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Abstract

Inspired by the modern-day version of Euclids parallel postulate, I will be exploring geometries that

differ from Euclidean geometry in the sense that they violate this axiom. The two geometries considered

are spherical and hyperbolic geometry, and I will show what the straight lines on these two curved

surfaces look like. As a consequence of the Lorentz inner product being introduced for modelling

hyperbolic space, I will briefly explain how to interpret some of the various angles that arise between

different sorts of vectors.

Furthermore, I will dive into inversive geometry, which is the geometry on Euclidean space dealing

with reflections in surfaces we can topologically categorize as spheres. These reflections generate a

group of transformations known as Möbius transformations. These transformations are conformal,

that is, they preserve angles. Eventually, I will show how the group of isometries of hyperbolic space

relate to this group of Möbius transformations of Euclidean space. In fact, it turns out that these two

groups are isomorphic, leading to a better understanding of the duality of the different geometries.
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Introduction

The first part of the thesis will be spent briefly exploring geometries that violate the modern-day

version of the parallel postulate of Euclidean geometry

Through a point not lying on a given infinite straight line there is but one infinite straight line parallel

to the given line.

The two geometries in question are Spherical Geometry and Hyperbolic Geometry. The model used for

spherical geometry is the n-sphere Sn and the model for hyperbolic geometry will be introduced as the

hyperboloid Hn, each equipped with its own intrinsic metric. The big change in hyperbolic geometry

is the introduction of the Lorentz Inner Product. The two geometries violate the parallel postulate

because one can show the following holds

Through a point x not lying on a line l on the sphere there is no line parallel to l.

Through a point x not lying on a line l on the hyperboloid there are infinitely many lines parallel to l.

where, in the above statements, a line refers to each of the two geometries’ own notion of a line,

equivalent to the straight lines of Euclidean geometry. In fact, in Chapter 2 and 3, I will be studying

these lines, called Geodesics. They are the image of a certain type of distance-preserving functions

called Geodesic Lines. For example, I will prove the following

Theorem: The geodesics of spherical geometry are the great circles on the sphere.

Theorem: The geodesics of hyperbolic geometry are the hyperbolic lines, ie. intersections of Hn

with Euclidean planes.

Furthermore, the lorentz inner product gives rise to a notion of vectors in Rn+1 with different attributes

and different angles. These are the Space-like, Time-like and Light-like vectors. I will shortly look into

how to interpret the different angles between these vectors.

In the thesis’ second part, I will dive into Inversive Geometry, namely the geometry resulting from

transformations of Euclidean spaces in spheres, and see how this relates to hyperbolic geometry. The

group of transformations generated by these reflections are called Möbius Transformations. The whole

purpose of Chapter 4 will be to eventually show the following

Theorem: The group of isometries of our model for hyperbolic geometry, Hn, is isomorphic

to the group of Möbius transformations of the one-point compactification of the Euclidean

(n− 1)-dimensional space.

This will lead to a better understanding of how these geometries relate.

The entire thesis, including the appendix, will be based on chapter 1, 2, 3 and 4 of Ratcliffes book [1],

except where otherwise noted. Every now and again I will explicitly refer to the appendix for results

or proofs.
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Geodesics

First I will give a few general definitions for geometries modelled on metric spaces. Also, I introduce

the metric space En as Rn equipped with the usual Euclidean metric.

Definition 1.1 A geodesic arc in a metric space X is a distance-preserving function α : [a, b]→ X,

from a closed interval in R with a < b.

One can show that for a curve α : [a, b]→ En to be a geodesic arc, it must precisely be both linear

and satisfy |a′(t)| = 1 for t ∈ [a, b].

Definition 1.2 A geodesic segment from x to y is the image of a geodesic arc α : [a, b]→ X where

α(a) = x and α(b) = y.

The geodesic segments of En are its lines.

Definition 1.3 I call a metric space X geodesically convex if and only if for each pair of points

x, y ∈ X that are not alike, there is a unique geodesic segment joining x and y.

En is geodesically convex because any two points x, y, that are not alike, are joined by a unique line

segment.

Definition 1.4 A metric space is geodesically connected if and only if for each pair of points x, y ∈ X
that are not alike, there is a some geodesic segment joining x and y.

I will show, later on, that in spherical geometry, Sn is geodesically connected but not geodesically

convex.

Definition 1.5 A geodesic line in a metric space X is a locally distance preserving function λ : R→ X.

In other words; for each x ∈ R there is a neighbourhood Ux of x on which λ preserves distances.

Definition 1.6 A geodesic in a metric space X is the image of a geodesic line.

In the next two chapters, examples of such geodesic lines and its geodesics will be introduced. In

particular, the geodesics of the sphere is what you would intuitively believe it to be, namely the great

circles.

Spherical Geometry

The standard model used for spherical geometry is the well-known n-sphere given as

Sn =
{
x ∈ Rn+1 : |x| = 1

}
(2.0.1)
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equipped with the intrinsic metric on the sphere, ds, which I shall now introduce.

2.1 The Spherical Metric

Definition 2.1 For x, y ∈ Sn I define the spherical distance between x and y as

dS(x, y) = θ(x, y) (2.1.1)

where θ(x, y) is the Euclidean angle between two vectors x, y ∈ En. This is the unique real number θ

satisfying x · y = |x| |y| cos θ.

And we see that 0 ≤ dS(x, y) ≤ π. We call two vectors of Sn antipodal if y = −x. Thus, the orthogonal

transformations of Rn+1 obviously preserves spherical distances, because they preserve inner products.

Theorem 2.2 The spherical distance function dS is a metric on Sn.

Proof. It is clearly nonnegative, nondegenerate and symmetric. What is left is to prove the triangle

inequality. Now, three vectors x, y, z span a vector subspace of dimension at most 3. Because I can

freely transform them by an orthogonal transformation by Theorem A.13, I can assume without loss

of generality that the three vectors lie in the subspace spanned by e1, e2, e3. Using Theorem A.14,

Cauchys inequality, the addition formula for cos and (A.5)

cos(θ(x, y) + θ(y, z)) = cos θ(x, y) cos θ(y, z)− sin θ(x, y) sin θ(y, z) = (x · y)(y · z)− |x× y||y × z|

≤ (x · y)(y · z)− (x× y) · (y × x) = (x · y)(y · z)− ((x · y)(y · z)− (x · z)(y · y))

= x · z = cos θ(x, z)

And as cos is stricly decreasing on the interval [0, π] the above must imply that θ(x, z) ≤ θ(x, y)+θ(y, z)

�

2.2 Spherical Geodesics

Definition 2.3 A great circle of Sn is the intersection of Sn with a 2-dimensional vector subspace of

Rn+1.

It is clear that two linearly independent vectors x, y on Sn are contained within a unique great circle,

namely S(x, y) = V (x, y) ∩ Sn where V is the subspace spanned by the two. If, however, they are

antipodal, there is a continuum of great circles containing x and y.

Definition 2.4 Three points x, y, z ∈ Sn are spherically collinear if and only if a great circle contains

all three.

Lemma 1 If x, y, z are in Sn and θ(x, z) = θ(x, y) + θ(y, z) then x, y, z are spherically collinear.

Proof. The three vectors x, y, z span a vector subspace of dimension at most 3. By the calculations in

the proof for the preceding theorem

(x× y) · (y × z) = |x× y| |y × z|
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and so they are linearly dependant, meaning (x × y) × (y × z) = 0. It now follows from Theorem

A.14(3) and A.14(2) that x, y, z are linearly dependant, hence lying on a 2-dimensional vector subspace

of Rn+1. �

Theorem 2.5 Let α : [a, b]→ Sn be a curve with b− a < π. The following are equivalent

(1) α is a geodesic arc

(2) There are orthogonal vectors x, y ∈ Sn such that α(t) = (cos(t− a))x+ (sin(t− a)) y, t ∈ [a, b]

(3) The curve α satisfies a′′ + a = 0

Proof. Let α be a such curve as described above. Letting α′ be the coordinate-wise derivative of α, I

see that for A, an orthogonal matrix, I have (Aα)′ = Aα′. That means condition (3) holds for α if and

only if it holds for Aα. Thus, I might as well transform α by A when going through the proof.

Suppose (1) holds. let t ∈ [a, b]. Then I have

θ(α(a), α(b)) = |b− a| = b− a = (t− a) + (b− t)

= θ(α(t), α(a)) + θ(α(b), α(t))

meaning that α(t), α(a) and α(b) are spherically collinear. Because b−a < π I see that θ(α(a), α(b)) < π

and so the points α(a), α(b) are not antipodal. Hence α(a), α(b) lie on a unique great circle S on Sn.

And so, the image of α is contained on this great circle by the above as t was arbitrary. I can assume

n = 1 then. If I apply a rotation of the form[
cos s − sin s

sin s cos s

]

on α, I can rotate α(a) to e1. But then

e1 · α(t) = α(a) · α(t) = cos θ(α(a), α(t)) = cos(t− a)

meaning that e2 · α(t) = ± sin(t − a) for all t ∈ [a, b] seeing as α is continuous and because for all

vectors x = (x1, x2) on S1, including α(t), I must have that

(e1 · x)2 + (e2 · x)2 = x21 + x22 = 1

If e2 · α(t) = − sin(t− a) I can apply a reflection[
1 0

0 −1

]

ultimately yielding

α(t) = cos(t− a)e1 + sin(t− a)e2

and so (1) implies (2). Assuming (2) holds, for all s, t ∈ [a, b] with s ≤ t, I get from the addition

formula for cos;

cos θ(α(t), α(s)) = α(s) · α(t) = cos(s− a) cos(t− a) + sin(s− a) sin(t− a) (2.3.1)

= cos(t− s) (2.3.2)
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and as t − s < π, I have θ(α(s), α(t)) = t − s and so α is a geodesic arc. Thus, (2) and (1) are

equivalent.

Straight-forward differentiation shows (2) implies (3). If (3) holds then it is a second order linear

differential equation with solution

α(t) = cos(t− a)α(a) + sin(t− a)α′(a)

We know that α(t) · α(t) = 1, and differentiating this I get α(t) · α(t)′ = 0 for all t, including a. Thus,

α(a) and α(a)′ are in particular orthogonal. As |α(t)| = |α(t)|2 = 1, if I write out

|α(t)|2 = cos2(t− a) + sin2(t− a)|α′(a)|2

I see that |α′(a)| must be 1, meaning α′(a) ∈ S1. And so, (3) implies (2). �

In fact, (1) and (2) in Theorem 2.6 are equivalent even if b − a = π. For (2) to imply (1) even if

b− a = π, notice that the arguments used in (2.3.1), (2.3.2) and just below still hold.

On the other hand, if α : [a, b] → Sn is a geodesic curve, then I must have b − a ≤ π because

spherical distances go no higher than π. If b − a = π, then as θ(α(a), α(b)) = π that means

α(a) and α(b) are antipodal, and so infinitely many great circles contain the two points. However,

the image of α is contained within a unique great circle, because otherwise - as a consequence of

Lemma 1 - it would contradict α being a geodesic curve. But that means I can go through the

same procedure as in the proof of Theorem 2.5 to ’construct’ orthogonal vectors x, y ∈ Sn such that

α(t) = (cos(t− a))x+ (sin(t− a)) y.

Theorem 2.6 A function λ : R→ Sn is a geodesic line if and only if there exists orthogonal vectors

x, y in Sn such that

λ(t) = cos(t)x+ sin(t)y (2.3.3)

Proof. If λ satisfies (2.3.3) then we see that λ satisfies λ′′ + λ = 0, and so the restriction of λ to

any interval [a, b], where b− a < π, is a geodesic arc by Theorem 2.5. Particularly, it is a distance

preserving function on the neighbourhood (a− ε, b+ ε) for an appropriate ε. Thus, it is a geodesic

line. Going in the other direction, for each r ∈ R there is an open interval Ur such that λ is a distance

preserving function on Ur. Thus, for all r ∈ R there is a closed interval [ar, br] on which λ is a geodesic

arc, particularly there exists xr, yr, orthogonal, such that

λ(t) = cos(t− a)xr + sin(t− a)yr, t ∈ [ar, br] (2.3.4)

And so, I take r, r′ ∈ R and consider the closed interval [r, r′]. For each t ∈ [r, r′] I can find an open

interval Ut on which λ is distance-preserving. As [r, r′] is compact and
⋃
t∈[r,r′] Ut make up an open

cover of [r, r′], there is a finite subcover Ut1 , . . . , Utn . As R is linearly ordered i can assume without loss

of generality that t1 < . . . < tn. First notice that as these open sets Uti cover [r, r′] there is some path

’along’ these open sets from r to r′. This means that there is a subset Utj1 , . . . , Utjk , appropriately

enumerated, of
⋃
Uti which satisfies Utji ∩ Utji+1

6= ∅ for all i, i′ ∈ {1, . . . , k − 1}. But then I can

choose points pji such that pji ∈ Utji ∩ Utji+1
. As this is an intersection of open sets, it is open itself.
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Particularly, there is an εi such that (pji − εi, pji + εi) ⊆ Utji ∩ Utji+1
. This all means I can define

closed intervals in the following way;

I1 = [r, pj1 + ε1], Ii = [pji−1 − εi−1, pji + εi], for i = 2 . . . k − 1 and Ik+1 = [pjk − εk, r
′]

These intervals clearly cover [r, r′] and furthermore, any interval has a length less than π as λ is

distance-preserving on each Uti . This all means that for each interval there are orthogonal vectors

xi, yi for i = 1, . . . , k + 1 satisfying (2.3.4).

But as pji ∈ Ii ∩ Ii+1 for all i, then there must exist s ∈ Ii, s′ ∈ Ii+1 such that

λ(pji) = cos(s− (pji − εi))xi + sin(s− (pji − εi))yi

= cos(s′ − (pji+1 − εi+1))xi+1 + sin(s′ − (pji+1 − εi+1))yi+1

Now my claim is that the two 2-dimensional vector subspaces spanned by xi, yi and xi+1, yi+1 respec-

tively are the same. If this was not the case, then they would only intersect each other, on Sn, in λ(pji)

and −λ(pji). But I see that also the point pji + εi/2 lies in both Ii and Ii+1. And so, the two vector

subspaces are the same, meaning the four vectors span a two-dimensional subspace. Using this method

repeatedly, we see that all xi, yi are linearly dependant except for two, say x1 and y1, as desired. This

means that the vector space they span is 2-dimensional. Thus, λ(r) and λ(r′) lie in the span of x1 and

y1. As r, r′ were arbitrary I have that

λ(t) = cos(t)x1 + sin(t)y1

�

Corollary 2.7 The geodesics of Sn are its great circles.

Theorem 2.8 Sn is geodesically connected but not geodesically convex.

Proof. Theorem 2.5 and the above comment shows that Sn is geodesically connected because for any

two points x, y ∈ Sn, dS(x, y) ≤ π. Consider the vector v = x− (x · y)y. Notice how

|v2| = |x|2 + (x · y)2|y|2 − 2(x · y)2

= 1− cos2 θ(x, y)

yielding

|v| = sin θ(x, y) (2.3.5)

Then v, y are orthogonal vectors, and letting w = v/|v|, by Theorem 2.5

α(t) = cos(t− a)y + sin(t− a)w, t ∈ [a, a+ θ(x, y)]

is a geodesic arc. Also, α(a) = y whereas

α(a+ θ(x, y) = cos θ(x, y)y + sin θ(x, y)w

= (x · y)y + w|v|

= x
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This all means that there is some geodesic segment where its terminal points are x, y. Hence, Sn is

geodesically connected. However, it is not geodesically convex because if x = −y there are infinitely

many geodesic segments connecting the two points (ie. they are contained in infinitely many great

circles) by the preceding corollary. �

Hyperbolic Geometry

In this third chapter I explore hyperbolic geometry and see how it varies from the usual Euclidean

geometry.

3.1 Lorentzian n-space and Lorentz transformations

First I will lay out the basics of Lorentzian n-space. I define the Lorentzian Inner Product of x, y ∈ Rn

as

x ◦ y = −x1y1 + x2y2 + . . .+ xnyn (3.1.1)

This is clearly bilinear and symmetric. Nondegeneracy, however, requires an argument. Let 0 6= x ∈ Rn.

If x satisfies x21 = x22 + . . .+ x2n then x ◦ x = 0. However, x1 6= 0, and so I can choose y = e1 and see

that x ◦ y = x1 6= 0. In any other case, I have that x ◦ x 6= 0. So, by Definition A.1, it is truely an

inner product. Notice how it is not positive definite. We call the inner product space of Rn with this

inner product the Lorentzian n-space, denoted R1,n−1. For simplicity, however, I will continue to speak

about Rn as the vector space of R1,n−1. In addition to this I will define the Lorentzian norm of x ∈ Rn

by the complex number

||x|| = (x ◦ x)
1
2 (3.1.2)

This is not a norm in the usual way, as it can take on both negative and positive imaginary values, as

well as positive values. If the norm of a vector x is positive imaginary, the absolute value will be referred

to as |||x|||. Equivalently I define the lorentzian distance between x and y as dL(x, y) = ||x− y||.

Consider the set

Cn−1 = {x ∈ Rn : ||x|| = 0} (3.1.3)

called the hypercone, defined by the equation x21 = x22 + . . .+ x2n, also called the light cone. If x ∈ Cn−1

then x is said to be light-like, that is positive or negative light-like, respectively, if x1 > 0 or x1 < 0.

See Figure 1.
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Figure 1: The light cone C2

If ||x|| > 0 we call x a space-like vector. It is clear that x is space-like if and only if it satisfies

x21 < x22 + . . . + x2n. The space-like vectors make up the exterior of our light cone. Lastly, if ||x|| is

imaginary, x is called time-like, positive and negative respectively if x1 > 0 or x1 < 0. Notice, again,

how x is time-like if and only if x21 > x22 + . . .+ x2n. We also see that if x is time-like, ||x||2 < 0. These

vectors make up the interior of the light cone.

Theorem 3.1 The set of positive time-like vectors (or negative, respectively) is a convex subset of Rn.

Proof. Let x, y be positive (or negative, respectively) time-like vectors. ||tx||2 = t2||x||2 < 0, and so

tx is positive (or negative, respectively) time-like for t > 0. Furthermore;

(x1 + y1)
2 = x21 + 2x1y1 + y21

> (x22 + . . .+ x2n) + 2(x22 + . . .+ x2n)1/2(y22 + . . .+ yn2)1/2 + (y22 + . . .+ y2n)

≥ (x2 + y2)
2 + . . .+ (xn + yn)2

where the last inequality follows from Cauchys inequality. Thus, for a 0 < t < 1, I have (1− t)x+ ty is

positive (or negative, respectively) time-like. �

Definition 3.2 A function φ : Rn → Rn is called a Lorentz transformation if and only if it satisfies

for all x, y ∈ Rn

φ(x) ◦ φ(y) = x ◦ y (3.1.4)

And I call a basis {v1, . . . , vn} of Rn Lorentz orthonormal if and only if v1 ◦ v1 = −1 and vi ◦ vj = δi,j .

Example. The standard basis of Rn is Lorentz orthonormal.

And just like we did with the set of orthogonal matrices, we call the set of real n × n matrices A

whose associated transformation is Lorentzian for the Lorentzian matrices. Together with matrix

multiplication, they form the Lorentz group called O(1, n− 1).

Theorem 3.3 A function φ : Rn → Rn is a Lorentz transformation if and only if φ is linear and

{φ(e1), . . . , φ(en)} is a lorentz orthonormal basis

11



Proof. The idea of the proof is as follows. If φ is a Lorentz transformation, considerations about

φ(ei) ◦ φ(ej) shows that this is a lorentz orthonormal basis and that φ is linear. Conversely, if φ is

linear and the above is a basis, then

φ(x) ◦ φ(y) = φ

(
n∑
i=1

xiei

)
◦ φ

 n∑
j=1

yjej


=

n∑
i=1

n∑
j=1

xiyiφ(ei) ◦ φ(ej)

= −x1y1 + x2y2 + . . .+ xnyn = x ◦ y

�

Corollary 3.4 . Let A be a real n× n matrix. The following are equivalent

(1) A is Lorentzian

(2) The columns of A form a Lorentz orthonormal basis

(3) AtJA = J where

J =


−1 . . . . . . 0
... 1
...

. . .

0 1


And it clearly shows that this is all somewhat reminiscent of orthogonal matrices. By 3.4(3) we also

see that if A is lorentzian, then detA = ±1.

Definition 3.5 A lorentzian matrix is said to be positive (negative, respectively) if and only if A

transforms positive time-like vectors into positive time-like vectors (or into negative time-like vectors,

respectively).

Theorem 3.6 Every Lorentzian matrix is either positive or negative.

Proof. By Theorem 3.1, the set of positive (negative, respectively) time-like vectors in Rn are path-

connected sets and thus they are particularly connected. In other words, the set of all time-like vectors

has two connected components, called Tp and Tn. By the continuity of a lorentzian transformation

A, the images A(Tp) and A(Tn) must also be connected. Thus, A maps the set of positive time-like

vectors, Tp, entirely into Tp or Tn. �

The group of positive, lorentzian matrices are denoted by PO(1, n− 1).

Definition 3.7 Two vectors x, y ∈ Rn are Lorentz orthogonal if and only if x ◦ y = 0.

Two space-like vectors can be lorentz orthogonal. As an example, e2 ◦ e3 = 0. However, if either of the

two vectors are time-like, neat conditions arise.

Theorem 3.8 . Let x be a time-like vector, non-zero. If x ◦ y = 0, then y must be space-like
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Proof. As x is time-like then x21 > x22 + . . .+ x2n. Hence

1 >

(
n∑
i=2

x2i

)
/x21 (3.1.5)

Because x ◦ y = 0 then

x1y1 =
n∑
i=2

xiyi ⇔ y1 =

(
n∑
i=2

xiyi

)
/x1 (3.1.6)

Notice how the following holds;(
n∑
i=2

x2i

)(
n∑
i=2

y2i

)
=

n∑
i=2

n∑
j=2

x2i y
2
j ≥

(
n∑
i=2

xiyi

)2

(3.1.7)

And thus, I must have

||y||2 = −y21 + . . .+ y2n =

n∑
i=2

y2i −

(
n∑
i=2

xiyi

)2

/x21

≥
n∑
i=2

y2i −

(
n∑
i=2

x2i

)(
n∑
i=2

y2i

)
/x21

=
n∑
i=2

y2i

(
1−

(
n∑
i=2

x2i

)
/x21

)
≥ 0

Where the last inequality follows from (3.1.5). And so, y is space-like, as it satisfies y21 < y22 + . . .+ y2n.

�

Definition 3.9 If V is a vector subspace of Rn, V is said to be

(1) time-like if and only if V contains a time-like vector

(2) space-like if and only if every nonzero vector in V is space-like

(3) light-like otherwise

Now to a theorem which shows that our group PO(1, n− 1) behaves well on time-like vector subspaces.

It will be very useful going forward to ease other proofs.

Theorem 3.10 . For every dimension m, the natural action of PO(1, n − 1) on the set of m-

dimensional time-like vector subspaces of Rn is transitive.

Proof By Theorem A.12, I only need to cover the following case. Let V be any m-dimensional,

time-like vector subspace. I must show that there exists one W in the set of m-dimensional time-like

vector subspaces such that ∃A ∈ PO(1, n− 1) with A(W ) = V . And so, I let W = Rm, the subspace

of Rn spanned by e1, . . . , em.

Next up, I choose a basis {u1, . . . , um} of V where ui is time-like, say u1 without loss of generality.

Extend this to a basis {u1, . . . , un} of En. Let w1 = u1/|||u1|||. It now follows that w1 ◦ w1 =

||u1||2/|||u1|||2 = −1 as u1 was time-like. Letting v2 = u2 + (u2 ◦ w1)w1 I have

w1 ◦ v2 = w1 ◦ u2 + (w1 ◦ w1)(u2 ◦ w1) = w1 ◦ u2 − u2 ◦ w1 = 0
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and by Theorem 3.9 I have v2 is space-like. Letting w2 = v2
||v2|| , I now define

vi = ui + (ui ◦ w1)w1 − (ui ◦ w2)w2 − . . .− (ui ◦ wi−1)wi−1

wi =
vi
||vi||

This process results in {w1, . . . , wn} being a Lorentz orthonormal basis of Rn and furthermore, the

first m vectors form a basis of V . If I let A be the n× n matrix whose columns are w1, . . . , wn, then

by Corollary 3.4 A is lorentzian and furthermore, A(Rm) = V as the image under A of Rm is precisely

the linear combinations of w1, . . . , wm, our basis for V . As A(e1) = w1, A is also positive as e1 is a

positive time-like vector. �

Theorem 3.11 Let x, y be positive (negative, respectively) time-like vectors in Rn. Then x ◦ y ≤
||x|| ||y|| with equality if and only if y and y are linearly dependant.

Proof. By the preceding theorem there is a positive, lorentz matrix A such that Ax = te1 for t > 0.

A preserves lorentzian inner products, and so I can replace x with Ax and y with Ay. Thus, assume

without loss of generality that x = x1e1 (in the case where x is a positive time-like vector). As x, y are

time-like, their norms are positive imaginary, and thus

||x|| ||y|| < 0 (3.1.8)

||x||2||y||2 = −x21
(
−y21 + y22 + . . .+ y2n

)
= x21y

2
1 − x21(y22 + . . .+ y2n)

≤ x21y21 = (x ◦ y)2

with equality if and only if y22 + . . . + y2n = 0, in other words, if y = y1e1 ie. if they are linearly

dependant. But notice that x ◦ y = −x1y1 < 0 because they are both positive time-like vectors. Thus,

from the above calculations, it proves x ◦ y ≤ ||x|| ||y||. �

But Theorem 3.12 now means x◦y
||x|| ||y|| ≥ 1, using (3.1.8). The above ’induces’ a notion of a time-like

angle. There is a unique non-negative number η(x, y) such that

x ◦ y = ||x|| ||y|| cosh η(x, y) (3.1.9)

Definition 3.12 Let x,y be positive (negative, respectively) time-like vectors. The number η defined

in (3.1.9) is called the time-like angle between x, y.

3.2 Hyperbolic n-space

To build a model for hyperbolic n-space, I use the ’sphere’ of unit imaginary radius defined as

Fn =
{
x ∈ Rn+1 : ||x||2 = −1

}
(3.2.1)

But this set is disconnected, as I argued before. It is a hyperboloid of two ’sheets’ defined by the

equation x21 − (x22 + . . .+ x2n+1) = 1. However, we get around this problem by discarding the negative
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sheet, meaning the sheet consisting of negative time-like vectors. I define the hyperboloid Hn as the

positive sheet of Fn. See Figure 2.

Figure 2: The hyperboloid F 2 inside the light cone C2

Definition 3.13 Let x, y be vectors in Hn and let η(x, y) be the lorentzian time-like angle between the

two. The hyperbolic distance between x and y is

dH(x, y) = η(x, y) (3.2.2)

Notice that from (3.1.9) I get −x ◦ y = dH(x, y). To prove that dH truely is a metric on Hn I first

need some results concerning lorentzian cross products.

Let x, y be vectors in R3 and let J be the matrix from Corollary 3.4.

Definition 3.14 . The lorentzian cross product of x, y is defined to be

x⊗ y = J(x× y) (3.2.3)

Observing that

x ◦ (x⊗ y) = x ◦ J(x× y) = x · (x× y) = 0

y ◦ (x⊗ y) = y ◦ J(x× y) = y · (x× y) = 0

I find x⊗ y is lorentz orthogonal to both x and y.

Lemma 2 . If x, y are vectors in R3, then x⊗ y = J(y)× J(x).

Proof. Because J is an orientation reversing orthogonal transformation (it changes the sign of the

first coordinate), I get

J(x× y) = J(y)× J(x)

by means of the right-hand rule for normal cross products. �

From Theorem A.14 on cross products, the following theorem follows using Lemma 2 to translate it

into lorentzian cross products.
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Theorem 3.15 If w, x, y, z are vectors in R3, the following hold

(1) x⊗ y = −y ⊗ x

(2) (x⊗ y) ◦ z =

∣∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣
(3) x⊗ (y ⊗ z) = (x ◦ y)z − (z ◦ x)y

(4) (x⊗ y) ◦ (z ⊗ w) =

∣∣∣∣∣x ◦ w x ◦ z
y ◦ w y ◦ z

∣∣∣∣∣
Corollary 3.16 . If x, y are positive (negative, respectively) time-like vectors in R3, then x ⊗ y is

space-like and ||x⊗ y|| = −||x|| ||y|| sinh η(x, y)

Proof. Obviously x× y is space-like because it is lorentz orthogonal to both x and y, time-like vectors.

From Theorem 3.16 (4) I get

||x× y||2 = (x ◦ y)2 − ||x||2||y||2

= ||x||2||y||2(cosh2 η(x, y)− 1)

= − sinh2 η(x, y)||x||2||y||2

�

Corollary 3.17 . If x, y are space-like vectors in R3, then

(1) |x ◦ y| < ||x|| ||y|| if and only if x⊗ y is time-like

(2) |x ◦ y| > ||x|| ||y|| if and only if x⊗ y is space-like

(3) Equality if and only if x⊗ y is light-like

Proof. Using Theorem 3.16 (4) I get

||x⊗ y||2 = (x ◦ y)2 − ||x||2||y||2

And so, x⊗ y is time-like if and only if ||x⊗ y||2 < 0, proving (1). Likewise, ||x⊗ y||2 > 0 if and only

if x⊗ y is space-like, proving (2). Equality only holds if and only if x⊗ y is light-like. �

Notice how Corollary 3.18 (2) is in opposition with Cauchys inequality concerning the Euclidean inner

product. Now, I am all set.

Theorem 3.18 . The hyperbolic distance function dH is a metric on Hn.

Proof. It is non-negative by the considerations leading up to formula (3.1.9). It is also symmetric as

x ◦ y = y ◦ x. It is non-degenerate by Theorem 3.12. Now to prove the triangle inequality.

Let x, y, z ∈ Hn. Every positive lorentz transformation act on Hn and it obviously preserves dH by

Definition 3.15. This means I am free to transform x, y, z by a such transformation. Now, x, y, z span

a vector subspace of at most 3 dimensions. By Theorem 3.11 I can assume this vector subspace is the
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span of e1, e2 and e3. From Corollary 3.17 I get

||x⊗ y|| = −(−1) sinh η(x, y) = sinh η(x, y) (3.2.4)

||y ⊗ z|| = sinh η(y, z) (3.2.5)

because they all have positive imaginary norms. As y is lorentz orthogonal to both of x⊗ y and y ⊗ z,
then y and (x⊗ y)⊗ (y⊗ z) must be linearly dependant, as they lie in a 1-dimensional vector subspace.

That must mean the latter of the two is either 0 or time-like because y was time-like. From Corollary

3.18 (1) I find

|(x⊗ y) ◦ (y ⊗ z)| < ||x⊗ y|| ||y ⊗ z|| (3.2.6)

with equality as a possibility if the above mentioned is the zero vector. Put together, using Theorem

3.17 (4), it all yields

cosh(η(x, y) + η(y, z)) = cosh η(x, y) cosh η(y, z) + sinh η(x, y) sinh η(y, z)

= cosh η(x, y) cosh η(y, z) + ||x⊗ y|| ||y ⊗ z||

≥ cosh η(x, y) cosh η(y, z) + (x⊗ y) ◦ (y ⊗ z)

= (x ◦ y)(y ◦ z) + (x⊗ y) ◦ (y ⊗ z)

= (x ◦ y)(y ◦ z) + ((x ◦ z)(y ◦ y)− (y ◦ z)(x ◦ y))

= ||y||2(x ◦ z) = −(x ◦ z) = cosh η(x, z)

and as cosh is strictly increasing on the positive, real axis, η(x, z) ≤ η(x, y) + η(y, z). �

Definition 3.19 . Hn together with dH is the metric space called the hyperbolic n-space.

3.3 Hyperbolic Geodesics

Definition 3.20 . A hyperbolic line of Hn is the intersection of Hn with a 2-dimensional, time-like

vector subspace of Rn+1.

For x, y, two time-like vectors with V being the vector subspace they span, L(x, y) = V (x, y) ∩Hn is

the unique hyperbolic line containing the two.

Definition 3.21 . Three points x, y, z of Hn are hyperbolically collinear if and only if there is a

hyperbolic line L containing all three points.

Lemma 3 . If x, y, z are points of Hn and

η(x, z) = η(x, y) + η(y, z)

the three points are hyperbolically collinear.

Proof. Because x, y, z span a time-like vector subspace of Rn+1 of dimension 3 at most, we may

assume n = 2. From the proof of Theorem 3.19 I have

(x⊗ y) ◦ (y ⊗ z) = ||x⊗ y|| ||y ⊗ z||
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and by Corollary 3.18, the vector (x⊗ y)⊗ (y ⊗ z) is light-like. But by Theorem 3.16 (3), I also get

(x⊗ y)⊗ (y ⊗ z) = −((x⊗ y) ◦ z)y

But y was time-like, and so (x⊗ y) ◦ z must be 0. Thus, x, y, z are linearly dependant by 3.17 (2), and

so they lie on a 2-dimensional time-like vector subspace. In turn, they are hyperbolically collinear.�

Definition 3.22 . Two vectors x, y in Rn+1 are lorentz orthonormal if and only if ||x||2 = −1,

x ◦ y = 0 and ||y||2 = 1.

Theorem 3.23 Let α : [a, b]→ Hn be a curve. The following are equivalent:

(1) α is a geodesic curve.

(2) There exists lorentz orthonormal vectors x, y in Rn+1 such that

α(t) = cosh(t− a)x+ sinh(t− a)y

(3) The curve α satisfies α′′ − α = 0.

Proof. The proof is very similiar to that of Theorem 2.5 using the properties of our lorentz inner-

product and hyperbolic distance instead. It is therefore omitted.

Theorem 3.24 . A function λ : R→ Hn is a geodesic line if and only if there are lorentz orthogonal

vectors x, y ∈ Rn+1 such that

λ(t) = cosh(t)x+ sinh(t)y (3.3.1)

Proof. Suppose (3.3.1). Then it will most certainly satisfy λ′′ − λ = 0, and so the restriction of λ

to any interval [a, b] is a geodesic curve by Theorem 3.24. Particularly, we can find neighbourhoods

around every t ∈ R such that λ is distance-preserving on this neighbourhood. On the other hand, if λ

is a geodesic line, by Theorem 3.24 the function satisfies λ′′ − λ = 0, and thus it is a second order

linear differential equation with solution

λ(t) = cosh(t)λ(0) + sinh(t)λ′(0) (3.3.2)

By similar arguments as those in the proof of Theorem 2.5, λ(0) and λ′(0) are lorentz orthonormal. �

Corollary 3.25 . The geodesics of Hn are its hyperbolic lines.

3.4 Space-like and time-like angles

Definition 3.26 . Consider the intersection of Hn with an (m + 1)-dimensional time-like vector

subspace of Rn+1. We call this a hyperbolic m-plane.

A hyperbolic (n− 1)-plane of Hn is called a hyperplane. Notice that, for n = 2 on H2, the hyperplanes

are the hyperbolic 1-planes - the hyperbolic lines. When trying to visualize theorems and results

concerning hyperplanes, this should come to mind.

If x is a space-like vector in Rn+1, then the lorentzian orthogonal complement of the span of x, denoted

〈x〉L, is an n-dimensional time-like vector subspace by Definition 3.10 as contains time-like vectors.

That means P = 〈x〉L ∩Hn is a hyperplane. We call this the hyperplane lorentz orthogonal to x.
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Theorem 3.27 . Assume x, y to be linearly independent, space-like vectors in Rn+1. Then the

following are equivalent

(1) |x ◦ y| < ||x|| ||y||

(2) The vector subspace V spanned by x, y is space-like.

(3) P and Q, the hyperplanes of Hn lorentz orthogonal to x and y respectively, intersect.

Proof. Omitted. Very similar considerations follow in the proofs of the next few theorems. �

However, the above induces an idea of some sort of angle between two linearly independent, space-like

vectors whose span is a space-like vector subspace. By the above theorem, there is some unique real

number η(x, y) between 0 and π such that

x ◦ y = ||x|| ||y|| cos η(x, y) (3.4.1)

Definition 3.28 . The number η(x, y) from (3.4.1) is defined to be the lorentzian space-like angle

between space-like vectors.

If I let λ, µ : R→ Hn be geodesic lines satisfying the condition λ(0) = µ(0) (meaning, visually, that

they intersect at a point where both lines bend on Hn), then λ′(0) and µ′(0) span a space-like vector

subspace of Rn+1, seeing as how λ′(0) and µ′(0) are lorentz orthogonal to λ(0) and µ(0) respectively,

and these last two vectors are time-like.

That means I can define the hyperbolic angle between λ and µ to be the lorentzian space-like angle

between λ′(0) and µ′(0) in the space-like vector subspace.

Definition 3.29 If P is a hyperplane of Hn and λ : R→ Hn is a geodesic line with λ(0) in P (or

lies on P, in the case where P is but a geodesic line), then the hyperbolic line L = λ(R) is said to be

lorentz orthogonal to P if and only if P is the hyperplane of Hn lorentz orthogonal to λ′(0).

Theorem 3.30 . Assume x, y to be linearly independent, space-like vectors in Rn+1. Then the

following are equivalent

(1) |x ◦ y| > ||x|| ||y||

(2) The vector subspace V spanned by x, y is time-like.

(3) P and Q, the hyperplanes of Hn lorentz orthogonal to x and y respectively, are disjoint and have

a common Lorentz orthogonal hyperbolic line.

Proof. Every vector in V , except the scalar multiples of x, are scalar multiples of an element of the

form tx+ y, t ∈ R. But notice that

||tx+ y||2 = t2||x||2 + 2t(x ◦ y) + ||y||2 (3.4.2)

a quadratic polynomial in t. Its discriminant is 4(x ◦ y)2 − 4||x||2||y||2 and so (3.4.2) takes on negative

values (meaning the vector tx + y is time-like) if and only if the discriminant is positive. In other

words, if and only if |x ◦ y| > ||x|| ||y||. Thus, (1) and (2) are equivalent.
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Assume (2) holds. Then V L is space-like. Because V L = 〈x〉L∩〈y〉L, P = 〈x〉L∩Hn and Q = 〈y〉L∩Hn,

then P ∩Q must be empty, because otherwise it would imply for some z ∈ P ∩Q that z ∈ V L meaning

it is space-like, contradicting z ∈ Hn.

Observe that N = V ∩Hn is a hyperbolic line and that V ∩ 〈x〉L is clearly a 1-dimensional subspace of

Rn+1 as V is spanned by x and y. Also keep in mind that P ∩N = V ∩ 〈x〉L ∩Hn.

For a vector in V ∩ 〈x〉L I get that the solution to the equation

(tx+ y) ◦ x = 0

is uniquely given as t = − x◦y
||x||2 . And furthermore, for this chosen t, I get

||tx+ y||2 =
(−x ◦ y)2

(||x||2)2
||x||2 + 2 · −x ◦ y

||x||2
(x ◦ y) + ||y||2

= −(x ◦ y)2

||x||2
+ ||y||2

< −||y||2 + ||y||2 = 0

where the last inequality follows from the equivalence of (1) and (2). Thus, V ∩ 〈x〉L is time-like. But

this must mean that P ∩N is non-empty, and so it must consist of a single point. Likewise for Q ∩N .

Consider the point

u =
−(x ◦ y)(x/||x||) + ||x||y
±
√

(x ◦ y)2 − ||x||2||y||2
(3.4.3)

where the sign is chosen accordingly such that u is a positive time-like vector. I will check that

u satisfies being the only point of P ∩ N . Clearly u ∈ V as it is a linear combination of x and y.

Furthermore;

u ◦ x =
1

±
√

(x ◦ y)2 − ||x||2||y||2

(
−(x ◦ y) ||x||2

||x||
+ ||x|| y ◦ x

)
= 0

meaning u ∈ 〈x〉L, and clearly ||u||2 = −1. Thus, u ∈ V ∩ 〈x〉L ∩Hn as desired. Likewise, the single

point v of Q ∩N is

v =
||y||x− (x ◦ y)(y/||y||)
±
√

(x ◦ y)2 − ||x||2||y||2
(3.4.4)

Let λ : R → Hn be the geodesic line such that λ(0) = u and λ(R) = N , a choice that makes sense

because of Corollary 3.26. Because λ′(0) and x both are lorentz orthogonal to u in V, then seeing as V

is a two-dimensional subspace, λ′(0) must be a scalar multiple of x. But as P was the hyperplane

lorentz orthogonal to x, P is the hyperplane lorentz orthogonal to λ′(0). Thus, N is lorentz orthogonal

to P, and the same goes for Q. All in all, (2) ⇒ (3).

Assuming (3) holds let N be the common lorentz orthogonal hyperbolic line to P and Q. Then there

is a 2-dimensional vector subspace W of Rn+1 such that N = W ∩Hn. But obviously, x ∈ W and

y ∈W by definition. As they are linearly independent, W = V , and so V is time-like. �

Notice how, in the above theorem, we see that N , the common hyperbolic line of two disjoint

hyperplanes, is uniquely determined. Moreover, if x, y are the space-like vectors lorentz orthogonal to

the disjoint hyperplanes, x and y are tangent vectors of N .
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And again, if x and y are space-like vectors in Rn+1 whose span is a time-like vector subspace, then by

Theorem 3.31 there is a unique real positive number η(x, y) s.t

|x ◦ y| = ||x|| ||y|| cosh η(x, y) (3.4.5)

Definition 3.31 . The number η(x, y) given in (3.4.5) is defined to be the time-like angle between

space-like vectors.

How should this ’angle’ be interpreted? One can show that if x and y truely span a time-like vector

subspace, with hyperplanes P,Q lorentz orthogonal to x and y respectively, then η(x, y) is the hyperbolic

distance from P to Q measured along the hyperbolic line N . I will not prove this, as I will prove

something very similar in a few moments.

If x is a space-like vector and y a positive time-like vector in Rn+1, then there is a unique nonnegative

real number η(x, y) so that the following holds

|x ◦ y| = ||x|| |||y||| sinh η(x, y) (3.4.6)

Definition 3.32 . For a space-like vector x and a positive time-like vector y, the number η(x, y) from

(3.4.6) is called the Lorentzian time-like angle between x and y.

And this angle is interpreted in a very similar way as the above. But first, a small lemma.

Lemma 4 Let y be a point of Hn, and P a hyperplane of Hn. Then there is a unique hyperbolic line

N of Hn passing through y and lorentz orthogonal to P.

Proof. I can let x be a space-like vector lorentz orthogonal to P and let V be the subspace spanned

by x and our vector y. Without loss of generality, I can in fact assume x to be a unit vector. Then

N = V ∩Hn is obviously a hyperbolic line, and it passes through y. Using again that the vectors in V ,

except the scalar multiples of x, are scalar multiples of tx+ y, I get

(tx+ y) ◦ x = 0

which has the unique solution t = −x ◦ y because ||x||2 = 1 just as in the proof of Theorem 3.32. From

(3.4.4) the point w given as

w =
−(x ◦ y)x+ y

±
√

(x ◦ y)2 + 1

is the single point of P ∩N . We see that w ◦ x = 0, x ◦ x = 1 by assumption and

w ◦ w =
1

(x ◦ y)2 + 1

(
−(x ◦ y)2 − 1

)
= −1

meaning that w, x are lorentz orthonormal vectors. Thus, by Theorem 3.26, I get

λ(t) = cosh(t)w ± sinh(t)x

and I see λ′(0) = ±x. But this means by Definition 3.31 that N is Lorentz orthogonal to P , and

this proves the existence of a such hyperbolic line. Supposing N is a hyperbolic line passing through
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y and Lorentz orthogonal to P , let λ : R → Hn be a hyperbolic line such that λ(R) = N and λ(0)

is in P , which is a fair assumption by Corollary 3.27. But then λ′(0) is Lorentz orthogonal to P ,

meaning λ′(0) = ±x by assumption of x. If W is a 2-dimensional time-like vector subspace such that

N = W ∩Hn, then because both x and y are are in W , W = V , showing N is uniquely determined. �

Theorem 3.33 . Let x be a space-like vector and y a positive time-like vector in Rn+1. Let P be

the hyperplane of Hn that is lorentz orthogonal to x. Then the angle η(x, y) is in fact the hyperbolic

distance from y/|||y||| in Hn to P measured along the hyperbolic line N passing through y/|||y||| lorentz

orthogonal to P. Furthermore, x ◦ y < 0 if and only if x and y are on ’opposite sides’ og the hyperplane

of Rn+1 spanned by P.

Proof. Notice how the existence of line N as described in the theorem is a consequence of the preceding

lemma. Just like in the proof of Theorem 3.32, the single point of P ∩N is

u =
−(x ◦ y)(x/||x||) + ||x||y
±
√

(x ◦ y)2 − ||x||2||y||2
(3.4.7)

letting v = y/|||y|||, I have that the distance in question is

cosh dH(u, v) = −u ◦ v

=

√
(x ◦ y)2 − ||x||2||y||2

||x|| ||y||

=

√
sinh2 η(x, y) + 1

= cosh η(x, y)

showing the first part of the theorem. Furthermore, for the calculation above to hold, the sign of u

must be +. Going back to (3.4.7) with the plus-sign, I now see that u lies ’in between’ x and y in the

2-dimensional subspace V spanned by x and y - which means that the two vectors are on opposite

sides of the hyperplane spanned by P - if and only if −x ◦ y is positive, ie. if and only if x ◦ y < 0. �
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Inversive geometry

In this chapter, I will study the group of transformations of En generated by reflections in hyperplanes

and spheres, the latter of which I call inversions. Because it turns out that this group is in fact

isomorphic to the group of isometries of Hn+1, leading to a deeper understanding of hyperbolic

geometry.

4.1 Reflections and Inversions

Letting a be a unit vector in En and t a real number I can consider the hyperplane of En that is

defined in the following way

P (a, t) = {x ∈ En : a · x = t}

and I notice that every point x in P (a, t) satisfies the equation

a · (x− ta) = 0

and so, P (a, t) can be thought of as the hyperplane with unit normal a passing through the point ta.

Notice how I no longer require a hyperplane to be a subspace, as t 6= 0 means 0 /∈ P (a, t). I now define

the reflection ρ of En in the plane P (a, t) given by the formula

ρ(x) = x+ 2(t− a · x)a (4.1.1)

Theorem 4.1 If ρ is the reflection of En in P (a, t), the following holds

(1) ρ(x) = x if and only if x ∈ P (a, t)

(2) ρ(ρ((x)) = x for all x ∈ En

(3) ρ is a homeomorphism

(4) ρ is an isometry

Proof. (1): Let ρ(x) = x, which happens if and only if x = x+ 2(t− a)a by (4.1.1), and this happens

if and only if (t− a · x) = 0. As a 6= 0, this again happens if and only if a · x = t, meaning x ∈ P (a, t).

The following calculations prove (2);

ρ(ρ(x)) = x+ 2(t− a · x)a+ 2(t− a · (a+ 2(t− a · x)a))a

= x+ 2(t− a · x)a+ 2(t− a · x− 2(t− a · x))a

= x+ a(4(t− a · x)− 4(t− a · x)) = x

And lastly, ρ is distance preserving because

|ρ(x)− ρ(y)| = |x− y + a(2(t− a · x)− 2(t− a · y))|

= |x− y + a(2(a · y − a · x))| = |x− y − 2a(a · (x− y))|

= |x− y − 2(x− y)| = | − (x− y)| = |x− y|
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Figure 3: The reflection of ek, first by φk−1 and then ρk

as ρ is its own inverse, it is also bijective. Thus, it is an isometry. As ρ is continuous, it is a

homeomorphism. �

Theorem 4.2 Every isometry of En is a composition of at most n+ 1 reflections in hyperplanes.

Proof. Letting φ : En → En be an isometry I will set v0 = φ(0). Let ρ0 be the identity if v0 = 0. If

not, let it be the reflection in the plane P (v0/|v0|, |v0|/2), because in that case

ρ0(v0) = v0 + 2(|v0|/2− v0/|v0| · v0)v0/|v0|

= v0 + 2(−|v0|/2)v0/|v0|

= v0 − v0 = 0

In any case, ρ0(v0) = 0, and so ρ0(φ(0)) = 0. By Theorem A.8, the function φ0 = ρ0φ is an orthogonal

transformation.

Now supposing that φk−1 is an orthogonal transformation of En that fixes e1, . . . , ek−1. Letting

vk = φk−1(ek)− ek and ρk be the identity if vk = 0 or the reflection in the plane P (vk/|vk|, 0) otherwise,

then ρkφk−1 fixes ek as is shown on Figure 3. Furthermore, for every j = 1, . . . , k − 1, using that φ is

an orthogonal transformation fixing each of the basisvectors ej , I get

vk · ej = (φk−1(ek)− ek) · ej

= φk−1(ek) · ej

= φk−1(ek) · φk−1(ej)

= ek · ej = 0

and so ej is in the plane P (vk/|vk|, 0) for each j, meaning ρk fixes them. Thus φk = ρkφk−1 fixes

e1, . . . , ek and by induction there are mappings ρ0, . . . , ρn such that each φi is either the identity or

a reflection and ρn . . . ρ0φ fixes 0, e1, . . . , en. But that must mean, by considerations of basises, that

ρn . . . ρ0φ is the identity and so φ = ρ0 . . . ρn, meaning φ is a composition of at most n+ 1 reflections.

�

Letting a be a point of En and r a positive real number, the sphere of En of radius r centered at a is

defined in the usual way

S(a, r) = {x ∈ En : |x− a| = r}
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The reflection (or inversion) σ of En in the sphere S(a, r) is given by

σ(x) = a+

(
r

|x− a|

)2

(x− a) (4.1.2)

Theorem 4.3 If σ is the reflection of En in the sphere S(a, r), then

(1) σ(x) = x if and only if x is in S(a, r)

(2) σ(σ(x)) = x for all x 6= a and

(3) for all x, y 6= a

|σ(x)− σ(y)| = r2|x− y|
|x− a| |y − a|

(4) σ is a homeomorphism

Proof. For (1), because of formula (4.1.2) I get

|σ(x)− a| |x− a| = r2

meaning that σ(x) = x if and only if |x− a| = r.

To prove (2), observe how

σ(σ(x)) = a+

(
r

|σ(x)− a|

)2

(σ(x)− a)

= a+

(
|x− a|
r

)2( r

|x− a|

)2

(x− a)

= x

Lastly, to prove (3) I use

|σ(x)− σ(y)| = r2
∣∣∣∣ (x− a)

|x− a|2
− (y − a)

|y − a|2

∣∣∣∣
= r2

[
1

|x− a|2
− 2(x− a) · (y − a)

|x− a|2 |y − a|2
+

1

|y − a|2

]1/2
=

r2|x− y|
|x− a| |y − a|

As σ is continuous, by (2) it is a homeomorphism. �

Theorem 4.4 Every reflection of En in a hyperplane or a sphere is conformal and reverses orientation.

Proof. If ρ is the reflection of En in P (a, t) then straightforward calculations of its derivate show that

ρ(x) = x+ 2(t− a · x)a

ρ′(x) = I − 2A

where A is the matrix (aiaj), ie. the matrix where the i, j’th entrance is the product of ai and aj . By

definition of conformality (see Section A.6), it only comes down to ρ′(x). As this is independent of
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t, I may assume that t = 0. And I can go even further. By Theorem A.13, there is an orthogonal

transformation φ such that φ(a) = e1. Consider φρφ−1(x). Using the chain rule, I get

det(φρφ−1)′(x) = det ρ′(x)

because φ and φ−1 are each others inverse. But using that φ is linear and preserves inner products I

get

φρφ−1(x) = φ(φ−1(x)− 2(a · φ−1(x))a) = x− 2(a · φ−1(x))e1

= x− 2(φ(a) · x)e1 = x− 2(e1 · x)e1

and so φρφ−1 is in fact the reflection in P (e1, 0). Going forward, I may thus assume that a = e1. But

then ρ is orthogonal because

ρ(x) · ρ(y) = x · y − 2(a · x)(a · y) + 4(a · x)(a · y)|a|2 − 2(a · y)(a · x)

= x · y

as |a|2 = |e1|2 = 1. Thus I − 2A is an orthogonal matrix, and ρ is conformal.

Furthermore, as a = e1, the matrix I − 2A is in fact the matrix J which was first introduced in

Corollary 3.4. And so

det ρ′(x) = det(I − 2A) = −1

which means ρ reverses orientation by Definition A.15.

The case where ρ is the reflection in a sphere S(a, r) follows similarly. �

4.2 Stereographic Projection

Identifying En with En × {0} in En+1, then the stereographic projection π of En onto Sn − en+1 is

defined by projecting x ∈ En in towards en+1 until it meets the sphere Sn in the uniquely given point

π(x), see Figure 4.

Figure 4: Stereographic projection of the sphere E2 onto S2 in E3
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As π(x) is on the line passing through x in the direction of en+1 − x, there must be some scalar s such

that

π(x) = x+ s(en+1 − x)

However, the condition that |π(x)|2 = 1 means that s has the following value

s =
|x|2 − 1

|x|2 + 1

leading to the explicit formula for the projection

π(x) =

(
2x1

1 + |x|2
, . . . ,

2xn
1 + |x|2

,
|x|2 − 1

|x|2 + 1

)
(4.2.1)

As |π(x)|2 = 1 it does indeed map onto Sn − en+1, and it is clear, by looking at the coordinates of the

function, that it is both surjective and injective, thus a bijection of En onto Sn − en+1.

There is a nice interpretation of stereographic projection in terms of inversion in spheres as explained

in section 4.1. Letting σ be the reflection of En+1 in the sphere S(en+1,
√

2), by (4.1.2) I get

σ(x) = en+1 +
2(x− en+1)

|x− en+1|2
(4.2.2)

and if x ∈ En, then because en+1 is linearly independent from x, I get |x− en+1|2 = 1 + |x|2, leading to

σ(x) = en+1 +
2

1 + |x|2
(x1, . . . , xn,−1)

=

(
2x1

1 + |x|2
, . . . ,

2xn
1 + |x|2

,
|x|2 − 1

|x|2 + 1

)
and thus, the restriction of σ to En is precisely stereographic projection

π : En → Sn − en+1

and because σ is its own inverse by Theorem 4.3, we can compute the inverse of π from (4.2.2). Let

y ∈ Sn − en+1. Using that |y| = 1

σ(y) = en+1 +
2(y − en+1)

|y|2 − 2y · en+1 + 1

= en+1 +
1

1− yn+1
(y1, . . . , yn, yn+1 − 1)

=

(
y1

1− yn+1
, . . . ,

yn
1− yn+1

, 0

)
and thus, π−1(y) =

(
y1

1−yn−1
, . . . , yn

1−yn+1

)
.

I now define Ên = En∪{∞} where ∞ is a point not in En+1. This means I can extend π to a bijection

π̂ : Ên → Sn by setting π̂(∞) = en+1 and defining a metric d on Ên by the formula

d(x, y) = |π̂(x)− π̂(y)| (4.2.3)

and this is clearly a metric by means of the usual Euclidean metric. I will call this the chordal metric

on Ên. By definition, the map π̂ is an isometry from Ên, with the chordal metric, onto Sn with the

Euclidean metric. This means that the metric topology on En that is determined by this chordal

metric is the same as the Euclidean topology, seeing as π maps En homeomorphically onto the open

subset Sn − en+1. The metric space Ên is compact because it is obtained from En by ’adding’ a point

at infinity, and because π homeomorphism. All of this leads to the theorem
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Theorem 4.5 Ên is the one-point compactification of En.

The next theorem shows some properties of the chordal metric which will be useful when I introduce

the cross-ratio in a bit.

Theorem 4.6 If x, y are in En, then

(1) d(x,∞) = 2
(1+|x|2)1/2

(2) d(x, y) = 2|x−y|
(1+|x|2)1/2(1+|y|2)1/2

Proof. For (1), straight-forward calculation shows

d(x, y) = |π̂(x)− π̂(∞)| = |π(x)− en+1|

=

∣∣∣∣ ( 2x1
1 + |x|2

, . . . ,
2xn

1 + |x|2
,
|x|2 − 1

|x|2 + 1
− 1

) ∣∣∣∣
=

∣∣∣∣ ( 2x1
1 + |x|2

, . . . ,
2xn

1 + |x|2
,
−2

1 + |x|2

) ∣∣∣∣
=

2

1 + |x|2
|(x1, . . . , xn,−1)| = 2

1 + |x|2
(1 + |x|2)1/2

=
2

(1 + |x|2)1/2

Using Theorem 4.3, (2) follows easily

d(x, y) =
2|x− y|

|x− en+1| |y − en+1|

=
2|x− y|

(1 + |x|2)1/2(1 + |y|2)1/2

�

But by the preceding theorem, I will explain why continuity of functions f : Ên → Ên behave very

well. Because of Theorem 4.6, the distance d(x,∞) depends solely on |x|. Consequently, the open

balls around ∞, the balls Bd(∞, r) where d denotes the chordal metric, is of the form

Ên −B(0, s) (4.2.4)

for some s > 0. This means that a basis for the topology on Ên consists of all open balls B(x, r) in

the usual Euclidean sense along with neighbourhoods of the form (4.2.4).

This particularly implies that a function f : Ên → Ên is continuous at a point a of Ên if and only if

limx→a f(x) = f(a) in the Euclidean sense.

Let P (a, t) be a hyperplane in En. This leads to the following definition.

Definition 4.7 An extended hyperplane in Ên is given as

P̂ (a, t) = P (a, t) ∪ {∞}

Topologically, we can think of these extended hyperplanes as spheres of lesser dimensions, as shown in

the next theorem.
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Theorem 4.8 Let P (a, t) be a hyperplane in En. Then P̂ (a, t) is homeomorphic to Sn−1.

Proof. Using the translation τ−ta on P (a, t), the resulting τ−ta(P (a, t)) is an (n − 1)-dimensional

vector subspace. A translation is obviously also a homeomorphism. By Theorem A.13 there is an

orthogonal transformation φ such that φ(τ−ta(P (a, t))) = En−1. I notice φ is a homeomorphism. By the

considerations on continuity following Theorem 4.6, I can extend both τ−ta and φ to homeomorphisms

τ̂−ta and φ̂ of Ên, both mapping ∞ to itself and equal to its ’original’ otherwise. Thus, P̂ (a, t) is

homeomorphic to Ên−1, and because the latter of the two is homeomorphic to Sn−1, this finishes the

proof because the composition of homeomorphisms is clearly a homeomorphism. �

Letting ρ be the reflection of En in P (a, t), I can also extend this reflection to ρ̂ : Ên → Ên by setting

ρ̂(∞) =∞. This shows that ρ̂(x) = x for all x ∈ P̂ (a, t) and that ρ̂(ρ̂(x)) is the identity, as desired.

This map ρ̂ is called the reflection of Ên in the extended hyperplane.

Theorem 4.9 Every reflection of Ên in an extended hyperplane is a homeomorphism.

Proof. Letting ρ be the reflection of En in a hyperplane, then ρ is continuous as can be seen in

formula (4.1.1). From this same formula it is clear that limx→∞ ρ(x) =∞, and thus ρ̂ is continuous at

∞ and therefore a continuous function. It is its own inverse, finishing the proof. �

Let σ be the reflection of En in S(a, r), a Euclidean sphere. We can also extend σ to a map σ̂ : Ên → Ên

by setting σ̂(a) =∞ and σ̂(∞) = a. Then it too satisfies σ̂(x) = x for all x ∈ S(a, r) and σ̂(σ̂(x)) is

the identity. We call this the reflection of Ên in the sphere S(a, r).

Theorem 4.10 Every reflection of Ên in a sphere of En is a homeomorphism.

Proof. Because limx→∞ σ(x) = a and limx→a σ(x) =∞, from formula 4.1.2, the same arguments as

in the proof of Theorem 4.9 applies here. �

Cross Ratio

Letting u, v, x, y be points of Ên such that u 6= v and x 6= y. The cross ratio of these points is defined

to be the real number

[u, v, x, y] =
d(u, x)d(v, y)

d(u, v)d(x, y)
(4.2.5)

The next theorem follows trivially from Theorem 4.6.

Theorem 4.11 If u, v, x, y ∈ Ên such that u 6= v, x 6= y, then

(1) [u, v, x, y] = |u−x |v−y|
|u−v| |x−y|

(2) [∞, v, x, y] = |v−y|
|x−y|

(3) [u,∞, x, y] = |u−x|
|x−y|

(4) [u, v,∞, y] = |v−y|
|u−v|

(5) [u, v, x,∞] = |u−x|
|u−v|
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4.3 Möbius Transformations

By Theorem 4.7, a (topological) sphere Σ of Ên is either a Euclidean sphere or an extended hyperplane

P̂ (a, t).

Definition 4.12 A Möbius transformation of Ên is a finite composition of reflections of Ên in spheres.

We can consider M(Ên) as the set of all Möbius transformations of Ên, and it obviously forms a group

under composition. By Theorem 4.2, every isometry of En extends to a Möbius transformation of Ên.

Furthermore, for a positive constant k > 0, consider the function µk : Ên → Ên given as µk(x) = kx.

Then this is in fact a Möbius transformation, as it is just the composition of first a reflection in S(0, 1)

and then a reflection in S(0,
√
k). As can be seen in Theorem A.10, every similiarity of En is the

composite of first an isometry (namely an orthogonal transformation) and then µk(x), and lastly a

translation, another isometry. Thus, every similarity of En extends to a Möbius transformation of Ên.

Lemma 5 If σ is the reflection of Ên in the sphere S(a, r), σ1 is the reflection in S(0, 1) and

φ : Ên → Ên a function given as φ(x) = a+ rx, then σ = φσ1φ
−1

Proof.

φσ1φ
−1(x) = φσ1

(
x− a
r

)
= φ

(
r

|x− a|2
(x− a)

)
= a+

r2(x− a)

|x− a|2

= σ(x)

�

Notice how, in the lemma above, φ is in particular a similarity.

Theorem 4.13 A function φ : Ên → Ên is a Möbius transformation if and only if it preserves cross

ratios.

Proof. Because reflections in hyperplanes are isometries, this case is already covered, as seen in (4.2.5).

As φ is a Möbius transformation, it is the composition of reflections, and so I may assume that φ itself

is a reflection. A Euclidean similarity obviously preserves cross ratios, as they merely scale distances.

Thus, by Lemma 5, I can assume that φ(x) is just the reflection in the sphere S(0, 1), ie. φ(x) = x
|x|2 .

By Theorem 4.3 I then have

|φ(x)− φ(y)| = |x− y|
|x| |y|

and by Theorem 4.11 it now clearly follows that

[φ(u), φ(v), φ(x), φ(y)] = [u, v, x, y]

if all u, v, x, y are finite and non-zero. The other cases, ie. if one of them is ∞, follows by continuity of

φ. Thus φ preserves cross ratios.

If I assume that φ does preserve cross ratios, I want to show that it is a Möbius transformation.

Because of that, I can compose φ with another Möbius transformation, particularly one that fixes ∞.
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Thus, I can assume without loss of generality that φ(∞) =∞. Let u, v, x, y be points of En such that

u 6= v, x 6= y and (u, v) 6= (x, y), meaning that either u 6= x or v 6= y. The most important is that

x 6= y, u and v are just chosen accordingly to serve our purpose (and clearly, it can be done).

Assume first that u 6= x. Because φ preserves cross ratios and φ(∞) =∞, I get by Theorem 4.11 that

|φ(u)− φ(x)

|φ(x)− φ(y)
=
|u− x|
|x− y|

as well as
|φ(u)− φ(x)

|φ(u)− φ(v)
=
|u− x|
|u− v|

But combining these two I get

|φ(u)− φ(v)|
|u− v|

=
|φ(u)− φ(x)|
|u− x|

=
|φ(x)− φ(y)|
|x− y|

and likewise if v 6= y
|φ(u)− φ(v)|
|u− v|

=
|φ(x)− φ(y)|
|x− y|

But looking at the above, this means that for all x, y there is some positive constant k such that

k|φ(x)− φ(y)| = |x− y|, and by Definition A.9, φ is a similarity. As every similarity of En extends to

a Möbius transformation, the proof is finished. �

The above proof gives a very useful corollary about precise conditions for a Möbius transformation to

be a similarity.

Corollary 4.14 A Möbius transformation φ of Ên fixes ∞ if and only if φ is a similarity of En.

The Isometric Sphere

Consider a Möbius transformation φ of Ên that does not fix ∞, and let a = φ−1(∞). If σ is the

reflection in the sphere S(a, r), then φσ(∞) = φ(a) =∞, and by Corollary 4.14, φσ is a similarity. That

means, by Theorem A.10, that there is some b of En, a scalar k > 0 and an orthogonal transformation

A of En such that

φ(x) = b+ kAσ(x)

Supposing that x, y ∈ S(a, t) for some t. Using Theorem 4.3, then

|φ(x)− φ(y)| = kr2|x− y|
t2

= |x− y|

where the last equality holds if and only if t = r
√
k. But this means φ acts as an isometry on S(a, r

√
k),

and this sphere is unique with this property. We call the sphere, S(a, r
√
k), the isometric sphere of φ.

Theorem 4.15 Let φ be a Möbius transformation of Ên with φ(∞) 6= ∞. Then there is a unique

reflection σ in a Euclidean sphere Σ and a unique Euclidean isometry ψ such that φ = ψσ. Moreover,

Σ is the isometric sphere of φ.
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Proof. Let σ be the reflection in the isometric sphere S(a, r) of φ. Then a = φ−1(∞) and because

φσ(∞) =∞, by Corollary 4.14 I see that φσ is a Euclidean Similarity. If x, y ∈ S(a, r) I then have

|φσ(x)− φσ(y)| = |φ(x)− φ(y)| = |x− y|

and so ψ = φσ preserves distances for x, y ∈ S(a, r), but because it is a Euclidean similarity, it does so

for all x, y ∈ En. Thus ψ is a Euclidean isometry. As σ is its own inverse, I have φ = ψσ.

On the other hand, if σ is a reflection in a sphere S(a, r) and ψ satisfies the above, then φ(a) =∞ and

φ acts as an isometry on S(a, r). That must mean S(a, r) is the isometric sphere of φ. Thus σ and ψ

are both unique, the latter because ψ = φσ. �

Preservation of Spheres

This short subsection deals with the question; let φ be a Möbius transformation of Ên. Does φ map

spheres of Ên to other spheres? To answer this question, and elaborate on it, I first remind myself

that the equation defining a sphere S(a, r) and an extended hyperplane P̂ (a, t) in Ên is, respectively

|x|2 − 2a · x+ |a|2 − r2 = 0

−2a · x+ 2t = 0

I now introduce a common form in which these can be written. I call a vector (a0, . . . , an+1) a coefficient

vector of Rn+2. Both of the above can be written in the form

a0|x|2 − 2a · x+ an+1 = 0, |a|2 > a0an+1 (4.3.1)

where, in the first case, a0 = 1 and an+1 = |a|2 − r2 with a = (a1, . . . , an). Thus, it satisfies the

condition |a|2 > a0an+1. Likewise in the second case with a0 = 0 and an + 1 = 2t. Conversely, any

such coefficient vector where |a|2 > a0an+1 and a = (a1, . . . an) determines a sphere Σ of Ên satisfying

(4.2.6). If a 6= 0 then it is the sphere

Σ = S

(
a

a0
,
(|a|2 − a0an+1)

1/2

|a0|

)
because for every x ∈ Σ, I have ∣∣x− a

a0

∣∣2 =
|a|2 − a0an+1

|a0|2

⇔ |x|2 +
|a|2

a20
− 2

a0
x · a =

|a|2 − a0an+1

a20

⇔ a0|x|2 − 2x · a+ an+1 = 0

Likewise, if a0 = 0 then it is the sphere

Σ = P̂

(
a

|a|
,
an+1

2|a|

)
The coefficient vector for Σ is in either case uniquely determined up to a multiplication by a nonzero

scalar.
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Theorem 4.16 Let φ be a Möbius Transformation of Ên. If Σ is a sphere of Ên, so too is φ(Σ).

Proof. I may assume that φ is a reflection. Let Σ be a sphere of Ên. Obviously a Euclidean similarity

maps spheres to other spheres, and so I may just assume by Lemma 5 that φ(x) = x
|x|2 , meaning φ is

the reflection in S(0, 1). Letting (a0, . . . , an+1) be a coefficient vector for Σ, then Σ satisfies (4.3.1).

But then for y = φ(x), I get that y satisfies

a0 − 2a · y + an+1|y|2 = 0

and this is just the equation of another sphere Σ′ of Ên. And so φ maps Σ to Σ′. A similar argument

shows that φ maps Σ′ to Σ. And so, φ(Σ) = Σ′, another sphere. �

The following two theorems will prove equally useful.

Theorem 4.17 The natural action of M(Ên) on the set of spheres of Ên is transitive.

Proof. Letting Σ be a such sphere, it suffices to show that ∃φ ∈ M(Ên) such that φ(Σ) = Ên−1.

Because φ is a Möbius transformation, a composition of reflections, φ has a continuous inverse

φ−1 ∈M(Ên), and so φ−1(Ên−1) = Σ. Because Σ was arbitrary, the sphere Ên−1 serves as my x from

Theorem A.12 on transitivity of a group acting on a set.

The group of Euclidean isometries, I(En), acts transitively on the set of hyperplanes of En. This is

shown in the following way. Every hyperplane P (a, t) of the form ta+W for some (n− 1)-dimensional

subspace W , a vector a ∈ En and t ∈ R. Picking any other hyperplane, on the form b + V for an

(n− 1)-dimensional subspace V , then by Corollary A.6 and Theorem A.13 there is some orthogonal

matrix A such that A(V ) = W . Letting φ : En → En by

φ(x) = (ta−Ab) +Ax

then φ is also an isometry because it is the composition of a translation and an orthogonal transformation.

But I get

φ(b+ V ) = ta+W

And so, if Σ is of the form P̂ (a, t) then I am done because by Theorem 4.2 every isometry is in

particular a Möbius transformation. Thus I assume that Σ is a Euclidean sphere. However, the group

of similarities of En, S(En), clearly act transitively on the set of Euclidean spheres of En. This follows

directly from Theorem A.10, because for all such spheres S(a, r) there is a similarity φ(x) = a+ rAx

for a suitable orthogonal matrix A such that

φ(S(0, 1)) = S(a, r)

And so I may assume that Σ = Sn−1. Letting σ be the reflection in the sphere S(en,
√

2), then from

stereographic projection in section 4.2 I get that σ(Sn−1) = Ên−1, and so I am done. �

Theorem 4.18 If φ is a Möbius transformation of Ên that fixes each point of a sphere Σ of Ên, then

φ is either the identity or the reflection in Σ.
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Assume first Σ = Ên−1. Then φ(∞) =∞, and by Corollary 4.14, φ is a similarity. As 0 and e1 both

lie in Σ, then φ(0) = 0 and φ(e1) = e1. Consequently, φ is a similarity with scale factor k = 1 because

|φ(e1)− φ(0)| = |e1 − 0|

and because φ(0) = 0, by Theorem A.10, φ is an orthogonal transformation.

Because it fixes e1, . . . , en−1, the only way its determinant is ±1 is if φ(en) = ±en, as φ(ei) for

i = 1, . . . , n are its columns. Thus φ is either the identity or the reflection in P (en, 0), the latter of

which is the reflection in said Ên−1.

If, however, Σ was arbitrary, by the preceding theorem there is a Möbius transformation ψ such that

ψ(Σ) = Ên−1. Thus ψφψ−1 fixes each point of Ên−1 and so ψφψ−1 is either the identity or a reflection

ρ in Ên−1. This means φ is either the identity itself or it is ψ−1φψ. Letting σ be the reflection in said

Σ, then because ψσψ−1 also fixes Ên−1 and it is not the identity (because σ is not), then ψσψ−1 = ρ.

And so

σ = ψ−1ρψ

meaning φ is either the identity or the reflection σ in Σ. �

4.4 Poincaré Extensions

Identifying En−1 with En−1 × {0} in En, a point x of En−1 corresponds uniquely to a point x̃ = (x, 0)

in En. Let φ be a Möbius transformation of Ên−1. I extend this to a Möbius transformation φ̃ of Ên

in the following way.

• If φ is the reflection in P̂ (a, t) in Ên−1, then φ̃ is the reflection in P̂ (ã, t) of Ên.

• If φ is the reflection in S(a, r) of Ên−1, then then φ̃ is the reflection in S(ã, r) in Ên

In either case, by definition of φ̃, I have for all x ∈ En−1

φ̃(x, 0) = (φ(x), 0) (4.4.1)

and so φ̃ does truely extend φ. I now introduce the upper half-space Un as

Un = {x ∈ En : xn > 0}

I will denote the lower half-space of En, where xn < 0, as −Un.

Theorem 4.19 If φ is a Möbius transformation of Ên−1, then φ̃ leaves both Ên−1 and Un invariant

Proof. That φ̃ leaves Ên−1 invariant is clear from its definition and from (4.4.1). Furthermore let

x ∈ Un. If φ̃ is the reflection in P̂ (ã, t), then

φ̃(x) = x+ 2(t− ã · x)ã

but as ãn = 0, it clearly satisfies that
(
φ̃(x)

)
n
> 0. If φ̃ is the reflection in S(ã, r), then

φ̃(x) = ã+

(
r

|x− ã|

)2

(x− ã)
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Notice how |x− ã| 6= 0. But again, as ãn = 0, I have that
(
φ̃(x)

)
n
> 0. �

Let φ be an arbitrary Möbius transformation of Ên−1. Then φ = σ1 · · ·σm, where the dots denote

composition. By the preceding arguments, each of these σi will leave Un invariant, and so φ will as

well. Thus φ can be extended to a Möbius transformation φ̃ of Ên−1 as φ̃ = σ̃1 · · · σ̃m.

Suppose there are two suchs extensions of φ, φ̃1 and φ̃2. Now, for i = 1, 2 I have

φ̃i = (φ(x), 0) ∀x ∈ Ên−1

and as φ is its own inverse, it follows that φ̃1φ̃
−1
2 does in fact fix all x ∈ Ên−1. As it also leaves Un

invariant, it can not be the reflection in the sphere Ên−1, and so by Theorem 4.18 I have that it is the

identity. Thus, φ̃1 = φ̃2. So the extension of φ is unique. I call this the Poincaré extension of φ.

Theorem 4.20 A Möbius transformation φ of Ên leaves Un invariant if and only if φ is the Poincaré

extension of a Möbius transformation of Ên−1.

Proof. Let φ be a such Möbius transformation that leaves Un invariant. As φ is in particular a

homeomorphism, it must imply that φ also leaves the boundary of Un invariant. But the boundary

is precisely Ên−1. As the restriction of a homeomorpism is also a homeomorphism, then φ restricts

to a homeomorphism, φ̄, of Ên−1. Because φ preserves cross ratios, so does φ̄, and so φ̄ is a Möbius

transformation of Ên−1 by Theorem 4.13. Letting ˜̄φ be its Poincaré extension, then ˜̄φφ−1 fixes each

point of Ên−1 but leaves Un invariant. By the arguments made above, φ = ˜̄φ, a Poincaré extension of

a Möbius transformation of Ên−1. The other direction of the proof follows from Theorem 4.19. �

Möbius Transformations of Upper Half-Space

Definition 4.21 A Möbius transformation of Un is a Möbius transformation of Ên that leaves Un

invariant.

Letting M(Un) be the set of such Möbius transformations, then it is a group under composition.

Particularly, it is a subgroup of M(Ên). This corollary follows immediately from the preceding theorem,

and will play an important part later on.

Corollary 4.22 The group M(Un) of Möbius transformations of Un is isomorphic to M(Ên−1).

Proof. By the arguments above, to each φ ∈ M(Ên−1) there is a unique Poincaré extension φ̃, a

Möbius transformation of Ên, that leaves Un invariant. It now follows from Theorem 4.20. �

Definition 4.23 Two spheres Σ and Σ′ of Ên are orthogonal if and only if they intersect in En and

at every point of intersection, their normal lines are orthogonal.

Theorem 4.24 Two spheres of Ên are orthogonal under the following conditions

(1) The spheres P̂ (a, t) and P̂ (b, s) are orthogonal if and only if a and b are orthogonal

(2) The spheres P̂ (b, t) and S(a, r) are orthogonal if and only if a ∈ P (b, s)

(3) The spheres S(a, r) and S(b, s) are orthogonal if and only if r and s satisfy |a− b|2 = r2 + b2

35



Proof. To prove (1), it is clear that if P̂ (a, t) and P̂ (b, s) intersect in Ên then the two hyperplanes

P (a, t) and P (b, s) intersect. These two planes are obviously orthogonal if and only if a and b are

orthogonal.

For (2), if those two spheres intersect in En, that means S(a, r) and P (b, t) intersect. Obviously, these

normal lines at points of intersection are orthogonal if and only if the centre of the circle, a, lies in

P (b, t).

To prove (3), consider the following. At each point of intersection x between the two euclidean spheres,

the normal lines called u and v have got the equations

u = a+ t(x− a)

v = b+ t(x− b)

for some real t. I can assume this t to be the same by means of reparametrization. These lines are

orthogonal if and only if the direction vectors x− a and x− b are orthogonal. Using these calculations

|a− b|2 = |(x− b)− (x− a)|2

= |x− b|2 − 2(x− b) · (x− a) + |x− a|2

= s2 − 2(x− b) · (x− a) + r2

and so x− a and x− b are orthogonal if and only if |a− b|2 = s2 + r2. Going in the other direction,

suppose |a − b|2 = r2 + s2. By Figure 5, then there is a right triangle in En with vertices a, b, x

satisfying the desired.

Figure 5: Two orthogonal circles, S(a, r) and S(b, s)

�

Remark. Notice that from the proof of Theorem 4.24, I see that two spheres of Ên are orthogonal if

and only if they are orthogonal at a single point of intersection in En.

Theorem 4.25 A reflection σ of Ên in a sphere Σ leaves Un invariant if and only if Ên−1 is orthogonal

to Σ.
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Proof. I let Σ be either P̂ (a, t) or S(a, r) where. By Theorem 4.24, Ên−1 and Σ are orthogonal if and

only if an = 0. Because if Σ = P̂ (a, t), then as Ên−1 can be thought of as the extended hyperplane

P̂ (en, 0) in Ên, the two spheres are orthogonal if and only if an = 0 by 4.24 (1). Likewise, if Σ = S(a, r),

then a ∈ Ên−1 if and only if an = 0.

Let x ∈ En and set y = σ(x). For all finite values of y I have

yn =


xn + 2(t− a · x)an if Σ = P̂ (a, t)(

r
|x−a|

)2
xn +

(
1−

(
r
|x−a|

)2)
an if Σ = S(a, r)

Assuming an = 0, meaning that Σ and Ên−1 are orthogonal, then if xn > 0 that implies yn > 0, and

so Un is left invariant. This is legal because x 6= a as xn > 0.

Conversely, if σ does leave Un invariant. The same arguments as in the proof of Theorem 4.20 shows

σ leaves Ên−1 invariant. Because the reflection in Ên−1 switches Un to −Un, then I may assume

Σ 6= Ên−1. Thus Ên−1 − Σ is non-empty. Taking an x from this set, assume y = σ(x) to be finite. As

xn = 0 = yn, looking at the above expression I get that an = 0 because neither of the two coefficients

of an are 0, the latter because |x− a| 6= r as x ∈ Σ. �

Möbius Transformations of the unit n-ball

Let σ be the reflection of Ên in the sphere S(en,
√

2). Thus

σ(x) = en +
2(x− en)

|x− en|2

Furthermore

|σ(x)|2 = |en|2 +
4(x− en) · en
|x− en|2

+
4|x− en|2

|x− en|4

= 1 +
4xn

|x− en|2
+

−4

|x− en|2
+

4

|x− en|2

= 1 +
4xn

|x− en|2

And so, if x ∈ −Un, then |σ(x)|2 < 1. Thus σ maps −Un into the open unit n-ball

Bn = {x ∈ En : |x| < 1}

Because σ is a homeomorphism of Ên, it maps the connected components of Ên− Ên−1 homeomorphi-

cally onto the connected components of Ên − Sn−1, because the boundary of −Un is precisely Ên−1

which in turn must be mapped onto the boundary of Bn, which is Sn−1. And the other way around.

If ρ is the reflection of Ên in Ên−1 then it maps Un onto −Un. I define

η = σρ

and I see η maps Un homeomorphically onto Bn. This Möbius transformation is called the standard

transformation from Un to Bn.
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Definition 4.26 A Möbius transformation of the open unit ball Bn is a Möbius transformation of Ên

that leaves Bn invariant.

I will now give proof of a theorem similar to Theorem 4.20, but regarding Möbius transformations of

Bn instead.

Theorem 4.27 A reflection σ of Ên in a sphere Σ leaves Bn invariant if and only if Sn−1 and Σ are

orthogonal.

Proof. First, I let η be the standard transformation from Un to Bn. Letting Σ′ = η−1(Σ), then Σ′ is a

sphere by Theorem 4.16. Let σ′ = η−1ση. I see that σ′ fixes Σ′, and thus by Theorem 4.18, it is either

the identity or the reflection in Σ′. However, if σ′ was to be the identity, then so would ησ′η−1 = σ,

but σ is clearly not the identity. And so, η−1ση is the reflection in Σ′.

Because η maps Un bijectively to Bn, I have that σ leaves Bn invariant if and only if σ′ leaves Un

invariant. However, this latter condition is satisfies if and only if Σ′ and Ên−1 are orthogonal by

Theorem 4.20. But because η preserves angles by Theorem 4.4, and so Σ′ and Ên−1 are orthogonal if

and only if η(Σ′) = Σ and η(Ên−1) = Sn−1 are orthogonal. �

4.5 The Conformal Ball Model

I now turn back to the hyperbolic n-space denoted as Hn. I will redefine the Lorentzian Inner Product

merely for practical reasons on Rn+1. Let x, y ∈ Rn+1

x ◦ y = x1y1 + . . .+ xnyn − xn+1yn+1

All the results of Chapter 3 still hold, as this is just a rearrangement of coordinates.

Identifying Rn with Rn × {0} in Rn+1, I now introduce stereographic projection ζ of Bn onto Hn

defined by projecting x ∈ Bn away from −en+1 until it meets Hn in the unique point ζ(x). See Figure

6.
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Figure 6: Stereographic projection of B2 onto H2

As ζ(x) lies on the line passing through x in the direction of x− (−en+1) = x+ en+1, there is a scalar

s such that

ζ(x) = x+ s(x+ en+1)

But the condition that ||ζ(x)||2 = −1, where the norm || · || is now obviously the Lorentzian norm

taking complex values, this means

s =
1 + |x|2

1− |x|2

and very much like the stereographic projection of Section 4.2, this gives the formula

ζ(x) =

(
2x1

1− |x|2
, . . . ,

2xn
1− |x|2

,
1 + |x|2

1− |x|2

)
(4.5.1)

and again, this map is clearly both a surjection and is injective, thus a bijection of Bn onto Hn. In

fact it is a homemomorphism seeing as its inverse is given by

ζ−1(y) =

(
y1

1 + yn+1
, . . . ,

yn
1 + yn+1

)
another continuous function. Deriving this inverse is done in the exact same way as when finding the

inverse π−1 of π in Section 4.2.

I can now define a metric dB, called the Poincaré metric, on Bn by the formula

dB(x, y) = dH(ζ(x), ζ(y)), x, y ∈ Bn

and the fact that it is a metric follows because dH is a metric and ζ is a bijection. I call the metric

space (Bn, dB) the Conformal Ball Model of Hn. This is because, by definition of this metric, I see

that ζ is in fact an isometry from (Bn, dB) and onto (Hn, dH). As ζis a homeomorphism, and because

η is a homeomorpism from Un to Bn, I see that Un is homeomorphic to Hn.
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Lemma 6 The metric dB on Bn satisfies

cosh dB(x, y) = 1 +
2 + |x− y|2

(1− |x|2)(1− |y|2)

Proof. By formula (3.1.9) I get

cosh dB(x, y) = cosh dH(ζ(x), ζ(y)) = −ζ(x) ◦ ζ(y)

= −
(
x+

1 + |x|2

1− |x|2
(x+ en+1)

)
◦
(
y +

1 + |y|2

1− |y|2
(y + en+1)

)
=

(1 + |x|2)(1 + |y|2)− 4x · y
(1− |x|2)(1− |y|2)

=
(1− |x|2)(1− |y|2) + 2(|x|2 + |y|2)− 4x · y

(1− |x|2)(1− |y|2)

= 1 +
2|x− y|2

(1− |x|2)(1− |y|2)

�

Lemma 7 If φ is a Möbius transformation of Bn and x, y ∈ Bn, then

|φ(x)− φ(y)|2

(1− |φ(x)|2)(1− |φ(y)|2)
=

|x− y|2

(1− |x|2)(1− |y|2)

Proof. By Theorem 4.27, φ is the reflection in a sphere S(a, r) of En orthogonal to Sn−1. By Theorem

4.3 I have
|φ(x)− φ(y)|
|x− y|

=
r2

|x− a| |y − a|

Now, as S(a, r) is orthogonal to Sn−1, it follows that r2 = |a|2 − 1. Furthermore,

φ(x) = a+
r2

|x− a|2
(x− a)

which means

|φ(x)|2 = |a|2 +
r4

|x− a|2
+

2r2

|x− a|2
a · (x− a)

And so, combining all of this I get

|φ(x)|2 − 1 =
(|a|2 − 1)|x− a|2 + 2r2a · (x− a) + r4

|x− a|2

=
r2
(
|x− a|2 + 2a · (x− a) + |a|2 − 1

)
|x− a|2

=
r2(|x|2 − 1)

|x− a|2

And so, using this twice, I get the result

|φ(x)− φ(y)|2

|x− y|2
=

(1− |φ(x)|2)(1− |φ(y)|2)
(1− |x|2)(1− |y|2)

�
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Hyperbolic Translation

Assume S(a, r) is orthogonal to Sn−1. Then r2 = |a|2 − 1, and the reflection σa in S(a, r) leaves Bn

invariant by Theorem 4.27. Let ρa be the reflection in the hyperplane P (a, 0). Any such reflection will

also leave Bn invariant, just like the composite function ρaσa. Let a∗ = a
|a|2 . Then

ρaσa(x) =
(|a|2 − 1)

|x− a|2
x− (|x|2 − 2x · a∗ + 1)

|x− a|2
a (4.5.2)

by (4.1.1) and (4.1.2).

Let 0 6= b ∈ Bn and b′ = −b∗. By Theorem 4.24 S(b′, (|b|2 − 1)1/2) is orthogonal to Sn−1 because

((|b|2 − 1)1/2)2 + 12 = |b′|2

By the above considerations, I can define a Möbius transformation of Bn by

τb = ρb′σb′ (4.5.3)

Furthermore, in terms of b, by (4.4.3) I get

τb(x) =
(1− |b|2)

(|b|2|x|2 + 2x · b+ 1)
x+

(|x|2 + 2x · b+ 1)

(|b|2|x|2 + 2x · b+ 1)
b

and I notice τb(0) = b for all b ∈ Bn and that τ0 is the identity. Now because τb is the composite in

reflections of a sphere and a hyperplane both orthogonal to the line going through the two points

− b
|b| and b

|b| the transformation τb can be thought of as a translation along that line. I call this the

hyperbolic translation of Bn by b.

Theorem 4.28 Every Möbius transformation of Bn restricts to an isometry of the conformal ball

model Bn and every such isometry extends to a unique Möbius transformation of Bn.

Proof. For a Möbius transformation φ of Bn, by Lemma 6 and Lemma 7 I have that

cosh dB(φ(x), φ(y)) = cosh dB(x, y)

yielding dB(φ(x), φ(y)) = dB(x, y), so it is an isometry of Bn.

Conversely, assume φ : Bn → Bn to be an isometry. Defining ψ : Bn → Bn by ψ(x) = τ−1φ(0)φ(x), I

first see that ψ(0) = 0. Furthermore, it is the composite of isometries of Bn by the first part of the

theorem, and thus an isometry itself. Let x, y ∈ Bn. Because

dB(ψ(x), ψ(0)) = dB(ψ(x), 0) = dB(x, 0)

and Lemma 6, I get
|ψ(x)|2

1− |ψ(x)|2
=

|x|2

1− |x|2

which means |ψ(x)| = |x|. Using that ψ is an isometry I also get, from Lemma 7

|ψ(x)− ψ(y)|
(1− |ψ(x)|2)(1− |ψ(y)|2)

=
|x− y|2

(1− |x|2)(1− |y|2)
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and so |ψ(x)− ψ(y)| = |x− y| because the denominators are equal. It preserves Euclidean distances in

Bn. Because of that, it must map each radius of Bn onto a radius of Bn again. Therefore, ψ extends

to a function

ψ̄(x) : Bn → Bn

where, for every x ∈ Sn−1, the straight line [0, x) from origo in direction of x in Bn is agreed upon by

ψ and ψ̄, in other words

ψ([0, x)) = [0, ψ̄(x))

Furthermore, ψ̄ is continuous because ψ̄(x) = 2ψ(x/2) for all x ∈ Bn, an equivalent way of writing ψ.

But this means ψ̄ also preserves Euclidean distances on Bn and particularly it preserves inner products.

Let A = ψ̄ − ψ̄(0). Then A(0) = 0 and it preserves Euclidean norms on Bn since

|A(x)| = |A(x)−A(0)| = |x− 0| = |x|

But this shows ψ̄ is in fact the restriction of an orthogonal transformation of En, since A satisfies

2Ax ·Ay = |Ax|2 + |Ay|2 − |Ax−Ay|2

= |x|2 + |y|2 − |x− y|2 = 2x · y

and ψ̄(0) = 0. Therefore τφ(0)A is a Möbius transformation extending the isometry φ, and it is unique

because if φ1, φ2 are such two extensions, then they agree on Bn. Particularly, for all x ∈ Sn−1 I have

φ1φ
−1
2 (x) = x

And because it is not the reflection in the sphere S(0, 1) (as it leaves Bn invariant), by Theorem 4.18

it must be the identity, hence φ1 = φ2. �

4.6 The Upper Half-Space Model

Letting η be the standard transformation of the upper half-space Un to Bn, then we recall η = σρ

where ρ is the reflection of Ên in Ên−1 and σ is the reflection of Ên in the sphere S(en,
√

2). I now

define a metric dU on Un, called the Poincaré metric on Un, by the formula

dU (x, y) = dB(η(x), η(y))

Again, this is clearly a metric. By definition, η is an isometry from (Un, dU ) to (Bn, dB). The metric

space (Un, dU ) is called the upper half-space model of Hn.

The next theorem follows immediately from Theorem 4.5.2 and how dU is defined in terms of η, a

homeomorphism from Un to Bn.

Theorem 4.29 Every Möbius transformation of Un restricts to an isometry of the upper half-space

model Un, and every such isometry extends uniquely to a Möbius transformation of Un.

So where does this all leave us? By the preceding theorem, I can now identify the group of isometries

of the upper half-space model, I(Un), with the group of Möbius transformations of Un, called M(Un).

The two groups are isomorphic by the theorem.
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But the upper half-space model Un is isometric to the hyperbolic n-space, Hn, by the isometry

φ : Un → Hn given as φ = ζη. This means that the two groups of isometries of the metric spaces,

I(Un) and I(Hn) respectively, are isomorphic. This follows because of the function

ψ : I(Un) → I(Hn)

f → φfφ−1

which is clearly a group homomorphism with inverse

ψ−1 : I(Hn) → I(Un)

f → φ−1fφ

But as M(Un) is isomorphic to M(Ên−1) by Corollary 4.22, I get my final result.

Corollary 4.30 The groups I(Hn) and M(Ên−1) are isomorphic.
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Appendix

A.1 Metric spaces

Definition A.1 An inner product on a vector space V ⊆ Rn is a function from V × V → R denoted

by (v, w)→ 〈v, w〉 satisfying for all v, w, u ∈ V

(1) Bilinearity; 〈v, w + u〉 = 〈v, w〉+ 〈v, u〉 and 〈v + w, u〉 = 〈v, u〉+ 〈w, u〉

(2) Symmetry; 〈v, w〉 = 〈w, v〉

(3) Nondegeneracy; if v 6= 0 then there is a w 6= 0 such that 〈v, w〉 6= 0

Notice how it is not a demand that the inner product be positive definite, meaning 〈v, v〉 > 0 for all

v 6= 0. Whenever this is the case, however, we can define the norm as ‖v‖ = 〈v, v〉
1
2 as we have seen it

before. We can also define a metric dX on a set X in the usual way.

Definition A.2 A metric on a set X is a function d : X ×X → R such that for all x, y, z ∈ X;

(1) d(x, y) ≥ 0 (nonnegativity)

(2) d(x, y) = 0 if and only if x = y (nondegeneracy)

(3) d(x, y) = d(y, x) (symmetry)

(4) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

This yields the Metric space (X, d). As an example of both of these, we have the usual inner product

on our Euclidean n-space, En, given by 〈x, y〉 = x · y and its associated metric dE(x, y) = |x− y|.

I will refer to a function φ : X → Y between to metric spaces as distance preserving if and only if

dY (φ(x), φ(y)) = dX(x, y), ∀x, y ∈ X

Definition A.3 : An isometry from a metric space X to a metric space Y is a distance preserving

bijection φ : X → Y

A translation τa(x) : Rn → Rn given by τa(x) = a+ x is an isometry, since

|τa(x)− τa(y)| = |a+ x− (a+ y)| = |x− y|

and its inverse is τ−a(x).

A.2 Orthogonal transformations

Definition A.4 : A function φ : Rn → Rn is an orthogonal transformation if and only if

φ(x) · φ(y) = x · y, ∀x, y ∈ Rn (A.1)
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and for a real n× n matrix A I say A is orthogonal if the linear transformation associated with it,

A(x) = Ax is orthogonal. The set of these matrices together with matrix multiplication form a group

called O(n).

We recall the following, central theorem about orthogonal transformations, from which the rest follows.

Theorem A.5 A function φ : Rn → Rn is an orthogonal transformation if and only if φ is linear and

{φ(e1), . . . , φ(en)} is an orthonormal basis of Rn.

Proof. Supposing φ is an orthogonal transformation, then I have

φ(ei) · φ(ej) = ei · ej = δi,j

Now, to show that φ(e1), . . . , φ(en) are linearly independent, supposing that
∑n

i=1 ciφ(ei) = 0, upon

taking inner products of this equation with φ(ej), then by the above I find that all cj = 0 for each j.

This means {φ(e1), . . . , φ(en)} is an orthonormal basis of Rn.

Let any x =
∑n

i=1 xiei ∈ Rn. Then there must be coefficients c1, . . . , cn such that φ(x) =
∑n

i=1 ciφ(xi),

because it was an orthonormal basis. However, I get that cj = φ(x) · φ(ej) = x · ej = xj , meaning that

φ

(
n∑
i=1

xiei

)
=

n∑
i=1

xiφ(ei)

and so, φ is linear.

Suppose instead that φ is linear and that {φ(e1), . . . , φ(en)} is an orthonormal basis of Rn. Then φ is

orthogonal because

φ(x) · φ(y) = φ

(
n∑
i=1

xiei

)
· φ

 n∑
j=1

yjej


=

n∑
i=1

n∑
j=1

xiyjφ(ei) · φ(ej)

= x · y

�

Corollary A.6 Every orthogonal transformation is a Euclidean isometry.

Proof. Letting φ be an orthogonal transformation, then φ preserves euclidean norms, as can be seen

by

|φ(x)|2 = φ(x) · φ(x) = x · x = |x|2

and so it also preserves distances by use of its linearity

|φ(x)− φ(y)| = φ(x− y)| = |x− y|

By the details in the proof of Theorem A.4, φ is a bijection. Injectivity follows from the linearity and

that all φ(ei)’s are linearly independent. For surjectivity, if x =
∑n

i=1 xiφ(ei) is given (because it is a

basis), then φ (
∑n

i=1 xiei) = x. Thus, it is an isometry. �

This next theorem follows directly from Theorem A.5.
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Theorem A.7 Letting A be a real n× n matrix, the following are equivalent

(1) A is orthogonal

(2) The columns of A form an orthonormal basis of Rn

(3) The rows of A form an orthonormal basis of Rn

Next up, I want to characterize the euclidean isometries.

Theorem A.8 Let φ : En → En be a function. The following are equivalent

(1) φ is an isometry

(2) φ is of the form φ(x) = a+Ax where A is an orthogonal matrix and a = φ(0)

Proof. Assuming φ is an isometry, define A(x) = φ(x)− φ(0). Then A(0) = 0 and

|A(x)| = |A(x)| = |φ(x)− φ(0)| = |x− 0| = |x|

meaning A preserves norms. Thus, A is orthogonal, because using the law of cosine I get

2Ax ·Ay = |Ax|2 + |Ay|2 − |Ax−Ay|2

= |x|2 + |y|2 − |x− y|2 = 2x · y

This all means that there is an n×n matrix, which is orthogonal, such that φ(x) = Ax+φ(0), meaning

(1) implies (2). Conversely, if φ is of the form given in (2), then it is the composite of an orthogonal

transformation followed by a translation, and so it is an isometry, as it is a composition of isometries.

�

A.3 Similarities

Definition A.9 A similarity from a metric space X to a metric space Y is a bijective function

φ : X → Y such that dX(x, y) = kdY (φ(x), φ(y)) for some k > 0.

It is also often referred to as a change-of-scale. Notice how the inverse function of a similarity is also a

similarity with positive constant 1/k. The next theorem follows directly from Theorem A.7

Theorem A.10 Let φ : En → En be a function. The following are equivalent

(1) φ is a similarity

(2) φ is of the form φ(x) = a + kAx for some orthogonal matrix A and a constant k > 0, with

a = φ(0).

A.4 Group actions

Recalling the definition of a group G acting on a set X, we have the following definition.

Definition A.11 : An action of a group G on a set X is transitive if and only if for each x, y in X

there is a g ∈ G such that gx = y.
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Notice how the above definition is equivalent to the following;

Theorem A.12 . The action of a group G on X is transitive if and only if there exists an x ∈ X
such that G.x = X

Proof. Assume G acts transitively. Then for any given x ∈ X, it holds that for all y ∈ X there exists

a g ∈ G such that g.x = y. In other words; G.x = X for all x. In particular, there is at least one x for

which it holds. Conversely, for y1, y2 ∈ X, pick g1, g2 ∈ G such that g1.x = y1 and g2.x = y2. But then

I have g2g
−1
1 y1 = y2. As y1, y2 were arbitrary, G acts transitively. �

Theorem A.13 For every dimension m > 0 the natural action of O(n) on our set of m-dimensional

vector subspaces of Rn is transitive.

The idea of the proof is as follows. If V is a vector subspace of m dimensions, choose a basis

{u1, . . . , um} of V and extend this to a basis {u1, . . . , un} of En. Performing Gram-Schmidt on the

vectors {u1, . . . , un} yields an orthonormal basis {w1, . . . , wn}, where the first m vectors are a basis

for V . Thus, the matrix whose columns are {w1, . . . , wn}, call it A, is an orthogonal matrix and it

satisfies A(Rm) = V .

A.5 Cross Products

If x, y are vectors in R3 then the cross-product of x, y is defined in the usual way

x× y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)

Theorem A.14 : If w, x, y, z are vectors in R3 then the following are equivalent

(1) x× y = −y × x

(2) (x× y) · z =

∣∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣
(3) (x× y)× z = (x · z)y − (y · z)x

(4) (x× y) · (z × w) =

∣∣∣∣∣x · z x · w
y · z y · w

∣∣∣∣∣
The proof follows directly from computing the cross products. Notice, however, that the scalar triple

product of x, y, z given as (x× y) · z cyclically permutes, ie.

(x× y) · z = (y × z) · x = (z × x) · y (A.2)

which follows from Theorem A.14(2). For v, w 6= 0, I get |v × w|2 = |v|2|w|2 − (v · w)2 from Theorem

A.14(4). Continuing these calculations;

|v|2|w|2 − (v · w)2 = |v|2|w|2 − |v|2|w|2 cos2 θ(v, w)

= |v|2|w|2 sin2 θ(v, w)

yielding

|v × w| = |v||w| sin θ(v, w) (A.3)
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A.6 Conformal Transformations

For an open subset U of En, let φ : U → En be a differentiable function. Let φ′(x) be the matrix(
δφi
δxj

(x)
)

of partial derivates of φ. Then a function φ is conformal if and only if there is some function

κ : U → R+, called the scale factor of φ such that κ(x)−1φ′(x) is an orthogonal matrix for each x ∈ U .

Definition A.15 Let U be an open subset of En. Let φ′ : U → En be a differentiable function. Then

φ is said to preserve (or reverse, respectively) orientation at x ∈ U if and only if detφ′(x) > 0 (or less

than 0, respectively).
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