing

Theorem 4.2.6: The adjoint pair of functors |.| : sSet < Top : Sing gives a Quillen equiv-

alence between the category of simplicial sets and topological spaces.

The proof of this theorem can be found in [GJ99]. This implies that the homotopy categories
of sSet and Top are equivalent. The theorem shows that the the category of simplicial sets

is a good category of combinatoric models for the study of ordinary homotopy theory.
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5 Popular Summary

The project that I have written is within the field of 'algebraic topology’. This might sound
like Chinese to you at the moment, so I will try to explain what we do in this field. We are
studying so called "topological’” spaces, this can for example be just a plane or a sphere. More

complicated examples involve the Mobiiis band or even the Klein bottle. (see pictures)

We study those spaces by assigning algebraic structures to them, this can be groups or more
complicated structures. In algebraic topology we are often interested in spaces that have the
same shape in a rather broad sense. Most people will disagree completely on what we call
spaces with the same shape, or formally homotopic spaces. For example we will say that a
scissor has the same shape as the number eight, a towel has the same shape as a plate and
a soccer ball is similar to a closed bottle. As you can see we do not really care about the
shape, we actually care about the holes in our space, in the first example our objects have
two holes, in the second example there are no holes and in the last there is just one hole. We
can pretend that our objects are made out of very flexible rubber. We can stretch and shrink
all parts as much as we like and as long as we do not rip the material we will call the objects

homotopic. We sometimes call those space homotopy equivalent too.

In algebraic topology there is a strict definition for homotopy equivalent spaces. If we call
our two spaces A and B, so for example A is our scissor and B the number eight. Then to
show that the spaces are homotopic we will need a map from A to B and a map from B to
A, we can call these f and g relatively. The definition does not require those maps to be each
others inverse, so for a point a in the scissor the point g(f(a)) may be another point of the

scissor.

But the maps gf : A — A and fg : B — B should be similar to the identity map. We call

such maps homotopic to the identity map.

In other fields of mathematics we sometimes want to do the same thing. We want to have
an inverse map that is not really an inverse, but that is an inverse up to homotopy. That is
when you compose the maps you get a map that is similar to the identity map. In my project
I studied techniques that make a generalization of these different definitions of ’homotopy’
possible. The tools needed to do this are category theory and model categories. They allow

us to talk about homotopy theories in several different settings. But the main example that
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I discussed is still the example of topological spaces. And after all the abstractness it again

turned out that the towel and the plate are homotopic.
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A Categories

In this appendix we will give a short introduction to category theory with some elementary
definitions that are used in the article. For a more elaborate introduction, see for example
[ML71].

Definition A.1: A category, C is a collection of objects, Obj(C), together with a set of
morphisms, hom¢(X,Y), for each two objects X,Y in C. We denote the collection of all
these morphisms by Hom(C). The category has four structure maps:
The target and source maps

Hom(C) 3 0bj(C)

which assign a source s(f) and target ¢(f) to each morphism f in C.
Now let Hom(C) xopjcy Hom(C) = {(f,9)[t(f) = s(g)} be the set of composable morphisms
in C. The category has a composition map,
o : Hom(C) xopjc) Hom(C) — Hom(C)
(fr9) = gof

further, there is an identity morphism ¢dx for each object X € C, such that foidy = f and
idx o g = g for any two morphisms f and g with s(f) = X and t(g) = X. This gives rise to

an identity map:
id : O0bj(C) — Hom(C)
X —id X
Those maps obey the following identities

S(i)() =X = t(idx)
s(go f)=s(f)
t(go f)=t(g)

for all objects and composable morphisms in C. Furthermore, the maps are subject to the
following axiom:

Associativity: For pairs of composable morphisms (f, g) and (g, h) the following equality holds

ho(gof)=(hog)of

Notation: we write

XelC finC
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where X is an object of C and f is a morphism in C. And
home(X,Y)

for the set of morphisms with source X and target Y. We sometimes call the morphism of a

category the arrows or maps of the category.

There are many examples of categories, however we will focus on the categories of topological
spaces and simplicial sets. To define the category of simplicial sets we will need the simplicial

category and the category of sets. So this we post phone to later.

Example A.2: Set is a category where the objects are sets and the morphism are all

functions between sets. Composition is just the usual function composition.

Definition A.3: A subcategory S, of a category C, is a category with objects and morphisms
in C. A full subcategory of C has objects in C and all morphisms between those objects as its

morphisms.

Example A.4: Top, the category of topological spaces is a subcategory of the category Set.
The objects are now sets with a topology on them, or topological spaces. And the morphisms

become the continuous maps between them.

Example A.5: A, the simplicial category is a subcategory of Set as well. Now the objects
are subsets of the natural numbers in the following form, [n] = (0,1, ...,n), with n > 0. The

morphism are all monotonic weakly increasing functions, (thus i < j implies f(i) < f(4))-

Example A.6: Grp, the category of groups is a third subcategory of Set, with objects the

sets with group structure and morphism the homomorphisms between them.

Definition A.7: The opposite category, C°P of a category C has the same objects as C' and for
each morphism X — Y in C it has a morphism Y — X. The morphisms compose according
to the formula fPg°? = (gf)°P

Definition A.8: An initial object of a category C is if it exists an object () for which there is
for every object X € C an unique morphism () — X. An terminal object x is an object of C

such that for every object X in C there is an unique morphism X — .

Example A.9: The category of topological spaces has both an initial and a terminal object,

the initial object being the empty set, and all one-point sets being terminal objects.

Definition A.10: A covariant functor, F' : C — D is a map between categories. It maps
objects in C to objects in D and morphisms f : X — Y in C to morphism F(f) : F(X) — F(Y)
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in D, such that;

Fgo f)=F(g) o F(f)

A contravariant functor is a map between categories that reverses morphisms, it again sends
objects to objects but it sends a morphism f : X — Y in C to a morphism F(f) : F(Y) —
F(X) in D such that;

F(idx) = idF(X)
F(go f)=F(f)o F(g)

Example A.11: For the readers familiar with algebraic topology, the fundamental group is
a functor from the category of base pointed topological spaces (that is a subcategory of Top,

with objects topological spaces with a distinct base point) to the category Grp.

m : Top, — Grp
(X,.Z‘)Hﬂ'l(X,l‘)
J— f

The notion of functors has become really common in modern mathematics. They were first
explicitly recognized in algebraic topology. The founders of category theory, Eilenberg and
Mac Lane, actually introduced categories just with the purpose of introducing functors and
natural transformations [A.13] of functors. It is not surprising that functors show up in
algebraic topology, in this field we want to associate algebraic structures to topological spaces,
mostly groups, but also more complicated structures like for example rings or chain complexes.
Functors are very convenient tools to do this, because they save a lot of the structure, since
they do not just map the objects but also the maps between those. As we just realized in
the above example, the fundamental group is a functor from Top to Grp. There are plenty
other examples to be found in algebraic topology, some of the functors that come up while

construction the homology of a space can be found in [AHO01][pg. 164].

Example A.12: Let C be a small category, e.g. home(X,Y) is a set for all objects in C.

We can form two hom-functors, home(X, —), home(—,Y) : C — Set, by the following means;

home(X,—) : C — Set
A — home(X, A)
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AL B home(X, A) — home(X, B)
x%4 —x¥p
home(—,Y) :C — Set
A+ home(A,Y)
AL Bhome(B,Y)— home(A,Y)
BLy A%y

Where the first functor is an example of a covariant functor while the second is contravariant.

Definition A.13: Let F,G : C — D be two covariant functors, and let 7 : FF — G be
a function that assigns to each X € C an function 7x : FFX — GX such that for every

morphism f: X — Y in C the following diagram commutes;

X FX —sGX
1o
Y FY 2> qY

the function 7 is called a natural transformation from F to G. A natural transformation is

called a natural equivalence if for every X € C the function 7x is an isomorphism in D.

Definition A.14: An equivalence of categories is given by a pair of functors, F' : C — D,
G : D — C, together with natural equivalences between GF' and idc and between F'G and
idp.

If two categories are equivalent this means that they are very similar, the gain of this is a

better understanding of both categories and translation of theorems from the one to the other.

Definition A.15: Let F: C — D and G : D — C be covariant functors. Those functors
together with a function ¢ give an adjunction from C to D, where ¢ is a function that assigns
to each pair of objects, X € C,Y € D a bijection;

¢ =o¢xy homp(FX,Y) = home(X,GY)

which is natural in X and Y. Here naturality in X and Y means that the for all f: X' — X

and g : Y — Y, the following diagrams commute;

homp(FX,Y) —2~ home(X,GY) homp(FX,Y) —2 > home(X,GY)
o] I . o
homp(FX',Y) —2~ home(X', GY) homp(FX,Y") — home(X,GY")
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Where f* and g, are the obvious compositions.

We just saw some examples of duality, statements where we have ’reversed all arrows’. A
contravariant functor is the dual of a covariant functor. We often find such dual definitions
or objects in mathematics. Other examples are the projection map and the injection map or
a surjective and an injective map. In category theory there is an exact description of duality.
We won’t go into much detail here, but the main reason that we mention it is because we
can use duality later on. It is namely the case that for any proof of a theorem, the dual
proof is valid as well (for the dual statement). This is because for each axiom for a category,
the dual statement is also an axiom. We obtain dual statements by reversing all arrows and

composites. Here are some examples of statements and there duals;

statement dual statement
f: X—->Y fiY—=X
s(f)=X  tf)=X
u is a right inverse of h  w is a left inverse of h
idx idx
Now we will continue by defining the functor category.

Definition A.16: Let B and C be categories. We may construct the functor category, B¢
with objects the functors C — B and morphisms the natural transformations between them.
We have to check that the natural transformations contain an identity map, are closed under
composition and associative. Let R, S,T : C — B be three functors, witho : R — S, 7: S — T
natural transformations [A.13]. So we have the following two commutative diagrams for each

morphism f: X — Y :

X RX X~ 85X SX =X>TXx
NN
Y RY 2> Sy Sy =Ty

This gives rise to a big commutative diagram:

X RX s sx s 17X
fJ/ Rfi Sflsf in
Y RY 2> sy —2s7Yy

So we see that we can compose the components of the natural transformation, to get a new

natural transformation 7-0 : R — T with (7-0)x = 7xoox. Since the big diagram commutes
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we see that composition is associative. And the identity transformation is just the component

wise identity ZdT(X) =idrx.

Example A.17: The category of simplicial sets is a functor category for the functors,
X : A°? — Set, where A is the opposite category of A [A.5],[A.7].

Example A.18: The functor category is sometimes called the category of diagrams in B with
the shape of C. Let for example C be {X — Y}, the functors R : C — B are the morphisms
f:RX — RY in B, so the objects in B¢ are those morphisms f. And the morphisms B¢ are

the natural transformations 7 : f — ¢ given by the commutative diagrams;

RX 2> SX
B
RY > Sy

This special case of a functor category is called the category of morphisms and is denoted
Mor(C).

Definition A.19: An object X in a category C is a retract of an object A if there exists
morphisms 7 : X — A and r : A — X such that roi = 1x. A morphism f is a retract of a

morphism ¢ if it is as an object in the category Mor(C).

To make the meaning of the retract of a morphism more clear, we look at the following

diagram,
X—t=A-">X
f ig f
y “>-p-"sy
which commutes when f is a retract of g, with the compositions, ri, '’ the relative identity

maps.

Now we examine another type of category, the comma category denoted S | T', we will use

this construction later on in chapter 4.

Definition A.20: Given categories C, D, £ and functors, T" and S in the following configu-
ration;

ceLeclp

the comma category T | S has as it’s objects (e, d, f) the triples with e € Obj(E), d € Obj(D)
and f : Te — Sd. Furthermore T | S has as morphisms, the pairs (k,h) : (d,e, f) —
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(d' e, ), where k: e — €' in £ and h : d — d' in D such that;

k Tk

e——¢! Te—T¢
fi f’l
d—> Sd—"> g

commutes. So we can look at this category as;

Te Te—2F o per
Obj(S | T) f Hom(T | S) s f
Sd Sd—" g

Next we will look at two special comma categories, firstly the category of objects over a,

denoted C | a and secondly the category of T'-objects over a, denoted T' | a.

Example A.21: Let S | T be a comma category as in definition [A.17] and let £ = C,
D = *. Furthermore let the functors be; T'=ide and S : * +— a. An object in S | T, (x,¢, f)
can be displayed as a map f from ¢ to a, we just write (¢, f). The morphism (k,h) will be
determined by k, since the only choice for h is i, and we will only write k. We can visualize

this category as follows;

S
Obj(C | a) f Hom(C | a) \ /
a

a

This comma category is the category of objects over a or also the over category.

Example A.22: Let S | T be a comma category as in definition 1.0.17. and let D = .
Furthermore let S : * +— a. An object in S | T, (e, f) can be displayed as a map f from Te
to a. Morphisms in this comma category will be induced by morphisms k : e — ¢’ in £. We

can visualize this category as follows;

Te Te

Te'

Obj(C | a) f Hom(C | a) f 4
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This comma category is the category of T-objects over a, notation T | a.
Similarly we can construct the category of objects under b and S-objects under b.

Example A.23: The simplex category of a simplicial set [A.19] X is the category of Homa(—, [n])-
objects over X, and is denoted by A | X. This category can be visualized as follows;

A" AP i

Am

Obj(A | X) f Hom(A | X) 7 5

X X

Definition A.24: Let S : D — C be a functor, ¢ an object of C. An wuniversal arrow from c
to S is an initial object [A.8] (r,u) in ¢ | S, the category of S-objects under c¢. The category

is;

c c
Obj(c | S) ! Hom(c | S) f f
h
Sd Sd—————Sd’

So for every object (d, f) in ¢ | S, there is a unique morphism f’ : r — d such that Sf'ou = f.

So we have a commutative diagram for each morphism f : ¢ — Sd like this;

& T

/ ! ap
St v

i s - Sd d

With the use of universal arrows we will now introduce limits and colimits. These are very
general concepts, and after the definition we will give the most commonly met examples of
both colimits and limits. To introduce the concept we need to introduce a new functor first,
namely the diagonal functor A : C — C7, where J is called the index category, for reasons
that will become clear later. The index category is usually small and often finite. Recall from
definition [A.18] that the objects in C7 are functors F : J — C. The diagonal functor sends
each object ¢ € C to the constant functor A. which sends each object i € J to ¢ and each
morphism 7 TN j to i.. Furthermore the diagonal functor sends morphisms in C to constant

natural transformations in C7.
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A: C — 4
c — A,
Ac(d) = ¢, Au(d L d) =id,
(cic’) — Ap:Ac— Ay

Now since a functor F' : J — C is an object in C and A is a functor from C, we can define a

universal arrow from F to A as in definition [A.24].
Definition A.25: The colimit of a functor I’ : J — C is the universal arrow from F' to A.

This definition in my opinion is too abstract to be able to really visualize something. So we
will look at it in a bit more detail. A universal arrow (r,u) from F to A consists of an object
r € C and a morphism u : FF — A, which is a natural transformation in the functor category
CY. The universal arrow has the property that for every other object (d, f) in F' | A, there

is a unique morphism from r to d such that the following diagram commutes;

F r

/ / BT
A’ v
Ay i Ag d

Where u, v and Ay are natural transformations. This is still rather abstract, so we will look

at the most common examples of colimits now.

Example A.26: Let J be a category with three objects and two morphisms (besides the
identity morphisms) as follows {a < b — ¢}. The colimit of a functor F' : J — C is called

the pushout. The functor F' can be depicted as;
F(a) <« F(b) — F(c)
a diagram with the shape of J in C. Now a universal arrow (r, u) can be visualized as follows;
F(a)<— F(b) —— F(c)

s

A, A, A,

Where all the squares commute. Since the lower row are just identifications we usually write;

F(b) — F(c)

-

}71(a)L> r
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We don’t write the arrow from F'(b) to A, since it’s just the composite. Now the universality
of (r,u) means that whenever there is another functor Ay and a natural transformation f,

from F to it, then there is a natural transformation from A, to A, making the following

diagram commute;

=
S

F(e)

“i

c)

— F(
VR
A

we call the map i’ the cobase change of i (along j) and similarly j’ the cobase change of j

(along 7).

Example A.28: When J = {a,b} a set with objects and no non-identity morphisms the

colimit is called the coproduct and can be visualized by the following diagram;

NP

For example in sSet the coproduct is just the disjunct union of sets and in Top it is the

disjoint union of spaces.

Example A.29: When 7 =0 — 1 — 2 — 3 — ... the colimit is called the sequential colimit

and can be depicted as;

X(0) X(1) —= X(2) X(3)
Ar
Aqg

If the arrows are inclusions in Top then the colimit can be interpreted as an increasing union

of the X (n).
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Definition A.30: The dual of a colimit is the limit of a functor. Let A : C — C7 again be
the diagonal functor and F': J — C a functor, the limit of F' is a universal arrow (r,u) from
A to F.

We will look at the two most common examples, the duals of the first two colimits from above,

namely the pullback and product.

Example A.31: Let J = {a — b < ¢}, the limit of F' is now called the pullback of F' and

looks like;
\

A, — F(a)

)

c¢) —— F(b)

AV

Definition A.32: In the pullback diagram from above;

A, — > F(a)

we call the map ¢’ the base change of i (along j) and similarly j’ the base change of j (along
Example A.33: Let J = a, b, the limit of F' is the product;

/\

!

The product in sSet and Top is what is usually called the ’direct product’ or the 'Cartesian
product’.
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B Homotopy relations

In this appendix we proof some properties of the homotopy relations we defined in section
two. The concept of left and right homotopy are dual, so we will only discuss right homotopy
and path objects extensively. This appendix follows section four from [DS95] really closely.
In their article Dwyer and Spalinski have a real good outline and to change this would not
improve it. We do try to give the proofs in a bit more detailed way, so that they are easier to
read for a reader new to the subject. This appendix does not contain any examples, so might

be a bit abstract. That is why we decided not to obtain it in the article itself.

In this paragraph C will always be a model category. We start out by given a property of
maps in a model category without proving them, for a proof we refer to [DS95|[pg. 16-17].

Proposition B.1:

(i) The class of fibrations is stable under cobase change [A.27].
(ii) The class of acyclic fibrations is stable under cobase change.
And again dually;

(iii) The class of cofibrations is stable under base change[A.32].

(iv) The class of acyclic cofibrations is stable under base change.

Definition B.2: A path object for X € C is an object X! of C together with a diagram
X "= xT—5 X x X
which factors the diagonal map (idy,idx) : X — X x X. So the following diagram commutes;
X _~ . XI
' \ J«p
idx +idx
X xX

Now a path object is called a good path object when p is a fibration and a very good path

object if in addition the map from X to X! is a (necessarily acyclic) cofibration.

By axiom MCS5 there exists at least one very good path object for every X, since the map
(idx,idx) : X — X x X can be factored (as all maps can) as a fibration composed with an

acyclic cofibration.

Recall from the definition of a product [A.33] that there are maps, call them 7y and 71, from
X x X to X (the form the universal arrow). Now denote the two maps X! — X by py = mop
and p1 = mp.

Lemma B.3: If X is fibrant and X' is a good path object for X, then the maps pg,p; are
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acyclic fibrations.

Proof: 1t is enough to check this just for one of the maps, pg, since they are defined sym-
metrically. The identity map on X factors as X — X! P8 X. The identity map is a weak
equivalence, so py is a weak equivalence as well by axiom MC2. To show that pg is a fibration
we will show that both p and 7 are fibrations, then since pg is just the composition of those
two maps, it will itself be a fibration. The morphism p is a fibration by definition of a good

cylinder object. To check that mg is a fibration we look at the following diagram,

Xx X2t sXx
o
X ES

the product X x X is the defined to be this pullback. The map on the right is a fibration
because X is a fibrant object. Now it follows that 7 is a fibration as well, since the class of

fibrations is stable under base change [A.32] and we finished the proof.

Definition B.4: Two maps f,g: A — X are said to be right homotopic if the product map
(f,9) : A — X x X can be lifted to a map H : A — X' as illustrated in the diagram;

XI

H .7 l
g (f 9)

A—>X x X
Notation; f ~ g. The map H is called a right homotopy from f to g. The right homotopy is
said to be good respectively very good if the path object is. Note that if two maps are right
homotopic, f ~ ¢, then f is a weak equivalence if and only if ¢ is, because the maps pg, p1

are weak equivalences, so if f = poH is a weak equivalence then H is a weak equivalence and

so g = p1H is a weak equivalence.
Lemma B.5: If f < g: A — X, then there exists a good right homotopy from f to g.

Proof: We apply axiom MC5(ii) to the map X! — X x X to get a factorization X! <&
X" - X x X, so we can replace X! by X', and H by H';



Lemma B.6: If f ~ g: A — X and in addition A is cofibrant, then there exists a very good
right homotopy from f to g.

Proof: We now choose a good left homotopy H : A — X! from f to g. We want to
construct a very good path object X'/, we again use MIC5, but now to factor the map X =
as X & X1 X1, By MC2 the second map is a weak equivalence so indeed we find a
factorization X < X! — X x X. Now we have to find the right homotopy, we look at the
following diagram;

0 — X’f

|

A1 Xf
the lift H' exists by axiom MC4

Lemma B.7: If X is fibrant, then ~ is an equivalence relation on home(A, X).

Proof: (i) f ~ f? Note that X is a cylinder object for itself X = X — X x X, where the
first map is the identity. Now to get a right homotopy from f to itself we can just use f itself.

X

A

A—X x X

(ii) f ~ g = g ~ f? So we have a right homotopy H. Now we can use the map (1, ) :
X x X — X x X to switch factors, so (g, f) = (f,g)(m1,m0).

XI

H/
\

So H is a right homotopy from g to f too, with a slightly different path object.

(iii) f~ g, g ~h=f~h? Let H: A — X! be a good right homotopy from f to g and
H': A — X! a good right homotopy from g to h. We want to find a right homotopy from f
to h, to do this we construct X’ as the pullback of the following diagram;

/
X2 X <% X1
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The maps p| and py are weak equivalences by lemma [B.3]. Now by the universal property

of colimits we find a map i from X to X!” that makes the following diagram commute,

this means that we found a factorization of (idx,idx) namely (poko, p}k1)i, to show that X!”
is a path object we need ¢ to be a weak equivalence. By MC2 it is enough to show that the
map X — X! and kg are weak equivalences. The first is, since X! is a path object. And kg is
a weak equivalence because it is the base change of p. So indeed X 11 is a path object. Now

we can construct H” that gives the wanted homotopy;

|

X'~ X
We see that his map H” makes the following diagram commute;

XI "
H/l

\L(poko,mkl)
h
A i>)X x X

since pokoH"” = po = f and pikiH" = p{H' = h.

Let 7"(A, X) denote the set of equivalence classes of hom¢(A, X) under the equivalence

relation generated by right homotopy.

Lemma B.8: If X is fibrant and ¢ : A — B is an acyclic cofibration, then composition with
17 induces a bijection;

it :m"(B,X) - 71"(A,X)

Proof: First of all we have to check that this map is well defined. So when f ~g: B — X
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then we want fi ~ gi too. We find this homotopy just by composing with ;
g

7z X!

A i B (fo,f1 x X

So indeed the map ¢* is well defined. To see that it’s an injective map we have to check that
if foi ~ fii then fo ~ fi. Choose a good homotopy H from fyi to fii. We can find a lift in

the following diagram to give the wanted homotopy;

A x1

j B |

B "(f07f1}( % X

So i* is injective. Now to show that ¢* is surjective we pick a map g : A — X and try to find

amap ¢ : B — X such that ¢’i = g. The map ¢’ is the lift in the following diagram;

where the right map is a fibration since X is fibrant.

Lemma B.9: Suppose that A is cofibrant, that f and g are right homotopic maps from A
to X, and that h: X — Y. Then hf ~ hg.

Proof: First we choose a good path object for Y, namely Y = Y — Y x Y, then we consider

following diagram by MC4;

the following diagram and a very good right homotopy H from f to g. There is a lift k in the
Y]

X
jN i (Po,p1)
I (p (h;h)
X

Y
o)y o x PPy oy

The composition kH : A — Y gives the wanted homotopy, since pokH = hpoH = hf and
pkH = hptH = hg.

Lemma B.10: If A is cofibrant then the composition in C induces a map

(A, X)x1"(X,Y) - 7" (AY)
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Proof: Note that elements that represent the same class in 7" (A, X) need not be directly
related by a right homotopy, but since the equivalence relation is generated by the rightt
homotopies it still is enough to check the following. For f ~ g : A — X and h ~ k the
elements hf and kg are in the same right homtopy class class. By the previous lemma we

find hf ~ hg. And by composing the homotopy between h and k with ¢ we find hg ~ hk.

We can repeat this whole section dually to define a concept of left homotopy by defining
cylinder objects. We will just give the definition for a cylinder object and left homotopy, then
all the duals of the above statements hold. In their article, Dwyer and Spalinski describe the
left homotopy extensively instead of right homotopy, so if one would really insist on reading
this, we refer to [DS95].

Definition B.11: A cylinder object for A is an object A A I of C together with a diagram;

A[JA——=ANT == A

which factors the map idg +ids : A[[ A — A. Now a cylinder object is called a good cylinder
object when i is a cofibration and a very good cylinder object if in addition the map from AAT

to A is a (necessarily acyclic) fibration.

By axiom MCS5 there exists at least one very good cylinder object for every A, since the map
(idga +ida) : A][ A — A can be factored (as all maps can) as an acyclic fibration composed

with a cofibration.

Recall from the definition of a coproduct [A.28] that there are maps, call them ¢y and ¢1, from
A to A]J A (they form the universal arrow in the definition of coproduct). Now denote the

two maps A — A A1 by ig = itg and i1 = itq.

Definition B.12: Two maps f,g : A — X are said to be left homotopic if the sum map
f+9g:AJ]A — X can be extended to a map H : AN I — X as illustrated in the diagram;

f+g

7
ANT

Notation; f L g. The map H is called a left homotopy from f to g. The left homotopy is
said to be good respectively very good if the cylinder object is.

Now that we have defined left and right homotopy on the basis of our model category axioms
we will continue by looking at the relationships between them. We will show that the two
notions coincide when A is cofibrant and X is fibrant. Furthermore we will observe that in

the situation where both A and X are fibrant and cofibrant, a map f : A — X will be a weak

60



equivalence if and only if it has a homotopy inverse (e.g. a map g : X — A such that the
compositions are homotopic to the relative identities). We will use this observation in the
following chapter on the homotopy category, when we want a condition for being isomorphic
in this category. And as mentioned in the introduction, we would like to get homotopy type

as the isomorphism type.

Lemma B.13: Let f,g: A — X be morphisms in C;
(i) If X is fibrant and f ~ g, then f ~ g, and dually
(ii) If A is cofibrant and f ~ g, then f ~ g.

Proof: Since the two statement are each others duals it suffices to just proof one of them, we

will only proof the first statement here. We can choose a good right homotopy from f to g;

XI

i
A2V o x

And we would like to get a map H' : A AT — X making the following diagram commute

AT[A - x

7
i0+i1l T

ANT

So we want H'ip = f and H'i; = g, note that both f and g both can be written as compositions
of p1 and another function. Namely f = idx f = p1pf = and g = p1 H, so it would be enough
to find an extension K in the following diagram, and then let H' = p, K;

AHApﬂ) x!
o i K? -7
10+11

ANIT
We can find this by making the diagram a bit bigger;

AHApf+H XTI

A l K .7 J{
10+171 Po
< fi
AN ——X

Now the lift K exists since pg is an acyclic fibration by [B.3] and A[JA — AA I is a

cofibration, because we can choose A A I to be a good cylinder object.

Definition B.14: When A is cofibrant and X fibrant, we will call the identical relation

of right and left homotopic maps simply homotopic maps. We will use the symbol ~ to
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denote homotopic maps, and the set of equivalence classes with respect to this relation will
be denoted 7(A, X).

Lemma B.15: When we are in the situation that A and X are both fibrant and cofibrant

in C, then a map f: A — X is a weak equivalence if and only if it has a homotopy inverse.

Proof: ”=" We can factor our map f as we did before as follows (MC5 and MC2);
ASCS X
Note that C' is a cofibrant and fibrant object too by the following diagrams;

N\

R

0=

N\

There exists a lift 7 in the following diagram:;

Q<—)ﬁ>

id
A—2> A
4

T
q|~

O ——*

this is a left inverse for ¢, e.g. rq¢ = id4. Now we can use lemma [B.8] on the acyclic cofibration

q and the fibrant object C' to get a bijection;
¢ 7 (C,C) — 7"(A,C)

Since C' and A are both fibrant and cofibrant, the right homotopy sets are actually just the
homotopy sets. Now ¢*([gr]) = [grq] = [¢] = [idcq] = q*([idc]) and thus we find gr ~ idc.
A completely dual argument shows that there is a morphism s : X — C with ps = idx and
sp ~ idc. Now the composite gives the wanted homotopy inverse g = rs;

fg=pqrs ~ pidocs = ps = idx

gf =rspqg~ridoq=rq=1ida

7«<” Now suppose that f has a homotopy inverse, we want to show that f is a weak equiva-

lence. By MC5 we can again factor f as;
AS 0 X

And showing that f is a weak equivalence becomes the same as showing that p is, since weak

equivalences are stable under composition. We will construct a map s such that p is a retract
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of sp and will show that sp is a weak equivalence, so p is as well.
Let g be the homotopy inverse of f and let H : X A I — C be a good homotopy between fg

and idyx. So recall from the definition of a left homotopy that we have a diagram;

X]IX

o J%dx
(t0+1i1)
H

XAN——X

X
(io) £~w§
H

XNTI—X

We can reduce this diagram to;

Where i is an acyclic cofibration by the dual of lemma [B.3] with X cofibrant. Now since

fg = pgg we can extend this reduced diagram as follows;

a9

X C
(z‘o)&x ip
H

XNT—X

By MC4 we can find a lift H' : X AT — C. Now define s = H'ig, in this way H' becomes a
homotopy from s to gg.

XX

(io+i1)£ Wj

xnr 2 =x
So we have s ~ qg. Now that we have defined s we want to show that sp is a weak equivalence.
To do this we observe that the map ¢ is a weak equivalence and thus by the first part of the
proof has a homotopy inverse, call it 7. Now since f = pg we find fr = pgr ~ p, so p ~ fr.

Now from lemma [B.10] and its dual it follows that;

sp ~qgp ~ qgfr ~ qr ~idc

The identity idc on C'is a weak equivalence and this implies that sp is, see [B.4]. Now we are

left to show that p is a retract of sp, which follows from the following commutative diagram;

id, id,
o2 0% o

C
p iSP p
X—2-0c-tsx

So to summarize this chapter, we have defined what a model category is, a category where we
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have three types of maps, weak equivalences, fibrations and cofibrations. From the axioms of
a model category we have build a notion of homotopy relations in this abstract setting. Now

we are ready to define a homotopy category.
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