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Abstract

This thesis deals with the homology and cohomology groups of simplicial
complexes, and especially with the two duality theorems which willdemon-
strate links between the two notions. For this we will need some results,
and we will therefore prove the long exact sequence for the reduced relative
homology group; and to link the homology and cohomolgy to our geometric
notion of a simplicial complex we will see that these are connected to the
Euler characteristic of the complex. Then by rewriting the relative homol-
ogy group we will be able to prove the Alexander duality which is the major
theorem of this thesis. We will use the result that if realizations of two
different simplicial complexes are homotopic then their homology and coho-
mology groups are isomorphic in order to prove another duality, by showing
that there is a different complex constructed by the nonfaces of our complex
which is homotopic to the Alexander dual of the complex. For this we shall
need some homotopy theorems which will be duly proven.

Resumé

Dette projekt beskæftiger sig med homologi- og kohomologigrupperne af
simplicielle komplekser, og specielt med to dualitets sætninger som vil vise
forbindelsen mellem disse to strukturer. For at gøre dette vil vi bevise
den lange eksakte sekvens for den reducerede relative homologigruppe, og
for at forbinde homologi med kohomologi til vores geometriske intuition for
simplicielle komplekser vil vi vise, at begge begreber er forbundet til Euler-
karakteristikken af et kompleks. Vi vil s̊a ved at omskrive p̊a den relative
homologi gruppe være i stand til at vise Alexander dualiteten, som er hov-
edsætningen i dette projekt. Vi vil benytte resultatet, at hvis realisationer
af forskellige simplicielle komplekser er homotope da implicerer det, at deres
homologi- og kohomologigrupper er isomorfe, til at vise en anden dualitet,
ved at vise at der er et kompleks konstrueret af ikke simplekser fra vores
kompleks som er homotopt til det Alexander duale. Til dette skal vi benytte
nogle homotopi sætninger, som vi s̊a vil bevise.
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Chapter 1

Preliminaries

1.1 Preface

This bachelor thesis was was started with the intent of giving a solely com-
binatorial proof of the Alexander duality. My thesis advisor did not know
of such a proof but thought it possible for me to construct one. I therefore
spent the first six weeks reading up on simplicial homology theory and trying
to wrap my head around the nature of the combinatorical proofs, together
with the more topological proofs of the Alexander duality that we knew to
exist. It had been an agreement, that if at any point I felt that I would
not in time be able to produce the proof I would instead write my thesis on
another subject where I would be able to use the knowledge gained in my
attempt at proving the duality. The day before a meeting with my advisor
I decided that if I did not see more progress I would throw in the towel,
and with that thought I stumpled unto [3], an article wherein Björner and
Tancer gave a short and rather elegant proof for the duality. Björners proof
used several of the ideas I myself halfbaked had tried. I then spent the next
couple of weeks on writing both the proof and the definitions and results
necessary for the proof to work. This is what appears as chapters one till
three. Hereafter followed the search for what would make up the rest of the
thesis. First my advisor and I tried to find a connection between the vertex
coloring of a simplicial complex and its dual, but we found none, and after
a week or so we gave up. But the minor detour ended up in my reading
a wide array of articles on vertex colorings. In the end I found an article,
[2], with the apt name ”Note on a Combinatorial Application of Alexander
Duality”. The main result of [2] was related to the µ-operator on posets, but
it also had a theorem which in this thesis is called, rather unimaginatively,
the second duality. Again I needed some more results and these appear as
chapters four and five of my thesis.

I have tried to include the results necerssary for my main theorems, but
as always one has to stop somewhere. I have therefore chosen to consider
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1.2. ACKNOWLEDGEMENTS

as well known results and defintions of courses I have taken. These mostly
include algebra and topology, but there is also at least one result from linear
algebra. Likewise I have excluded the proof of the topological invariance of
both homology and cohomology groups and instead I have only sketched.
This I was advised to do, since they are rather long and technical and are
so well known that it should be unthinkable that I should not see it proven.
Lastly I will not for any specific space prove that it is contractible, since this
tend to be a tad technical and is not very combinatorial which is the focus
of the thesis. Instead I will rely on some topological intuition.

1.2 Acknowledgements

Most of the theorems, definitions and proofs presented throughout the thesis
are at least inspired from other sources, and I’m most grateful to the authors
of these. For most results I will mention their source, so that a reader can
give credit where credit is due. Therefore at the beginning of each section
I will state my major inspirational source and also note it if some result is
from other sources.

1.3 Simplicial Complexes

This section is mostly written with help from Jesper Michael Møllers hand-
written notes, but I have also used [4] and [6]. Lemma 1.8 is completly of
my own design.

1.3.1 Definition

We wish to formally define the simplicial complexes to which most of the
rest of the thesis will be devoted. We want to somehow give combinatorial
sets somehow equivalent to our notion of structures composed of generalized
triangles. It is quite clear that in two dimensions such a structure is a triangle
in the normal sense, composed of the convex hull of three points in the plane.
So we wish to somehow identify the triangle with the set consisting of the
three vertices. Now it is also intuitively relatively clear that a line segment is
a triangle-like structure in one dimension and that the triangle in the plane
somehow consist of three line segments i.e. three ”triangles” of dimension
one lower. These lines egments seems to be the convex hull of two points
in the plane, so we could identify them with the set of these two points.
Now it seems clear that whenever I have one of these sets which I think of
as triangle structures all subsets seem to be the triangle structures of which
the original structure is composed of. This line of thoughts leads us to the
following definition
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1.3. SIMPLICIAL COMPLEXES

Definition 1.1. Given a finite ordered set V , we will say that K is a sim-
plicial complex on the vertex set V , if K is a subset of the powerset of V ,
and that if whenever σ ∈ K, and τ ⊂ σ then τ ∈ K. We will call elements
of K simplices or faces.

This raises some issues. Firstly we notice that we require V to be ordered.
This doesn’t seem to stem from our geometric intuition, but it will prove
itself quite useful later, when we will be able to talk about the i’the vertex of
a simplex. Secondaryly we see that if a simplicial complex K is non-empty
then ∅ ∈ K, and we will recognize the difference between ∅ as a simplicial
complex and {∅} as a simplicial complex. We will be needing some notation
for the rest of the thesis and hence:

Definition 1.2. • The set N+ for N ∈ N0 is the set {0, 1, . . . , N} or-
dered by the ”<”-relation.

• For a finite set V , then D[V ] is the power set of V viewed as a sim-
plicial complex.

• For a simplicial complex K on the vertex set V , with a simplex σ, we
write σ = {v0, v1, . . . , vn} in an unique way due to the ordering, so
that v0 < v1 < . . . < vn.

• Let B be a partially ordered by ≺, then if B is finite we will define the
order complex ∆(B) to be the simplicial complex where if

b0 ≺ b1 ≺ . . . ≺ bn (1.1)

is a chain in B then {b0, b1, . . . , bn} ∈ ∆(B). Its vertex set will be B
ordered in such a way that it preserves the chains of B.

• If K is a simplicial complex then Kn, is the set of all faces σ of K,
such that |σ| − 1 = n.

• If K is a simplicial complex then a subcomplex is a simplicial complex
L such that L ⊂ K.

Definition 1.3. For a simplicial complex K, then we define the reduced
Euler characteristic as

χ̃(K) =
∑
i

(−1)i|Ki|. (1.2)

Clearly this is a finite sum since K was finite, and it is trivially linked
to the classic notion of Vertics - Edges + Faces.

We will also need some special maps between simplicial complexes:
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1.3. SIMPLICIAL COMPLEXES

Definition 1.4. Let K,L be simplicial complexes on the vertex sets VK , VL.
Then a function f : VK → VL is said to extend to a simplicial map
g : K → L if ∀σ ∈ K, with σ = {v0, . . . , vn} then {f(v0), . . . , f(vn)} ∈ L;
and then we define g(σ) = {f(v0), . . . , f(vn)}. We say that two simplicial
complexes are simplicial-isomorphic if g is bijective.

It is clear that the extended simplicial map g is bijective if and only if f
is.

1.3.2 Duality

We will here introduce the notion of the Alexander dual of a simplicial
complex. This is defined as all the complements in the vertex set to non-
faces of the complex it self. This seems a rather odd definition, and indeed
it is, since it doesn’t seem to be linked to any geometric intuition. But it
will still turn out most useful, since it is in the statement of the Alexander
duality.

Definition 1.5. For a simplicial complex K, on the vertex set V we define
the Alexander dual of K, K∨, to be

K∨ = {V − σ|V ⊃ σ /∈ K} (1.3)

Now we would wish that K∨ would be a simplicial complex as well, and
indeed this holds:

Lemma 1.6. If K is a simplicial complex on the vertex set V , then K∨ is
a simplicial complex on the vertex set V

Proof. It is trivial to see that all elements of K∨ are subset of V and hence
elements of the powerset and therefore ifK∨ is a simplicial complex, it can be
seen as having V as a vertex set. Suppose there is τ ⊂ σ ∈ K∨, now we know
there is V ⊃ γ /∈ K, such that σ = V − γ, then γ ∪ (σ− τ) is not in K, since
γ is not, and K is stable under subsets, and hence V − (γ ∪ (σ − τ)) ∈ K∨,
but V − (γ ∪ (σ− τ)) = ((V − γ)−σ)∪ τ = τ , and hence K∨ is stable under
intersection and therefore is a simplicial complex.

We would also very much prefer if our newfound notion was self dual,
meaning that (K∨)∨ = K, and again this is a true statement, but to prove
it, we will need a bit of help:

Lemma 1.7. Let K be a simplicial complex on the vertex set V , then

K∨ = D[V ]− {V − σ|σ ∈ K}. (1.4)
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1.3. SIMPLICIAL COMPLEXES

Proof. We will need to prove the two inclusions, and we therefore start by
taking an arbitrary τ ∈ D[V ]−{V −σ|σ ∈ K}, then we know that V −τ /∈ K,
since if it was, then τ would not be in the set, and hence V − (V − τ) ∈ K∨
and hence τ ∈ K∨. For the other inclusion we take arbitrary τ ∈ K∨, then
there is V ⊃ σ /∈ K, such that τ = V − σ, but trivially σ ∈ D[V ], and there
is no γ ∈ K, such that V − γ = τ , and hence τ ∈ D[V ] − {V − σ|σ ∈ K},
and hence we are done.

Lemma 1.8. Let K be a simplcial complex on a vertex set V , then

(K∨)∨ = K. (1.5)

Proof. We can use the lemma above to write

(K∨)∨ = D[V ]− {V − σ|σ ∈ K∨}. (1.6)

Take σ /∈ K, then V − σ ∈ K∨, and hence V − (V − σ) /∈ (K∨)∨, and
therefore (K∨)∨ ⊂ K. Now take σ /∈ (K∨)∨, then there is τ ∈ K∨ such
that σ = V − τ , but since τ ∈ K∨ there is γ /∈ K such that V − γ = τ , but
σ = (V − (V − γ)) = γ /∈ K, and hence we are done.
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Chapter 2

Homology and chain
complexes

2.1 Chain complex

This section is written with inspiration from Jesper Michael Møllers hand-
written notes, and from [4] and [6]. Theorem 2.2 is of my own design.

Let Gn for n ∈ Z be groups and fn : Gn → Gn−1 be homomorphisms,
then

(G, f) := . . .
fn+1→ Gn

fn→ Gn−1
fn−1→ . . . (2.1)

is a chain complex if Imfn+1 ⊂ ker fn, for all n. We say that (G, f) is exact
if Imfn+1 = ker fn.

Definition 2.1. The homology of a chain complex (G, f) is the sequence of
groups Hn(G) := ker fn/Im fn+1

It is clear that the homology group somehow measures how close a chain
complex is to being exact. It is also clear that given two chain complexes
(G, f) and (G′, f ′), and homomorphisms φn : G→ G′ such that φn−1 ◦fn =
f ′n ◦ φn then there is φHn : Hn(G) → Hn(G′) given by for a z ∈ ker fn then
φHn ([z]) = [φ(z)]. This is clearly well defined since

f ′n(φn(z)) = φn−1(fn(z)) = φn−1(0) = 0 (2.2)

it is clear that if all φ are isomorphisms then H(G) ∼= H(G′) since φn can
be restricted to an isomorphism from ker fn → ker f ′n and likewise for the
images.

We will be using the following result a lot in the rest of the thesis since
it greatly eases the definition of homomorphisms

Theorem 2.2. If G is a free group with the set of generators g = {g0, . . . , gn},
H an abelian group, then every homomorphism from G to H is uniquely de-
termined by the values it takes on g
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2.2. HOMOLOGY

Proof. Let f : G→ H be a homomorphism, then take an arbitrary element
in G, it can be written on the form a0g0 + . . . + angn, for a0, . . . , an ∈ Z,
then f(a0g0 + . . .+ angn) = a0f(g0) + . . .+ anf(gn).

This means that whenever we are defining homomorphisms between free
groups it is enough for us to define how they act on the set of generators.

We will wish to define the dual of a chain complex since this will be
needed twice below, in the definition of the rank of a finitely generated
abelian group and in the definition of cohomology.

Definition 2.3. Let Gn be a group and let H be a group, then Hom(Gn, H)
is the set of homomorphies from Gn to H. This is a group with the usual
function addition.

Let (G, f) be a chain complex, we can now define functions

f̃n : Hom(Gn−1, H)→ Hom(Gn, H) (2.3)

given as follows: For ψ ∈ Hom(Gn−1, H) and g ∈ Gn then
f̃n(ψ)(g) = ψ(fn(g)). It is clear from this that

(f̃n+1 ◦ f̃n)(ψ)(g) = f̃n+1(ψ(fn(g))) = ψ(fn(fn+1(g))) = ψ(0) = 0 (2.4)

so we see that

. . .
f̃n→ Hom(Gn, H)

f̃n+1→ Hom(Gn+1, H)
f̃n+2→ . . . (2.5)

is a chain complex.

2.2 Homology

This section is written with help from [4], where the definition of homology
is stated. The proof of theorem 2.9 is inspired by a proof strategy found in
section 3.4 of [5], but is proved by me. Likewise lemma 2.6 is only stated in
[4], and the proof is adapted from a similar one from [6] with some added
inputs from Sune Kristen Jakobsen and espicially Kristian Knudsen Olesen.
The fact that the homology group is stable under different orderings of the
vertex set, is my own proof.

2.2.1 Preliminaries

Let K be a simplicial complex. Then for all n ∈ Z we can construct the
abelian group ZKn, given in the natural way

ZKn := {p0σ0 + . . .+ pmσm|p0, . . . , pm ∈ Z, σ0, . . . , σm ∈ Kn} (2.6)
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2.2. HOMOLOGY

with the natural addition

(p0σ0 + . . .+ pmσm) + (p′0σ0 + . . .+ p′mσm)

= (p0 + p′0)σ0 + . . .+ (pm + p′m)σm (2.7)

We obviously identify Z∅ with the trivial group, which we call 0, and Z{∅}
with Z.

We now wish to define functions ∂n : ZKn → ZKn−1, such that we
get a chain complex from our simplicial complex. Since simplicial com-
plexes are stable under subsets, it is clear that if we take a basis element
{v0, . . . , vn} ∈ Kn then if we remove a single vertex from the simlpex
we get a member of Kn−1. So we define ∂n : ZKn → ZKn−1 by for
{v0, v1, . . . , vn} = σ ∈ Kn

∂n(σ) =
∑
vi∈σ

(−1)i(σ − {vi}) (2.8)

By the argument above this is well defined, and further more if Kn = ∅,
or Kn = {∅} then this clearly still works. We now wish to make sure that
(ZK, ∂) is a chain complex, so we need to check that for arbitrary σ ∈ Kn,
given as above, then (∂n−1 ◦ ∂n)(σ) = 0. So

(∂n−1 ◦ ∂n)(σ) = ∂n−1(
∑
vi∈σ

(−1)i(σ − {vi})) (2.9)

=
∑
vi∈σ

∑
vj∈σ,j<i

(−1)i(−1)j(σ − {vi} − {vj}) (2.10)

+
∑
vi∈σ

∑
vj∈σ,j>i

(−1)i(−1)j−1(σ − {vi} − {vj}) (2.11)

= 0 (2.12)

So from this it follows that

. . .
∂n+1→ ZKn

∂n→ ZKn−1
∂n−1→ . . . (2.13)

is a chain complex, which leads us to the main definition of this section:

2.2.2 The reduced homology

Definition 2.4. Let K be a simplicial complex and let ∂ be given as above
then we call Hn(ZK) the n’th reduced homology group of K, written as
H̃n(K) i.e. H̃n(K) = ker ∂n/Im∂n−1

Take a simplicial complex K on the vertex set V , and let V ′ be V with
a different ordering, now we would very much like that homology didn’t
depend on the ordering of V . Now it is clear that a new ordering of a set can
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2.2. HOMOLOGY

be seen as a permutation of the set, and all permutations can be composed of
neighbour-switches. So we need to show that if K is a simplicial complex and
we alter the ordering on two elements so they now come in the other order
H̃n(K) stays the same. Take an element σ = {v0, . . . , vi, vi+1, . . . , vn} ∈ Kn,
then

∂n(σ) =
∑
vj∈σ

(−1)jσ − {vj} (2.14)

and let σ′ = {v0, . . . , vi+1, vi, . . . , vn}, then

∂n(σ′) =
∑
vj∈σ′

(−1)jσ′ − {vj} (2.15)

Now it is easy to see that all generator elements of ∂n(σ) without both of the
switched vertices vi, vi+1, have the opposite sign in ∂n(σ′). And generator
elements with both switched elements keep its sign. Let φn : ZKn → ZKn,
where the second Kn is ordered with the switched vertices, be given for
σ ∈ Kn by

φn(σ) =

{
σ if σ contains both the switched vertices
−σ else

(2.16)

Now it is clear that this commutes for all n

. . .
∂n+1→ ZKn

∂n→ ZKn−1
∂n−1→ . . .

φn ↓ φn−1 ↓

. . .
∂n+1→ ZKn

∂n→ ZKn−1
∂n−1→ . . .

and hence H̃n(K) is independent of the ordering of K. It is also clear that
if K,L are simplical-isomorphic then H̃n(K) = H̃n(L).

We will now give a result to demonstrate the usefulness of the homol-
ogy definition. We want to link the reduced homology groups to the more
geometric notion of reduced Euler characteristic. But for this we will need
a short result, which will come in handy in the section on cohomology as
well. This result and the following will require the notion of rank of a group
generated by finitely many abelian groups, so

Definition 2.5. Let A be a finitely generated abelian group, then the rank
of A is defined to be

rank dimQ Hom(A,Q) (2.17)

It is clear that this is well defined since Hom(A,Q), can be seen as
a vector space over the rationals, with the normal function addition and
scalar multiplication. The helpful lemma is then
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2.2. HOMOLOGY

Lemma 2.6. If 0 → A
fA→ B

fB→ C → 0 is exact, and A,B,C are finitely
generated abelian groups then rankB = rankA+ rankC

Proof. So let 0 → A
fA→ B

fB→ C → 0 be exact, then it is clear that fA is
injective since its kernel is trivial. We now wish to show that

0→ Hom(C,Q)
f̃B→ Hom(B,Q)

f̃A→ Hom(A,Q)→ 0 (2.18)

is exact. Take arbitary ψ ∈ Hom(C,Q) such that f̃B(ψ) = 0, meaning
that ∀b ∈ B, we have ψ(fB(b)) = 0, but since fB is surjective it maps to all
elements of C, and hence ψ = 0, so f̃B is injective. Now take ψ ∈ Hom(B,Q)
such that f̃A(ψ) = 0, meaning that ψ ◦ fA = 0 hence we can induce a
homomorphism ψ′ : B/fA(A)→ Q, we can likewise induce an isomorphism
from fB f ′B : B/fA(A) → C, since the original chain was exact, now let
φ : C → Q, be given by φ = ψ′◦(f ′B)−1, then we clearly see that f̃B(φ) = ψ.
Now take an arbitary ψ ∈ Hom(A,Q), we define a set X, where elements
of X, are on the form (H,φ), where fA(A) ⊂ H ⊂ B, with H a group and
φ a homomorphism from H to Q.It is now clear that X is non-empty since
(fA(A), ψ ◦f−1

A ) ∈ X, since fA is injective. We partially order X, by writing
that

(H,φ) ≤ (H ′, φ′)⇔ H ⊂ H ′ and φ = φ′|H (2.19)

Now for an arbitary chain in X

(H1, φ1) ≤ (H2, φ2) ≤ . . . (2.20)

Then clearly H =
⋃∞
i=1Hi is a subgroup of B and φ : H → Q is a homo-

morphism given as follows: For x ∈ H, then φ(x) = φn(x) for x ∈ Hn. And
hence (H,φ) ∈ X, and for all i ∈ N then (Hi, φi) ≤ (Ĥ, φ̂). We can now use
Zorns lemma to state that there is a maximal element (Ĥ, φ̂) ∈ X, and we
wish to show that Ĥ = B. Assume for contradiction that there is b ∈ B−Ĥ,
then clearly the set of k ∈ Z such that k ·b ∈ H̃ is an ideal in Z, and since Z is
a prime ideal domain there is k0 ∈ Z such that (k0) is this ideal. Now clearly

we can pick y ∈ Q such that φ̂(k0·b) = y·k0. Now take the group K =
〈
Ĥ, b

〉
being the subgroup of B generated by Ĥ and b. Now define β : K → Q
given as: For h ∈ H and n ∈ Z β(h+n·b) = φ̂(h)+y ·k0. Now this is well de-
fined since if we take n ∈ Z such that n ·b ∈ Ĥ, but then there is m ∈ Z such
that n = mk0, then β(nb) = φ̂(nb) = φ̂(mk0b) = mφ̂(k0b) = myk0b = nb.
So β is a homomorphism, and β|Ĥ = φ̂ and hence (Ĥ, φ̂) ≤ (K,β), but this

is a contradiction and hence Ĥ = K, and therefore φ̂ ∈ Hom(B,Q) such
that f̃A(φ̂) = ψ. And now we know that

0→ Hom(C,Q)
f̃B→ Hom(B,Q)

f̃A→ Hom(A,Q)→ 0 (2.21)
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2.2. HOMOLOGY

is exact. It is trivial to see that f̃A and f̃A can be seen as linear functions
and hence we can now use the dimension theorem of linear algebra and state
that

rankB = dimQ Hom(B,Q = rgf̃A + dimQ ker f̃A (2.22)

= dimQ Imf̃A + dimQ Imf̃B = dimQ Hom(A,Q) + dimQ Hom(C,Q)

= rankA+ rankC (2.23)

And hence we are done.

Theorem 2.7. For a simplicial complex K, then

χ̃(K) =
∑
i

(−1)irankH̃i(K). (2.24)

Proof. We wish to show that with i as the inclusion map

0→ ker ∂n
i→ ZKn

∂n→ Im∂n → 0 (2.25)

is exact. This is clear since i is injective so its kernel is just 0, and the kernel
of ∂n is by definition ker ∂n, and the kernel of something which maps to the
trivial group is the group itself and hence it is exact, so by lemma 2.6 we
see that

rankZKn = rank ker ∂n + rank Im∂n (2.26)

Likewise we wish to convince ourselves that

0→ Im∂n+1
i→ ker ∂n

q→ H̃n → 0 (2.27)

, with i as the inclusion map, which makes sense since ∂ is a chain map and
q as the quotient map, is exact. Again since i is injective its kernel is 0,
and the kernel of the quotient map is the thing you mod away, in this case
Im∂n+1, and since q is surjective its image is all of H̃n(K), which is exactly
what gets mapped to 0, so this is exact as well. Now we want to know the
rank of ZKn, but since any homomorphism between ZKn and Q is going to
be uniquely determined by its values on elements of Kn, then we trivially
see that the rank is equal to the cardinality. Combining lemma 2.6 with the
results above

|Kn| = rankIm∂n+1 + rankIm∂n + rankH̃n(K) (2.28)

And this gives that

χ̃(K) =
∑
i

(−1)irankIm∂n+1 + rankIm∂n + rankH̃n(K) (2.29)

= −rankIm∂−1 + (−1)N rankIm∂N+1 +

N∑
i=−1

H̃i(K) (2.30)

where N ∈ N0 such that Kj = ∅ for all j ≥ N . But obviously
rankIm∂−1 = rankIm∂N+1 = 0 and hence we are done.
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2.2. HOMOLOGY

Another result about the reduced homology which we will need later in
the thesis is that the full simplicial complex (the complex which includes the
vertex set as a simplex) has the trivial reduced homology group for all n.

Definition 2.8. A simplicial complex K is called acyclic if H̃n(K) = 0, for
all n ∈ Z

With this terminology we want to prove that

Lemma 2.9. D[N+] is acyclic for all N ∈ N0

Proof. We will prove this by induction, and therefore let N = 0, then triv-
ially H̃n(D[0+]) = 0 since the chain complex is . . .→ 0→ Z{0} → Z→ 0→
. . .. Now assume thatD[M+] is acyclic for allM ≤ N . Take z ∈ ZD[N+1+]n
such that ∂n(z) = 0, we know that z = p0σ0 + . . . + pmσm, but for each σj
either σj ∈ D[N+]n or there is some τj ∈ D[N+]n−1 such that

σj = τj ∪ {N + 1} (2.31)

So we can now rewrite z as

z = a0σ0 + . . .+ atσt + at+1τ1 ∪ {N + 1}+ . . .+ at+sτs ∪ {N + 1} (2.32)

for a0, . . . , at+s ∈ Z, σ0, . . . , σt ∈ D[N+]n and τ1, . . . , τs ∈ D[N+]n−1. We see
that ∂n(τj∪{N+1}) = ∂n−1(τj)∪{N+1}+(−1)nτj , where ∂n−1(τj)∪{N+1}
means that we add N + 1 to each simplex we get from ∂. We see that

0 = ∂n(z)

= a0∂n(σ0) + . . .+ at∂n(σt) + at+1∂n(τ1 ∪ {N + 1}) + . . .+ at+s∂n(τs ∪ {N + 1})
= ∂n(a0σ0 + . . .+ atσt) + ∂n−1(at+1τ1 + . . .+ at+sτs) ∪ {N + 1}

+ (−1)nat+1τ1 + . . .+ at+sτs

From this it is clear that ∂n−1(at+1τ1 + . . .+at+sτs)∪{N+1} = 0 since these
are the only elements which contain N + 1 as an element in the simplexes.
But if that is true then it must follow that ∂n−1(at+1τ1 + . . .+ at+sτs) = 0,
and since D[N+] is acyclic its chain complex must be exact, and hence there
must be an x ∈ D[N+]n such that ∂n(x) = at+1τ1 + . . . + at+sτs. But with
this we find that

0 = ∂nZ

= a0∂n(σ0) + . . .+ at∂n(σt) + at+1∂n(τ1 ∪ {N + 1}) + . . .+ at+s∂n(τs ∪ {N + 1})
= a0∂n(σ0) + . . .+ at∂n(σt) + (−1)nat+1τ1 + . . .+ at+sτs

= a0∂n(σ0) + . . .+ at∂n(σt) + (−1)n∂n(x) (2.33)

But a0σ0 + . . . + atσt + (−1)nx ∈ D[N+]n which is acyclic and hence there
is y ∈ D[N+]n+1 such that ∂n+1(y) = a0σ0 + . . .+atσt+ (−1)nx, and we see

13



2.3. COHOMOLOGY

that y + x ∪ {N + 1} ∈ D[N + 1+]n+1, and that

∂n+1(y + x ∪ {N + 1}) = ∂n+1(y) + ∂n+1(x ∪ {N + 1}) (2.34)

= ∂n+1(y) + ∂n(x) ∪ {N + 1}+ (−1)n+1x (2.35)

= a0σ0 + . . .+ atσt + (−1)nx+ ∂n(x) ∪ {N + 1}+ (−1)n+1x

= a0σ0 + . . .+ atσt + (at+1τ1 + . . .+ at+sτs) ∪ {N + 1}
= z (2.36)

And hence we see that for an arbitrary [z] ∈ H̃n(D[N + 1+]), then

[z] = [∂n+1(y + x ∪ {N + 1})] = [0] (2.37)

, and hence D[N + 1+] is acyclic, and this concludes the proof.

This lemma might seem at the moment somewhat arbitrary, but it will
come in most handy when we prove the Alexander duality. However this
will require a great deal more theory, so we will carry on:

2.3 Cohomology

This section too is written with [4]. Theorem 2.11 is stated without proof
in [8].

2.3.1 Preliminaries

Again we will now turn our attention to the group of homomorphisms from
a group to a given set, this time the set of integers. We wish to again
construct a chain complex somehow related to our simplicial complex. This
time we want it to be the dual of the homology so to speak. As we have seen
earlier if one has homomorphisms between groups it is quite easy to construct
homeomorphisms between the set of homomophisms into a given group. So
let ∂n be given as in the previous section, and let K be a simplicial complex,
then define δn : Hom(ZKn−1,Z)→ Hom(ZKn,Z), given as follows: For an
arbitrary homomorphy ψ : ZKn−1 → Z, then δn(ψ) = ψ◦∂n. This is clearly
well defined since both ∂ and ψ are homomorphisms and hence so is their
composition. Then clearly we find that

(δn+1 ◦ δn)(ψ) = δn+1(ψ ◦ ∂n) = (ψ ◦ ∂n) ◦ ∂n+1 = ψ ◦ 0 = 0 (2.38)

with 0 being the trivial homomorphy. Then except for the numbering which
seems to go the other way than usually, we find that

. . .
δn→ Hom(ZKn,Z)

δn−1→ Hom(ZKn−1,Z)
δn−1→ . . . (2.39)

Is a chain complex.We can now as previously move on to a definition.
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2.4. RELATIVE HOMOLOGY

2.3.2 The reduced cohomology

Definition 2.10. Let K be a simplicial complex, and δj given as above, then
the n’th reduced cohomology group of the complex K is

H̃n(K) := ker δn+1/Imδn. (2.40)

This definition seems very close to our reduced homology groups, and
as we will see throughout the thesis this is quite true; there are several
duality theorems (one of which is the Alexander duality) linking homology
and cohomology of different objects together. Like homology cohomology
like homology is independent of the ordering of the vertex set. We will not
show this since the proof is rather similar to the argument for homology. We
will start by showing that as homology the cohomology has the same link
to the geometric notion of a simplicial complex, since:

Theorem 2.11. For a simplicial complex K, then

χ̃(K) =
∑
i

(−1)irankH̃ i(K). (2.41)

The proof for this is completely analogous to that for the homology case
and therefore I will omit the proof. The only thing that changes slightly
is that we would need to realize that rankHom(ZKn,Z) = |Kn|, but this is
clear since a homology from a free group to Z is merely a function from the
set of generators to Z.

2.4 Relative homology

This section is likewise inspired by [4]. Corollary 2.15 is from [3]. The result
(2.64) is stated in [3], but proved by me.

2.4.1 Preliminaries

Our reason for studing simplicial complexes is that, given a topological space
it is often quite easy to triangulate it and then find a simplicial complex,
the homology of which we can then study. But sometimes it is not quite
clear how this triangulation should go. It is e.g. clear that a ball in three
dimensions seems to be equivalent to D[3+], but what about the ball where
we remove the sphere? It is not quite clear what simplicial complex it should
be. We can easily see that the sphere should be D[3+]−{0, 1, 2, 3}, but since
{{0, 1, 2, 3}} isn’t a simplicial complex then our methods so far are at a loss.
We could let the homology be the quotient between the homology groups,
but this isn’t always well defined so instead we construct the following:

For K,A simplicial complexes with A ⊂ K then we have

q : ZKn → ZKn/ZAn (2.42)
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2.4. RELATIVE HOMOLOGY

being the quotient map. Then define

∂∗n : ZKn/ZAn → ZKn−1/ZAn−1 (2.43)

given by for x ∈ ZKn/ZAn then take y ∈ ZKn such that q(y) = x, and
then ∂∗n(x) = q(∂n(y)). We need to check that this is well defined, so let
y, y′ ∈ ZKn such that q(y) = q(y′) = x, then there is a ∈ ZAn such that
y = y′ + a. Since A is a simplicial complex, and hence stable under subsets
it is clear that ∂n(a) ∈ ZAn−1, and hence

q(∂n(y)) = q(∂n(y′ + a)) = q(∂n(y′) + ∂n(a)) (2.44)

= q(∂n(y′)) + q(∂n(0)) = q(∂n(y′)) (2.45)

If we take arbitrary x, x′ ∈ ZKn/ZAn, with y, y′ ∈ ZKn such that q(y) = x
and q(y′) = x′ then

∂∗n(x) + ∂∗n(x′) = q(∂n(y)) + q(∂n(y′)) = q(∂n(y) + ∂n(y′)) (2.46)

= q(∂n(y + y′)) = ∂∗n(x+ x′) (2.47)

Thus ∂∗n is a homomorphism. Since we wish to construct a chain complex
we need to check that the image is in the kernel for our new function so let
x ∈ ZKn/ZAn be arbitrary, and y ∈ ZKn be so that q(y) = x then

(∂∗n−1 ◦ ∂∗n)(x) = ∂∗n−1(q(∂n(y))) = q((∂n−1 ◦ ∂n)(y)) = q(0) = 0 (2.48)

We are now ready to define our new notion of relative homology:

2.4.2 The reduced relative homology

Definition 2.12. Let K,A be simplicial complexes with A ⊂ K and let ∂∗n
be given as above, then the n’th reduced relative homology group between K
and A is H̃n(K,A) = ker ∂∗n/Im∂∗n+1.

Again we will abstain from showing that this group is independent of the
ordering of the vertex set. Again the argument would be rather similar to
the that for homology case. This relative homology tends to come in handy
especially for calculating various homology groups, since the next theorem
we will show gives an exact sequence linking the reduced homology groups
of K and A to the their relative homology. For this we will need a function
ϕ : Hn(K,A)→ Hn−1(A), so we will construct that.

Remark 2.13. from this point on we will stop indexing our functions ∂n, ∂
∗
n

and δn since it is very seldom that the indices do anything but hinder both
the imagination and notation of proofs and constructions. We will however
include the index if somewhere it should be important.
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Consider the following diagram

. . .
∂→ ZAn+1

∂→ ZAn
∂→ ZAn−1

∂→ . . .
i ↓ i ↓ i ↓

. . .
∂→ ZKn+1

∂→ ZKn
∂→ ZKn−1

∂→ . . .
q ↓ q ↓ q ↓

. . .
∂∗→ ZKn+1/ZAn+1

∂∗→ ZKn/ZAn
∂∗→ ZKn−1/ZAn−1

∂∗→ . . .

where the rows are chain complexes, i is the inclusion map, and q the quo-
tient map. It is rather trivial that i ◦ ∂ = ∂ ◦ i, and likewise from the
definition that ∂∗ ◦ q = q ◦ ∂, and hence the diagram commutes which is a
rather useful fact, for then we can define iH and qH as we did in section 2.1.

Theorem 2.14. Long exact sequence: If K,A are simplicial complexes
with A ⊂ K then the following is an exact sequence for the functions given
above

. . .
ϕ→ H̃n(A)

iH→ H̃n(K)
qH→ H̃n(K,A)

ϕ→ H̃n−1(A)
iH→ . . . (2.49)

The following proof is a diagram chase, and hence it is most useful to
keep the diagram above in mind as one reads it.

Proof. We will do this proof one step at a time, checking one inclusion after
the other

• ImiH ⊂ ker qH

For arbitrary [a] ∈ H̃n(A), then qH ◦ iH([a]) = qH([i(a)]) = [q(i(a))] = [0],
and hence we have the inclusion.

• ImqH ⊂ kerϕ

Take arbitrary [x] ∈ H̃n(K), then we know that ∂(x) = 0, so if q(x) = z,
then ϕ(qH([x])) = [0].

• Imϕ ⊂ ker iH

For arbitrary [z] ∈ H̃n(K,A), then there exists x ∈ ZKn such that q(x) = z,
but then iH(ϕ[z]) = iH([a]) = [i(a)] = [∂(x)] = 0.

• ker qH ⊂ ImiH

Fix x ∈ ker qH , then we know there is z ∈ ZKn+1/ZAn+1, such that
q(x) = ∂∗z, since q is surjectiv we get a x′ ∈ ZKn+1, such that q(x′) = z.
We now see that q(x − ∂(x′)) = q(x) − ∂(q(x′)) = ∂∗(z) − ∂∗(z) = 0, so
x− ∂(x′) ∈ ker q = Imi, hence ∃a ∈ ZAn such that i(a) = x− ∂(x′). We see
that ∂(i(a)) = ∂(x−∂(x′)) = ∂(x) = 0, and since i is injectiv then a ∈ ker ∂,
and hence [a] ∈ H̃n(A), and we find that iH([a]) = [i(a)] = [x− ∂(x′)] = [x].
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• kerϕ ⊂ ImqH

Take [z] ∈ kerϕ then ∃a ∈ ZAn such that ϕ([z]) = [0] = [∂a], now take
x ∈ ZKn such that q(x) = z and see that ∂(x− i(a)) = ∂(x)− i(∂(a)) = 0,
due to the definition of the ϕ function, we find [x − i(a)] ∈ H̃n(K) and
qH([x− i(a)]) = [q(x)− q(i(a))] = [z], hence ker q = Im i.

• ker iH ⊂ Imϕ

Fix a ∈ ker iH , then i(a) = ∂(x), for some x ∈ ZKn, and

∂∗(q(x)) = q(∂(x)) = q(i(a)) = 0 (2.50)

so [q(x)] ∈ H̃n(K,A), and from this it clearly follows that ϕ([q(x)]) = [a]. We
have now shown all the necessary inclusions. This concludes the proof.

As promised above, the concept of the reduced relative homology is quite
handy for calculating homology groups, and here we will give a short corol-
lary to show the usefulness, the result will be used in the proof of the Alexan-
der duality.

Corollary 2.15. Let K be a simplicial compleks on the vertex set of V then
it follows that H̃n−1(K) ∼= H̃n(D[V ],K) for all n

Proof. Trivially K ⊂ D[V ], so hence the relative homology group is defined.
It is also clear that we can relabel V with N+ for a suitable N ∈ N0 since
V is finite and hence H̃n(D[V ]) = 0 for all n due to lemma 2.9. If we use
this result in the long exact sequence above then we find that for all n,
0 → H̃n(D[V ],K)

ϕ→ H̃n−1(D[V ],K) → 0 is exact. This implies that ϕ is
injectiv since its kernel must be the image of 0, hence 0. And it is surjective
since its image must be the kernel of a homomorphy mapping into the trivial
group, and hence we are done.

In this section we will need another small result to prove the Alexander
duality. Since later it will make our lives easier we want to invent a new
notation and prove it equivalent to the one we have already introduced. So
let A,K be simplicial complexes such that A ⊂ K then we will use the
groups Z(Kn − An) where ”−” is the set theoretical difference. We wish to
make a chain complex so we will need a function. Therefore we will define
d : Z(Kn −An)→ Z(Kn −An) given as follows: For σ ∈ Kn −An then

d(σ) =
∑

vi∈σ,σ−{vi}/∈A

(−1)iσ − {vi} (2.51)
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Then we have that

d ◦ d(σ) = d

 ∑
vi∈σ

σ−{vi}/∈A

(−1)iσ − {vi}

 (2.52)

=
∑
vi∈σ

σ−{vi}/∈A

(−1)i
∑

vj∈σ−{vi}
σ−{vi,vj}/∈A

(−1)jσ − {vi, vj} (2.53)

=
∑
vi∈σ

σ−{vi}/∈A

∑
vj∈σ,vj<vi
σ−{vi,vj}/∈A

(−1)i(−1)jσ − {vj , vi} (2.54)

+
∑
vi∈σ

σ−{vi}/∈A

∑
vj∈σ,vj>vi
σ−{vi,vj}/∈A

(−1)i(−1)jσ − {vj , vi} (2.55)

= 0 (2.56)

So we now have a chain complex, which we wish to show to be isomorphic
to the relativ homology group, so we need an isomorphism

f : Z(Kn −An)→ ZKn/ZAn (2.57)

such that ∂∗ ◦ f = f ◦ d. Now let σ ∈ Kn − An then trivially σ ∈ Kn and
hence q(σ) ∈ ZKn/ZAn with q being the quotient map, so let f(σ) = q(σ).

(∂∗ ◦ f)(σ) = ∂∗(q(σ)) = q(∂(σ)) = q(
∑
vi∈σ

(−1)i(σ − {vi})) (2.58)

=
∑
vi∈σ

(−1)iq((σ − {vi})) (2.59)

=
∑
vi∈σ

σ−{vi}/∈A

(−1)iq((σ − {vi})) (2.60)

(f ◦ d)(σ) = f

 ∑
vi∈σ

σ−{vi}/∈A

(−1)iσ − {vi}

 (2.61)

=
∑
vi∈σ

σ−{vi}/∈A

(−1)iq(σ − {vi}) (2.62)

We need to show that f is an isomorphism, but clearly it is injective since
other than elements of ZAn the only thing that maps to 0 is 0 itself, so
its kernel is trivial. If we take arbitrary [x] ∈ ZKn/ZAn, then there is
x′ ∈ Z(Kn −An) and a ∈ ZAn such that x′ + a = x, but then

[x] = [x′ + a] = [x′] (2.63)

19



2.4. RELATIVE HOMOLOGY

and then f(x′) = [x], and hence f is surjective. We now see that

H̃n(K,A) = ker dn/Im dn+1. (2.64)
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Chapter 3

The Alexander duality

This entire chapter is inspired by [3], the only exception being corollary 3.3,
which is stated with an alternative proof in [8], but this proof is by me.

3.1 The Theorem

3.1.1 Preliminaries

We are now ready to both state and prove the Alexander duality. As we saw
in the section on cohomology there is a close link between homology and
cohomology, and it is one of these connections between the two notions we
wish to prove. The theorem states that

Theorem 3.1. Alexander duality: For a simplicial complex K, on a
vertex set V , with |V | − 1 = N the following statement holds

H̃i(K) ∼= H̃j(K∨) (3.1)

whenever i+ j = N − 2

There are several versions of the theorem, all being equivalent. The one
above is the formulation I have chosen to prove.

We will start by sketching out the proof, so that when the formal proof
is given below we will not loose our way. We remember that for a simplicial
complex K the elements of K∨ are complements of non-simplexes of K.
So if somehow we could construct a complement map from the set of non-
simplexes it would seem doable. But we seem to already have something
that more or less is this, namely the relative group ZD[V ]/ZKn, which
has a homology isomorphic to K’s reduced homology due to the long exact
sequence. So we wish to map these elements to homologies from ZK∨n to
Z. It is clear that every element in Hom(ZK∨n ,Z) can be described as the
sum of functions 1τ : ZK∨n → Z, for τ ∈ K∨n given as follows: If x =
a0σ0 + . . . + am−1σm + amτ then 1τ (x) = am. So we could hope that if we
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map σ ∈ ZD[V ]/ZKn to 1V−σ then everything would work out nicely. This
does not hold, but if we remember to do something about the sign of the
function it will commute with δ and ∂∗ and then we will be done.

3.1.2 The proof

Proof of the Alexander duality. Firstly we will need that the group

A := {
∑
σ∈Kn

aσ1σ|aσ ∈ Z} (3.2)

with 1σ defined as above is equal to Hom(ZKn,Z). It is rather trivial that
A ⊂ Hom(ZKn,Z). And if we have ψ ∈ Hom(ZKn,Z), then ψ is uniquely
determined by it actions on elements in Kn and hence we can compose it of
elements of A and therefore {

∑
σ∈Kn aσ1σ|aσ ∈ Z} = Hom(ZKn,Z), since

their composition rules are trivially identical.
Now let K be a simplicial complex on the vertex set V , with |V |−1 = N ,

then clearly we can rename the vertices such that K ⊂ D[N+] then we wish
to define a homomorphy so that for σ ∈ (D[N+]i+1 −Ki+1) then we define

f : Z(D[N+]i+1 −Ki+1)→

 ∑
σ∈K∨N−i−2

aσ1σ

∣∣∣∣∣∣ aσ ∈ Z

 (3.3)

f : σ 7→ Πvi∈σ(−1)vi1V−σ (3.4)

Then this is well defined due to the definition of K∨. It is rather trivially
a homomorphy, and it is clear that the only thing f maps to the constant
function 0 is 0, so it is injective. Given a homomorphy we can decompose it
into a sum of aσ1σ, for suitable σ’s and aσ ∈ Z, and hence f is surjective.
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So for σ ∈ (D[N+]i+1 −Ki+1) and τ ∈ K∨N−i−2 we find that

(φ ◦ d)(σ)(τ) = φ

 ∑
vi∈σ,σ−{vi}/∈K

(−1)iσ − {vi}

 (τ) (3.5)

=
∑

vi∈σ,σ−{vi}/∈K

(−1)iΠj∈σ−{vi}(−1)j1N+−(σ−{vi})(τ) (3.6)

=
∑

vi∈σ,σ−{vi}/∈K,τ=N+−(σ−{vi})

(−1)iΠj∈σ−{vi}(−1)j (3.7)

=
∑

vi∈σ,τ−{vi}=N+−σ

(−1)iΠj∈σ−{vi}(−1)j (3.8)

(δ ◦ φ)(σ)(τ) = δ(Πi∈σ(−1)i1N+−σ)(τ) (3.9)

= Πi∈σ(−1)i1N+−σ(∂(τ)) (3.10)

= Πi∈σ(−1)i1N+−σ

(∑
vi∈τ

(−1)iτ − {vi}

)
(3.11)

= Πi∈σ(−1)i
∑

vi∈τ,τ−{vi}=N+−σ

(−1)i (3.12)

It is clear that if there are no vi ∈ τ such that τ −{vi} = N+− σ then both
sums are empty and hence (φ◦d)(σ)(τ) = 0 = (δ ◦φ)(σ)(τ). So assume that
there is vi ∈ τ such that τ − {vi} = N+ − σ, then clearly vi = vk ∈ σ for
some k, and vi is unique, then we find that

(φ ◦ d)(σ)(τ) = (−1)k ·Πj∈σ−{vk}(−1)j = Πj∈σ,j<vk(−1) ·Πj∈σ−{vk}(−1)j

(δ ◦ φ)(σ)(τ) = Πj∈σ(−1)j · (−1)i = Πj∈σ(−1)j ·Πl∈N+−σ,l<vk(−1) (3.13)

It is clear by simple arithmetic that these to products are identical, and
therefore

ker di+1/Im di+2
∼= ker δN−i−1/ImδN−i−2 (3.14)

and now we are done since

H̃i(K)
Cor. 2.9∼= H̃i+1(D[N+],K)

(2.64)∼= ker di+1/Imdi+2 (3.15)

(3.14)∼= ker δN−i−1/ImδN−i−2 = H̃N−i−2(K∨) (3.16)

Corollary 3.2. Let K be a simplicial complex on the vertex set V , with
|V | − 1 = N . Then

H̃i(K
∨) ∼= H̃j(K) (3.17)

whenever i+ j = N + 2
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3.1. THE THEOREM

Proof. This trivially follows from the fact that (K∨)∨ = K and from the
Alexander duality.

Corollary 3.3. Let K be a simplicial complex, with N+ as the vertex set,
then χ̃(K) = (−1)N−2χ̃(K∨)

Proof. We have that χ̃(K) =
∑

i(−1)irankH̃i(K) and using the Alexander
duality we have that

χ̃(K) =
∑
i

(−1)irankH̃i(K) =
∑
i

(−1)irankH̃N−2−i(K∨) (3.18)

=
∑
i

(−1)N−2−irankH̃ i(K∨) = (−1)N−2
∑
i

(−1)−irankH̃ i (3.19)

= (−1)N−2
∑
i

(−1)irankH̃ i = (−1)N−2χ̃(K∨) (3.20)

and hence we are done.
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Chapter 4

Second duality

4.1 Topological invariance

This section is a sketch of proofs and theorems found in [6].
In this chapter, in pursuit of a different duality between homology and

cohomology, we willl try to realize our simplicial complexes as topological
spaces. For this we will need some basic definitions.

Definition 4.1. Let {a0, a1, . . . , an} be a set of points in RN for some N ,
then they are geometrically independent, if a1 − a0, . . . , an − a0 are linearly
independent in the usual linear algebra way.

Given a set of geometrically independent points, {a0, a1, . . . , an}, their
convex hull is the set of points

∑n
i=0 tiai, where ti ∈ R and are non-negative,

and
∑n

i=0 ti = 1. Given a convex hull of {a0, a1, . . . , an}, it faces are the
convex hulls of subsets of {a0, a1, . . . , an}

It is clear that for a point in a convex hull the ti’s are uniquely deter-
mined. We now need a topological equivalent to our simplicial complexes,
so we define.

Definition 4.2. A simplicial polytope, P is a subset of the powerset RN for
some N consisting of convex hulls of finite set of points such that

• For any convex hull σ in P then all faces of σ are also in P.

• All intersections between two elements of P are faces of both elements
of P.

We will write ‖P‖ :=
⋃
s∈P s, and call this object the realization of P. We

give to this space the following topology: A subset A of ‖P‖ is closed if A∩s
is closed in the standard topology on RN for all s ∈ P.

Now it appears that somehow P is closely related to our simplicial com-
plexes. The simplicial polytope and the simplicial complex actually seems
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4.1. TOPOLOGICAL INVARIANCE

to be equivalent since given a simplicial complex K, then take a function
from f : K0 → RN such that the images of the vertices are geometrically
independent, then let

K = {convex hull of{f(vi0), . . . , f(vin)}|{vi0 , . . . , vin} ∈ K} (4.1)

This is clearly a simplicial polytope. Given a simplicial polytope P we can
define

P = {{ai0,...,ain}|The convex hull of {ai0,...,ain} ∈ P} (4.2)

and this is clearly a simplicial complex. Throughout the following chapter
we will also view a simplicial complex as a simplicial polytope, and, e.g.,
write ‖K‖ for the geometricale realization of the simplicial polytope which
corresponds to the simplicial complex K 6= {∅}.

For simplicial complexes K,L let f : K → L, be a simplicial map, then
clearly f∗ : ‖K‖ → ‖L‖ given as follows: For an element in x ∈ ‖K‖ then
there is a simplex in K, {a0, . . . , an} such that x in the convex hull of this,
then x =

∑n
i=0 tiai then f∗(x) =

∑n
i=0 tif(ai). This is clearly welldefined

and continuous. It is also clear that if f was simplicial-isomorphy then
‖K‖, ‖L‖ are homeomorphic.

We will now sketch the way to prove the following result:

Theorem 4.3. Let K,L be simplicial complexes such that ‖K‖ is homotopic
equivalent to ‖L‖, then H̃n(K) ∼= H̃n(L)

Now we would wish for that if f : ‖K‖ → ‖L‖ was continuous then
we would be able to induce a simplicial-map between K,L but this is not
the case. Then we would like, that f induces some homomorphy between
H̃n(K) and H̃n(L) this is not directly true either, but by going slightly out
of our way we will be able to make a isomorphy to some ”subdivision” of
K’s homology group from K’s homology and then a homomorphy onwards
to the homology of L. We will need the following

Definition 4.4. Let K be a simplicial complex and let v be a vertex of K,
then the st (v,K), or just st v if the complex is clear, is the subset of ‖K‖
given by the union of the interiors of the simplices of K that have v as a
vertex.

That this is such an important definition seems surprising but it shall
prove most useful.

Definition 4.5. Let K,L be simplicial complexes and let h : ‖K‖ → ‖L‖
be continuous, then we say that h satisfies the star condition with respect to
K and L if for each vertex {v} ∈ K there is a vertex {w} ∈ L, such that
h(st v) ⊂ st w.
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4.2. HOMOTOPIC THEOREMS

It can be proven that if h : ‖K‖ → ‖L‖ satisfies the star condition
then it induces a simplicial map K → L, but it is also clear that not all
maps satisfy the star condition. Now let the subdivision of a simplicial
complex K be sdK = ∆(K − ∅), where the K on the right hand sight is
viewed as a poset ordered by the subset-ordering. Then one could prove
that for a continuous map f : ‖K‖ → ‖L‖ there exists N ∈ N0 such that
there is a continuous map f ′ : ‖sdNK‖ → ‖L‖ such that f ′ has a simplicial
approximation from sdNK → L. Now it is provable that there is a isomorphy
H̃n(K) → H̃n(sdNK), and so for any continuous map we can think of its
induced simplicial map, since we can merely use the simplicial map induced
by the function from some subdevision, and one can therefore show that the
homology group of a simplicial complex is stable under homeomorphisms of
its realization.

Now to prove theorem 4.3, one first needs to realize that there is a sim-
plicial complex, which can be realized as the space ‖K‖× I, with I = [0, 1].
Then one can show that if two continuous maps between realizations are ho-
motopic then their induced homomorphisms between the homology groups
are equal. Because then if K,L realize as homotopic equivalent spaces then
the homotopic equivalences induces inverse homomorphisms whose compo-
sition is the identity i.e. they are isomorphisms.

The same process will clearly show us that likewise cohomology is stable
under homotopy. And we can now define the reduced homology and coho-
mology of a topological space X, which is homotopic to some realization of
a simplicial complex K

Definition 4.6. If a topological space is homotopic to some realization of
some simplicial complex K, then we define the n’th reduced homology group
of X: H̃n(X) = H̃n(K) and like wise the n’th reduced cohomology group of
X: H̃n(X) = H̃n(K)

4.2 Homotopic theorems

This section is inspired by [1], with the exception of lemma 4.14, which is
only stated there, but is proved in [9], and theorem 4.13 which is adapted
from a proof in [7].

4.2.1 Preliminaries

In this section we will prove some theorems bearing on the question: When
are realizations of different complexes homotopic. For this we will have use
of some definitions.

Definition 4.7. Let K be a simplicial complex and T a topological space.
Let C : K → P(T ) such that if σ ⊂ τ for σ, τ ∈ K then C(σ) ∈ C(τ).
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4.2. HOMOTOPIC THEOREMS

A mapping f : ‖K‖ → T is said to be carried by C if for all σ ∈ K,
f(‖σ‖) ⊂ C(σ).

We will often use that maps of interest between simplicial complexes
has a continous realization which is carried by something mapping to a
contractible space.

Definition 4.8. Let K be a simplicial complex and P a poset ordered by
≺ then f : K → P is po-simplicial if σ ∈ K, with σ = {v0, . . . , vn}, then
f(vi0) ≺ . . . ≺ f(vin), where vij is an unique element in {v0, . . . , vn}.

In other words a po-simplicial function maps simplices to chains.

Definition 4.9. Given a family of sets (Ai)i∈I indexed by a finite ordered
set I, the nerve of the family is the simplicial complex N (Ai) defined on the
vertex set I, such that σ ∈ N (Ai) if σ ⊂ I and

⋂
i∈σ Ai 6= ∅, where we define⋂

i∈∅Ai :=
⋃
i∈I Ai

It is clear that this is a simplicial complex since, if σ ∈ N (Ai) and τ ⊂ σ
then

⋂
i∈σ Ai ⊂

⋂
i∈τ Ai, so τ ∈ N (Ai).

Definition 4.10. Let P be a poset ordered by ≺, a subset C is called a
crosscut if

1. no two elements in C are comparable

2. for every finite chain a0 ≺ . . . ≺ an, with a0, . . . , an ∈ P , there is some
a ∈ C such that a is comparable to each ai.

3. for all A ⊂ C for which there is an element p ∈ P such that a ≺ p for
all a ∈ A, then there should be a unique least upper bound for A in P .
Like wise if there is p ∈ P such that p ≺ a for all a ∈ A, then there
should be a unique greatest lower bound for A in P .

Definition 4.11. If C is a finite crosscut then Γ(P,C) determines a sim-
plicial complex consisting of all subsets of C such that there is an upper or
a lower bound in P

We will also be needing a more topological result and for that a definition

Definition 4.12. A cell is a topological space homeomorphic with the unit
ball Bn for some n ∈ N0

Theorem 4.13. If X is a cell, and T is a contractible space, then if f is
a continuous function from the boundary of X to T , then f extends to a
continuous function f̃ : X → T .
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4.2. HOMOTOPIC THEOREMS

Proof. For X being homeomorph with B0 this is a trivial statement since
then X consists of a single point, and hence is equal to its own bound-
ary. Next let n ≥ 1. Let h : X → Bn be the homeomorphism, and
let F be the homotopy between idT and the constant map. Now clearly
h maps the boundary of X to Sn−1. Now define H : Sn−1 × I → T
by H(x, t) = F ((f ◦ h−1)(x), t), then clearly this is a homotopy between
f ◦ h−1 and the constant map. Now let q : Sn−1 × I → Bn, be given by
q(x, t) = (1− t)x, clearly this is continuous, closed and surjective, so it is a
quotient map collapsing Sn−1×{1} to 0. Since H is constant on Sn−1×{1},
then clearly it induces a continuous function k : Bn → T via the quotient
map. Now let f̃ = h−1 ◦ k, then it is clear that for any element x in the
boundary of X, it holds that f̃(x) = f(x).

4.2.2 Combinatorical homotopy theorems

We will be needing a lemma for use in the following theorem, namely:

Lemma 4.14. Let K be a simplicial complex, let T a topological space and
let C : K → P(T ) be a carrier such that C(σ) is contractible for all σ ∈ K.
Then:

1. If f, g : ‖K‖ → T are both carried by C, then f and g are homotopic.

2. There exists a mapping f : ‖K‖ → T carried by C.

Proof. Let C be a carrier from K, such that C(σ) is contractible for all
σ ∈ K.

We will start by proving (1). Suppose that f, g : ‖K‖ → T are both
carried by C, the we will construct a homotopy F : ‖K‖ × I → T . Now
we have that f(‖{v}‖) ∈ C({v}) and g(‖{v}‖) ∈ C({v}) for all v ∈ K0.
Now we can consider ‖K‖× I to be a collection of cells of the form ‖σ‖× I,
for σ ∈ K, and a function on ‖K‖ × I is continuous if and only if it is
coninuous on each ‖σ‖ × I. Now it is clear that the boundry of ‖{v}‖ × I
is given by ‖{v}‖ × {0} ∪ ‖{v}‖ × {1}. Further let F (‖{v}‖, 0) = f(‖{v}‖),
and F (‖{v}‖, 1) = g(‖{v}‖), and now by theorem 4.13 we can continuously
extend F : ‖{v}‖× {0, 1} → T to ‖{v}‖× I. Now suppose that F is defined
and continuous on ‖K‖ × {0, 1} ∪ ‖K≤n‖ × I, with K≤n =

⋃n
i=−1Ki, and

that F (‖σ‖×I) ⊂ C(σ). Then take τ ∈ Kn+1, then the boundary of ‖τ‖×I
is in ‖K‖ × {0, 1} ∪ ‖K≤n‖ × I, and since for all proper faces σ of τ then
C(σ) ⊂ C(τ), it is clear that F taken on the boundry of τ × I is continuous
and a subset of C(τ) which is contractible and hence, F can be extended
continuously to ‖τ‖ × I, and per induction we are now done.

We will now prove (2) by inductively constructing f as a continuous
function. For {v} ∈ K0 then f(‖{v}‖) should be any point in C({v}).
Suppose now that f is continuously defined on ‖K≤n‖, with f(‖σ‖) ⊂ C(σ),
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4.2. HOMOTOPIC THEOREMS

for all σ ∈ K≤n. Now take τ ∈ Kn+1, then for each simlex σ of τ we have
that

f(‖σ‖) ⊂ C(σ) ⊂ C(τ) (4.3)

and hence f on the boundary of τ is a subset of C(τ), so since the realization
of a simplex is a cell we can now extend f continuously to ‖τ‖, in such a
way so f(‖τ‖) ⊂ C(τ). And since f is continuous on K, if and only if it is
continuous on each simplex of K, we are done.

The next theorem will be actually be needed for proving the duality,
which is the goal of this chapter, but also to prove some further theorems.

Theorem 4.15. Let K be a simplicial complex, let P be a finite poset and let
f : K → ∆(P ) a simplicial map. Define P≥x to be all chains in P consisting
of elements all greater than equal to x. Suppose that ‖f−1(P≥x)‖ ⊂ ‖K‖,
for all x ∈ P , is contractible. Then f induces homotopy equivalence between
‖K‖ and ‖∆(P )‖.

Proof. Suppose that f−1(P≥x) are contractible, then define

C : ∆(P )→ P(‖K‖) (4.4)

given by C(σ) = ‖f−1(P≥minσ)‖. By part two of lemma 4.14 then there
is a continuous g carried by C. Now let C ′ : ∆(P ) → P(‖∆(P )‖) given
by C ′(σ) = ‖P≥minσ‖. Now it is clear that C ′(σ) is contractible for all
σ ∈ ∆(P ) since it is all simplices of ∆(P ) with elements greater than or
equal to minσ. It is clear that f ◦ g is carried by C ′ since g is carried by
C, and f ◦ C is C ′, and trivially likewise the identity map on ‖∆(P )‖ is
carried, and hence by lemma 4.14 2 we get that f ◦ g is homotopic to the
identity. Let C ′′ : ∆(P ) → P(‖K‖) given as follows: For σ ∈ K then
C ′′(σ) = ‖f−1(P≥min f(σ))‖, then C ′′(σ) is contractible by assumption and
clearly it carries g ◦ f since f(σ) ⊂ ‖P≥min f(σ)‖ and g is carried by C.
Likewise the identity map on ‖K‖ is carried by C ′′ and hence by lemma
4.14 g ◦ f is homotopic to the identity and therefore ‖∆(P )‖ is homotopic
equivalent to ‖K‖.

Theorem 4.16. Let K be a simplicial complex and let (Ki)i∈I , be a finite
family of simplicial complexes such that K =

⋃
i∈I Ki. Suppose that every

nonempty finite intersection Ki1 ∩ . . . ∩ Kin is contractible, then ‖K‖ and
‖N (Ki)‖ are homotopic equivalent.

Proof. Let f : K → N (Ki), where K,N (Ki) are both viewed as posets
ordered by subset-ordering; and for σ ∈ K let f(σ) = {i ∈ I|σ ∈ Ki}. Then
f ′ : ∆(K)→ N (Ki) given as follows: For {σ0, . . . , σn} ∈ ∆(K) then

f ′({σ0, . . . , σn}) = {f(σ0), . . . , f(σn)} (4.5)
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is well defined and simplicial. Now take arbitrary τ ∈ N (Ki) viewed as a
subset. Then f ′−1(P≥τ ) =

⋂
i∈τ Ki since elements that are mapped to τ or

greater must at least be in all the same Ki as τ . But now the result follows
from theorem 4.15 and the assumption.

Corollary 4.17. If C is a crosscut of a poset P , then ‖Γ(P,C)‖ and ‖∆(P )‖
are homotopic equivalent.

Proof. For any x ∈ C let Kx := ∆(P≤x∪P≥x), then it is clear that (Kx)x∈C
is a covering of ∆(P ), i.e., ∆(P ) =

⋃
x∈C Kx since every element in P is

comparable to some element in C. If we take A ⊂ C such that
⋂
x∈AKx 6= ∅,

that means there is either an element p1 ∈ P such that p1 ≥ k for all k ∈ A,
or there is p0 ∈ P such that p0 ≤ k for all k ∈ A. If p1 exists there is
a least such we will call this element p̂1, since C is a crosscut, and hence⋂
x∈AKx is contractible because it consists of the vertices with p̂1 as the

least element in each. If p0 exists there is a p̂0 which is the greatest element
smaller than all k ∈ A, and then

⋂
x∈AKx is contractible since it consists

of all simpleces with p̂0 as the greatest element. Now we need to show that
Γ(P,C) = N (Kx), but this is clear since A ⊂ C has

⋂
x∈AKx 6= ∅ if and

only if it either has a lower or greater bound, and hence we are done.

4.3 Duality

This section is inspired by [2] where the 4.18 is stated. I have followed the
same proof-strategy as in [2], but the proof is deviced by me.

4.3.1 Preliminaries

In this section we will finally be able to state and prove the second duality
of this thesis. So let K be a simplicial complex on the vertex set V , then let
C be the set of subsetwise least nonfaces of K, meaning that

C := min(D[V ]−K) (4.6)

, and let KΓ be the simplicial complex such that {c0, . . . , cn} ∈ KΓ for
c0, . . . , cn ∈ C, whenever c0 ∪ . . . ∪ cn 6= V . This is clearly a simplicial
complex since if c0 ∪ . . . ∪ cn 6= V , then no subset of {c0, . . . , cn} will have
union equal to V . Now it is clear that this complex is not the same as the
Alexander dual complex.

Now we can state the that theorem we want to prove:

Theorem 4.18. Let K be a simplicial complex on the vertex set V , with
|V | − 1 = N , then H̃i(K) ∼= H̃j(KΓ) whenever i+ j = N − 2.

It is clear that this is somehow related to the Alexander duality since
the two statements are almost identical. The only difference is that here
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we have replaced K∨ with KΓ. And that is actually the heart of the proof:
Since the reduced cohomology is stable under homotopy equivalences, then
we wish to show that there is a homotopy equivalence between ‖K∨‖ and
‖KΓ‖, and for this we will need the theorems from the previous subsection.

4.3.2 Proof

Proof of theorem 4.18 . Let ∂D[V ] := D[V ] − V and sdK∨ := ∆(K∨ − ∅),
where K∨ − ∅ is viewed as a poset ordered by the subset-ordering. Now
define

f : sdK∨0 → ∂D[V ]−K (4.7)

such that for any σ ∈ ∆(K∨ − ∅)0 then f(σ) = V − σ. This is well defined
since σ 6= ∅ and since σ ∈ K∨−∅ and hence V − σ /∈ K. Now we see that if
{σ0, . . . , σn} ∈ sdK∨, then σ0 ⊂ . . . ⊂ σn, but then f(σn) ⊂ . . . ⊂ f(σ0), so
{f(σn), . . . , f(σ0)} ∈ ∆(∂D[V ]−K). Now take an arbitrary x ∈ ∂D[V ]−K
then f−1((D[V ] − K)≥x) consists of all simplices in sdK∨ where V − x is
greater or equal to all elements in the simplex, and hence this is contractible.
We can now by theorem 4.15 conclude that ‖sdK∨‖ and ‖∆(∂D[V ] −K)‖
are homotopic equivalent.

Now let C be given as the set of minimal non-faces of K. We now whish
to show that C is a crosscut of ∂D[V ]−K. It is clear that since the elements
of C are minimal no two distinct elements are related. It is clear that given
an arbitrary element p in ∂D[V ]−K there must always be some element in
C such that it is smaller than p, since C consists of minimal elements. Given
an arbitrary nonempty subset A of C then there can’t be a lower bound for
A in ∂D[V ] − K since C concists of minimal elements. It is clear that if⋃
c∈A c 6= V , then A has an upper bound, namely

⋃
c∈A c ∈ ∂D[V ] −K, if⋃

c∈A c = V , then A is unbounded. We now have that C is a crosscut of
∂D[V ]−K. And it is clear that Γ(∂D[V ]−K,C) = KΓ, and hence we now
have that ‖∆(∂D[V ]−K)‖ is homotopic to ‖KΓ‖.

And hence we get by use of the Alexander duality that

H̃i(K) ∼= H̃j(K∨) ∼= H̃j(sdK∨) ∼= H̃j(∆(∂D[V ]−K)) ∼= H̃j(KΓ) (4.8)

whenever i+ j = N − 2.
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