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Abstract

There is a notion of commutative monoid and group in an ∞-category with finite products,
which generalizes the usual notion of commutative monoid or group object in an ordinary category
(in particular, the usual notion of commutative monoid or group). The tensor product on abelian
groups is uniquely determined by the requirement that the free abelian group functor Set →
Grp carries products to tensor products. In analogy with this, we show that for any presentable∞-category C, the ∞-categories of commutative monoids and groups admit unique symmetric
monoidal structures making the free functors from C symmetric monoidal. Since it is in general
very difficult to specify a symmetric monoidal structure on an ∞-category, we employ an indirect
approach, due to Gepner-Groth-Nikolaus [4], using the universal properties of the ∞-categories
of monoids and groups. The key result is that each of these constructions is a localization of
the ∞-category PrL of presentable ∞-categories, and that this localization is compatible with the
symmetric monoidal structure on PrL in a certain sense. As a consequence, we obtain a functor
from E∞ rig spaces to E∞ ring spectra. We discuss applications of this machinery to algebraic
K-theory.
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1. INTRODUCTION

1 Introduction

Suppose we are given a commutative monoid M. Then we can build an abelian group, the group
completion of M, by formally inverting every element of M. This defines a functor CMon → Ab
which is left adjoint to the inclusion Ab ↪→ CMon. Now, suppose we are given a multiplication
map on our monoid M. In other words, M has the structure of a rig (a “ring without negatives”).
Then we would like to give its group completion the structure of a ring. Of course, one can do this
explicitly, but there is also a more conceptual way of approaching this problem.

A multiplication, both in commutative monoids and abelian groups, is the same thing as a map

M⊗M→M

for certain symmetric-monoidal structures (CMon,⊗), (Ab,⊗). These can be characterized by the
property that the free functors Set→ CMon and Set→ Ab send products of sets to tensor products
of monoids/groups. Since group completion takes free monoids to free groups, it follows that group
completion admits a symmetric monoidal structure. This implies it takes algebra objects in CMon
(rigs) to algebra objects in Ab (rings).

This is hardly the most efficient way of proving this theorem. However, it has the advantage of
generalizing, with some work, to a more general setting. There are “homotopy-theoretic” general-
izations of the categories of commutative monoids and abelian groups, which we will call CMon(S)
and CGrp(S). These are ∞-categories which are important, for instance, in algebraic K-theory. En-
dowing these things with a symmetric-monoidal structure is an important problem. It is not feasible
to simply write down a tensor product, and a symmetric monoidal structure on the free functors
and the group completion, as one can do in the classical case. Hence, we employ the approach
sketched above, of showing that there is a unique symmetric monoidal structure determined by the
requirement that the free functor is monoidal. To do this, we make use of a theory of localizations in
symmetric-monoidal∞-categories.

We will prove the following statement:

Theorem A. Let C → D be a symmetric monoidal left adjoint functor between presentably symmet-
ric monoidal∞-categories. Then this extends to a diagram of symmetric monoidal functors between
presentably symmetric monoidal∞-categories

C C∗ CMon(C) CGrp(C) Sp(C)

D D∗ CMon(D) CGrp(D) Sp(D)

F (F)∗ CMon(F) CGrp(F) Sp(F)

in an essentially unique way. In particular, each of the categories above admits canonical symmetric
monoidal structure, uniquely determined by the requirement that the free functors be symmetric
monoidal.

As a direct corollary of this, we get the following:

Theorem B. The K-theory functor
Cat⊗ → Sp

admits a canonical lax symmetric monoidal structure.

(Here Cat⊗ denotes the∞-category of symmetric monoidal categories).
In particular, this implies that for a commutative ring R, K(R) has the structure of an E∞-ring

spectrum, with the multiplication coming from ⊗.
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∞-categories

In this project, we work in the language of ∞-categories. This is a formalism for doing “abstract
homotopy theory”, introduced by Boardmann-Vogt [2] under the name Weak Kan complex, and de-
veloped heavily by Joyal (who named them quasicategories) in [5], and Lurie in [8], who used the
term∞-categories.

Definition 1.1. An∞-category is a simplicial set C so that for each diagram of this form

Λn
i C

∆n

where 0 < i < n, there is an extension as indicated by the dashed arrow.

To motivate this definition, note for instance that a simplicial set is the nerve of an ordinary
category if and only if each such diagram admits a unique filler.

Given an ∞-category C, one should interpret the 0-simplices as the objects, and the 1-simplices
as the morphisms. A 2-simplex of the form

Y

X Z

gf

h

should be interpreted as a homotopy from g ◦ f to h. The higher simplices should similarly be
interpreted as homotopies between homotopies (between homotopies ...).

Note that, in an ∞-category, there is no one composite between to morphisms X → Y → Z.
Rather, there is a choice of composites given by the fillers for the corresponding inner horn (and
by assumption there is always at least one such composite). It can be shown that composites are
essentially unique in a strong sense (the map MapsSet(∆

2, C) → MapsSet(Λ
2
1, C) is a trivial Kan

fibration - in fact this condition is equivalent to asking that C be a∞-category).
A functor between ∞-categories cannot just be defined by giving a value on objects and mor-

phisms and asking that it preserves the composition - indeed, the equation F(f ◦ g) = F(f) ◦ F(g)
makes no sense in an ∞-category. Rather, we must ask that for each 2-simplex as above, we get a
corresponding one in the codomain, and similarly for the higher simplices. In other words, a functor
between∞-categories is just a map of simplicial sets.

It turns out that one can develop most of the machinery of ordinary category theory in this set-
ting. However,∞-categories also function as an alternative for model categories. For instance, every
model category has an “underlying”∞-category, and limits and colimits in this∞-category (which
can be defined as initial/terminal objects of a “slice ∞-category ”, analogously to the definitions in
ordinary category theory) correspond to homotopy limits and colimits in the model category.

In fact, in the setting of the main result of this project, presentable∞-categories, the correspondence
is extremely strong: every presentable ∞-category is the underlying ∞-category of a (left proper,
combinatorial) model category, and any colimit-preserving functor “lifts” to a left Quillen functor
between the corresponding model categories.

We will elaborate slightly on two of the more technical aspects of this theory.
First of all, one often needs to work with functors into Cat∞, the ∞-category of ∞-categories.

However, it can be quite hard to write down such a functor, since one needs to specify an infinite
amount of coherence data. To approach this problem, Lurie introduced the straightening equivalence,
which allows us to identify functors K → Cat∞ with certain maps of simplicial sets E → K, the
so-called coCartesian fibrations. We will not go into a study of the straightening equivalence here -
for the details, see [8, Chapter 3].
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1. INTRODUCTION

Theorem 1.2 (Lurie). Let K be an∞-category. Then there is an equivalence of∞-categories

(Cat∞)coCart
/K ≃ Fun(K, Cat∞),

the straightening equivalence. Here the left-hand side refers to the full subcategory of the slice
(Cat∞)/K spanned by those functors E → K which are coCartesian fibrations.

Second, we will need to use the notion of Kan extension for∞-categories. Again, we will not give
an account of the theory, but note that it mostly follows the same form as the version for ordinary
categories. The notable difference is that the Kan extensions considered herein are analogous to
what is usually called a pointwise Kan extension. The theory is developed in [8, Section 4.3].

Lastly, we note the following proposition, which is crucial for the project.

Theorem 1.3 ([6, Theorem 5.14]). Let C,D be ∞-categories, and let C0 ⊆ C be the set of objects.
Then the restriction functor Fun(C,D)→ Fun(C0,D) is conservative.

Overview of the project

In section 1, we describe the theory of localizations in∞-categories, which plays a key role.
In section 2, we state some results about presentable ∞-categories, the type which the main

theorem is concerned with.
In section 3, we describe the algebraic ∞-categories which are the focus of the project: the ∞-

categories of pointed objects, commutative monoids and commutative groups. We prove a number
of basic results about these categories.

In section 4, we give an abbreviated account of symmetric monoidal ∞-categories, which are
the ∞-categorical analogue of symmetric monoidal categories. Importantly, we describe a sym-
metric monoidal structure on PrL so that commutative algebras in this structure are precisely the
presentable closed symmetric monoidal categories.

In section 5, we begin the path towards the main theorem, by proving that each of the as-
signments discussed in section 3 can be viewed as a localization of PrL, and we describe these
localizations.

In section 6, we briefly describe how a similar construction works for the category of spectrum
objects in C. We also give a short description of the “free” functors between the various categories
we have introduced.

In sections 7, we describe how these localizations, because they are compatible with the symmet-
ric monoidal structure in a certain sense, induce localizations of CAlg(PrL), which give the canonical
symmetric monoidal structures we are interested in.

In section 8, we describe how this relates to algebraic K-theory, by giving a description of the
K-theory spectrum in the language of this project, and showing how we obtain a multiplicative
structure essentially for free. We also discuss how these results compare to classical work.

Conventions

We write hC for the homotopy category of C, if C is an∞-category.
We write Map(X, Y) or MapC(X, Y) for the mapping spaces in an ∞-category or simplicial cate-

gory, in contrast Hom(X, Y) or HomC(X, Y) for the Hom-sets of an ordinary category.
We denote by FunL (resp. FunR) the subcategory of Fun(C,D) spanned by those functors which

preserve colimits (resp. limits) in each variable.
We write S for the∞-category of spaces, Cat∞ for the∞-category of∞-categories.
A space for us will always mean an object of the∞-category of spaces, or more concretely a Kan

complex (although in most cases it could equivalently be a CW-complex).
We generally use C,D for∞-categories, while we use C, D for ordinary categories.
Ĉat∞ refers to the category of not necessarily small ∞-categories. In general, we use a hat to

denote any collection of large objects.
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If C is an ∞-category, or an ordinary category, we denote by C≃ the maximal subgroupoid,
i.e the subcategory spanned by all isomorphisms or equivalences in C. Recall that in the case of∞-categories, this is the largest Kan complex contained in C.

We generally use the symbol I for the unit object in a symmetric monoidal (∞-)category, ∗ for
terminal objects, and 1 for identities.
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2 Localizations of∞-categories

For ordinary categories, there is a very useful theory of localizations. This goes back at least to work
of Adams in [1] and Bousfield in [3].

Since the papers [1] and [3] are good references to the ordinary theory of localizations, we will
not recall it here, but it is very useful to keep it in mind as we proceed, since the ∞-categorical
version is essentially the same.

Since things are in general much more complicated in the world of∞-categories, one might fear
that a good theory of localizations would also be very technical. However, it turns out that one can
develop the theory in a completely analogous way. This is done by Lurie in [8, Section 5.2.7]. We
will cite that section heavily, although we lay out the material in a slightly different way. We also
prove a theorem about how the local equivalences determine a localization which is absent from [8],
although again it is a very easy consequence of the theorems there.

We start with a number of definitions. The relationships between these will be exactly as in the
ordinary theory.

Definition 2.1. Let L : C → D be a functor of∞-categories. Then L is called a localization if it admits
a right adjoint which is fully faithful.

Definition 2.2. Let L : C → C be an endofunctor of the∞-category C, and let η : 1C → L be a natural
transformation. We say that η exhibits L as an idempotent functor if for each X ∈ C, there exists an
equivalence ηLX ≃ L(ηX) : LX→ LLX, and both ηLX and L(ηX) are localizations.

Definition 2.3. Let C0 ⊆ C be a full subcategory of the ∞-category C, stable under equivalence We
say that a map X → X̃, where X ∈ C, X̃ ∈ C0 is a C0-localization of X, or a localization relative to C0 if
the induced map

Map(X̃, Y)→Map(X, Y)

is an equivalence for each Y ∈ C0.

Definition 2.4. Let W be a collection of morphisms in the ∞-category C, which has the 2-out-of-3
property and contains all equivalences. We say that an object X is W-local if, for each map f : A→ B

in W, the induced map
Map(B,X)→Map(A,X)

is an equivalence. We will denote by CW the full subcategory of W-local objects.

Remark 2.5. In this case, CW is stable under equivalence.
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2. LOCALIZATIONS OF∞-CATEGORIES

Definition 2.6. If L : C → C is an idempotent functor, we say that a morphism f : X → Y in C is a
local equivalence for L if Lf is an equivalence. If the choice of L is understood, we frequently just say
that f is a local equivalence.

We now discuss the relationship between these things

Proposition 2.7 ([8, Prop 5.2.7.4]). Suppose L : C → C is an endofunctor on the ∞-category C, and
let η : 1C → L be a natural transformation. Then the following are all equivalent:

(1) L is left adjoint to the inclusion LC ↪→ C of the essential image, with unit η : 1C → L.

(2) ηLX,L(ηX) : LX→ LLX are equivalences for each X ∈ C.

(3) η exhibits L as an idempotent functor.

Remark 2.8. It is clear that, in the first case, the functor L : C → LC is a localization. On the other
hand, if L : C → D is a localization, we can identify D with a full subcategory of C via the right
adjoint, which will bring us back to the situation of (1). Hence this theorem describes a sort of
equivalence between localizations and idempotent functors. We will often abuse notation slightly
and refer to a functor L : C → C as a localization, if L : C → LC is one.

Proposition 2.9 ([8, Prop. 5.2.7.8]). Suppose C0 ⊆ C is a full subcategory stable under equivalence.
Then the following are equivalent:

(1) Each object in C admits a C0-localization.

(2) The inclusion C0 ↪→ C admits a left adjoint.

Proposition 2.10. Let L : C → C be a functor. Let η : 1C → L be a natural transformation which
exhibits L as an idempotent functor, and let W be the collection of local equivalences. Then a map
f : C→ D is an LC-localization if and only if D ∈ LC and f is in W. In particular, each ηX : X→ LX

is an LC-localization. Furthermore, LC is precisely the collection of W-local objects.

The proof is somewhat long, and does not really contain any technical insight. The above propo-
sition is true essentially for the same reason that it is true for ordinary categories.

Proof. First we show LC = CW . For the first inclusion, we must show that X ∈ LC is W-local, i.e.
that if A→ B ∈W, the map

Map(B,X)→Map(A,X)

is an equivalence. By commutativity of this naturality diagram

Map(B,X) Map(A,X)

Map(LB,X) Map(LA,X)∼

it suffices to show this for the maps

Map(LA,X)→Map(A,X)

But this is precisely the natural equivalence defining the adjunction, so it certainly must be an
equivalence.

Suppose X is W-local, i.e for each f : A→ B ∈W, the map

Map(B,X)→Map(A,X)

is an equivalence. Note that ηX : X→ LX is in W. Hence

Map(LX,X)→Map(X,X)
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is an equivalence. It follows that there is some (essentially unique) map g : LX→ X so that gηX ≃ 1X.
Since LX is W-local, the map

Map(LX,LX)→Map(X,LX)

given by precomposition with η is an equivalence. Clearly the identity and ηg both map to ηgη ≃ η.
Hence ηg ≃ 1LX, which shows that g is an equivalence. Hence X is really in the essential image of
L, as desired.

Now for the first part of the statement. First, consider f : X → Y. Suppose f ∈ W, and that
Y ∈ LC. We must show that

Map(Y,Z)→Map(X,Z)

is an equivalence, for each Z ∈ LC. By the above, Z ∈ CW , and the result follows immediately.
Now suppose f : X → Y is an LC-localization. Then by definition Y ∈ LC. We must show that

f ∈W, in other words, that Lf is an equivalence. By definition, we have an equivalence

Map(Y,Z)→Map(X,Z)

whenever Z ∈ LC. In particular, we have an equivalence

Map(Y,LX)→Map(X,LX)

This defines a map g : Y → LX with the property that gf ≃ ηX. By naturality, we have the following
commuting diagram:

X Y

LX LY

f

ηX ηY

Lf

In other words ηYf ≃ LfηX ≃ Lfgf. Since f is an LC localization, Lfg ≃ ηY , i.e Lf(gη−1
Y ) ≃ 1LX.

Now consider gη−1
Y Lf : LX → LX. We wish to show that it equals 1LX. It is enough to observe that

this is true after precomposition with ηX, since this is an LC-localization. We have shown that Lf is
an equivalence, as desired. This completes the proof.

Warning 2.11. If L : C → C is a localization functor, then each object X has an LC-localization X→ LX.
If the objects and morphisms of C are (∞-)categories and functors (e.g. PrL, the main example of
interest), this can cause some confusion, since the localization map X → LX could reasonably be
called a “localization functor”, but is not one in the sense of definition 2.1.

Proposition 2.12 ([8, Prop. 5.2.7.12]). Let L : C → C be an idempotent functor. Let D be another∞-category. Then composition with L induces a functor

Fun(LC,D)→ Fun(C,D)

This functor is fully faithful, and its essential image consists of those functors F which send local
equivalences to equivalences.

This is a slightly modified version of [8, Prop. 5.2.7.12].
The preceding propositions describe how the localization L : C → C, the full subcategory of

local objects, and the local equivalences all determine one another. We will use this correspondence
frequently. Proposition 2.12 essentially states that LC is the∞-category obtained from C by formally
inverting the local equivalences.

The following propositions will be convenient later:

Proposition 2.13. Suppose L : C → C is a localization, and let D be any∞-category. Then L induces
a functor L∗ : Fun(D, C)→ Fun(D, C). This functor is a localization, with essential image consisting
of those functors with image contained in LC

6



3. PRESENTABLE∞-CATEGORIES

Proof. It is clear that the essential image of L∗ contains only functors with essential image contained
in LC. Conversely, if a functor F has essential image contained in LC, the natural transformation
ηF : F→ LF is an equivalence at each object, hence a natural equivalence.

To see that L∗ is a localization, we will construct a natural transformation 1→ L∗ in the category

Fun(Fun(C,D), Fun(C,D)).

This is the same thing as a map Fun(D, C)×∆1 ×D → C. We are given a map η : C ×∆1 → C. We
can use the canonical map e : Fun(D, C)×D → C, composing it with η, to build a map of the correct
type. Undwinding the definitions, it is not hard to see that it will have the right properties.

Proposition 2.14. Suppose L : C → C is a localization, and D ⊆ C is a full subcategory such that
LD ⊆ D. Then the restriction L|D : D → D is a localization.

Proof. Let η be a natural transformation exhibiting L as idempotent. Then it is immediate that the
restriction of η to L|D will exhibit it as idempotent, and we are done.

Corollary 2.15. Suppose we have inclusions C ⊆ D ⊆ E of∞-categories, and that furthermore both
C ↪→ E and D ↪→ E admit left adjoints. Then also C ↪→ D admits a left adjoint, and these three left
adjoints can be chosen to fit into a commutative triangle like this

C D

E

⊥

⊥⊥

3 Presentable∞-categories

The overall idea of this project is to study certain localizations in ∞-categories of ∞-categories.
Localizations can be identified with certain full subcategories, which are essentially the same thing
as properties of the objects (i.e. of ∞-categories). We will be particularly interested in certain
properties, which we will discuss momentarily, for instance preadditivity. However, it is not quite
true that the subcategory of preadditive∞-categories, as a subcategory of Ĉat∞, (the∞-category of
large∞-categories), is a localization.

For this to be true, we need to work with the somewhat more technical notion of presentable∞-categories.

Warning 3.1. This section is not very enlightening. If one simply remembers that presentable ∞-
categories have all limits and colimits, and satisfy the adjoint functor theorem, it will probably be
safe to ignore this section. (The only exception is when we have to show that the categories we
construct are actually presentable)

For a comprehensive reference on the material in this section, see [8, Section 5.4 & 5.5]

Definition 3.2. Let κ be a regular cardinal. An∞-category is κ-accessible if it is locally small, admits
κ-filtered colimits, the subcategory of κ-compact objects Cκ is essentially small, and generates C
under κ-filtered colimits. We say that C is accessible if it is κ-accessible for some κ.

Remark 3.3. For the most part, the definitions of κ-accessible, κ-compact, κ-filtered, etc, can be
ignored. We will need them only briefly to show that certain∞-categories are presentable.

Definition 3.4. An∞-category is presentable if it is accessible and admits all (small) colimits.

We will need the following lemma.
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Lemma 3.5. Let C be κ-accessible. Then a map f : X → Y in C is an equivalence if and only if each
map Map(A,X)→Map(A, Y) is an equivalence, for A ∈ Cκ.

Proof. The “only if” direction is trivial. Now assume that Map(A,X)→Map(A, Y) is an equivalence
whenever A is κ-compact.

Observe that X → Y is an equivalence if and only if each induced map Map(A,X) → Map(A, Y)
is an equivalence, for A ∈ C.

Now let any A be given. Then by assumption we can write A = colimi∈IAi, where I is κ-
filtered and Ai ∈ Cκ. Then Map(A,−)(f) = Map(colimi∈IAi,−)(f) = limi∈Iop (Map(Ai,−)(f)) By
assumption, each Map(Ai,−)(f) is an equivalence, hence this limit is an equivalence. This concludes
the proof.

Remark 3.6. This proof only uses the assumption that C is generated by the collection Cκ under
colimits.

Proposition 3.7 ([8, Corollary 5.5.2.4]). Let C be a presentable∞-category. Then it has all limits.

Proposition 3.8 ([8, Corollary 5.5.2.9], The adjoint functor theorem for∞-categories). Let F : C → D
be a functor between presentable∞-categories.

(1) F admits a right adjoint if and only if F preserves all colimits.

(2) F admits a left adjoint if and only if F preserves all limits, and κ-filtered colimits for some regular
cardinal κ.

Remark 3.9. A functor which preserves κ-filtered colimits is called κ-accessible. A functor which is
κ-accessible for some κ is called accessible.

The∞-category PrL

The category of presentable∞-categories in which we will work is the following

Definition 3.10. PrL is the subcategory of Ĉat∞ spanned by the presentable ∞-categories and
colimit-preserving functors. We also define a category PrL of presentable ∞-categories and limit-
preserving, accessible functors in an analogous way.

Definition 3.11. If C and D are presentable∞-categories, we denote by FunRa(C,D) the subcategory
of Fun(C,D) spanned by the limit-preserving and accessible functors.

Corollary 3.12 (of the adjoint functor theorem). There is a categorical equivalence PrL ≃ (PrR)op

mapping each category to itself, and each functor to a right adjoint.

We will also need a few ways of building new presentable categories.

Proposition 3.13. Suppose C,D are presentable∞-categories, and K is a small simplicial set.

(1) Fun(K, C) is presentable.

(2) FunL(C,D) is presentable.

Proposition 3.14. Let C be a presentable∞-category, and let W be a (small) set of morphisms in C.
Then CW ↪→ C admits a left adjoint, and CW is presentable.

Remark 3.15. In this situation, we say that CW is a presentable localization of C.

8
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4 Pointed objects, commutative monoids and groups

We now introduce the ∞-categories of “algebraic objects” that we will work with: commutative
groups and monoids. We will begin by introducing the category of pointed objects in an ∞-category
C. There are two reasons for this. First, it is sometimes necessary to work with e.g. pointed
spaces, and it can be convenient to understand how they fit into the story of this project. More
importantly however, the category of pointed objects will serve as a simple example of the theory
we are developing. For this reason, some of the proofs have been made more complicated than
strictly necessary, in order to emphasize the parallels with the case of monoids and groups.

Pointed objects

Definition 4.1. Let C be an ∞-category with a terminal object. Define C∗ as the full subcategory of
Fun(∆1, C) spanned by those morphisms beginning at a terminal object.

Proposition 4.2. Suppose C is presentable. Then also C∗ is presentable, and the forgetful functor

C∗ → C

admits a left adjoint.

Proof. First, we establish presentability. Since Fun(∆1, C) is presentable, it suffices to exhibit a set of
mapsW, so that C∗ is precisely the subcategory of local objects. Consider functor ev0 : Fun(∆1, C)→
C given by evaluating at 0. Since it preserves limits and colimits, it admits a left adjoint, F.

Now by construction,
MapC(X, f(0)) ≃ MapFun(∆1,C)(FX, f)

An object f ∈ Fun(∆1, C) is in C∗ if and only if this space is contractible for each X, which is the
same as requiring that the map

Map(FX, f)→Map(F∅, f)

is a homotopy equivalence, where ∅ is an initial object of C (which implies that F∅ is initial as well).
By accessibility, there is a small subset of Cκ so that is suffices to check this for X in this subset.
Taking the maps F∅ → FX, for each of these X, as our set W, it follows that the W-local objects are
precisely the objects of C∗.

The left adjoint can be constructed as the composite

C → Fun(∆1, C)→ C∗

of the left adjoint of the “evaluation at 1” functor and the localization.

Remark 4.3. This proposition could certainly have been proved more simply. For instance, the left
adjoint is given by X 7→ (∗ ↪→ X⊔∗), and it’s not hard to check directly that this is an adjunction. The
proof was made more complicated than necessary to emphasize the analogy with the corresponding
proofs in the case of commutative monoids and groups.

Proposition 4.4. Let C,D be complete ∞-categories. Then FunR(C,D∗) ≃ FunR(C,D)∗. Moreover,
the two obvious functors into FunR(C,D) are identified under this identification.

Proof. Both categories can be identified with the subcategory of Fun(∆1 × C,D) spanned by the
functors which preserve limits in the second variable, and so that F(0, x) is a terminal object for all
x.

9
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The category of finite pointed sets

Before we introduce commutative monoids and groups, we must make a brief digression to intro-
duce the category of finite pointed sets. This category will also play a role in the next section, when
we discuss symmetric monoidal∞-categories. We will use the following conventions:

Definition 4.5. The (ordinary) category Fin∗ has objects (X, x), where X is a finite set and x ∈ X. A
morphism (X, x)→ (Y,y) is a map f : X→ Y with the property that f(x) = y.

It is instructive to think of a map (X, x) → (Y,y) in Fin∗ as a partially defined function X \ {x} →
Y \ {y}.

Definition 4.6. We denote the element ({∗, 1, 2, . . . ,n}, ∗) of Fin∗ by ⟨n⟩. We let ⟨n⟩◦ = {1, 2, . . . ,n} ⊆
⟨n⟩.

Remark 4.7. Since the collection of ⟨n⟩, with n = 0, 1 . . . is a skeleton of Fin∗, we often just work
with these sets.

Definition 4.8. We say a map f : (X, ∗) → (Y, ∗) in Fin∗ is inert if f−1({y}) is a singleton for each
y ̸= ∗ in Y. We say a map f : (X, ∗)→ (Y, ∗) in Fin∗ is active if f−1({∗}) = {∗}. We denote by Finint

∗ the
subcategory of inert maps, and by Finact

∗ the subcategory of active maps.

Remark 4.9. Finact
∗ is isomorphic to the category of finite sets Fin.

Definition 4.10. For each i, we denote by ρi the unique inert map ⟨n⟩→ ⟨1⟩ so that ρi(i) = 1. (This
notation is slightly abusive, since it also depends on n, but we supress this).

Definition 4.11. We denote the unique active map ⟨n⟩→ ⟨1⟩ by m.

Commutative monoids and groups

Definition 4.12. Let C be an ∞-category with finite products. Let A : N(Fin∗) → C be a functor. If
each of the maps

A(⟨n⟩)
∏

A(ρi)→ A(⟨1⟩)n

is an equivalence, we say that A is a monoid in C. We refer to A(⟨1⟩) as the underlying object of A. We
often abuse notation by denoting this by A as well.

If A is a commutative monoid, we get a map µ : A×A ≃ A(⟨2⟩) A(m)→ A. Consider the map
s : A×A → A×A, given by projection on the first coordinate and µ on the second coordinate. We
call this the shear map. If it is an equivalence, we say that A is a commutative group (in C).

We denote by CMon(C), CGrp(C) the full subcategories of Fun(N(Fin∗), C) spanned by respec-
tively the commutative monoids and groups.

These notions go back to Segal [10], who developed them in the case of spaces and categories.
(Although he did not work in∞-categories, Segal’s definitions of Γ -space is equivalent to our notion
of commutative monoid in S , in a suitable sense.)

Remark 4.13. We will often refer to the condition that a functor N(Fin∗) → C is a commutative
monoid as the Segal condition.

Remark 4.14. Given a commutative monoid A, the map µ defined above makes A(⟨1⟩) into a com-
mutative monoid object of hC. It is a commutative group if and only if this monoid object is a group
object.

Proposition 4.15. Suppose C is a presentable ∞-category. Then also CMon(C), CGrp(C) are pre-
sentable.

10
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Proof. Since both CMon(C) and CGrp(C) are full subcategories of the presentable category Fun(N(Fin∗), C),
it will suffice to exhibit some set of morphisms so that they are precisely the local objects.

First look at the evaluation functors ev⟨n⟩ : Fun(N(Fin∗), C)→ C. Since they preserve limits and
colimits, they admit left adjoints, F⟨n⟩ : C → Fun(N(Fin∗), C).

By definition, a functor M : N(Fin∗) → C is a commutative monoid if and only if each map
M(⟨n⟩)→∏M(⟨1⟩) is an equivalence. This is equivalent to requiring that, for each C ∈ C, the map

MapC(C,M(⟨n⟩))→MapC(C,
∏

M(⟨1⟩)) (1)

is an equivalence of spaces. By accessibility of C, using lemma 3.5, there is some regular cardinal κ
so that it suffices to ask that 1 be an equivalence for objects C in Cκ. Using the adjoint property of F
and the the universal property of coproducts, we see that 1 is induced by a map

ϕn,C :
⨿
n

F⟨1⟩C→ F⟨n⟩C

Hence if we let S be the set of ϕn,C, with n running through N ∪ {0}, and C running through
representatives for the equivalence classes of Cκ, the commutative monoids are precisely the S-local
objects.

A commutative group is a commutative monoid with the additional requirement that the shear
map

M(⟨1⟩)×M(⟨1⟩)→M(⟨1⟩)×M(⟨1⟩)

is an equivalence. This is the same as requiring that the map

M(⟨2⟩)→M(⟨1⟩)×M(⟨1⟩)

given by M(ρ1) on the first coordinate and M(m) on the second coordinate. is an equivalence. We
can translate this requirement into being local with respect to a set of morphisms in the same way
as above.

Corollary 4.16. Suppose C is presentable. Then the forgetful functors CGrp(C) → CMon(C) → C
each admit a left adjoint.

Proof. The desired functor C → CMon(C) can be obtained as the composite

C → Fun(N(Fin∗), C)→ CMon(C)

of the left adjoint to evaluation at ⟨1⟩, and the localization. The functor CMon(C) → CGrp(C) can
be constructed in a similar way.

Proposition 4.17. Let C be a complete ∞-category. Limits in CMon(C) and CGrp(C) are calculated
pointwise. In particular, the forgetful functors CMon(C)→ C, CGrp(C)→ C preserve limits.

Proof. This is known for the functor category Fun(N(Fin∗), C). It then suffices to observe that each
subcategory CMon(C) and CGrp(C) is closed under taking limits, which is again simple because
limits are calculated pointwise.

Lemma 4.18. Let C,D be complete∞-categories. Then we have canonical equivalences

CMon(FunR(C,D)) ≃ FunR(C, CMon(D)) (2)

CGrp(FunR(C,D)) ≃ FunR(C, CGrp(D)) (3)

Moreover, under this equivalence, the forgetful functor CMon(FunR(C,D)) → FunR(C,D) is
identified with the post-composition functor FunR(C, CMon(D)) → FunR(C,D), and analogously
for groups.

11
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Proof. We have a fully faithful inclusion

CMon(FunR(C,D)) ⊆ Fun(N(Fin∗), Fun(C,D)) (4)

≃ Fun(N(Fin∗)× C,D) (5)

with essential image precisely those functors F so that each functor F(−,C) is a commutative monoid,
and each F(⟨n⟩ ,−) preserves limits. We also have a fully faithful inclusion

FunR(C,Mon(D)) ⊆ Fun(C, Fun(N(Fin∗)D)) (6)

≃ Fun(N(Fin∗)× C,D) (7)

which has precisely the same essential image. This proves the case of commutative monoids. The
case of groups is entirely analogous.

The claimed identification is immediate, since both functors are the restriction of the functor
Fun(N(Fin∗)× C,D)→ Fun(C,D) given by holding the first parameter constant at ⟨1⟩.

5 Symmetric monoidal∞-categories

The main aim of this project is to construct canonical symmetric monoidal structures on certain∞-categories. In this section, we give a very abbreviated account of the basic theory of symmetric
monoidal∞-categories. For a thorough discussion of such things, see [7, Chapter 2].

Foundations

Definition 5.1. A symmetric monoidal ∞-category is a monoid in Ĉat∞. It is small if the underlying
category is small, which is the same as requiring it to be a monoid in Cat∞. The ∞-category of
(small) symmetric monoidal∞-categories are defined in the obvious way:

Ĉat
⊗∞ = CMon(Ĉat∞)

Cat⊗∞ = CMon(Cat∞)

A map in Cat⊗∞ (or Ĉat
⊗∞) is called a symmetric monoidal functor.

If C : N(Fin∗)→ Ĉat∞ is a symmetric monoidal ∞-category, we refer to C(⟨1⟩) as the underlying∞-category. As usual, we will frequently abuse notation and use the same symbol for the symmet-
ric monoidal ∞-category and the underlying ∞-category, or say that C = C(⟨1⟩) is a symmetric
monoidal∞-category.

This definition makes a lot of intuitive sense. If we replace ∞-categories with topological (or
simplicial) categories, we also recover essentially Segal’s original definition of Γ -category.

Remark 5.2. It can also be shown if C is a symmetric monoidal icat, then the functor

⊗ : C × C ≃ C(⟨2⟩) C(m)→ C

and the object
I : 1 ≃ C(⟨0⟩) m→ C

equip hC with the structure of a symmetric monoidal category. For instance, the commutator natural
isomorphism A⊗ B→ B⊗A is constructed by applying C to the commutative diagram

⟨2⟩ ⟨2⟩

⟨1⟩

τ

m
m
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where τ swaps 1 and 2.
In particular, a symmetric monoidal ∞-category whose underlying category is the nerve of an

ordinary category gives rise to a symmetric monoidal structure (in the usual sense) on that category.
This goes in the other direction as well.

However, this definition can be hard to use in practice. The basic reason for this is that it’s
quite hard to write down a functor into Cat∞. We can approach this problem via the straigtening
equivalence (see theorem 1.2).

This leads to the following alternative approach to symmetric monoidal∞-categories.

Definition 5.3. An unstraight symmetric monoidal ∞-category consist of a coCartesian fibration p :

C⊗ → N(Fin∗), which satisfies the following condition. Each map f : ⟨n⟩ → ⟨m⟩ in Fin∗ induces a
functor f̄ : C⊗

⟨n⟩ → C⊗
⟨m⟩ by straightening. In particular, we get a functor

C⊗
⟨n⟩

∏
ρ̄i→ ∏

C⊗
⟨1⟩

This functor should be a categorical equivalence for all n.

Definition 5.4. We say that a map f : X→ Y in a symmetric monoidal∞-category p : C⊗ → N(Fin∗)
is inert if p(f) is inert and f is p-coCartesian.

Example 5.5. In the symmetric monoidal ∞-category N(Fin∗), the two definitions of the word “in-
ert” agree.

Definition 5.6. Let p : C⊗ → N(Fin∗) and q : D⊗ → N(Fin∗) be unstraight symmetric monoidal∞-categories. Then an unstraight symmetric monoidal functor C → D is a functor F : C⊗ → D⊗ which
carries p-coCartesian morphisms to q-coCartesian morphisms, and so that

C⊗ D⊗

N(Fin∗)

p

F

q

commutes. If we relax this condition, requiring instead only that F carries inert morphisms to inert
morphisms, we say that F is a lax unstraight symmetric monoidal functor.

We denote by Fun⊗(C,D) the full subcategory of FunN(Fin∗)(C⊗,D⊗) spanned by the symmetric
monoidal functors.

Remark 5.7. The term “unstraight symmetric monoidal ∞-category ” is our own - the standard in
the literature is to use definition 5.3 as the definition of symmetric monoidal∞-category. We chose
to define symmetric monoidal ∞-categories in terms of monoids because it seemed more intuitive,
and to emphasize the relation with Segal’s Γ -categories.

Proposition 5.8. The full subcategory of (Cat∞)coCart
/N(Fin∗)

spanned by the unstraight symmetric monoidal∞-categories is categorically equivalent to Cat⊗∞. Moreover, the mapping space between two sym-
metric monoidal∞-categories is equivalent to Fun⊗(C,D)≃.

Proof. The first statement is essentially by definition: an object of (Cat∞)coCart
/N(Fin∗)

is an unstraight
symmetric monoidal ∞-category if and only if it goes to a symmetric monoidal ∞-category under
the equivalence

(Cat∞)coCart
/N(Fin∗)

≃ Fun(N(Fin∗), Cat∞)

For the other statement, we identify the mapping spaces Map(C⊗,D⊗) in (Cat∞)coCart
/N(Fin∗)

with
the subspace of Fun( C⊗,D⊗)≃ spanned by those functors so that this diagram commutes
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C⊗ D⊗

N(Fin∗)

and which furthermore preserve coCartesian edges. This is precisely Fun⊗(C,D).

Remark 5.9. This propositions shows that there is really no difference between symmetric monoidal
categories and unstraight symmetric monoidal categories. Hence we omit the term “unstraight”
from now on. Since the unstraight version is genrally much easier to work with, all our symmetric-
monoidal categories will be represented as such from now on, unless we note otherwise.

Remark 5.10. Notably, it is not so easy to define lax symmetric monoidal functors using the descrip-
tion of symmetric monoidal categories as monoids. This is another advantage of the description as
coCartesian fibrations.

Remark 5.11. If C⊗ → N(Fin∗) is a symmetric monoidal ∞-category, we denote the fiber over ⟨n⟩
by C⊗

⟨n⟩.

Definition 5.12. If C⊗ is a symmetric monoidal ∞-category, we have a canonical equivalence of∞-categories

C⊗
⟨n⟩ ≃

(
C⊗
⟨1⟩

)n

We denote the object in C⊗
⟨n⟩ identified with the n-tuple (C1,C2, . . . ,Cn) by C1 ⊕C2 · · · ⊕Cn, or by⊕n

i=1 Ci

Remark 5.13. Let C⊗ be a symmetric monoidal ∞-category. Then the active maps m : ⟨n⟩ → ⟨1⟩,
along with the indentification C⟨n⟩ ≃ (C⟨1⟩)n, give rise to functors⊗

: Cn ≃ C⟨n⟩ → C

I : ∆0 ≃ C⟨0⟩ → C

Proposition 5.14. Suppose C⊗ → N(Fin∗) is a symmetric monoidal∞-category, let X =
⊕

i∈⟨n⟩◦ Xi, Y =⊕
j∈⟨m⟩◦ be objects, and f : ⟨n⟩→ ⟨m⟩ a map. Then the fiber over f of the map

MapC⊗(X, Y)→MapN(Fin∗)
(⟨n⟩ , ⟨m⟩)

is the space ∏
j∈⟨m⟩◦

MapC

 ⊗
f(i)=j

Xi, Yj


Proof. Let C⊗ be a symmetric monoidal category. Let f : ⟨n⟩→ ⟨m⟩ be a map, and

⊕
Xi be an object

over ⟨n⟩ in C⊗. f lifts to a functor
⊗

f : C⊗
⟨n⟩ → C⊗

⟨m⟩.

Essentially by definition of this functor, there is a coCartesian lift of f, f̄ :
⊕
Xi → ∏f(

⊕
Xi).

Moreover, by postcomposing f with ρi and using functoriality of straightening, we can find a cate-
gorical equivalence ⊗

f

(⊕
Xi

)
≃

⊕
j∈⟨m⟩

⊗
f(i)=j

Xi

lying over the identity ⟨m⟩→ ⟨m⟩. Certainly the composition of these morphisms is a p-coCartesian
map ⊕

Xi → ⊕
j∈⟨m⟩

⊗
f(i)=j

Xi
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Now by [8, Prop 2.4.4.2], we see that the fiber we are interested in can be written as

MapC⊗⟨m⟩

 ⊕
j∈⟨m⟩

⊗
f(i)=j

Xi,
⊕

Yj


and now the result follows because of the categorical equivalence C⊗

⟨m⟩ → Cm.

Lemma 5.15. Let F :
⊕
Xi → ⊕

Yj be a map in C⊗ lying over f. We can identify this with a family
of maps

⊗
f(i)=j Xi → Yj for each j. F is a coCartesian lift of f if and only if each of these maps is an

equivalence.

Proof. This is immediate using the above and [8, p. 2.4.4.3]

Commutative algebra objects

In [7], Lurie treats the notion of symmetric monoidal∞-category as a special case of a more general
theory of ∞-operads. Apart from being a generalization of symmetric monoidal ∞-categories, one
could also think of an ∞-operad as a “type of algebra”. For instance, there is an ∞-operad, E1,
which classifies (in a suitable sense) associative algebras. We will not need to work with any sort
of algebra except commutative algebras, and so we will not need this theory. We mention it only
because many of our results will hold for more general algebra objects, and this is an important part
of the theory. For instance, it is important to know that the suspension spectrum of an E1-space is
an E1-ring spectrum, which will indeed follow from the fact that Σ∞+ is symmetric monoidal.

Definition 5.16. Let C⊗ → N(Fin∗) be a symmetric monoidal ∞-category. A commutative alge-
bra object of C, or a commutative algebra in C, is a section A : N(Fin∗) → C⊗ of the structure map
C⊗ → N(Fin∗), with the additional property that it carries inert morphisms to inert morphisms. We
let CAlg(C) denote the full subcategory of FunN(Fin∗)(N(Fin∗), C⊗) spanned by the commutative
algebras.

Remark 5.17. A commutative algebra is the same thing as a lax symmetric monoidal functor
N(Fin∗)→ C⊗, i.e. ∗→ C.

Remark 5.18. Let A : N(Fin∗)→ C⊗ be a commutative algebra. Then one can define a commutative
algebra object in hC (with the symmetric monoidal structure of remark 5.2), with underlying object
A(⟨1⟩) = A. To get the multiplication, first note that, since A(ρi) is an inert map, this gives an
isomorphism A(⟨2⟩) ≃ A⊕A. Then A(⟨m⟩) : A(⟨2⟩) → A(⟨1⟩) corresponds to a map A⊗A → A,
which is the multiplication. The other structure maps (and the commutativity relation) can be
constructed similarly.

Proposition 5.19. Let F : C⊗ → D⊗ be a lax symmetric monoidal functor. Then F induces a functor

FunN(Fin∗)(N(Fin∗), C⊗)→ FunN(Fin∗)(N(Fin∗),D⊗)

Which restricts to a functor
CAlg(C)→ CAlg(D)

Proof. It suffices to check that, if A : N(Fin∗) → C⊗ is a commutative algebra, then so is AF :

N(Fin∗)→ D⊗. For this, it is enough to observe that F carries inert morphisms to inert morphisms.

Corollary 5.20. The assignment C 7→ CAlg(C) defines a functor Cat⊗∞ → Cat∞ (or Ĉat
⊗∞ → Ĉat∞)

Lemma 5.21. The forgetful functor CAlg(C)→ C is conservative.
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Proof. Let A,B : N(Fin∗) → C⊗ be commutative algebras, and let η : A → B be a natural transfor-
mation. Suppose further that η⟨1⟩ : A → B is an equivalence. We must show that η is a natural
equivalence. It suffices to show that each map η⟨n⟩ : A(⟨n⟩)→ B(⟨n⟩) is an equivalence. Naturality
of η means that for each i ∈ ⟨n⟩◦, we have a commutative diagram

A(⟨n⟩) B(⟨n⟩)

A(⟨1⟩) B(⟨1⟩)

η⟨n⟩

A(ρi) B(ρi)

η⟨1⟩

in C⊗. Moreover, the vertical maps are inert. This implies that, under the identification C⊗
⟨n⟩ ≃ Cn,

if we write A(⟨n⟩) = ⊕
Aj, B(⟨n⟩) =

⊕
Bj, we have a commutative diagram

Ai Bi

A B

where the vertical and bottom maps are equivalences. This implies that η⟨n⟩ is (identified with) a
product of equivalences in Cn, which finishes the proof.

Cartesian monoidal structure

If C is an (ordinary) category with finite products, we can choose a product for every pair of objects,
and a terminal object, to give C the structure of a symmetric monoidal category. We would like
to mimic this procedure for symmetric monoidal ∞-categories. This construction embodies the
difference between the ordinary notion of symmetric monoidal category and symmetric monoidal∞-categories: We must specify a much more complicated system of data, but we do not have to
make the ad hoc choice of products as above.

The construction of the Cartesian monoidal structure is due to Lurie, in [7]. However, the ideas
in the construction go back to [10]. Lurie develops a very general theory of Cartesian structures, but
we will only need a small amount of the theory.

Our main interest in the Cartesian monoidal structure will be the fact that symmetric monoidal
categories can themselves be described as the commutative algebra objects in a certain symmetric
monoidal category.

Definition 5.22. We define an (ordinary) category, Γ×, in the following way:

• The objects of Γ× are pairs (⟨n⟩ ,S), where ⟨n⟩ ∈ Fin∗, and S ⊂ ⟨n⟩◦.

• A map (⟨n⟩ ,S)→ (⟨n ′⟩ ,S ′) is a map α : ⟨n⟩→ ⟨n ′⟩ with the property that α−1(S ′) ⊂ S.

Remark 5.23. There is an obvious forgetful functor Γ× → Fin∗. It has a canonical section s(⟨n⟩) =
(⟨n⟩ , ⟨n⟩◦).

Definition 5.24. Let C be an ∞-category. Then we define a simplicial set over N(Fin∗), C̃× by the
following universal property: For each map K→ N(Fin∗), there is a bijection

HomN(Fin∗)(K, C̃×)→ HomsSet(K×N(Fin∗)N(Γ×), C)

Take ⟨n⟩ ∈ N(Fin∗), and consider the fiber C̃×
⟨n⟩ An n-simplex of this set is, by the above, an

element of
HomsSet(∆

n ×N(Fin∗)N(Γ×), C),
where the map ∆n → N(Fin∗) is constant at ⟨n⟩. Then this is the same as

Hom(∆n ×N(Pop), C) = Map(N(Pop), C)n
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Where P is the poset of subsets of ⟨n⟩◦.
In other words, we can identify the fiber C̃×

⟨n⟩ with the simplicial set of maps from N(Pop) to
C. Under this identification, define C× as the simplicial subset spanned by those maps f where, for
each S ⊂ ⟨n⟩◦, the maps f(S)→ f({j}) exhibit f(S) as the product

∏
j∈S f({j}).

Lastly, composition with s : N(Fin∗)→ N(Γ×) induces a map

Hom(K×N(Fin∗)N(Γ×), C)→ Hom(K×N(Fin∗)N(Fin∗), C) = Hom(K, C),

which gives a canonical functor π : C̃× → C.

The two following propositions are not especially important for this project, and we omit the
proofs. We list them here to give the reader an idea of the properties that the Cartesian symmetric
monoidal structure is supposed to have.

Proposition 5.25. Suppose C has finite products.

(1) C× → N(Fin∗) is a symmetric monoidal∞-category with underlying∞-category C.

(2) The composite Cn ≃ C×
⟨n⟩ → C maps

C1 ⊕C2 · · · ⊕Cn 7→ C1 ×C2 · · · ×Cn

These statements are cases of [7, Prop. 2.4.2.5].

Proposition 5.26. Let C,D be∞-categories with finite products. Then the forgetful functor Fun⊗(C,D)→
Fun(C,D) is fully faithful, with image consisting precisely of the product-preserving functors.

This is a special case of [7, Cor. 2.4.1.8].
We think of the objects of CMon(C) as “commutative monoid objects in C, up to coherent homo-

topy”. There is another natural interpretation of this idea, namely a commutative algebra in C, with
the Cartesian monoidal structure. The following proposition shows that these interpretations agree.

Proposition 5.27. Let C be an ∞-category with finite products. Then post-composition with π :

C× → C gives a functor CAlg(C) → Fun(N(Fin∗), C). This functor is fully faithful, with essential
image CMon(C). In particular, CAlg(C) ≃ CMon(C).

Proof. By definition, CAlg(C) is the full subcategory of FunN(Fin∗)(N(Fin∗), C×) spanned by the func-
tors that take inert maps to inert maps. By definition of C×, this is the same as the full subcategory
of

Fun(N(Fin∗)×N(Fin∗)N(Γ×), C) = Fun(N(Γ×), C)

spanned by functors satisfying certain conditions.

(1) In order to land in C× ⊆ C̃×, for each subset S ⊂ ⟨n⟩◦, we must have

F(⟨n⟩ ,S)→∏
j∈S

F(⟨n⟩ , {j})

an equivalence.

(2) To correspond to an algebra, for each inert map f : ⟨n⟩ → ⟨m⟩, and every subset S ⊆ ⟨m⟩◦, the
induced map F(⟨n⟩ , f−1S)→ F(⟨m⟩ ,S) must be an equivalence in C.
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The described functor into Fun(N(Fin∗), C), under the above indentification, corresponds to precom-
posing with the canonical section s : N(Fin∗)→ N(Γ×). In other words, it maps F : N(Γ×)→ C into
the functor ⟨n⟩ 7→ F(⟨n⟩ , ⟨n⟩◦).

The condition that this functor defines a monoid is then that the map

F(⟨n⟩ , ⟨n⟩◦)→ ∏
j∈⟨n⟩

F(⟨1⟩ , ⟨1⟩◦)

is an equivalence. The map F(⟨n⟩ , ⟨n⟩◦) F(ρj)→ F(⟨1⟩ , ⟨1⟩◦) can be factorized as

F(⟨n⟩ , ⟨n⟩◦)→ F(⟨n⟩ , {j})→ F(⟨1⟩ , ⟨1⟩◦)

The second condition on F implies that the latter map is an equivalence. The first condition implies
that the product of the first map for each j is an equivalence - this implies the desired result.

We have described a functor CAlg(C) → CMon(C). Observe that s : Fin∗ → Γ× is actually a full
subcategory inclusion. In fact, it admits a left adjoint L, sending (⟨n⟩ ,S) to S∪ {∗}. (It is not hard to
check that this is really a left adjoint). By proposition 2.12, we see that

Fun(N(Fin∗), C)→ Fun(Γ×, C)

is fully faithful, with essential image those functors that carry local equivalences to equivalences.
Using 2 out of 3 for equivalences, we see that this is equivalent to (2) above. Hence CAlg(C) is
contained in the essential image. Observing that the Segal condition on the left-hand side implies
(1), we conclude that this restricts to a fully faithful functor

CMon(C)→ CAlg(C).

To see essential surjectivity, it suffices to remark that by the above, every algebra is isomorphic to

some functor of the form Γ×
L→ N(Fin∗)

M→ C, and it is clear to see that in this setting, (1) also implies
the Segal condition for M.

It only remains to observe that precomposition with s is a one-sided inverse to this equivalence,
hence a proper inverse.

The following corollary will be of key importance:

Corollary 5.28. Consider Cat∞. Since it admits finite products, we may equip it with the carte-

sian symmetric monoidal structure. Then CAlg(Cat∞) ≃ Cat⊗∞. Similarly, CAlg(Ĉat∞) ≃ Ĉat
⊗∞.

Moreover, these equivalences preserve the forgetful functors to Cat∞.

Proof. CAlg(Cat∞) ≃ CMon(Cat∞) = Cat⊗∞
Proposition 5.29. The equivalence Cat∞ → Cat∞ given by C 7→ Cop extends to an equivalence
Cat⊗∞ → Cat⊗∞.

Proof. We wish to define a functor CMon(Cat∞) → CMon(Cat∞) given by postcomposition with
(−)op. It suffices to observe that (−)op preserves products.

Definition 5.30. A symmetric monoidal category C is called coCartesian if the unit IC is initial, and
the canonical map A ⊔ B ≃ (A⊗ I) ⊔ (I⊗ B) → A⊗ B is an equivalence. Here the latter map is
defined on the first summand as 1A tensored with the unique map from I to B, and analogously on
the second summand.

By combining this with the construction of Cartesian symmetric monoidal structures above, we
obtain the following corollary
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Corollary 5.31. Suppose C is a category with finite coproducts. Then C admits a coCartesian sym-
metric monoidal structure.

Corollary 5.32. Suppose C,D are ∞-categories which admit finite coproducts, and F : C → D
preserves them. Then if C,D are equipped with the coCartesian symmetric monoidal structure,
there is a (essentially) unique symmetric monoidal structure on F.

We will need the following proposition:

Proposition 5.33. Suppose C⊗ is a coCartesian symmetric monoidal category. Then the forgetful
functor CAlg(C)→ C is an equivalence.

This is a very special case of [7, Prop. 2.4.3.8].

Tensor product of presentable∞-categories

We will describe a symmetric monoidal structure on PrL. In some sense this is the most important
symmetric monoidal category in this project - we will construct the symmetric monoidal structures
of the main theorem by analyzing it. It was developed by Lurie in [7, Section 4.8.1]. Since this is not
the primary concern of this project, we will just state the definition and the basic results we need,
omitting the proofs.

Definition 5.34. Consider the Cartesian symmetric monoidal structure on Ĉat∞. We define PrL,⊗ ⊆
Ĉat

×∞ in the following way:

• An object
⊕

i Ci ∈ (Ĉat
×∞)⟨n⟩ is in PrL,⊗ if each Ci is a presentable∞-category.

• Let f :
⊕

i∈⟨n⟩◦ Ci → ⊕
j∈⟨m⟩◦ Dj be a map lying over f̄ : ⟨n⟩ → ⟨m⟩. Then this is equivalently

a collection of functors
∏

f̄(i)=j Ci → Dj, for each j. The map f is in PrL,⊗ if each of these
functors preserves colimits in each variable. By this we mean that, for each of these functors
F :
∏

i Ci → D, for each k, for each collection of objects {Ci ∈ Ci}k ̸=i, the functor Ck → D
given by

X 7→ F(C1, . . . Ck−1,X,Ck+1, . . . )

preserves colimits.

We note that by restriction of the canonical map Ĉat
×∞ → N(Fin∗) to PrL,⊗, we obtain a canonical

map PrL,⊗ → N(Fin∗)

Lurie spends a lot of work developing a fairly general theory, of which we again only need a few
pieces

Proposition 5.35 (Lurie).

(1) The obvious map to N(Fin∗) makes PrL,⊗ into a symmetric monoidal∞-category with underly-
ing∞-category PrL.

(2) The tensor product C ⊗D of two presentable∞-categories receives a functor from C ×D, which
preserves colimits in each variable. Furthermore

FunL(C ⊗D, E)→ Fun(C ×D, E)

is fully faithful for every presentable ∞-category E , with essential image consisting of those
functors that preserve colimits in each variable.

(3) There is a natural equivalence C ⊗D ≃ FunRa(Cop,D)
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(4) Composing with the inclusion gives a functor CAlg(PrL) → CAlg(Ĉat∞). This is fully faithful,
with image precisely those symmetric monoidal∞-categories which are presentable, and where
the tensor product preserves in each variable.

This type of symmetric monoidal ∞-category is important enough (and awkward enough to
write) that we will introduce a term for it.

Definition 5.36. A presentably symmetric monoidal ∞-category is a presentable symmetric monoidal∞-category with the property that the tensor product preserves colimits in each variable. If C⊗ is
a presentably symmetric monoidal∞-category with underlying∞-category C, we will also refer to
C⊗ as a presentable symmetric monoidal structure on C.

6 The universal properties of C∗, CMon(C), and CGrp(C)

In this section, we will show that each of the assignments described in the title is a localization of
PrL.

Pointed∞-categories

Definition 6.1. An ∞-category C is pointed if it has a terminal object, an initial object, and they are
isomorphic. Such an object is called a zero object, and denoted 0.

Remark 6.2. If C has an initial object ∅ and a terminal object ∗, there is always a unique map ∅→ ∗.
The condition is then that this map is an equivalence.

Remark 6.3. If X, Y are objects of a pointed∞-category, there is an essentially unique map 0 : X→ Y

which factors over 0.

Proposition 6.4. Suppose C is pointed. Then C∗ → C is an equivalence.

Proof. Use the identification C∗ ≃ C∗/ and the fact that ∗ is also initial, since C is pointed.

Proposition 6.5. If C is a complete∞-category, then C∗ is pointed.

Proof. Since limits in functor categories are pointwise, ∗ → ∗ is terminal in Fun(∆1, C). Hence it is
also terminal in the full subcategory C∗. We must show that it is also initial. By definition, an initial
object of C∗/ ≃ C∗ is the same thing as a colimit diagram for the constant diagram ∗ : ∆0 → ∗. But
clearly the map ∗→ ∗ is such a diagram (see e.g. [8, Lemma 4.3.2.3]).

Proposition 6.6. Suppose C and D are complete, and either C or D is pointed. Then FunR(C,D) is
pointed.

Proof. The second case is clear since

FunR(C,D) ≃ FunR(C,D∗) ≃ FunR(C,D)∗

For the first case, let const∗ : C → D be the constant functor at ∗ ∈ D. It is terminal in FunR(C,D);
we must show that it is initial. Let {0} ⊆ C be the full subcategory spanned by the zero object.
Consider the functor {0}→ D sending 0 to ∗. It is easy to verify that const∗ is the left Kan extension
of this functor. This implies that for any functor F : C → D,

Map(const∗, F) ≃ MapD(∗, F(0))

If F is limit-preserving, it maps 0 to ∗, so this space is contractible. This finishes the proof.

Corollary 6.7. Suppose C is presentable. Then the functor C∗ → C admits a left adjoint. This is a
localization of C ∈ PrL relative to the pointed∞-categories.
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Proof. Via the anti-equivalence, it suffices to show that the functor

FunRa(D, C∗)→ FunRa(D, C)

is an equivalence whenever D is pointed.
First we consider

FunR(D, C∗)→ FunR(D, C)

This functor can be identified with the composition.

FunR(D, C∗) ≃ FunR(D, C)∗ → FunR(D, C)

which is an equivalence since FunR(D, C) is pointed. Now we show that this restricts to an equiva-
lence

FunRa(D, C∗)→ FunRa(D, C)

First, it’s clear that composition with U : C∗ → C sends accessible functors to accessible functors,
since it is itself accessible (being a right adjoint).

Second, suppose F : D → C is an accessible functor. Then we have F ≃ U ◦G for some G : D → C∗,
and we must show that G is also accessible. Let κ be such that F is κ-accesible, And let d : K→ D be a
κ-filtered diagram. We must show that the map colimG ◦ d→ G(colimd) is an equivalence. Since U
is conservative, it will suffice to show that the map U(colimG ◦ d)→ UG(colimd) is an equivalence.
Since U is accessible, we can identify this with the map colim(U ◦G) ◦ d → (U ◦D)(colimd). Since
U ◦G ≃ F, which is κ-accessible, this is an equivalence.

Remark 6.8. The style of the proof above, where we mostly work in PrR rather than PrL, is typical of
this section. It is due to the fact that the localizations we work with here are perhap more naturally
thought of as “colocalizations” of the subcategory of Cat∞ given by complete categories and limit-
preserving functors. We are essentially making them into localizations by restricting to PrR and
using the anti-equivalence between this and PrL.

Corollary 6.9. There is a functor (−)∗ : PrL → PrL with essential image the subcategory of pointed∞-categories. It is left adjoint to the inclusion. Furthermore, its value on the object C is isomorphic
to the category C∗ defined above (justifying our notation), and the unit C → C∗ is identified under
this equivalence with (−)+.

Preadditive∞-categories

Definition 6.10. Let C be a pointed ∞-category. Suppose C admits finite products and coproducts.
Then we can define a map A⊔B→ A×B given by (1A, 0)⊔ (0, 1B) If this map is an equivalence for
all A,B, we say that C is preadditive. In this case we denote such an object by A⊕ B.

Warning 6.11. There is some disagreement in the literature on this term - for instance, Lurie calls
categories of this type semiadditive. We use the terminology of [4].

Proposition 6.12. Suppose C is a category with finite products. Then the following are equivalent:

(1) C is preadditive.

(2) The Cartesian symmetric monoidal structure on C is coCartesian.

Proof. Note that C being preadditive is equivalent to the statement

(1) The terminal object ∗ is initial.

(2) The canonical map X⊔ Y ≃ (X× ∗)⊔ (∗ × Y)→ X× Y is an equivalence.
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Using the definition of the Cartesian monoidal structure, and the definition of coCartesian, the
equivalence is now immediate.

Proposition 6.13. Suppose C is preadditive. Then the forgetful functor CMon(C)→ C is an equiva-
lence.

Proof. By proposition 6.12 and proposition 5.27.

Lemma 6.14. Let C be an ∞-category with finite products. Suppose the terminal object ∗ is initial,
and that for each object X ∈ C there exists a map δX : X× X→ X with the following properties:

(1) Let ∗ → X be a map (unique up to homotopy). Then the composition X ≃ X× ∗ → X× X δX→ X

is homotopic to the identity.

(2) For each map X→ Y, there is a commutative diagram

X× X Y × Y

X Y

δX

f×f

δY

f

(3) For X, Y ∈ C, there is a commutative diagram

(X× X)× (Y × Y) (X× Y)× (X× Y)

X× Y

δX×δY

∼

δX×Y

Then C is preadditive.

Remark 6.15. This is the (3) ⇒ (1) case of [7, Prop. 2.4.3.19], in the case of a Cartesian symmetric
monoidal structure.

Proof. We must show that the two maps

iX : X ≃ X× ∗→ X× Y ← ∗ × Y ≃ Y : iY

exhibit X× Y as the coproduct of X and Y. This is equivalent to the statement that the map

φ : Map(X× Y,Z)→Map(X,Z)× Map(Y,Z)

is a homotopy equivalence for each Z. We claim that the following map

ψ : Map(X,Z)× Map(Y,Z) ×→Map(X× Y,Z× Z) δZ◦−→ Map(X× Y,Z)

is an inverse.
First consider the composite φ ◦ ψ. To see that this is homotopic to the identity, it suffices to

verify that this diagram commutes:

Map(X,Z)× Map(Y,Z) Map(X× Y,Z× Z) Map(X,Z× Z)

Map(X,Z) Map(X,Z)

p1

× −◦iX

δZ◦−
=

To see this, consider this diagram:
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Map(X,Z)× Map(Y,Z) Map(X× Y,Z× Z)

Map(X,Z)× Map(1,Z) Map(X× 1,Z× Z)

Map(X,Z) Map(X,Z× Z) Map(X,Z)

p1

×

p1

×

iZ◦−
≃

δZ◦−

Each cell is seen to commute because of standard properties of the product. The composition along
the top is the map which we wish to compare to p1. The desired homotopy exists because the
composition along the bottom is homotopic to the identity, by assumption.

Now consider ψ ◦φ. By condition (2), this can be identified with the map induced by

X× Y → (X× 1)× (Y × 1)→ (X× Y)× (X× Y) δX×Y→ X× Y

Which is homotopic to the identity by (1) and (3).

Proposition 6.16. For any∞-category C with finite products, CMon(C) is preadditive.

Remark 6.17. As a consequence of this, the converse of proposition 6.13 is also true.

Proof. First we will show that CMon(C) is pointed. This means that the commutative monoid given
by the functor N(Fin∗) → C constant at ∗ is initial. We denote this commutative monoid by const∗.
We observe that const∗ is left Kan extended from {⟨0⟩} ⊆ C. This is fairly obvious, since each
category of maps {⟨0⟩}/⟨n⟩ is just a point. Hence

MapCMon(C)(const∗,A) ≃ MapC(∗,A(⟨0⟩)) ≃ MapC(∗, ∗) ≃ ∗

This shows that CMon(C) is pointed.
Let ∨ : Fin∗ × Fin∗ → Fin∗ be the coproduct functor. By composing with the diagonal, we get a

functor
•∨ • : Fin∗ → Fin∗,

Which induces a functor C• 7→ C•∨• on CMon(C). The natural transformations p1,p2 : ⟨n⟩∨ ⟨n⟩→
⟨n⟩ given by mapping the second or first summand to ∗ induce natural transformations

π1,π2 : C•∨• → C•

It is a consequence of the Segal condition that these maps exhibit C•∨• as the product of C• with
itself.

The natural transformation ⟨n⟩∨ ⟨n⟩ → ⟨n⟩ given by the identity on both summands induces a
natural transformation

δ : C•∨• → C•

which is called the fold map.
We now claim that, putting δX = δX for each X ∈ C, we get a collection of maps satisfying the

hypotheses of lemma 6.14
To see (1), observe that the map C• → C•∨• is the one induced by the inclusion of the first wedge

summand. The relation then follows from the corresponding relation in Fin∗ The diagram in (2) is
just a naturality diagram, so clearly commutes. To see (3), observe this diagram:

C•∨• ×D•∨• (C×D)•∨• C• ×D•

C•∨• C•∨• C•

π1

∆

(π1)•∨• π1

= ∆
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The left square commutes because intertwining products commutes with projections, while the
right square commutes by (2). This implies (3).

Proposition 6.18. Let C,D be complete ∞-categories. Suppose either C or D is preadditive. Then
also FunR(C,D) is preadditive.

Proof. First, if D is preadditive, FunR(C,D) ⊆ Fun(C,D) is stable under both finite products and
coproducts. Hence finite coproducts and products in FunR are calculated pointwise, and by pread-
ditivity of D, they agree.

Now suppose C is preadditive. Then it is pointed, so by proposition 6.6, FunR(C,D) is pointed.
Let (−)2 : C → C be the functor X 7→ X× X. There is a natural transformation (−)2 → 1C given by
the fold map X× X ≃ X ⊔ X → X. This induces a natural transformation δH : H×H → H for any
H : C → D. We claim this data satisfied the hypotheses of lemma 6.14. This is not hard to verify -
each diagram can be constructed from an analogous commutative diagram in C.

Corollary 6.19. Let C be a presentable∞-category. Then the forgetful functor CMon(C)→ C admits
a left adjoint. This is a localization of C in PrL relative to the preadditive categories.

Proof. Analogous to the proof of corollary 6.7

Additive∞-categories

Definition 6.20. If A ∈ C is an object in a preadditive category, we define the shear map

s : A⊕A→ A⊕A

as the projection p1 : A×A → A on the first factor and the fold map A ⊔A → A on the second
factor.

Definition 6.21. An additive∞-category is a preadditive∞-category in which each shear map is an
equivalence.

Proposition 6.22. Suppose C is an∞-category with finite products. Then CGrp(C) is additive.

Proof. Since CGrp(C) ⊆ CMon(C) is closed under products, and hence under coproducts (by pread-
ditivity of CMon), it is preadditive. Now take A ∈ CGrp(C). Observe that the shear map s : A×A→
A×A is given on underlying objects by the analogous map coming from the commutative monoid
structure: s⟨1⟩ : A(⟨1⟩)2 → A(⟨1⟩)2 is given by composition on the first coordinate and projection
on the second. It is clear that, if A(⟨1⟩) is a group object, this is an equivalence. Since the forgetful
functor is conservative, so is the original shear map. This is all we needed to show.

Proposition 6.23. Suppose C is an additive∞-category. Then the forgetful functor CGrp(C)→ C is
an equivalence.

Proof. We know that CMon(C)→ C is an equivalence. Hence the statement is equivalent to the claim
that all objects in CMon(C) are also groups, which we now prove. Let X ∈ C. Then there is a unique
commutative monoid X̄ with underlying object X. The multiplication X×X→ X is given by the fold
map X

⨿
X → X. Since C is additive, the shear map X× X → X× X is an equivalence. Hence so is

X̄× X̄→ X̄× X̄, finishing the proof.

Proposition 6.24. Let C,D be complete ∞-categories. Suppose either C or D is additive. Then also
FunR(C,D) is additive.
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Proof. As the proof of proposition 6.18. In the case that C is additive, we must check that the shear
map F× F→ F× F is an equivalence for each functor F : C → D. Both the fold map δF : F× F→ F and
the projection p1 : F× F → F, arise from applying F to the corresponding natural transformations
X× X → X in C. Hence the shear map is objectwise given by the map F(s) : FX× FX → FX× FX,
where s : X× X→ X× X is the shear map in C. Since C is additive, this is an equivalence, finishing
the proof.

Proposition 6.25. Let C be presentable. Then CGrp(C) → C admits a left adjoint, which is a local-
ization of C relative to the additive categories.

Proof. As corollary 6.7 and corollary 6.19

As a consequence of the theory described here, the assignments C 7→ CMon(C) and C 7→ CGrp(C)
extend to functors PrL → PrL. We may choose these functors to be the opposites of the func-
tors PrR → PrR sending a functor C → D to the functor CMon(C) → CMon(D) given by post-
composition. In other words, given a colimit-preserving functor C → D, we take its adjoint, con-
struct the functor CMon(D)→ CMon(C), then take the adjoint of this.

If given a functor F : C → D which preserves colimits and finite products, we may instead define
a functor CMon(C)→ CMon(D) by just post-composing with F.

Proposition 6.26. Suppose given a left adjoint, finite product-preserving functor L : C → D. Suppose
further that finite products in C and D preserve countable colimits. Then the two functors described
above are equivalent.

Proof. Let R be the right adjoint of L. Then postcomposing with L or R gives an adjunction

L∗ : Fun(N(Fin∗), C) −⇀↽− Fun(N(Fin∗),D) :R∗

Both of these functors restrict to functors

L : CMon(C)→ CMon(D)

R : CMon(D)→ CMon(D)

Since adjoints are unique up to equivalence, it suffices to prove that this is an adjunction. Let
η : 1Fun(N(Fin∗),C) → R∗L∗.be a unit for the adjunction L∗|R∗, in the sense of [8, Definition 5.2.2.7].
Then we can simply restrict η to get a natural transformation η : 1CMon(C) → RL, which will also be
a unit. This proves that the two functors are adjoint, finishing the proof.

Remark 6.27. By exactly the same argument, the two possible functors CGrp(C) → CGrp(D) are
also equivalent.

7 Sp(C), and the free functors

Stable∞-categories and spectrum objects

We will briefly discuss the relationship between C∗, CMon(C) and CGrp(C), and the category Sp(C)
of spectrum objects in C. We will not discuss Sp(C) itself in any great detail. When C = S , it is
called the infinity-category of spectra, and is equivalent to the underlying ∞-category of the model
category of symmetric spectra ([7, Example 4.1.8.6]). Moreover the symmetric-monoidal structure
induced on it by applying the construction of this project is the same as the one induced by the
(strict) symmetric monoidal structure on symmetric spectra. Hence we can regard (Sp(S),⊗) as a
suitable∞-categorical version of the smash product of spectra.

Definition 7.1. A stable∞-category C is a pointed∞-category which admits finite limits and colim-
its, and with the property that any square
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A B

C D

is a pullback if and only if it is a pushout.

Remark 7.2. Compare the fact that homotopy Cartesian and homotopy coCartesian squares agree
in e.g. the model category of symmetric spectra.

Remark 7.3. This is different from, but equivalent to, Lurie’s definition of stable∞-category. See [7,
Prop. 1.1.3.4].

Remark 7.4. It is not difficult to verify that for C an∞-category,

C stable⇒ C additive⇒ C preadditive⇒ C pointed

The only nontrivial case is to see that stable implies additive. This follows from Corollary 1.4.2.17
and Remark 1.1.3.5 in [7].

Proposition 7.5 ([7, Cor. 1.4.4.5]). Let C be presentable. Then it admits a localization relative to the
stable ∞-categories (a stabilization). This is the functor Σ∞+ : C → Sp(C), which is left adjoint to the
functor Ω∞ : Sp(C)→ C.

Free functors

As a consequence of the above, for each presentable∞-category C, there is a canonically determined
sequence of colimit-preserving functors

C → C∗ → CMon(C)→ CGrp(C)→ Sp(C),
each of which is a localization of the domain relative to the successive classes of ∞-categories.

The first three functors are left adjoint to the respective forgetful functors.

Proposition 7.6. Let C be a presentable ∞-category. Suppose the product in C preserves countable
colimits in each variable separately. Then the free monoid functor C → CMon(C) takes X ∈ C to the
functor

⟨n⟩ 7→ colim⟨a⟩→⟨n⟩∈(Finint
∗ )/⟨n⟩

X⟨a⟩
◦

In particular, the composition C → CMon(C)→ C is given by the formula X 7→ ⊔n(X
n)Σn

, where
Σn acts on Xn by permutation.

Proof. It suffices to prove that the given functor has the correct universal property. To see this,
observe that the formula above is precisely the formula for the left Kan extension to N(Fin∗) of the
functor F : Finint

∗ → C given by ⟨n⟩ 7→ X⟨n⟩◦ . By the universal property of left kan extension, it
suffices to check that

MapFun(N(Fin∗)int,C)(F,G) ≃ MapC(X,G(⟨1⟩))

whenever G is the restriction of N(Fin∗)int of a monoid. To see this, observe that

FunSeg(N(Finint
∗ ), C) ≃ C,

with the inverse given by right Kan extension.
Using the fact that the product distributes over colimits, one can easily check the Segal condition.
The formula follows in the following way: since every map in Fin∗ factors uniquely as an inert

followed by an active map, the collection of active maps ⟨a⟩ → ⟨1⟩ is cofinal in the index cate-
gory. This allows us to replace the colimit with one indexed by active maps ⟨a⟩ → ⟨1⟩, which is
equivalently just the category of isomorphisms in Fin. This clearly gives the correct value.
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Remark 7.7. The left adjoint CMon(C) → CGrp(C) is called group completion. In can be identified
with Segal’s group completion functor for Γ -spaces.

Remark 7.8. The functor CGrp(C) → Sp(C) is fully faithful. Its essential image is the subcategory
of connective spectrum objects. This is shown in [7, p. 5.2.6].

8 Localizations of symmetric monoidal∞-categories

After much preparation, we are finally approaching the heart of the matter, namely the interplay
between localizations and symmetric monoidal∞-categories.

Symmetric monoidal and smashing localizations

Definition 8.1. Suppose C⊗ is a symmetric monoidal∞-category, and that L : C → C is a localization
of the underlying ∞-category. Then we say that L is compatible with the symmetric monoidal structure
if, whenever X→ Y is a local equivalence, and Z is any object, the map X⊗Z→ Y ⊗Z is also a local
equivalence.

Remark 8.2. Definition 8.1 is equivalent to the following condition: given a collection of local equiva-
lences Xi → Yi, the map

⊗
i Xi →⊗

i Yi is a local equivalence. This is the definition of compatibility
used in [7].

The following proposition describes how compatible localizations extend to the symmetric monoidal
structure. In many ways, this is really the key proposition of the project.

Proposition 8.3. Suppose p : C⊗ → N(Fin∗) is a symmetric monoidal∞-category, and that L : C → C
is a localization of the underlying ∞-category, which is compatible with the symmetric monoidal
structure. Let (LC)⊗ be the subcategory of C⊗ spanned by the objects of the form

LC1 ⊕ · · · ⊕ LCn.

Then the following hold:

(1) The restriction p : (LC)⊗ → N(Fin∗) exhibits (LC)⊗ as a symmetric monoidal ∞-category with
underlying∞-category LC

(2) The inclusion (LC)⊗ ⊆ C⊗ admits a left adjoint, L⊗. Furthermore, L⊗|C ≃ L, and the unit η of
the adjunction can be chosen so that p(η) = 1.

(3) L⊗ is a symmetric monoidal functor.

(4) The inclusion (LC)⊗ ⊆ C⊗ is a lax symmetric monoidal functor.

We will need the following lemma, which we do not prove.

Lemma 8.4 ([7, Lemma 2.2.1.11]). Suppose p : C → D is a coCartesian fibration, and that L : C → C
is a localization functor. Suppose further that pL ≃ p. Then

(1) L carries p-coCartesian morphisms of C to p-coCartesian morphisms of LC.

(2) The functor LC → D is a coCartesian fibration

Proof of proposition 8.3. We will begin by constructing the functor L⊗ of (2). For each object
⊕

i∈⟨n⟩◦ Xi ∈
C⊗, consider the map

⊕
i∈⟨n⟩◦ Xi →⊕

i∈⟨n⟩◦ L(Xi). We claim that this is a localization of
⊕

i∈⟨n⟩◦ Xi

relative to (LC)⊗.
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To see this, let
⊕

j∈⟨m⟩◦ LYj be an arbitrary object of L(C)⊗. Consider the map

MapC⊗(
⊕

i∈⟨n⟩◦
LXi,

⊕
j∈⟨n⟩◦

LXj)→MapC⊗(
⊕

i∈⟨n⟩◦
Xi,

⊕
j∈⟨n⟩◦

LXj)

We know that the mapping space

MapC⊗(
⊕

i∈⟨n⟩◦
LXi,

⊕
j∈⟨n⟩◦

LXj)

can be written as the disjoint union over f : ⟨n⟩→ ⟨m⟩ of
∏

j∈⟨m⟩ MapC(⊗f(i)=jLXi,LXj), similarly
for the other mapping spaces. Moreover, since the map we are composing with lies over the identity
on ⟨n⟩, it preserves this decomposition. Hence it suffices to observe that on each component it is a
homotopy equivalence, which is true since each map ⊗Xi → ⊗LXi is a localization in C relative to
LC, since L is compatible with ⊗.

The above implies that the inclusion (LC)⊗ ↪→ C⊗ admits a left adjoint. The restriction of this left
adjoint to C must be a left adjoint to the inclusion LC ↪→ C, hence be equivalent to L. It is also clear
that constructed in this way, η goes to the identity on N(Fin∗).

(2) being done, we move on to (1), and (3), which are now easy consequences of lemma 8.4. To
see (4), note that map F :

⊕
i Xi → ⊕

j Yj lying over f : ⟨n⟩ → ⟨m⟩, which can be identified with a
collection of maps ⊗f(i)=jXi → Yj, is a coCartesian lift of f if and only if each of these maps is an
equivalence. If f is inert, each of these tensor products is unary. By this, it is clear that the inclusion
preserves inert maps.

Remark 8.5. The inclusion is almost, but not quite, fully symmetric monoidal. It does preserve
tensor products, except nullary ones, i.e. the unit object. Instead, the unit object in (LC)⊗ is the
localization of the unit in C, which is not necessarily the unit itself.

Corollary 8.6. Let C be a symmetric monoidal ∞-category and L : C → C be a compatible localiza-
tion. Then L induces a functor CAlg(C)→ CAlg(LC), which is left adjoint to the inclusion.

Proof. It will be sufficient to observe that CAlg(C) → CAlg(LC) → CAlg(C) is a localization. The
above can be identified with the functor Fun(N(Fin∗), C⊗) → Fun(N(Fin∗), C⊗) given by post-
composition with L⊗, restricted to the full subcategory spanned by the commutative algebras (and
with restricted image). Then applying proposition 2.13 and proposition 2.14 gives us the result.

Corollary 8.7. A map in CAlg(C) is a local equivalence if and only if the underlying map in C is.

Proof. Follows from the fact that a map of algebras is an equivalence if and only if the underlying
map is, and the fact that the localization is just L on the underlying objects.

Corollary 8.8. Let A ∈ CAlg(C) be a commutative algebra object with underlying object A⟨1⟩.
Then there is a map A → B in CAlg(C) with underlying map ηA⟨1⟩ : A⟨1⟩ → LA⟨1⟩, namely the
localization of A. Furthermore, if A → B ′ is another algebra morphism with the same underlying
map (i.e. another algebra structure on LA⟨1⟩ making it a homomorphism), there is a (essentially)
unique equivalence B→ B ′ so that

A B

B ′

commutes. The underlying endomorphism of B⟨1⟩ is the identity.

Proof. By corollary 8.7, any such map of algebras is a localization of A. This implies the unique
existence of the equivalences B → B ′. The underlying map LA⟨1⟩ → LA⟨1⟩ is unique with the
property that
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A⟨1⟩ LA⟨1⟩

LA⟨1⟩

commutes, hence must be the identity.

This corollary says that, given a commutative algebra structure on the object X, there is a unique
structure on LX making ηX a homomorphism.

We now define smashing localizations.

Definition 8.9. Let C be a symmetric monoidal∞-category. A smashing localization of C is a functor
L : C → C of the form L(X) = X⊗ E for some fixed object E, which is a localization functor.

Smashing localizations can be identified with so-called idempotent objects, which we now describe.

Definition 8.10. Let C be a symmetric monoidal ∞-category. Let e : I → E be a morphism in C.
Then we say that e exhibits E as an idempotent object if the map

e⊗ 1E : I⊗ E→ E⊗ E

is an equivalence.

Remark 8.11. It is a consequence of this definition that the analogous map E⊗ I → E⊗ E is an
equivalence, since it is equivalent to the composite E⊗ I→ I⊗ E→ E⊗ E.

Proposition 8.12. Let e : I→ E be a map in a symmetric monoidal ∞-category C. Then e induces a
natural transformation (−)⊗ e : 1C ≃ (−)⊗ I→ (−)⊗ E.

Then (−)⊗ e exhibits (−)⊗E as an idempotent object if and only if e exhibits E as an idempotent
functor.

Proof. Suppose first e exhibits E as idempotent. Then we must check that the two maps X⊗ E →
X⊗ E⊗ E are both equivalences. One is given by

((−)⊗ e)X⊗E = 1X⊗E ⊗ e = 1X ⊗ 1E ⊗ e,

which is an equivalence. The other is given by

((−)⊗ e)X ⊗ 1E = 1X ⊗ e⊗ 1E,

which is also an equivalence.
Now suppose (−)⊗ e exhibits (−)⊗ E as an idempotent functor. Then in particular

((−)⊗ e)1⊗E : I⊗ E ≃ I⊗ E⊗ I 1I⊗1E⊗e→ 1⊗ E⊗ E

is an ismorphism. But this means 1I ⊗ (1E ⊗ e) is an equivalence, but then certainly so is 1E ⊗ e,
which is the desired property for e.

Remark 8.13. In fact it is a consequence of the second half of this proof that, given any smashing
localization, taking λ1 : I → I ⊗ E ≃ E will exhibit E as an idempotent object. So (−) ⊗ E is
idempotent if and only if E is idempotent. However, there may be idempotent structures on (−)⊗ E
which do not arise from idempotent structures on E by this construction.

As an example, consider N(VectR), the nerve of the ordinary category of vector spaces, with
direct sum as the symmetric monoidal structure. Then R0 = {0} is the tensor unit, and admits a
unique idempotent structure. However, the corresponding localization is just the identity functor
1N(VectR) Any natural automorphism will exhibit this as an idempotent functor, and there are many
nontrivial such, e.g. αV : V → V given by v 7→ −v.

For this project, we are mainly interested in showing that a localization is compatible with the
symmetric monoidal structure, and for this purpose, there is no issue.

29



Eigil Fjeldgren Rischel

Proposition 8.14. Let L = (−)⊗ E : C → C be a smashing localization on the symmetric monoidal∞-category C. Then it is compatible with the symmetric monoidal structure.

Proof. We must check that if f : X → Y is a local equivalence, then also f⊗ 1Z : X⊗ Z → Y ⊗ Z is
a local equivalence. This means that, if X⊗ E → Y ⊗ E is an equivalence, then also X⊗ Z⊗ E →
Y ⊗ Z⊗ E should be one. This is immediate by swapping the tensor factors.

(−)∗, CMon, and CGrp as smashing localizations

Proposition 8.15. Each of the localizations C 7→ C∗, C 7→ CMon(C), C 7→ CGrp(C), C 7→ Sp(C) is
smashing.

Proof. Let L be one of these localizations. In each case, we have

L(C) ≃ L(C ⊗ S) (8)

≃ L(FunR(Cop,S)) (9)

≃ FunR(Cop,LS) (10)

≃ C ⊗ L(S) (11)

The third equivalence is the only nontrivial part of this, and follows from lemma 4.18 in the case of
CMon and CGrp. For (−)∗, it is proposition 4.4. For Sp, it follows from the description of Sp(C) as
a colimit - see [7, Example 4.8.1.23] for details. In fact, by chasing through the definitions, one can
observe that the previously defined maps C → LC (left adjoints to the forgetful functors) are actually
identified with the map C ≃ C ⊗ S → C ⊗ LS .

As a direct consequence of this theorem, we achieve all our goals.

Corollary 8.16. Let L be one of the localizations above. Let C be a presentably symmetric monoidal∞-category. Then there is a unique presentable symmetric monoidal structure on LC with the same
property so that the functor C → LC is symmetric monoidal.

Proof. Since L is smashing, it is compatible with the symmetric monoidal structure on PrL. Now just
apply corollary 8.8 above, recalling that presentable symmetric monoidal structures can be identifies
with commutative algebra objects of PrL.

Corollary 8.17. Let C be a presentably symmetric monoidal ∞-category. Then the sequence of
functors

C → C∗ → CMon(C)→ CGrp(C)→ Sp(C)

refines to a sequence of symmetric monoidal left adjoint functors, using the symmetric monoidal
structure of corollary 8.16

Proof. Follows from the above using also corollary 2.15.

Corollary 8.18 (Theorem A). Let F : C → D be a symmetric monoidal, colimit-preserving functor of
presentably symmetric monoidal∞-categories. Then there is a commutative diagram

C C∗ CMon(C) CGrp(C) Sp(C)

D D∗ CMon(D) CGrp(D) Sp(D)

F (F)∗ CMon(F) CGrp(F) Sp(F)

of symmetric monoidal left adjoint functors using the structures above. Moreover, this diagram is
determined up to equivalence.
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Note that the group completion functor CMon(C) → CGrp(C) is actually a localization itself.
This means that we can also apply the above theory in this case.

Proposition 8.19. The localization

L : CMon(C)→ CGrp(C) ↪→ CMon(C)

is compatible with the symmetric monoidal structure.

Proof. Suppose X → Y is a local equivalence in CMon(C), i.e LX → LY is an equivalence. Then
L(X ⊗ Z) → L(Y ⊗ Z) can be identified with the map LX ⊗ LZ → LY ⊗ LZ, since L is symmetric
monoidal. Here the tensor products are computed in CGrp(C). But all the same this map is clearly
an equivalence, finishing the proof.

Corollary 8.20. Suppose R is an object of CAlg(CMon(C)) (an “E∞ semiring in C”). Then there is a
unique way to give LR ∈ CGrp(C) the structure of an object of CAlg(CGrp(C)) (an “E∞ ring in C”).

Since understanding the interplay between the group completion functor and multiplicative
structures is a classically important problem (see Section 9), this corollary is very powerful. For
instance, it says that the multiplicative structue on K(R) is uniquely determined by the multiplica-
tive structure on the commutative monoid in S which is constructed as an intermediate step.

9 Algebraic K-theory

Suppose we are given an (essentially small) ordinary category C with a symmetric monoidal struc-
ture ⊕. Then we can extract an abelian group in the following way:

(1) Pass to the set of isomorphism classes π0(C)

(2) Equip it with the structure of a commutative monoid via ⊕.

(3) Take the group completion of this monoid.

The resulting functor is Grothendieck’s K0(C), the 0th algebraic K-group of C. An important idea,
which goes back to Quillen (developed by Segal, [10]), is that a more powerful version of this
invariant can be developed by passing instead to the classifying space of C≃ in step 1. To make
steps 2 and 3 work in this setting, one needs a suitably general notion of commutative monoid and
group, and it is for this purpose that Segal introduced Γ -spaces.

If C has another symmetric monoidal structure ⊗, which distributes over ⊕ in a suitable sense,
K0(C) becomes a ring. The most important example of this is if R is a commutative ring. The
category of finitely generated projective R-modules R − ModFP with ⊕ the direct sum and ⊗ the
tensor product is an example of this. This gives a ring structure to K0(R) = K0(R − ModFP). Right
since [10], it has been an important problem to extend this phenomenon to K(R). In fact, this was
an important motivation for developing a good notion of ring spectrum. Segal sketched in [10]
how to get a commutative algebra object in h Sp (the stable homotopy category). There have been a
large number of refinements of this result, notably May in [9]. In that paper, May develops a way
of passing from “bipermutative categories” to ring spectra (in a certain sense). Here the notion of
bipermutative category is a way of formalizing the notion that ⊗ distributes over ⊕.

However, this approach has certain limitations

(1) The notion of bipermutative category is unecessarily restrictive. It requires that certain diagrams
commute strictly, when it it sufficient that they commute up to coherent homotopy in a certain
sense.

(2) Moreover, the notion of bipermutative category is very ad hoc. It is not clear how to relax it, for
instance, to obtain a way of assigning “noncommutative ring spectra” to categories where ⊗ is
not symmetric.
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The methods of this project can solve both of these issues. However we will not really remark
on (2), as doing so will require more machinery from [7]

Definition 9.1. The algebraic K-theory functor is defined as the following composite

K : Cat⊗∞ = CMon(Cat∞)
CMon(−)≃→ CMon(S)→ Sp

Remark 9.2. This also defines algebraic K-theory for symmetric monoidal ordinary categories. This
definition also extends the approach of [9] and [10] by allowing∞-categories as input.

Proposition 9.3. K admits a canonical lax symmetric monoidal structure.

Remark 9.4. This implies Theorem B.

Proof. We have already equipped the functor CMon(S)→ Sp with a symmetric monoidal structure
(which is in particular a lax symmetric monoidal structure). On the other hand, the functor (−)≃ :

Cat∞ → S can be defined as the right adjoint of the inclusion S ↪→ Cat∞. This inclusion preserves
products, so that it gives a symmetric monoidal functor S → Cat∞. This gives a symmetric monoidal
structure on the corresponding functor CMon(S)→ CMon(Cat∞), which we have seen is left adjoint
to the functor CMon(Cat∞)→ CMon(S). Hence this right adjoint receives a lax symmetric monoidal
structure, finishing the proof.

Definition 9.5. A commutative rig ∞-category is an object of CAlg(CMon(Cat∞)). We name this
category CRig(Cat∞) A commutative ring spectrum is an object of CAlg(Sp)). We name this category
CRingSp

Corollary 9.6. K induces a functor

K : CRig(Cat∞)→ CRingSp

CRig(Cat∞) is our refinement of May’s bipermutative categories. It does have the disadvantage
of being less explicit, so it is harder to simply write down examples. However, we can at least
construct them in the following way:

Proposition 9.7. Suppose C is a symmetric monoidal ∞-category with coproducts, and that the
tensor product preserves coproducts in each variable separately. Then C is canonically an element
of CRig(Cat∞) = CAlg(CMon(Cat∞))

Proof. Let CatΣ∞ be the∞-category of∞-categories with coproducts and coproduct-preserving func-
tors. It can be shown that CatΣ∞ admits a symmetric monoidal structure with the following property:
There is a functor C ×D → C ⊗D, which is initial among functors that preserve coproducts in each
variable. With this structure, an object in CAlg(CatΣ∞) is precisely a symmetric monoidal∞-category
as in the statement of the proposition. This is [7, p. 4.8.1.4], with K the collection of discrete simpli-
cial sets.1

First, we claim that CatΣ∞ is preadditive. First of all, it’s presentable, so in particular it has finite
products and coproducts. It suffices to check that for C,D ∈ CatΣ∞, their product in hCatΣ∞, which is
just their product in hCat∞, satisfies the universal property of the coproduct in hCatΣ∞. Let f : C →
E ,D → E be coproduct-preserving functors. Then they extend to the functor C × D → E × E ⊔→ E ,
and this is unique up to homotopy since (c,d) ≃ (c, ∅)⊔ (∅,d) for any (c,d) ∈ C ×D.

Now observe that by [7, Remark 4.8.1.9], the inclusion CatΣ∞ ↪→ Cat∞ admits a left adjoint,
which is symmetric monoidal. Hence it induces a symmetric monoidal functor CMon(Cat∞) →
CMon(CatΣ∞) ≃ CatΣ∞. The right adjoint of this functor then has a canonical lax symmetric monoidal
structure.

Thus it induces a functor CAlg(CatΣ∞) → CAlg(CMon(Cat∞)) (which preserves the underlying
category), which is what we wanted.

1Note that Lurie’s notation Cat⊗∞ for the Cartesian symmetric monoidal structure on Cat∞ conflicts with his use of the
same symbol for the ∞-category of symmetric monoidal ∞-categories
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Corollary 9.8. Let R be a commutative ring. Then K(R) is canonically an object of CRingSp, with
multiplication coming from ⊗.
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