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0.1 Abstract

The project consists of two chapters and an appendix. In the �rst chapter
de�ne quasi-categories, and perform basic constructions with these, some of
which are motivated by ordinary category theory. Among these, we shall
build under-categories and colimits. Also we brie�y review some di�erent
notions of �brations needed for the next chapter, and introduce a pair of
adjoint functors called straightening and unstraightening.

The second chapter is devoted to a certain application of the tools de-
veloped in chapter 1. However we will have to apply auxillary results since
developing all we need is outside the scope of this project. There will be some
loose discussion of the results we apply and those we obtain. We will try to
relate the work of the chapter to a theorem in topology, which states that in
certain cases (not too restrictive), there is a weak equivalenceGad//G ' LBG
for a simplicial group G. A classical proof of this is given in the appendix.
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0.2 Introduction

In this project we shall introduce some vocabulary of quasi-categories which
can be taken as a model of∞-categories. Also referred to as (∞, 1)-categories
in analogue to (n, r)-categories, these structures are often thought of as
higher categories for which all j-morphisms are equivalences, for j > 1.

In this project we shall de�ne them as a special class of simplicial sets, and
work through basic constructions from there. we will for the most part leave
interpretations to the reader. In chapter 1 we will cover basic constructions
rather explicitly.

Some results needed for the project, are not build from scratch, but
quoted from the main reference [Lur09]. I will try to justify some of them
with reference to chapter 1 and classic results outside the theory of quasi-
categories. Results from model category theory will just be stated, partly
because there is not room to develop the theory as thouroughly as the rest
of chapter 1, and partly due to the authors inexperience in working with this
subject.

The reader will be expected to know of basic constructions in category
theory, and to have basic knowledge of algebraic topology, and in particular
of simplicial sets. Having read [Hat02] or [Bre93], and chapter 1 of [GJ99]
will be more than enough.
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Quasi-categories

1.1 De�nition

As stated in the introduction, our choice of de�nition is a certain class of
simplicial sets. I will not try to motivate this choice of de�nition, but simply
note that this gives a familiar frame to work in, and has other (in some
respects) nice implications. Among these is the comforting fact that we need
not worry about set theoretic issues that might show up in our constructions,
when working inside this class. However, we will need to leave this frame at
some points along the way, and when we do so, I will implicitly assume that
the classes we encounter are su�ciently small for set theory to work out. Of
course this is a limitation, but aside from this remark I will refer the reader
to [Lur09] with regards to this.

Now we state de�nitions

De�nition 1.1.1 (Horns). Let ∆n be the standard n-simplex in simplicial

sets. The i'th horn on ∆n is the simplicial set Λni ⊂ ∆n, where the non-

degenerate k-simplicies are given by

(Λni )k =


(∆n)k for k < n− 1

(∆n)k − di(∆n) for k = n− 1
∅ for k ≥ n

0 ≤ i ≤ n

and structure maps induced from those on ∆n. We say that Λni is an inner
horn if 0 < i < n.

De�nition 1.1.2 (Quasi-categories). A quasi-category is a simplicial set S
which the following extension property

Λni� _

��

f // S

∆n
f̃

>>

for 0 < i < n. I.e. that every map f from an inner horn to S, can be lifted

to a map f̃ from the corresponding simplex.
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We say that a quasi-category is a simplicial set that has inner horn �llers.
It may be noted that in particular Kan complexes are quasi-categories, and
that these will play a central role later in this project.

1.2 Colimits and limits

In this section we shall de�ne what a colimit in a quasi-category is. We shall
only deal with colimits, and note whenever dualizing statements will result
in a limit construction.

First we shall recall a construction in simplicial sets and in categories.

1.2.1 Join

De�nition 1.2.1 (Join in sSet). Let X,Y be simplicial sets. We de�ne the

join of X and Y , to be the simplicial set X ? Y , with n-simplicies

(X ? Y )n =
∐

i+j=n−1

Xi × Yj , −1 ≤ i, j ≤ n

with the convention that Z−1 = ∗ for a simplicial set Z, and similar that a

(−1)-simplex σ−1 = ∗. The structure maps

di : (X ? Y )n → (X ? Y )n−1

si : (X ? Y )n → (X ? Y )n+1

are given by

dk(xi, yj) =
{

(dXk (xi), yj) for k ≤ i
(xi, dYk−j−1(yj)) for k > i

sk(xi, yj) =
{

(sXk (xi), yj) for k ≤ i
(xi, sYk−j−1(yj)) for k > i

Since the structure maps are given coordinate-wise by those from X and
Y , simplicial identities are seen to hold.

We can think of the joinX?Y asXtY with a 1-simplex σ added for every
pair of 0-simplices (x, y) ∈ X × Y , satisfying the conditions d0(σ(x,y)) = y
and d1(σ(x,y)) = x.

Note that in particular we have an inclusion of the disjoint unionXtY ↪→
X ? Y .

De�nition 1.2.2 (Join in Cat). Let C,D be categories. We de�ne the join of

C and D, to be the category C?D with ob(C?D) = obC t obD, and morphisms

MorC?D(a, b) =


MorC(a, b) a, b ∈ obC
MorD(a, b) a, b ∈ obD

∗ a ∈ obC, b ∈ obD
∅ a ∈ obD, b ∈ obC
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The coinciding terminology and notation for the two notions of join de-
�ned so far is not coincidential. As the following proposition states the nerve
functor preserves the join construction.

Proposition 1.2.3. If C,D are categories, then there is an isomorphism of

simplicial sets

N(C ?Cat D) ' N(C) ?sSet N(D)

Proof. Level-wise we have

(N(C) ?sSet N(D))n =
∐

i+j=n−1

N(C)i ×N(D)j

De�ne a map φ : N(C) ?sSet N(D)→ N(C ?Cat D) by

φ(ci, dj) = ci ? dj

where ci ? dj is the functor [n] → C ?Cat D such that ci ? dj |[0,...,i] = ci,
ci ?dj |[i+1,...,n] = dj , where [a, . . . , b] denotes the full subcategory spanned by
the objects a, . . . , b. We note that ci ?dj is de�ned on the morphism i ≤ i+1
by ci ? dj(i ≤ i+ 1) = ci ? dj(i)→ ci ? dj(i+ 1), which is unique, since source
and target of this morphism are objects of respectively C and D. Also note
that we still allow for the cases j = −1 or i = −1, in which cn ? d−1 = cn
and c−1 ? dn = dn.

This is a simplicial map as

φ(sk(ci, dj)) = φ(sk(ci), dj) = sk(ci) ? dj = sk(ci ? dj) = sk(φ(ci, dj)), k ≤ i

and similar for k > i, and for the face maps.

Further it is a bijection as we shall see. For a given functor [n] F→ C?CatD
there are three cases to consider. Either F maps objects entirely to one of
C or D, or there is a unique object i ∈ [n] such that s(F (i ≤ i + 1)) ∈ C
and t(F (i ≤ i + 1)) ∈ D. Thus either F = F ? F−1 = φ(F, F−1), or F =
F−1 ? F = φ(F−1, F ); or F = F |[0,...,i] ? F |[i+1,...,n] = φ(F |[0,...,i], F |[i+1,...,n]).
Hence φ is surjective.

Suppose now that φ(ci, dj) = φ(c′k, d
′
l). In particular

ci ? dj(i ≤ i+ 1) = c′k ? d
′
l(i ≤ i+ 1) = c′k ? d

′
l(k ≤ k + 1)

which is unique, so i = k and j = l. Then

ci = ci ? dj |[0,...,i] = c′i ? d
′
j |[0,...,i] = c′i

and similar for the d's. Hence φ is injective, and so φ is an isomorphism of
simplicial sets.

Taking linearly ordered sets as categories, we observe that [n + 1] =
[n] ? [0]. Thus ∆n−1 ? ∆0 = N([n]) ? N([0]) = N([n + 1]) = ∆n, and more
generally ∆n ?∆m = ∆n+m+1.
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1.2.2 Under-quasi-categories

Before we proceed with de�ning a colimit for quasi-categories, we shall need
the following technical proposition also found in [ML98].

Proposition 1.2.4. Let E be a concrete monoidal category, and let C be a

category enriched over E. Any functor F : C → E, is a colimit of a diagram

of representables HomC(d,−) for d ∈ obC.

Proof. Consider the category of elements 1↓F given as follows. Objects are
pairs (c, x) for c ∈ obC and x ∈ obF (c), and morphisms

Mor1↓F ((c, x), (c′, x′)) = {f ∈ MorC(c, c′) | F (f)(x) = x′}

Now let DF : 1 ↓ F → EC be the functor given by sending an object (c, x)
to the functor HomC(c,−), and a morphism f : c→ c′ to the natural trans-
formation f∗ : HomC(c′,−) → HomC(c,−). We now have the commutative
diagram

(c, x)
DF //

f
��

HomC(c,−) x // F

(c′, x′)
DF

// HomC(c′,−)

f∗

OO
x′

99ttttttttttt

where the natural transformations x, x′ are given by the Yoneda lemma,
which states that there is a natural isomorphism HomEC(HomC(c,−), F ) '
F (c). To show that F is a colimit, let G : C → E be any other functor with
natural transformations z, z′

HomC(c,−) x //

z
$$J

JJJJJJJJJJ F

HomC(c′,−)

f∗

OO

ttttt

x′
::tttttt

z′
// G

such that the diagram commutes. Again by the Yoneda lemma, z, z′ are given
as elements of respectively G(c) and G(c′). Hence we can construct a natural
transformation θ : F → G by setting the component at c, θc : F (c) → G(c)
to be given by θc(x) = z. This determines θ as the diagrams above are for
any object in 1 ↓ F .

It is easy to verify that θ unique, and naturality follows from naturality
of the Yoneda isomorphism.

Thus F is the colimit of the diagram DF , those representables for which
the natural transformations between them are induced by morphisms in 1↓
F .

This proposition immediatly gives us the corollary
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Corollary 1.2.5. Any simplicial set S is a colimit of its simplicies ∆n → S.

Proof. This is the case of S : ∆op → Set from the lemma above, since ∆n :=
Hom∆op([n],−).

In this case, the Yoneda lemma lets us identify the category of elements
with the category with objects morphisms from representables ∆n to S, and
morphisms commuting triangles

∆n //

  B
BB

BB
BB

B ∆m

}}{{
{{

{{
{{

S

By this description it is obvious that the colimit of the diagram DS in sSet,
is S.

Proposition 1.2.6. Let S,K be simplicial sets, and let p : K → S be a

simplicial map. There exist a simplicial set Sp/ such that

HomsSet(Y, Sp/) ' HomsSet,p(K ? Y, S)

for any simplicial set Y . Here the subscript p indicates that we restrict the

Hom-set to those morphisms f : K ? Y → S such that f |K = p.

Proof. De�ne (Sp/)n to be the set HomsSet,p(K ?∆n, S). In the case that Y
is a simplex ∆n,

HomsSet(∆n,HomsSet,p(K ?∆−, S)) ' HomsSet,p(K ?∆−, S)n
= HomsSet,p(K ?∆n, S)

Applying lemma 1.2.5, we see that in the general case it is enough to check
that colim1↓Y ((K ? ∆n) ' K ? Y . First note that given any morphism
K ? ∆n → K ? ∆m in the image of the diagram DY from above, there are
maps to K ? Y induced by inclusions of simplicies in Y such that the upper
triangle of the following diagram commutes

K ?∆n

$$H
HH

HH
HH

HH

f

  

K ?∆moo

zzuuuuuuuuu

g

~~

K ? Y

∃!
��
S

Then given maps f, g to any simplicial set S, such that the outer triangle
commutes, we should produce a unique map as in the diagram, making the
whole diagram commute. Level-wise we have (K ? Y )n =

∐
i+j=n−1Ki × Yj
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for −1 ≤ i, j ≤ n, so it is enough to de�ne a map Ki × Yj → Sn for any i, j
in this range. We have Y = (colim1↓Y DY ), so in particular we have that

Yj = (colim(l,y)∈1↓Y ∆l)j
= colim(l,y)∈1↓Y (∆l)j

and in sets we know that

Ki × colim(l,y)∈1↓Y (∆l)j = colim(l,y)∈1↓Y Ki × (∆l)j

So we just have to produce maps Ki × (∆l)j for all such simplicies in the
image of the diagram DY . But Ki × (∆l)j are exactly the n-simplicies of
K ?∆l, when i, j run through −1, . . . n, so the maps similar to f or g in the
above diagram, from the appropriate source in the image of DY , will work.
Remember that this diagram was for any morphism in the image of DY .

De�nition 1.2.7. Let Q be a quasi-category, K be a simplicial set, and

p : K → Q a simplicial map. We de�ne the under-quasi-category, to be the

simplicial set Qp/.

Dually we can de�ne over-quasi-categories, Q/p by replacing K ? Y with
Y ? K in the previous proposition and de�nition. As the choice of name
suggests, these simplicial sets are indeed quasi-categories. To show this we
need a bit more machinery, which will be introduced in section 1.3.

1.2.3 Colimit for quasi-categories

De�nition 1.2.8 (Initial object). Let Q be a simplicial set, and let q ∈ Q
be a vertex. We say that q is an initial object of Q if q is an initial object

in hQ.

For this de�nition to make sense we should say what hS is, for a simplicial
set S. De�ne therefor hS = hC[S], the homotopy category for the simplicial
category C[S] de�ned in section 1.4.1. This homotopy category is obtained
by taking π0 of all morphism spaces (once de�ned, that is).

De�nition 1.2.9 (Strongly initial object). Let S be a simplicial set, and

x ∈ S a vertex. We say that x is strongly initial if the projection Sx/ → S
is a trivial �bration of simplicial sets.

In this de�nition we identify x ∈ S with the inclusion x : ∆0 ↪→ S of the
vertex x into S. We will de�ne the notion of (trivial) �brations in section 1.3.

De�nition 1.2.10 (Colimit for quasi-categories). Let Q be a quasi-category,

and p : K → Q a simplicial map. The colimit of p is then a strongly initial

object of Qp/.
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Note that this is not the de�nition given in [Lur09](de�nition 1.2.13.4),
but due to [Lur09] corollary 1.2.12.5, we can take this as a de�nition, when
working with quasi-categories.

Dually we may de�ne a �nal object of Q to be a �nal object of hQ, a
strongly �nal object, as a vertex of y ∈ S for which the projection S/y → S
is a trivial �bration, and a limit for p to be a strongly �nal object of Q/p.

1.3 Fibrations

Here we shall brie�y introduce some basic notions of �brations of simplicial
sets. The types that will be of use to us are the trivial �brations and the
right �brations. A few other are listed for comparison.

De�nition 1.3.1 (Fibrations). Let p : S → X be a map of simplicial sets.

We say that p is a

a) trivial �bration if

∂∆n //
� _

��

S

��
∆n

<<

// X

there exists an extension as indicated, such that the diagram commutes.

b) Kan �bration if for 0 ≤ i ≤ n

Λni //
� _

��

S

��
∆n

>>

// X

(1.1)

there exist an extension as indicated, such that the diagram commutes.

c) left �bration if the extension in (1.1) exists for 0 ≤ i < n

d) right �bration if the extension in (1.1) exists for 0 < i ≤ n

e) inner �bration if the extension in (1.1) exists for 0 < i < n

Note that a) ⇒ b) ⇒ c), d) ⇒ e), that c) ∧ d) ⇒ b). Also, knowing
what a trivial �bration is, we may now rephrase our de�nition of a colimit
in quasi-categories.
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Lemma 1.3.2. A vertex s of a simplicial set S is strongly initial if and only

if for any map f as in the diagram

∆0 � q

s

""F
FF

FF
FF

FF
� _

0
��

∂∆n+1
f //

� _

��

S

∆n+1

<<

there exists an extension as indicated, such that the diagram commutes. Here

0 denotes the inclusion of the zero'th vertex, and s denotes the inclusion of

the vertex s.

Proof. Suppose s ∈ S is strongly initial. Then in particular we get a com-
mutative diagram

Λn+1
0 ∆0 ? ∂∆n

� _

��

|s // S

∆n+1 ∆0 ?∆n

h̄

|s

88rrrrrrrrrrrr

On the other hand we also know that the adjoint map with respect to the
join, h makes the following diagram commute

Ss/

��
∆n //

h
=={{{{{{{{
S

which gives us the last face of Λn+1
0 above, since an n-simplex in (Sp/)n =

Homs(∆0 ?∆n, S) is an n-simplex in S lying under s, the image of the 0'th
vertex in Λn+1

0 . So we get a map ∆n+1 → S, with the 0'th vertex mapping
to s, given that we have both a map from the Λn+1

0 , which maps the 0'th
vertex to s, and a map from an n-simplex to the (missing) face opposite s
in this horn. This is evidently a lift, given a map from the boundary as we
wanted.

The other implication is just trailing this argument backwards.

The notions of �brations are introduced partly as a tool to check that the
de�nitions given in the previous section can be justi�ed, and partly for the
next chapter where they will play a central role. First we set out to prove
the following

Proposition 1.3.3. Let Q be a quasi-category, K a simplicial set, and

p : K → Q a simplicial map. The simplicial set Qp/ is a quasi-category.
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Following [Lur09], we can obtain this as a corollary of the following

Proposition 1.3.4. Let

K0 ⊆ K
p // X

q // S

be a diagram of simplicial sets, with q an inner �bration. Let r = q ◦ p,
p0 = p|K0, and r0 = r|K0. The induced map

Xp/ // Xp0/ ×Sr0/
Sr/

is a left �bration.

proof of 1.3.3. In the terminology of 1.3.4, choose K0 = ∅ and S = ∗. Then
we get a left �bration Xp/ → X ×∗ ∗ = X, and when X is a quasi-category,
we get the following lifts for 0 < i < n

Λni� _

��

// Xp/

��
X

��
∆n //

<<

EE

∗

The bottom one from X being a quasi-category, and the top one from Xp/ →
X being a left �bration, and thus in particular an inner �bration. Thus Xp/

is a quasi-category.

We will not prove proposition 1.3.4 in general here, but only in the case
needed for proposition 1.3.3.

Proof. As established above we should verify that the following lift exists for
0 ≤ i < n

Λni� _
j

��

f // Xp/

��
∆n

g
//

==

X

The given data can be reinterpreted by the adjoint relation for joins as

follows. We are given a map f̄ : K ? Λni
|p−→ X restricting to p on K, and a

map g : ∆n → X such that f̄ |Λn
i

= g ◦ j. Following this interpretation, we
want a map h̄ such that the following diagram commutes

K ? Λni� _

��

f̄ // X

K ?∆n
h̄

;;
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and such that the adjoint map h makes the following diagram commute

Xp/

��
∆n

h
==

g
// X

To illuminate the task at hand, suppose that K is just a single vertex k, in
which case the given data is just that of a map Λn+1

i+1 → X (where g supplies
the i'th face), such that k is the 0'th simplex of the horn. Then the lift exists
in

Λn+1
i+1

//
� _

��

X

{k} ?∆n

;;

since 0 < i + 1 < n + 1, {k} ? ∆n is a ∆n+1, and X is a quasi-category.
Completely similarly if K = ∆m for any m ≥ 0, the data given is that of a
map Λn+m+1

i+1 → X such that K is the �rst m-simplex in this horn. Then
the lift exists in

Λn+m+1
i+1

//
� _

��

X

∆m ?∆n

;;

since 0 < i+1 < m+n+1, ∆m?∆n is a ∆m+n+1, and X is a quasi-category.
It is obvious that the adjoint map to this lift satis�es the diagram it has to.

Since the join preserves colimits (cf. proof of proposition 1.2.6), it exists
for any simplicial set K.

As an example of a �bration we may consider

Example 1.3.5 Let X,Y be based Kan complexes. The evaluation at the
base point ev : Map(X,Y ) → Y is a Kan �bration, in particular it is a left
and right �bration. This is a classical result, but will not show it here since
it is easiest done using other tools than developed here.

1.4 Straightening and unstraightening

In this section we will de�ne a pair of functors StS , UnS associated to a
simplicial set S, called respectively the straightening and unstraightening
functor. It can be shown that this is a Quillen adjunction, and even a
Quillen equivalence, but we shall not do that here, as we will steer clear of
model category theory.

First step in this is to de�ne simplicial categories, and a way of passing
between these and simplicial sets.
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1.4.1 Simplicial categories

De�nition 1.4.1 (Simplicial categories). Let S be a category. We say that

S is a simplicial category if the set of morphisms MorS(a, b) comes equipped

with a simplicial structure for all objects a, b ∈ obS.

We shall de�ne a functor C : sSet → sCat. First we de�ne Ĉ on the full
subcategory generated by the representables ∆n ∈ sSet, denoted here by ∆̂.

There is a canonical identi�cation between the representable simplicial
set ∆n and the category [n], for any n, given by the nerve and τ functors.
Due to this we shall divert slightly from the de�nition in [Lur09], and treat
∆n as a linearly ordered set.

De�nition 1.4.2. We de�ne Ĉ[∆n] to be the simplicial category with objects

ob[n], and morphisms

MorĈ[∆n](i, j) =
{

∅ i > j
N(Pi,j) i ≤ j

where Pi,j is the poset {∆m ⊂ ∆n | i, j ∈ ∆m, ∀k ∈ ∆m : i ≤ k ≤ j} ordered
by inclusion of subsets. Finally if i ≤ j ≤ k, then the composition

MorĈ[∆n](i, j)×MorĈ[∆n](j, k)→ MorĈ[∆n](i, k)

is induced by the the map of posets

Pi,j × Pj,k → Pi,k

(∆p,∆q) 7→ ∆p ∪∆q

Note that this also de�nes identities, as there is only a single 0-simplex
of morphisms i ≤ i, and so we may think of Ĉ as sending the vertex i ⊂ ∆n

to the object i ∈ ob[n]. In order to get a functor Ĉ from this we should show
that Ĉ[∆n] is functorial, i.e. simplicial maps are taken to simplicial functors.

De�nition 1.4.3. If f ∈ Hom∆̂(∆n,∆m), we de�ne Ĉ[f ](i) = f(i) ∈
obĈ[∆m] on objects, and on morphisms we de�ne

Ĉ[f ](i ≤ j) = MorĈ[∆n](i, j)
N(f̄)−→ MorĈ[∆m](f(i), f(j))

where f̄ : Pi,j → Pf(i),f(j) given by ∆n 7→ f(∆n).

We now verify that

Proposition 1.4.4. The assignment ∆n 7→ Ĉ[∆n] is functorial.
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Proof. This amounts to checking that Ĉ[f ] is a functor of simplicial cate-
gories. This is more or less obvious from the de�niton, however we here

check that Ĉ respects composition in f , i.e. that for ∆n g //∆m f //∆l ,

the simplicial functors Ĉ[f ] ◦ Ĉ[g] and Ĉ[f ◦ g] are naturally isomorphic. As
the nerve is functorial, we have

N(f ◦ g) = N(f̄ ◦ ḡ) = N(f̄) ◦N(ḡ)

So the identity morphisms provide a natural isomophism of simplicial func-
tors.

Now we proceed to extend the functor Ĉ, to the following

Proposition 1.4.5 (The functor C). Let S be a simplicial set. The assign-

ment

S 7→ C[S] := colim1↓S(Ĉ ◦DS)

de�nes a functor C : sSet→ sCat, which agrees with the functor Ĉ previously

de�ned on ∆̂.

Note that we follow the usual convention regarding colimits in categories,
i.e. that we pass to simplicial sets by the nerve, then form the colimit and
�nally apply the adjoint to the nerve τ , to get back to categories. In our case
the nerve takes us to bisimplicial sets (which also has colimits), remembering
the structure on morphisms, and the adjoint τ is then back to sCat. So the
formula for C[S] actually reads

C[S] = τ
(

colim1↓S(N(Ĉ ◦DS))
)

For the proof we shall need a few lemmas.

Lemma 1.4.6. The construction 1 ↓ F depends functorially on F . I.e. if

F,G : C → E are two functors, then a natural transformation η : F → G,
induces a functor E : 1↓F → 1↓G.

Proof. Let η : F → G be such a natural transformation. Now de�ne a functor
E : 1 ↓ F → 1 ↓G on objects by E(c, x) = (c, ηc(x)). Now let f : (c, x) →
(c′, x′) be a morphism of 1 ↓ F , and de�ne E(f) = f . This is indeed a
morphism of 1↓G, since G(f)(ηc(x)) = ηc′(F (f)(x)) = ηc′(x′) by naturality
of η, and using that f is a morphism of 1↓F .

It is easily seen that identities are preserved, and compositions in η are
respected.

Lemma 1.4.7. Let η : X ⇒ Y be a natural transformation of simplicial

sets, inducing a functor E : 1 ↓ X → 1 ↓ Y . Then there exists a natural

isomorphism η̄ : DX ⇒ DY ◦ E of functors 1↓X → sSet.
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Proof. First note that for x ∈ X(n) the triangle

X
η // Y

∆n
ηn(x)

==||||||||
x

OO

with the natural transformations x and ηn(x) given by the Yoneda lemma,
commutes. This is since these transformations are given by where they map
idn ∈ Hom∆op(n, n).

Now, de�ne the natural transformation η̄, by letting the components
η̄(n,x) : Hom∆op(n,−)→ Hom∆op(n,−) be the identity map. This is of course
natural.

proof of proposition 1.4.5. By lemmas 1.4.6 and 1.4.7, a map of simplicial
sets η : X → Y gives us a natural transformation η̄ : DX ⇒ DY ◦E. We now
verify that this induces a map colim(C ◦ DX) → colim(C ◦ DY ). Consider
the following diagram

C[∆n] //

''NNNNNNNNNNN

Cη̄(n,x)

��

C[∆m]

wwppppppppppp

Cη̄(m,x′)

��

colim(C ◦DX)

∃!

��

C[∆n]

''NNNNNNNNNNN
// C[∆m]

wwppppppppppp

colim(C ◦DY )

Here the top triangle is a cocone for colim(C ◦DX), and the bottom triangle
is a cocone for colim(C ◦DX). By the universal property of colim(C ◦DX),
there exists a unique map as indicated, depending only on η̄.

This construction is easily seen to respect composition in η, and indenti-
ties. Finally we check that this is actually an extension of the C de�ned on
∆̂, i.e. that for ∆n ∈ ∆̂ we have C[∆n] = colim(C ◦D∆n). But this follows
from the fact that ∆n is terminal in D∆n .

As mentioned above there is an adjunction

Cat
N ++

sSet
τ

kk

and by uniqueness (up to natural isomorphism) of adjoints, and the re-
sult 1.2.5, the following bijection characterizes the nerve functor completely

HomsSet(∆n, N(C)) ' HomCat([n], C)



1.4 Straightening and unstraightening 14

Now, the functor C is de�ned as a colimit, so it commutes with colimits (in
the sence described above). By Freyd's adjoint functor theorem it then has
a right adjoint. This, together with the above characterization of the nerve,
motivates the next de�nition

De�nition 1.4.8 (Coherent nerve). Let S be a simplicial category. We

de�ne the coherent nerve of S to be the simplicial set N(S), such that

HomsSet(∆n, N(S)) ' HomsCat(C[∆n],S)

From this point we shall always mean coherent nerve whenever we say
nerve, or write N(−). Finally we will end this section with a short remark.

Remark 1.4.9 The category sSet can, in a natural way be thought of as
a simplicial category. Indeed the set of simplicial maps between to simpli-
cial sets HomsSet(S, T ), carries a simplical structure. This is just the usual
structure on Map(S, T ), where

Map(S, T )n = HomsSet(S ×∆n, T )

and the structure maps are induced by those on ∆·, thought of as a cosim-
plicial space.

Next step is to de�ne the two functors. We do not need the full machinery
developed in [Lur09] here, so we will simplify matters slightly. Notably we
will only deal with the case where φ is the identity (with the notation of
[Lur09], cf. the introduction of section 2.2.1 in this reference).

1.4.2 Straightening

Let S be a simplical set, and let X be an object in sSet/S. Denote by X.

the right cone X ?∆0, and let v denote the cone point in X.. Now consider
the simplicial category

MX = C[X.]
∐
C[X]

C[S]op

Note that we may as also obtain this by taking the similar pushout in sSet,
and then apply C to the pushout.

To the simplicial set X, we can assign a simplicial functor

StS(X) : C[S]op → sSet

which is de�ned on objects by StS(X)(s) = MapM(s, v). On a morphism f ∈
MapC[S]op(s, s′) it is the natural transformation StS(X)(f) : MapMX

(s, v)→
MapMX

(s′, v) given by pre-composing with f .
Of course we should check that this is functorial in X.
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Proposition 1.4.10. Let g : X → Y be a map of simplicial sets over S.
This induces a functor of simplicial categories Mg : MX → MY . Further,

for any s ∈ S we get a map of morphism spaces ms
g : MapMX

(s, vX) →
MapMY

(s, vY ).

Proof. Let g. : X. → Y . be the unique extension of g to the cones on X and
Y . Then we have a commutative diagram in simplicial sets as follows

Y

  A
AA

AA
AA

A

��

X

��

g
==zzzzzzzz

// S

Y .

X.

g.
==zzzzzzzz

(1.2)

which induce a morphism of the colimits. Then applying C yields the map
Mg : MX → MY . For s ∈ S we then have that Mg(s) = s since the
upper triangle of (1.2) commutes. AlsoMg(vX) = vY where vX , vY are the
respective cone points, since C[g.](vX) = vY . Thus Mg, being a functor
of simplicial categories, in particular gives a map of the morphisms spaces,
ms
g : MapMX

(s, vX)→ MapMY
(s, vY ) as we wanted.

By this, we may de�ne StS(g)s = ms
g, and conclude that StS : sSet/S →

sSetC[S]op
is a functor. This functor commutes with colimits, since bothM−

and Map(−, v) does so, and therefor it has an adjoint.

1.4.3 Unstraightening

De�ne UnS : sSetC[S]op → sSet/S, to be the right adjoint of StS . We may
think of unstraightening as something related to the Grothendieck construc-
tion, but this is not very precise.

Recall the classic Grothendieck construction for a functor from an or-
dinary category into the category of small categories, F : D → Cat. This
construction is again a category which we denote by D

∫
F , and which is

given as follows. The objects of D
∫
F are pairs (d, x) with d ∈ D and

x ∈ F (d). The morphisms are given by

MorD
∫
F ((d, x), (d′, x′))

= {(α, β) | α ∈ MorD(d, d′), β ∈ MorF (d′)(F (α)(x), x′)}

and given

(α, β) ∈ MorD
∫
F ((k, x), (k′, x′)) and

(α′, β′) ∈ MorD
∫
F ((k′, x′), (k′′, x′′))
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we de�ne composition in D
∫
F by

(α′, β′) ◦ (α, β) = (α′ ◦ α, β′ ◦ F (α′)(β))

Also recall that the Grothendieck construction is functorial in F , and that
there is a forgetful functor D

∫
F → D. This should been seen as an ana-

logue to the unstraightening giving us a simplcial set over another, and we
may think of unstraightening as a appropriately weakened version of the
Grothendieck construction.

1.4.4 Straightening over a point

Let us try to understand the simplest case of these two functors. Let S = ∗
be a single point, and consider sSet/∗ which is just sSet since ∗ is terminal
in sSet. Then the explicit formula for straightening over S applied to this
single object of C[S] reads

StS(X)(∗) = MorC[X.]
∐

C[X] C[S](∗, v)

The functor StS(X) : C[S]→ sSet may then be identi�ed with this simplicial
set, since there is only the identity morphism. We now claim that this
simplicial set is the same as the geometric realization of X with respect to
the cosimplicial object Q• of sSet, which we de�ne as follows

Qn = MorC[(∆n).]
∐

C[∆n] C[∗](∗, v)

Taking the geometric realization with respect to Q• (formally a coend con-
struction), can be written

|X|Q• =
∐
n≥0

Xn ×Qn
/
∼

where we identify in the usual way.
Evidently, the two constructions are the same in the case of X being a

simplex. Since they preserve colimits, they are equal for all simplicial sets.
The functor | − |Q• is thus naturally seen as being from sSet to itself, and
preserving colimits has an adjoint. This adjoint of is then a special case of
unstraightening, and will be denoted by SingQ• . This functor is given by the
formula

SingQ•(X)n = HomsSet(Qn, X)

but we shall not elaborate on this, since we will only have to use its properties
as an adjoint.

We now have most of our notation in place for chapter 2, and by that we
�nish this chapter.



17

An application in topology

In this chapter we shall have to apply a few results that we do not have
room to develop in this project. We will motivate these with reference to
the results from the previous chapter, and they can all be found in the later
parts of our main reference [Lur09], where they are developed as a natural
extension of what we have done in chapter 1.

2.1 A Quillen equivalence

We record the results we need here.

Theorem 2.1.1. Given a simplicial set Y ,

StY : sSet/Y � sSetC[Y ]op
: UnY

is a Quillen equivalence, where sSet/Y is given the contravariant model struc-

ture, and sSetC[Y ]op
is given the projective model structure.

Both model structures are described in [Lur09], and the theorem follows
directly from [Lur09] proposition 2.2.1.2. We note that the �brant objects in
these structures are respectively right �brations, and functors taking values
in Kan copmlexes (�brant objects of the codomain). More generally the pro-
jective model structure is de�ned by letting weak equivalences and �brations
be given pointwise.

We note that | − |Q• , SingQ• also is a Quillen equivalence.

Proposition 2.1.2. Consider a Quillen equivalence F : C � D : G. Then

the following holds

a) Let α : C '−→ C ′ be a weak equivalence in C, with C co�brant. Then

F (α) : F (C) '−→ F (C ′) is a weak equivalence, and F (C) is co�brant.

b) Let β : D '−→ D′ be a weak equivalence in D with D′ �brant. Then

G(β) : G(D) '−→ G(D′) is a weak equivalence, and G(D′) is �brant.
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2.2 Straightening evaluated on an object

In this section, we will establish

Proposition 2.2.1. Let f : X → S be a right �bration and s ∈ S a vertex.

There is a weak equivalence |Xs|Q•
'−→ StS(f)(s)

Proof. Choose a �brant replacement for StS(f) to get a weak equivalence

StS(f) '−→ StS(f), where StS(f) denotes the �brant object. Then the adjoint
map which factors trough the unit for the adjunction is a weak equivalence

f

unit %%JJJJJJJJJJJ
' // UnS(StS(f))

UnS ◦ StS(f)

66mmmmmmmmmmmm

Also by 2.1.2 b) the right map in the diagram is a weak equivalence to
a �brant object, and by assumption f is a right �bration. Thus [Lur09]
proposition 2.2.3.13 tells us that we get a weak equivalence of �bres

Xs
' //

&&NNNNNNNNNNNN (UnS(StS(f)))|s

(UnS ◦ StS(f))|s

55kkkkkkkkkkkkkk

factoring as the diagram suggests. [Lur09] remark 2.2.2.11 gives an isomor-
phism UnS(f)|s ' SingQ•f(s), so we get the following diagram

|Xs|Q• //

'
''

|SingQ•StS(f)(s)|Q•

��

// |SingQ•StS(f)(s)|Q•

'
��

StS(f)(s) '
// StS(f)(s)

The vertical maps are given by the counit for the SingQ• , | − |Q• adjunction,
and the bottom map is the �brant replacement we began with taken point-
wise. The composite map in the top is still a weak equivalence by 2.1.2 a),
the right map is a weak eequivalence since StS(f)(s) is �brant, and the
bottom map is by de�nition a weak equivalence. Thus by the 2 out of 3
property for weak equivalences, �rst the composite over the left counit map
from |Xs|Q• to StS(f)(s) is a weak equivalence, and hence the left diagonal
map is too.

Now let X,Y be a Kan complexes such that X0 = Y0 = ∗, and consider
the evaluation map ev : Map(X,Y )→ Y . We saw in 1.3.5 that ev is a �brant

object of sSet/Y , and by 2.2.1 there is a weak equivalence |Map∗(X,Y )|Q•
'−→

StY (ev)(∗). By [Lur09] proposition 2.2.2.7 there is also a weak equivalence

|Map∗(X,Y )|Q•
'−→ Map∗(X,Y ), and we have then established
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Proposition 2.2.2. There is a zig-zag of weak equivalences such that

Map∗(X,Y ) ' StY (ev)(∗)

2.3 Unstraightening as colimit

Since straightening and unstraightening is a Quillen equivalence, we know
that f ' UnS(StS(f)) for a right �bration f : X → S. In the previous
section we succesfully identi�ed StY (f). The objective of this section is
then to recognize UnY (F ) as something we know, for a �brant functor
F : C[Y ]op → sSet of simplicial categories. In the model structure we work
with, F being �brant simply means that it takes values in Kan complexes.

Unwinding the de�nitions, one interpretation is given in [Lur09] propo-
sition 3.3.4.6. We will not show it here, but the proposition states that we
may identify the unstraightening functor with taking the colimit for quasi-
categories constructed in chapter 1. Further this colimit may be identi�ed
with the ordinary homotopy colimit. We wont show this either, but we can
motivate it as follows.

Thomasson's theorem relates hocolim to the ordinary Grothendieck con-
struction

Theorem 2.3.1 (Thomasson's theorem). Let K be a small category, F : K →
Cat a functor, and consider the composition

K F // Cat
N // sSet

where N denotes the regular nerve. Now there exists a natural weak equiva-

lence

hocolimKNF
∼−→ N

(
K
∫
F

)
The previous discussion about unstraightening suggest that the right

hand side of this weak equivalence is close to the unstraightening functor.
To further justify thinking of unstraightening as a homotopy colimit, we

work through an example suggesting that homotopy colimit and our quasi-
colimit are the same.

Example 2.3.2 Consider a simplicial group G and the simplicial set NG,
the coherent nerve of G. We will begin to show that NG is the colimit
of the simplicial map p : NG → Kan, given by mapping everything to the
trivial Kan complex, which is a point. Here 'Kan' is to be understood as the
coherent nerve applied to the simplicial category of Kan copmlexes as sitting
inside the simplicial category sSet.

Note that classically BG is the homotopy colimit of the trivial functor
G→ Top mapping everything to a point.
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We should check that NG is a strongly initial object of Kanp/. Following
1.3.2 we check that for every n ≥ 0, there is a lift in the following diagram,
when the 0'th vertex of is mapped to NG.

∂∆n+1 //
� _

��

Kanp/

∆n+1

::

By de�nition this is equivalent to a lift in

NG ? ∂∆n+1 //
� _

��

Kan

NG ?∆n+1

88

with the same condition on the 0'th vertex of ∂∆n. We analyse the case
n = 0.

In the top left of the diagram we have two distinct right cones on NG,
with the �rst having the cone point mapping to NG, and the second having
the cone point mapping to some element K in Kan.

To get the lift we will �rst establish that the data of the map on the
second cone, is that of a map NG → K. An (non-degenerate) (n + 1)-
simplex in NG?∆0, is of the form (gn, v0), where v0 is the vertex of ∆0, and
gn is an n-simplex of NG, and is thus determined by gn. The map gives an
n-simplex τn ∈ Map(∗,K)n, for every such gn, but this is exactly the data
of an n-simplex in K. Thus we have produced a 1-simplex δ1 in Kan, with
boundary NG and K, which is the same as a 0-simplex in MapKan(NG,K)
the space of morphisms from NG to K in the simplicial category Kan. Note
that this is true also for K = NG, where the we just get gn back.

For a k-simplex gk ∈ NGk we should now produce a (k + 2)-simplex
σk+2 of Kan, which agrees with τk, gk and δ1 on the boundary. Now such
a σk+2 corresponds to an element of HomsCat(C[∆k+2],Kan) where we have
speci�ed how to map objects, and certain morphisms.

By construction of δ1, we get a degenerate (k + 1)-simplex in the space
MapKan(∗,K), from the arrow τk to the composite gk followed by δ1, since
(with slight abuse of notation) δ1(gk) = τk. By inspection, this is a (k + 2)-
simplex in Kan satisfying our boundary conditions.

This is seen to be a lift one simplex at a time in the diagram as we
wanted. The cases for n > 0 becomes very cumbersome to check, so we will
leave it at the case n = 0 for now.

It can be made more precise that these two colimit notions are in fact
the same, but we shall not do that here.
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2.4 Action of monoid on ��bre�

In this �nal section we shall summarize what we have done in this chapter,
and state this as a theorem. From this we see a connection to an analo-
gous theorem, for which a classical proof is supplied in the appendix for
comparison.

Let X,Y be as in the previous section. The space MapC[Y ]op(∗, ∗) is
a monoid, with composition given by composition of morphisms, and the
identity morphism id∗, as the unit element.

This monoid acts on MapMMap(X,Y )
(∗, v), in the following way

MapC[Y ]op(∗, ∗)×MapMMap(X,Y )
(∗, v)

� _

��
MapMMap(X,Y )

(∗, ∗)×MapMMap(X,Y )
(∗, v)

◦
��

MapMMap(X,Y )
(∗, v)

First include, and then use the composition available in the simplicial cate-
goryMMap(X,Y ).

Applying the unstraightening functor corresponds to taking the homo-
topy colimit of the functor giving this action, and since we started out with
a �brant object, we get back an object in sSet/Y , weakly equivalent to ev.
This may be stated as

Theorem 2.4.1. Let X,Y be pointed Kan complexes with X0 = Y0 = ∗, and
consider the �bration

ev : Map(X,Y )→ Y

given by the evaluation map. There is a weak equivalence

Map(X,Y ) ' MapMMap(X,Y )
(∗, v)

//
MapC[Y ]op(∗, ∗)

We may think of this monoid as a weak version of ΩY , or maybe the
Moore loops ΩmY . This is the space of based maps from compact intervals
of the non-negative real line of the form [0, a], to Y , with the condition that
f(0) = f(a) for any f ∈ ΩmY . This is also a monoid, by concatenation
of paths and the constant path 0 7→ ∗ as the unit element. The advantage
over the regular loop space is that with the Moore loops, we do not have to
reparametrize in order to get a monoid.

Consider the set of 0-simplicies for this monoid MapC[Y ]op(∗, ∗)0. This
can be described as sequences of composable arrows in Y , i.e. the set of
non-degenerate maps

∆1 ×∆0 ∆1 ×∆0 · · · ×∆0 ∆1 → Y
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together with the degeneracy on a single 1-simplex into Y . This is itself a
monoid in the obvious way, and we see that there is an inclusion of the 0-
simplicies of the ordinary loopspace (ΩY )0 = {∆1 → Y } ⊂ MapC[Y ]op(∗, ∗)0.
The higher simplicies for both monoids are in some sense determined by
the 0-simplicies. In ΩY we declare 0-simplicies to be equal if they bound
a 1-simplex, where as in MapC[Y ]op(∗, ∗) the 1-simplicies can be thought
of as homotopies between the bounding 0-simplicies. 2-simplicies are then
homotopies between the bounding homotopies, and so on. Thus compared to
the ordinary model for loop spaces we weaken the condition that simplicies
bounding a higher simplex are equal, to that they agree up to homotopies
which are determined up to homotopies, and so on.

Further we recall that MapMMap(X,Y )
(∗, v) ' Map∗(X,Y ), justifying the

title of the section, even though the action does not necessarily transport.
Then with this in mind, the special case where X = S1 and Y = BG,
theorem 2.4.1 looks a lot like the following

Theorem 2.4.2. Let G be a simplicial group which is a Kan complex. There

is a weak equivalence

Map(S1, BG) ' Map∗(S
1, BG)

//
ΩBG

We refer to the appendix for a proof of this theorem.

2.5 Final remark

There is a good chance of generalizing this much further, since investegating
the evaluation map is just a worked example of the theory in [Lur09]. Any
other right �bration might work just as well, and actually we don't even
need right �brations, but may look at the more general class of (co)cartesian
�brations. This will also get us from Kan complexes to quasi-categories in
general. However, this is how far we got.
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Appendix

A.1 A classical proof

Theorem A.1.1. Let G be a simplicial group which is Kan. Then there is

a weak homotopy equivalence

Gad
//
G ' LBG

between the homotopy orbit space of G acting on itself by conjugation, and

the free loop space on the classifying space of G.

Before we prove this we shall make some observations, and state a few
lemmas. Throughout this appendix, G is a group as above.

We begin by noting that Gad
//
G = EG×GG with the diagonal action on

the right of both factors, and the adjoint action on the G-factor. Further we
have that LBG = Map(S1, BG), which has trivial G-action, and we denote
by p : EG→ BG the canonical �bration.

Lemma A.1.2. The map EG ×G G → BG induced by projecting o� G, is
a �bration with �bre G.

The proof is omitted, but we refer to [May75] theorem 8.2, from which
it can be shown that the map is actually a �bre bundle.

Lemma A.1.3. Let p : E → B a be �bration, with E contractible and �bre

F . Then there exist a weak homotopy equivalence ΩB '−→ F .

Proof. By the Puppe sequence for �brations we get

∗ ' ΩE // ΩB // F // E ' ∗

Thus ΩB → F is a weak homotopy equivalence by the long exact sequence
for �brations.

Note that in particular we get a weak equivalence G ' ΩBG.

Proof of theorem A.1.1. First choose the standard model forBG, the realiza-
tion of the simplicial set with a single 0-simplex, and G worth of 1-simplicies.
Choose the corresponding model for EG.
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Let δe : I → EG denote the path from e ∈ EG to the basepoint of
EG, which is the realization of the corresponding 1-simplex. Further let
g ∈ G, and let γg ∈ ΩBG be the image of g under the weak equivalence from
lemma A.1.3.

De�ne a map q : EG × G → LBG by letting q(e, g) = p(δe) � γg � p(δe),
where � denotes concatenation of paths, and the bar denotes inverse path.
This is seen to be a well-de�ned loop in BG. We note that this is invariant
for the G-action since for any h ∈ G

q(h.e, h.g) = p(δeh) � γhgh−1 � p(δeh)

= p(hδe � δh) � γh � γg � γh � p(hδe � δh)

= p(δe) � γg � p(δe)
= q(e, g)

Where we use that δeh = hδe � δh, and that p(δh) = γh. Hence we get a
map q̄ : EG ×G G → LBG. Now we claim that this is a weak homotopy
equivalence.

Consider the diagram

G

��

' // ΩBG

��
EG×G G

q̄ //

��

LBG

ev1

��
BG BG

The bottom square obviously commutes, and the top square commutes since
the loop given by q̄ is constructed using exactly the top map. By lemma A.1.2
the left column is a �bration sequence, and the right column is clearly also a
�bration sequence. Lemma A.1.3 gives the topmost weak equivalence, and by
the �ve lemma we conclude that also q̄ is a weak homotopy equivalence.
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