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Abstract

A Vietoris–Rips complex R is the clique complex of a proximity graph. This
graph can arise from a finite set of points in Euclidean n-space, and then
there is a natural projection onto its n-dimensional shadow; p

: R æ S.
An article by Chambers et al.[Cha+10] demonstrates that p induces

an isomorphism of fundamental groups for n = 1, 2, while the induced
homomorphism fails to be surjective for n Ø 4. In the case of n = 3, neither
injectivity nor surjectivity are known. The existing proof of surjectivity for
n = 2 proceeds by lifting paths from S to R.

In this report we propose a new proof of surjectivity for n = 2. We
proceed by induction on the vertex set, thus we examine the geometry of
the shadow in the neighborhood of a single vertex. At this vertex we can
make decompositions of R and S to apply the Seifert–van Kampen theorem.
This yields a diagram of fundamental groups, from which surjectivity follows
by a category-theoretic argument.
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Introduction

Our main result is a new proof of the following theorem.

Theorem 2.9. [Cha+10][Part of Theorem 3.1] Let X be a finite set of points
in R2. Let R = R(X) be the Rips complex of X and let S be its image
under the projection map p

: R æ R2. Then the induced homomorphism
fi1p

:
fi1R æ fi1S is surjective. y

We proceed by induction on the vertex set of R(X). This strategy
immediately provides a new proof of [Cha+10, Proposition 5.2], which states
that the Vietoris–Rips complex and its shadow are homotopy equivalent for
a set of points in R1. The argument is detailed in Proposition 2.2.

We now sketch the proof of Theorem 2.9. First, we decompose the spaces
R and S at each vertex, so as to apply the Seifert–van Kampen theorem. In
order to verify path-connectedness conditions, we inspect the geometry of the
shadow in the neighborhood of a vertex. We state this as our first original
result in Proposition 2.4, the proof of which is combinatorial in nature and
uses geometric properties of R2.

Second, by functoriality of fi1 and the Seifert–van Kampen theorem,
we obtain a cube-like diagram of fundamental groups. In Section 2.3.2, we
introduce the categorical tools that make up most of the remaining arguments.
To the best of our knowledge, the statement of Proposition 2.5 is new in its
given form, although its proof is elementary. Corollary 2.6 is our main tool
for the proof of Theorem 2.9, and it is interesting in its own right.

It is noteworthy that only the first part of the proof relies on geometric
considerations. Moreover, by induction, it su�ces to consider the geometry
within a small neighborhood of a vertex, which simplifies matters for a
set of points in R3, the open case. This could lead to the discovery of
a counterexample in R3, or extend our proof of surjectivity to this case.
Indeed, we believe that by virtue of its abstract nature, the second part of
the argument will remain sound, and not increase in complexity.





Chapter 1

Topological notions

In this chapter we introduce the needed tools from algebraic topology. Proofs
are omitted and can be found in standard texts such as [Hat02] and [Rot88].
For simplicial complexes we refer to [Koz08]. Categorical language is borrowed
from [Mac98] and [Lei14].

Unless otherwise stated, maps between topological spaces are assumed
to be continuous. In this chapter, X, Y, Z are topological spaces, and I is
the real unit interval [0, 1] µ R.

1.1. Paths and homotopy

Definition. A path in X is a map f

:
I æ X. The points f(0) and f(1) are

called its endpoints, and we say that f is a path from f(0) to f(1). y
The reverse path of f is denoted f

≠1 and defined as t ‘æ f(1 ≠ t), which
is a path from f(1) to f(0). If f(0) = f(1), then f is called a loop. The
constant path at x0 œ X is given by c

x0 :
t ‘æ x0.

Two paths suitably matched at one endpoint can be concatenated as
follows:
Definition. Given paths f, g with f(1) = g(0), we define their path product

f · g =

Y
]

[
f(2s), s œ [0,

1
2 ]

g(2s ≠ 1), s œ [1
2 , 1].

y
The path product is continuous. If we think of f(t) as encoding the

position of a continuously moving point at time t œ [0, 1], then the path
product corresponds to traveling successively through f and g, now at twice
the speed.

We will consider two paths equivalent whenever they can be continuously
deformed into one another, in a sense that will now be made precise, starting
from slightly more general definitions.
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Definition. Let f0, f1 be maps X æ Y . A homotopy between f0 and f1 is
a map F

:
X ◊ I æ Y such that, for all x œ X,

(i) F (x, 0) = f0(x),

(ii) F (x, 1) = f1(x).

We then say that f0 and f1 are homotopic, denoted f0 ƒ f1. y

Intuitively, this means that f0 can be continuously deformed into f1 via
the induced intermediate functions f

t

:
x ‘æ F (x, t). The above can be

generalized further.

Definition. Suppose f0, f1 :
X æ Y agree on some subspace A ™ X, i.e.

f0|
A

= f1|
A

. If a homotopy F

:
f0 ƒ f1 satisfies that

f

t

(a) = f0(a) = f1(a)

for every a œ A and t œ I, then we say that f0 and f1 are homotopic relative

to A, denoted f0 ƒ f1 rel A. y

We think of homotopy rel A as a deformation that leaves A unchanged.

Proposition 1.1. For fixed A ™ X, homotopy rel A is an equivalence
relation on the set of maps X æ Y . y

We will primarily be concerned with paths.

Definition. Two paths f0, f1 :
I æ X are path homotopic if they are

homotopic as maps, relative to {0, 1} µ I. In particular, homotopic paths
must have matching endpoints. y

In the above situation, we will sometimes abuse the language by saying
that the paths are homotopic relative to their endpoints, and simply write
f0 ƒ f1. The class of a path f under the corresponding equivalence relation
will be denoted [f ].

f0

f1

x0

x1

Figure 1.1: Path homotopy.

In some cases, it is easy to exhibit a path homotopy:
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Example 1.2. Let f0, f1 be two paths in a convex subspace U ™ Rn. Since
U is convex, it contains every segment linking f0(s) to f1(s). Hence we can
define the so-called linear homotopy

F (s, t) = (1 ≠ t)f0(s) + tf1(s).

This map is continuous since addition and multiplication are continuous
operations on Rn, and it is clearly a homotopy f0 ƒ f1. Thus there is only
one homotopy class of paths for each pair of endpoints. y

1.2. The fundamental group

Definition. Given a fixed basepoint x0 œ X, we denote by fi1(X, x0) the
set of path classes of loops at x0. y

A reason for considering loops at a fixed basepoint is that their concate-
nation is always well-defined. Together with path reversal, this gives rise
to a group structure on fi1(X, x0), called the fundamental group of X (at
basepoint x0).

Proposition 1.3. The set fi1(X, x0) is a group, under the operation [f ][g] =
[f · g], with identity [c

x0 ], and inverses [f ]≠1 = [f≠1]. y

Our current construction of the fundamental group depends on a choice
of basepoint. This choice turns out to be irrelevant, under the assumption
that the space is path-connected.

Proposition 1.4. Let x0, x1 œ X belong to the same path-component of X.
Then fi1(X, x0) ≥= fi1(X, x1). y

By the above, we will use the abbreviation fi1(X) for the fundamental
group of a path-connected space X. In general however, we must consider
pairs (X, x0) consisting of a space and a basepoint. Such pairs are called
based topological spaces and form the category Topú, where morphisms are
basepoint-preserving continuous maps.

The fundamental group will allow us to translate topological properties
to algebraic properties. This process applies to maps as well.

Proposition 1.5. Let Ï

:
X æ Y with Ï(x0) = y0. The set map

fi1Ï

:
fi1(X, x0) æ fi1(Y, y0)

defined by
fi1Ï

: [f ] ‘æ [Ïf ]

is a well-defined group homomorphism, called the induced homomorphism. y
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Remark 1.6. The assignment fi1 :
Ï ‘æ fi1Ï respects identity and compo-

sition, in the sense that fi1 id
X

= id
fi1(X) and fi1(ÏÂ) = (fi1Ï)(fi1Â), hence

defines a functor Topú æ Grp. y

The fundamental group is a homotopy invariant, in the following sense:

Definition. Two based topological spaces (X, x0), (Y, y0) are said to be
homotopy equivalent if there exists a pair of basepoint-preserving maps
f

:
X æ Y , g

:
Y æ X such that gf ƒ id

X

and fg ƒ id
Y

, relative to
basepoints. We then write (X, x0) ƒ (Y, y0), and the maps f, g are called
homotopy equivalences. y

This defines an equivalence relation, and equivalent spaces are said to
have same homotopy type. A space that is equivalent to a one-point space
is said to be contractible. We say that a space is simply connected if it
is path-connected and has trivial fundamental group. In particular, every
contractible space is simply connected.

Proposition 1.7. Let (X, x0), (Y, y0) œ Topú be homotopy equivalent
spaces. Then fi1(X, x0) ≥= fi1(Y, y0). y

In particular, the fundamental groups of homeomorphic spaces are iso-
morphic.

Computing fundamental groups is a di�cult task in general. On occasion,
one may appeal to geometric intuition, as in the classic examples below.

Example 1.8. The fundamental group of the unit circle is isomorphic to
the group of integers, i.e. fi1(S1) ≥= Z. Letting S

1 = {e

2fiit œ C | t œ R}, it
can be shown that the homotopy class of the loop t ‘æ e

2fiit is a generator
for fi1(S1), of infinite order. y

Example 1.9. For n Ø 2, fi1(Sn) ≥= 0. In particular, this shows that the
converse to Proposition 1.7 fails: the 2-sphere has trivial fundamental group,
like the one-point space, but is non-contractible. y

1.2.1. The Seifert–van Kampen theorem

A powerful tool for computing fundamental groups is the Seifert–van Kampen
theorem, which expresses the fundamental group of a space in terms of the
fundamental groups of nice subspaces.

To introduce the theorem, recall this fact from general topology: let A, B

be open subspaces covering X, i.e. X = A fi B. Then the following diagram,
with inclusion maps, is a pushout square in Top:

A fl B A

B X.

i

i

Õ
j

j

Õ
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That is, for any Y and any pair of maps f

:
A æ Y , g

:
B æ Y such that

f |
AflB

= g|
AflB

, there exists a unique h

:
X æ Y such that h|

A

= f and
h|

B

= g.
The next theorem asserts that under certain conditions, this pushout

carries over to fundamental groups.

Theorem 1.10. (Seifert–van Kampen). Let (X, x0) œ Topú. Let A, B

be open subspaces of X such that X = A fi B. Suppose that A fl B is
path-connected and contains x0. Then the following diagram, with homo-
morphisms induced by inclusion maps, is a pushout square in Grp:

fi1(A fl B, x0) fi1(A, x0)

fi1(B, x0) fi1(X, x0).

fi1i

fi1i

Õ
fi1j

fi1j

Õ

More generally, suppose X is the union of a finite family {A

–

} of path-
connected open subspaces such that every possible intersection contains the
basepoint, and is path-connected. This yields a diagram consisting of all
inclusion maps induced by intersections. Then fi1(X, x0) is the colimit of the
image of this diagram under the functor fi1. y

We now examine some consequences of the Seifert–van Kampen theorem.

Example 1.11. In the setup of Theorem 1.10, assume that X is path-
connected and A fl B is simply connected. In particular, fi1(A fl B) = 1 is the
trivial group, which is initial in Grp. Then fi1(X) ≥= fi1(A) ú fi1(B), where ú
denotes the coproduct in Grp (known as the free product). y

A classic application of the Seifert–van Kampen theorem is to compute
the fundamental group of a wedge of circles.

Definition. Let (X
–

, x

–

) be a family of based topological spaces. Let ≥ be
the equivalence relation generated by identification of all basepoints. The
space

fl

–

X

i

=
h

–

X

i

M

≥

with basepoint [x0]≥ is called the wedge sum of the family and is the coproduct
of this family in Topú. y

The Seifert–van Kampen theorem then asserts that under the right
conditions, the functor fi1 takes coproducts to coproducts. In particular, we
have the following:

Example 1.12. Letting X

–

ƒ S

1 for – œ {1, . . . , n}, we have

fi1

A
nfl

S

1
B

≥= F

n

,
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where F

n

denotes the free group on n generators, which is isomorphic to the
free product of n copies of Z in Grp. y

1.3. Simplicial complexes

1.3.1. Abstract simplicial complexes

Let V be a finite set.

Definition. An abstract simplicial complex is a collection � of subsets of V

such that if · œ � and ‡ ™ · , then ‡ œ �. y

V = Vert(�) is called the vertex set of �, and elements of � are called
simplices or faces. A subcomplex of � is a subcollection of � that is also
an abstract simplicial complex. There is a notion of map between abstract
simplicial complexes:

Definition. Let �1, �2 be abstract simplicial complexes. A simplicial map

Ï

: �1 æ �2 is a map Ï

: Vert(�1) æ Vert(�2) such that ‡ œ �1 ∆ Ï‡ œ
�2, in the sense that if {v0, . . . , v

k

} œ �1, then {Ï(v0), . . . , Ï(v
k

)} œ �2. y

Abstract simplicial complexes together with simplicial maps form a
category, denoted ASC. An isomorphism in this category is a bijective
simplicial map whose inverse is simplicial.

The naming choices in the definitions below will make sense in view of
Section 1.3.2, where we provide a way to construct topological spaces from
abstract simplicial complexes.

Definition. Let ‡ œ � be a simplex and let card ‡ be its cardinality as a
set. The dimension of ‡ is defined as dim ‡ = card ‡ ≠ 1, and the dimension
of � is then defined as dim � = max

‡œ� dim ‡. y

Definition. The k-skeleton of an abstract simplicial complex � is the
subcomplex of � consisting of all simplices ‡ œ � such that dim ‡ Æ k. It is
denoted �(k). y

1.3.2. Geometric realization

Let � be an abstract simplicial complex and let ‡ be a simplex of �, and
suppose dim ‡ = n, i.e. card ‡ = n + 1.

Consider the linear topological space R‡, which is isomorphic to Rn+1,
and has elements of ‡ as basis. We define �‡ to be the convex hull of ‡ inside
R‡. In this way, �‡ is homeomorphic to the convex hull of the standard
basis in Rn+1. In general, a space with this property is called an n-simplex.

6



Figure 1.2: n-simplices for n = 0, 1, 2, 3.

These spaces will be our building blocks for constructing a topological
space from the combinatorial data of �. Note that whenever we have a
subcomplex · ™ ‡, there is an inclusion of bases which induces a natural
inclusion map f

·‡

: �·

Òæ �‡. We define

� =
h

‡œ�
�‡

,

equipped with the coproduct topology, and let ≥ denote the equivalence
relation on � generated by the prescription

y ≥ x whenever y = f

·‡

(x) for some f

·‡

.

Definition. In the above notation, the geometric realization of � is defined
to be the topological space

|�| = �/ ≥

equipped with the quotient topology. y

The assignment |·| :
ASC æ Top is a functor. In particular, isomorphic

abstract simplicial complexes have homeomorphic geometric realizations.
From now, we will freely speak of topological properties � when meaning |�|.
In the same spirit, we use the term complex for either an abstract simplicial
complex or its geometric realization.

We will use the following remark in Chapter 2:

Remark 1.13. In general, subcomplexes of � are closed subspaces. However,
one may replace each subcomplex by an open neighborhood, chosen to
be su�ciently small to preserve homotopy type. This allows us to apply
the Seifert–van Kampen. More precisely, let �1, �2 be path-connected
subcomplexes of �, such that �1fi�2 = �. To avoid basepoint considerations,
suppose � is path-connected. Then the Seifert–van Kampen theorem yields
the following pushout diagram of topological spaces:

fi1(�1 fl �2) fi1(�1)

fi1(�2) fi1(�)

y
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1.3.3. Piecewise linear paths

Suppose � is a path-connected abstract simplicial complex. Paths in |�| can
described combinatorially in the following way:

Definition. Let f

:
I æ |�| be a path within the 1-skeleton of �, i.e. f(I) ™---�(1)

---, such that there exists a sequence of vertices v0, . . . , v

k

œ Vert(�) and
a subdivision of I:

0 = a0 < . . . < a

k

= 1
such that, for i œ {0, . . . , k},

(i) f(a
i

) = v

i

,

(ii) f((1 ≠ t)a
i

+ ta

i+1) = (1 ≠ t)v
i

+ tv

i+1 for all t œ I.

Such a map f is called a piecewise linear path. In particular, endpoints of a
piecewise linear path are vertices of �. y

As with regular paths, one can define piecewise linear loops, the constant
path, and path products. Piecewise linear paths are said to be homotopic if
they are path homotopic in the usual sense.

Let us see that a sequence of vertices uniquely determines a piece-
wise linear path, up to homotopy. Suppose f, g are piecewise linear lin-
ear paths through vertices v0, . . . , v

k

, with two respective subdivisions of
I given by a0, . . . , a

k

and b0, . . . , b

k

. The map h

:
I æ I defined by

h((1 ≠ t)a
i

+ ta

i

) = (1 ≠ t)b
i

+ tb

i

is a reparametrization such that fh = g,
hence f ƒ g.

The geometric realization of an abstract simplicial complex belongs to
the class of so-called CW-complexes. We shall make use of the result below,
which is derived from the cellular approximation theorem for CW-complexes.

Proposition 1.14. Let f

:
I æ |�| be a path in a simplicial complex, with

endpoints in
---�(1)

---. Then f is homotopic to some piecewise linear path f̃

such that f̃(I) ™
---�(1)

---, relative to endpoints. y

1.3.4. Deletion, Star and Link

Let � be an abstract simplicial complex, and let · œ �. We define some
subcomplexes of � that will provide a useful decomposition of �.

Definition. The deletion of · is the abstract simplicial complex defined by

dl�(·) =
)
‡ œ � | ‡ ”∏ ·

*
.

The star of · is the abstract simplicial complex defined by

st�(·) =
)
‡ œ � | ‡ fi · œ �

*
.
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The link of · is the abstract simplicial complex defined by

lk�(·) =
)
‡ œ � | ‡ fi · œ � and ‡ fl · = ?

*
.

y

Proposition 1.15. Let v be a single vertex in �. Then we have the following
decomposition: � = dl�(v) fi st�(v), with intersection dl�(v) fl st�(v) =
lk�(v). This can be depicted in the diagram below, which is a pushout
square in ASC:

lk�(v) st�(v)

dl�(v) �,

whose image under the geometric realization functor is a pushout in Top. y

dl∆(v) st∆(v)∆

v

lk∆(v)

Figure 1.3: A simple instance of Proposition 1.15.
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Chapter 2

Vietoris–Rips complexes of

point sets in Rn

We now introduce a class of complexes that will be our main interest, known
as Vietoris–Rips complexes (Rips complexes for brevity).

Definition. Let (M, d) be a metric space and X ™ M a set of distinct points
of M . Let r Ø 0. The Rips complex R

r

(X) is the complex obtained by
letting ‡ ™ 2X be a simplex of R

r

(X) whenever ‡ has diameter at most
r. y

Elements of X are called vertices, and r is called the radius of R
r

. From
now on, we will assume r = 1 and use the shorthand notation R = R(X) =
R1(X). Moreover, we restrict our attention to M = Rn.

The above definition uniquely determines the complex R
r

(X). Alter-
natively, R can be constructed in two steps as follows: first, construct the
proximity graph of X by joining u, v œ X with an edge whenever d(a, b) Æ 1.
Then define R as the largest complex with this graph as 1-skeleton.

Figure 2.1: A set of planar points, its proximity graph, and its 4-dimensional
Rips complex.
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2.1. The Shadow of a Rips complex

Suppose X µ Rn. In general, the dimension of R(X) may be larger than
n. However, there is a natural projection map p

: R æ Rn, that maps each
simplex a�nely onto the convex hull of its vertices. We define S = p(R),
occasionally denoted S(X). Equivalently, we have

S(X) =
€

SµX

diam(S)Æ1

conv(S)

In fact, as described in [Cha+10], in the above it su�ces to take the
union over S with card(S) Æ n + 1 instead of all S µ X.

p�!

Figure 2.2: A Rips complex and its shadow. Darker colors are meant to
represent higher dimensional simplices.

In the 2-dimensional case, we define a decomposition of the shadow. First,
let a shadow vertex be any point that either lies in X = p(R(0)) or is a
transverse intersection of images of Rips edges under the projection p. Let
S(0) be the set of such shadow vertices. Next, define a shadow edge to be
the closure of any path-component of p(R(1))-S(0), and let S(1) be the set
of such shadow edges. Finally, define a shadow face to be the closure of
any component of p(R(2))-S(1). The shadow of any Rips complex has the
homotopy type of a wedge of circles.

Our main concern will be to compare the fundamental groups of the com-
plexes R and S. By Proposition 1.14, we can describe paths combinatorially
as sequences of Rips or shadow edges. Such paths will be called Rips paths
and shadow paths. Let us establish some notation. Vertices will typically be
labeled A, B, C, u, v. Simplices of R will be denoted e.g. [ABC], and ÈABCÍ
denotes the subcomplex of R generated by vertices A, B, C. Shadow edges
will be denoted e.g. AB, and we write |AB| for the Euclidean length of such
an edge.

The article [Cha+10] examines the relation between the homotopy types
of R and S. One of the first steps is the examination of path-components.

12



Proposition 2.1. [Cha+10, Proposition 5.1] Let R be a Rips complex over
a set of points in Rn. The map p

: R æ S induces a bijection fi0p

:
fi0R æ

fi0S. y

2.2. The Rips complex for n = 1
Proposition 2.2. [Cha+10, Proposition 5.2] Let X µ R be a finite set of
distinct points, such that R(X) is path-connected. Then R(X) and S(X)
are both contractible, and so p

: R æ S is a homotopy equivalence. y
The proof below is di�erent from the original, in that we use induction

and the decomposition described in Proposition 1.15. This serves as a preview
of the strategy adopted in proving our main result (Theorem 2.9).

Proof of Proposition 2.2. By Proposition 2.1, S(X) is connected, hence is
an interval of R, thus it is contractible. We show that R(X) is contractible
by induction. When card(X) = 1, it is clear. Let v = max {X} and suppose
R(X-v) is contractible. Let X

v

= X fl [v ≠ 1, v] and X

Õ = X

v

-v. Then we
have the decomposition

R(X) = R(X-v) fi R(X
v

),

with intersection
R(X-v) fl R(X

v

) = R(X Õ).
Note that this is precisely the decomposition from Proposition 1.15. Both
X

v

and X

Õ have diameter at most 1, hence the spaces R(X
v

) and R(X Õ)
are contractible. By the induction hypothesis, the space R(X-v) is con-
tractible. Thus, R(X) is the union of contractible spaces whose intersection
is contractible, hence it is contractible.

2.3. Technical lemmas

2.3.1. Geometric lemmas in R2

From here onwards assume that X is a finite subset of R2, and R(X) is
path-connected. This section collects preliminary results to be used in section
2.4. We will make extensive use of the following geometric observation:
Proposition 2.3. [Cha+10, Proposition 2.1] Let R = ÈABCDÍ be a Rips
complex containing Rips edges [AB] and [CD], such that AB and CD

interstect in S. Then R is a cone. y
Proof. Let x be a point of intersection of AB, CD. Up to relabeling we can
assume that A is the vertex with minimal distance to x, so that in particular
|Ax| Æ |Cx|. This together with the triangle inequality yields

|AD| Æ |Ax| +|xD| Æ |Cx| +|xD| = |CD| Æ 1,

13



hence [AD] is a Rips edge. Similarly [AC] is a Rips edge, so that R is a cone
with apex A.

A

BC

D

x

Figure 2.3: The situation in Proposition 2.3.

Let us fix a vertex v œ X, and consider the closed ball B = B(v, 1) of
radius 1, centered at v . We denote X

v

= X fl B and X

Õ = X

v

-v. The next
proposition is conceived for a later application of the Seifert–van Kampen
theorem.

Proposition 2.4. Let R(Y ) be a path component of R(X Õ). For every
x œ S(Y fi v) fl S(X-v), there is a path from x to some point of S(Y ), such
that this path is entirely contained in S(Y fi v) fl S(X-v). In particular,
S(Y fi v) fl S(X-v) is path-connected. y

Proof. By Proposition 2.1, S(Y ) is a path component of S(X Õ). Recall that
the shadow can be expressed as

S(X) =
€

i,j,kœX

diam({i,j,k})Æ1

conv({i, j, k})

Therefore, we can assume that x belongs to the intersection of two solid
triangles in the plane, say T

a

™ S(X
v

) and T

b

™ S(X-v).
We first argue that if either triangle is properly contained inside the

other, then x œ S(Y ), from which the conclusion follows. On the one hand,
suppose T

b

( T

a

. Then T

b

™ S(Y fi v), but v /œ T

b

, hence T

b

™ S(Y ). On
the other hand, suppose T

a

( T

b

. Then v /œ T

a

, hence T

a

™ S(Y ).
Now assume that neither proper containment holds. Then there exists

a point y œ T

a

fl T

b

, such that y is the intersection of an edge A1A2 ™ T

a

and an edge B1B2 ™ T

b

, with A1, A2 œ Y fi v and B1, B2 œ X-v. Moreover,
T

a

fl T

b

is a convex subset of R2, hence there exists a path from x to y,
entirely contained in T

a

fl T

b

:

14



A1

A2

B1

B2

x

y

Thus, without loss of generality, we may assume that x = y. We now ex-
amine cases depending on the position of the vertices A1, A2, B1, B2, relative
to B.

If neither A1 nor A2 equals v, then x œ A1A2 ™ S(Y ). Thus assume
A2 = v. Suppose B1, B2 œ B. Since B1, B2 must both lie in the same path
component of S(Y fi v), and the intersection B1B2 fl A1A2 is nonempty, it
follows that both B1 and B2 lie in S(Y ). But then x œ B1B2 ™ S(Y ).

Now, up to relabeling, two cases remain:

(i) B1 /œ B and B2 œ B,

(ii) B1, B2 /œ B.

In the first case, ÈA1vB1B2Í is a cone by Proposition 2.3. By assumption,
|B1v| > 1, hence neither B1 nor v is an apex, so [A1B2] œ R(X). In
particular, B2 is in the same path component as A1, i.e. B2 œ S(Y ). Moreover,
[B2v] œ R(X) since B2 œ B. Thus the subsegment xB2 is contained in the
triangle A1B2v ™ S(Y fiv). Since xB2 ™ B1B2 ™ S(X-v), it follows that the
linear path from x to B2 œ S(Y ) is entirely contained within S(X-v)flS(Y fiv),
as desired.

v

A1

B1

B2

x

Figure 2.4: Case (i) of Proposition 2.4.
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In the second case, ÈA1vB1B2Í is a cone by Proposition 2.3. But by
assumption, neither B1 nor B2 nor v can be an apex, hence A1 is the apex.
Then the subsegment xA1 is contained in the triangle A1B1B2 ™ S(X-v).
Since xA1 ™ A1v ™ S(Y fi v), it follows that the linear path from x to
A1 œ S(Y ) is entirely contained within S(X-v) fl S(Y fi v), as desired.

x

A1
B1

B2

Figure 2.5: Case (ii) of Proposition 2.4.

2.3.2. Categorical tools

Let C be a category. Let C0, C1, . . . , C

k

be a collection of objects in C,
together with a collection of morphisms c

i

:
C0 æ C

i

for i œ {1, . . . , k}. This
can be represented by the following diagram:

C0

C1 . . . C

k

.

c1 ck (2.1)

Suppose we have another similar diagram,

C

Õ
0

C

Õ
1 . . . C

Õ
k

.

c

Õ
1 c

Õ
k (2.2)

and a natural transformation between the diagrams 2.1 and 2.2, i.e. a
collection of morphisms p

i

:
C

i

æ C

Õ
i

, such that for each i œ {1, . . . , k}, the
following diagram commutes:

C0 C

i

C

Õ
0 C

Õ
i

.

c

Õ
i

p0 pi

c

Õ
i

(2.3)

We say that the “vertical” morphisms {p

i

}k

1 allows us to “compare” the
diagrams 2.1 and 2.2. Now suppose these two diagrams admit colimits. Let
C be the colimit of the diagram 2.1, and denote d

i

the coprojections into
the colimit, d

i

:
C

i

æ C, making the following diagram commute:
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C0

C1 . . . C

k

C.

c1 ck

d1 dk

(2.4)

We use corresponding notation for the diagram 2.2. Then by universal
property of the colimit C, the collection of composed morphisms {c

Õ
i

p

i

}k

i

induce a unique morphism p

:
C æ C

Õ such that the following diagram
commutes, for every i, j œ {1, . . . , k}:

C0 C

j

C

i

C

C

Õ
0 C

Õ
j

C

Õ
i

C

Õ
.

ci

cj

p0

dj

pj

pi

di

c

Õ
i

c

Õ
j

d

Õ
j

d

Õ
i

p

Proposition 2.5. In the above situation, suppose that p

i

is an epimorphism
for each i œ {1, . . . , k}. Then p is an epimorphism. y

Proof. Let D œ C be any object and let f, g

:
C

Õ æ D be a pair of morphisms
such that fp = gp. Precomposing with d

i

yields fpd

i

= gpd

i

, so that gd

Õ
i

p

i

=
gd

Õ
i

p

i

by commutativity of the diagram. Then, since p

i

is an epimorphism,
we have

fd

Õ
i

= gd

Õ
i

. (2.5)

Denote e

Õ
i

= gd

Õ
i

. Clearly e

Õ
i

c

Õ
i

= e

Õ
j

c

Õ
j

for every i, j, hence by the universal
property of the colimit C

Õ, there is a unique h

:
C

Õ æ D with the property
that hd

Õ
i

= e

Õ
i

for every i. But by definition of e

Õ
i

and by Eq. (2.5), both f

and g satisfy this property, hence f = g by uniqueness of h, and we conclude
that p is an epimorphism.

Next we state Proposition 2.5 for k = 2, which will be useful for applica-
tions of the Seifert–van Kampen theorem. We call a commutative diagram
of the following form a cube:
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A D

B C

A

Õ
D

Õ

B

Õ
C

Õ
.

”

—

“

For short, we refer to faces of the cube: front, back, top, bottom, left
and right.

Corollary 2.6. Suppose the top and bottom faces of the above cube are
pushout squares. If — and ” are epimorphisms, then “ is an epimorphism. y

Remark 2.7. We will primarily be concerned with groups. Recall that in
the category Grp, a homomorphism is an epimorphism if and only if it is
surjective as a set map. y

2.3.3. fi1-surjectivity under point gluings

Let f

:
A æ B be a map between path-connected topological spaces. For

i œ {1, . . . , k}, let a

i

œ A be distinct, and b

i

= f(a
i

) œ B be distinct. Denote
≥ (resp. ≥Õ) the equivalence relation on A (resp. B) generated by identifying
every a

i

(resp. b

i

). Taking quotient maps induces a unique f̃ such that the
following diagram commutes:

A A/≥

B B/≥Õ
.

f

f̃

Proposition 2.8. In the above situation, if fi1f is surjective, then fi1f̃ is
surjective. y

Proof. Let 0 = e1 < . . . < e

k

= 1 be a partition of the unit interval I. Define
attaching maps –

:
e

i

‘æ a

i

and —

:
e

i

‘æ b

i

, and define adjunction spaces by
the following pushout squares:

{e

i

}k

1 A {e

i

}k

1 B

I A Û
–

I, I B Û
—

I.

–

—

(2.6)

We denote “ (resp. “

Õ) the image of I in A Û
–

I (resp. B Û
—

I), and so
we write A fi “ = A Û

–

I and B fi “

Õ = B Û
—

I. The identity map id

:
I æ I

18



and the map f yield a canonical map f fi id

:
A fi “ æ B fi “

Õ. Concretely,
these spaces are obtained by attaching a 1-cell connecting every a

i

(resp. b

i

):

�!

Note that “, “

Õ are contractible, so contracting “, “

Õ yields homotopy
equivalences A fi “ ƒ A/≥ and B fi “ ƒ B/≥Õ, as illustrated below:

�!

We then have the following commutative diagram:

A fi “ A/≥

B fi “

Õ
B/≥Õ

.

ƒ

ffiid

f̃

ƒ

We now use [NR93, Lemma 1.8]. The maps

(f fi id)
--
A

= f, (f fi id)
--
“

= id, (f fi id)
--
Afl“

= f–

are all 1-connected, since A, B are path-connected and fi1f is surjective, and
therefore fi1f̃ is surjective.

2.4. Surjectivity of fi1p in R2

A theorem by Chambers et al. [Cha+10, Theorem 3.1] states that the funda-
mental groups fi1R and fi1S are isomorphic. In particular, the fundamental
group fi1R is free, since S is a wedge of circles. In the rest of this section,
we prove the following weaker result:

Theorem 2.9. [Cha+10][Part of Theorem 3.1] Let X be a finite set of points
in R2. Let R = R(X) be the Rips complex of X and let S be its image
under the projection map p

: R æ R2. Then the induced homomorphism
fi1p

:
fi1R æ fi1S is surjective. y
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Proof. We proceed by induction on the vertex set. Fix v œ X and sup-
pose the induced homomorphism fi1R(X-v) æ fi1S(X-v) is surjective. We
successively examine two cases:

(i) R(X-v) is path-connected,

(ii) R(X-v) has several path-components.

(i)

Suppose R(X-v) is path-connected. Let R(X Õ
1), . . . , R(X Õ

k

) denote the path
components of R(X Õ). Let i œ {1, . . . , k} and define

R
i

= R(X Õ
i

fi v) fi R(X-v).

Note that R(X Õ
i

fi v) fl R(X-v) = R((X Õ
i

fi v) fl (X-v)) = R(X Õ
i

). Thus we
have the following pushout square of topological spaces:

R(X Õ
i

) R(X Õ
i

fi v)

R(X-v) R
i

.

Correspondingly, in the shadow we have the following pushout square:

S(X-v) fl S(X Õ
i

fi v) S(X Õ
i

fi v)

S(X-v) S
i

.

By taking restrictions of p

: R æ S to subspaces, we thus obtain the
following commutative cube in Top:

R(X Õ
i

) R(X Õ
i

fi v)

R(X-v) R
i

S(X Õ
i

)

S(X-v) fl S(X Õ
i

fi v) S(X Õ
i

fi v)

S(X-v) S
i

.

pi
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Let us verify that the top and bottom faces satisfy the conditions of the
Seifert–van Kampen theorem, where we use Remark 1.13.

The spaces R(X Õ
i

fi v) and S(X Õ
i

fi v) are cones with apex v, hence they
are contractible, and in particular they are path connected. R(X-v) and
R(X Õ

i

) are path connected by assumption, hence so is R
i

. The projection
map is continuous, hence the images of these spaces are also path connected.
Finally, Proposition 2.4 ensures that the space S(X-v) fl S(X Õ

i

fi v) is path
connected.

Thus, by the Seifert–van Kampen theorem, and functoriality of fi1, we
obtain the following commutative cube in Grp:

fi1R(X Õ
i

) 1

fi1R(X-v) fi1R
i

fi1(S(X-v) fl S(X Õ
i

fi v)) 1

fi1S(X-v) fi1S
i

.

fi1pi

Here, 1 denotes the trivial group. By the induction hypothesis, the map
fi1R(X-v) æ fi1S(X-v) is surjective, hence by Corollary 2.6, the map

fi1p

i

:
fi1R

i

æ fi1S
i

(2.7)

is surjective. Now, for each i, there are inclusion maps R(X-v) Òæ R
i

and
S(X-v) Òæ S

i

. Hence we have the following two diagrams:

R(X-v) S(X-v)

R1 . . . R
k

, S1 . . . S
k

.

(2.8)

Letting ≥R and ≥S denote the respective colimits of these diagrams, we
obtain:

R(X-v) S(X-v)

R1 . . . R
k

S1 . . . S
k

≥R,

≥S .

d1 dk d

Õ
1 d

Õ
k

(2.9)
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where d

i

, d

Õ
i

denote the coprojections into the colimit. Now, the two
previous diagrams in 2.8 can be compared by restrictions of the projection
map, p

i

= p|Ri
. Note that for each i, there are inclusion maps such that the

following diagram commutes:

R
i

R

S
i

S.

pi p

(2.10)

Thus there exists unique maps q, q

Õ
, p̃, such that the following diagram

commutes, for every i, j:

R(X-v) R
j

R
i

≥R R

S(X-v) S
j

S
i

≥S S.

dj

pj

pi

di q

p

d

Õ
j

d

Õ
i

p

q

Õ

(2.11)

Let us now verify that the two diagrams in 2.9 satisfy conditions for the
Seifert–van Kampen theorem. By definition, ≥R=

t
R

k

. Within the space ≥R,
each pairwise intersection R

i

fl R
j

equals R(X-v), which is path connected,
hence every possible intersection is connected. Analogous arguments apply
in the shadow. Therefore, the Seifert–van Kampen theorem applies.

By functoriality of fi1, we then obtain a diagram satisfying the conditions
for Proposition 2.5, since every vertical homomorphism fi1p

i

:
fi1R

i

æ fi1S
i

is surjective, by Eq. (2.7). Therefore, we conclude that

fi1p̃

:
fi1

≥Ræ fi1
≥S (2.12)

is surjective.
Let us denote v

i

= d

i

and v

Õ
i

= d

Õ
i

the images of v under the coprojections
from diagrams 2.9. By definition of q from diagram 2.11, we have q(v

i

) = v

and q(x) = x for all x ”= v

i

, for all i. That is, q simply identifies the
di�erent images of v. Let ≥ denote the equivalence relation generated by
this identification. Then we have

R = ≥R /≥.

Similarly, letting ≥Õ denote the identification of images v

Õ
i

under q

Õ, we have:

S =≥S /≥Õ
.
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Finally, by Proposition 2.8, we conclude that the homomorphism fi1p

:
fi1R æ fi1S is surjective.

(ii)

Now suppose R(X-v) is not path-connected. Denote R(X1-v), . . . , R(X l-v)
its path-components. We then have the decompositions R(X) =

t
l

i=1 R(Xi)
and S(X) =

t
l

i=1 S(Xi). Let us verify that these decompositions satisfy the
conditions for the Seifert–van Kampen theorem.

Note that each space R(Xi) is path-connected, since we assumed R(X)
to be path-connected. By continuity of p, each space S(Xi) is path-connected.
Thus the intersections

u
l

i=1 R(Xi) and
u

l

i=1 S(Xi) are intersections of path-
connected spaces all containing v, hence they are path-connected, and the
Seifert–van Kampen theorem applies.

By the previous case, the restriction of p to each R(Xi) induces a surjec-
tive homomorphism fi1R(Xi) æ fi1S(Xi). It follows from Proposition 2.5
that fi1p

: R(X) æ fi1S(X) is surjective.

2.5. The Rips complex for n Ø 3
An example by Chambers et al.[Cha+10, Proposition 5.3] demonstrates
that Theorem 2.9 is false for n Ø 4. Specifically, our Proposition 2.4,
which relied on examining the intersection of triangles, fails in this instance.
Extending this proposition to the case n = 3 would require examining
the intersection of tetrahedra. As Proposition 2.4 relied on the geometric
observation that intersecting edges generate a cone (Proposition 2.3), a
first step is to extend this observation. We speculate that this could be a
statement of the following form: given a Rips triangle [XY Z] and a Rips
edge [AB] whose images intersect in the shadow (see Fig. 2.6), the generated
Rips complex ÈABXY ZÍ is a cone.

A

B

X

Y

Z

Figure 2.6
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