
De p a r tm e n t o f M a t h em a t i c a l S c i e n c e s
U N I V E R S I T Y O F C O P E N H A G E N

12/10-2010

The Dold-Kan Correspondence and
Derived Functors of Non-additive
Functors
James Gabe

Large Candidate Project in Mathematics

Advisor: Alexander Berglund



Abstract

In classical homological algebra one defines the derived functor of an additive
covariant functor F : ModΛ → ModΛ′ . Our goal is to generalize this
such that F need not be additive. In order to do this we introduce the
ordinal number category ∆, the category of simplicial objects sC induced
by the category C , and we define the functors N : sModΛ → ChΛ

+ and
Γ : ChΛ

+ → sModΛ which form an equivalence of categories called the Dold-
Kan correspondence. We will use these functors to give a new definition of
the derived functor of F which does not require F to be additive, and which
coincides with the classical definition if F is additive. In the end we give
some examples in which we apply the left derived functor of a non-additive
functor.

Resumé

I klassisk homologisk algebra definerer man den differentierede funktor af en
additiv kovariant funktor F : ModΛ →ModΛ′ . Vores m̊al er at generalisere
dette, s̊aledes at F ikke behøver at være additiv. For at gøre dette introdu-
cerer vi ordinaltal-kategorien ∆, kategorien af simplicielle objekter sC indu-
ceret af en kategori C , og vi definerer funktorerne N : sModΛ → ChΛ

+

og Γ : ChΛ
+ → sModΛ, hvilke udgør en ækvivalens af kategorier kaldet

Dold-Kan korrespondancen. Vi vil benytte disse funktorer til at give en
ny definition af den differentierede funktor af F , som ikke kræver, at F er
additiv, og som stemmer overens med den klassiske definition, hvis F er
additiv. Til sidst giver vi nogle eksempler, hvor vi anvender den venstre
differentierede funktor af en ikke-additiv funktor.
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1 Introduction and Homological Algebra

1.1 Introduction

This project is inspired by the article [2], written by Albrecht Dold and
Dieter Puppe in 1958. In the article they define a projective simplicial
resolution of a Λ-module (Λ being a ring) and use the functor N : sModΛ →
ChΛ

+, which we define in Section 2.3, to define derived functors of non-
additive functors. We will go about this in a different way. We define the
functor Γ : ChΛ

+ → sModΛ which together with N forms an equivalence
of categories, the so called Dold-Kan correspondence (see Section 2.3), and
which preserve homotopy (see Section 3.1). By using the fact that homotopy
in sModΛ does not depend on additivity, when applying a non-additive
functor to a simplicial Λ-module, we still preserve homotopy. These facts
combined allow us to define the derived functor of a non-additive functor.

The first main result of this project is Theorem 2.3.4, the Dold-Kan
correspondence. In [4] they give a sketch of the proof and in [8] they call it
an easy consequence. Section 2 is dedicated to defining this theorem, and
giving a detailed proof.

The other main result of this project is Theorem 3.2.4 which shows that
Definition 3.2.3 is a generalization of the classical derived functors studied
in classical homological algebra. Section 3 is dedicated to showing that the
Dold-Kan correspondence preserves homotopy, and applying this in order to
give a generalized definition of derived functors. In the end we will give some
examples of how to use the left derived functor of a non-additive functor.

1.2 Chain Complexes and Classical Derived Functors

Classical homological algebra deals with chain complexes of modules and
derived functors of additive functors. We start out by recalling the relevant
definitions and important theorems which can be found in [6]. In the follow-
ing Λ will denote a unital ring (with non-zero unit), and we will be working
over (left or right) Λ-modules.

Definition 1.2.1. A graded Λ-module C• a collection (Cn)n∈Z of Λ-modules.
A map f of degree d between two graded modules C• and D•, written f :
C• → D•, is a collection of homomorphisms (fn)n∈Z such that fn : Cn →
Dn+d. If f has degree d we write |f | = d.

A chain complex C• is a graded Λ-module together with a map ∂ : C• →
C• of degree −1 called the differential, such that ∂n+1∂n = 0. We call
f : C• → D• a morphism if |f | = 0 and f commutes with differentials, i.e.
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if fn∂n+1 = ∂nfn. Note that here ∂n+1 is a differential in C• and ∂n is a
differential in D•.

The category ChΛ is the category in which chain complexes of Λ-modules
are the objects and the morphisms are morphisms between chain complexes.
Furthermore if C• is a chain complex where Cn = 0 for n < 0, we call C• a
non-negative chain complex. We let ChΛ

+ denote the subcategory of ChΛ in
which the objects are non-negative chain complexes of Λ-modules.

With these basic definitions in mind we can define what homology is.
From now on C• and D• are chain complexes unless other is notet.

Definition 1.2.2. The n’th homology module of C• is the module Hn(C•) =
ker ∂n/Im∂n+1 and H(C•) is the graded Λ-module (Hn(C•))n∈Z. If f : C• →
D• is a morphism of chain complexes let H(f) = (Hn(f))n∈Z : H(C•) →
H(D•) be the induced map between graded Λ-modules of degree 0. This
makes H(−) into a functor. Moreover f is called a quasi-isomorphism,
written f : A•

∼→ B•, if Hn(f) : Hn(A•) → Hn(B•) is an isomorphism for
every n.

Definition 1.2.3. Let f, g : C• → D• be morphisms. We say that f and g
are homotopic, written f ' g, if there exists a map Σ : C• → D• of degree
+1 such that

fn − gn = ∂n+1Σn + Σn−1∂n.

Moreover we call Σ a homotopy from f to g and write Σ : f ' g.
Two chain complexes C•, D• are said to be homotopy equivalent if there

exist morphisms f : C• → D•, g : D• → C• such that gf ' idC• and fg '
idD• . Moreover the morphism f (and g) is called a homotopy equivalence.

It is now time to recall some important theorems from homological al-
gebra. These all play an important part in defining derived functors.

Theorem 1.2.4. Let f, g : C• → D• be morphisms. If f ' g then H(f) =
H(g) : H(C•)→ H(D•).

Corollary 1.2.5. If C• and D• are homotopy equivalent and f : C• → D•
is a homotopy equivalence, then f is a quasi-isomorphism.

Theorem 1.2.6. The homotopy relation ”'” is an equivalence relation in
ChΛ.

Before stating the next theorem recall that if F : ModΛ → ModΛ′ is
a (covariant) functor of modules and C• is a chain complex, then there is
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an induced chain complex FC• given by the collection of modules (FCn)
and the differentials F∂n : FCn → FCn−1. Moreover if f : C• → D• is
a morphism then F (f) is the induced morphism where F (f)n = F (fn) :
FCn → FDn.

Theorem 1.2.7. If f ' g : C• → D• and if F : ModΛ → ModΛ′ is an
additive functor, then H(Ff) = H(Fg) : H(FC•)→ H(FD•)

Definition 1.2.8. Let C• be a non-negative chain complex. Then C• is
called projective if Cn is projective for all n ≥ 0, and C• is called acyclic if
Hn(C•) = 0 for n ≥ 1. A projective and acyclic complex P• is called a projec-
tive resolution of a Λ-module A if there exists an isomorphism H0(P•) ∼= A.
Similarly we define a free resolution.

Theorem 1.2.9. Let A be a Λ-module. Then A has a projective resolution.
Moreover two rojective resolutions of A are homotopy equivalent.

The next theorem is a generalization of [6] Theorem IV.4.1. A proof of
this can be found in [7] Lemma 2.3.6.

Theorem 1.2.10. Let P• be a non-negative projective chain complex. Then
every diagram

C•

∼ π
����

P•

f
>>|

|
|

| g // D•

where C• and D• are chain complexes, π is a surjective quasi-isomorphism
and g is a morphism, there exists a morphism f : P• → C• such that πf = g.
Furthermore f is unique up to homotopy.

Definition 1.2.11. Let F : ModΛ → ModΛ′ be a functor. Then F is
said to be additive if for any Λ-modules A and B and any homomorphisms
ϕ,ψ : A→ B then F (ϕ+ ψ) = Fϕ+ Fψ.

Theorem 1.2.12. Let F : ModΛ →ModΛ′ be a covariant functor. Then F
is additive if and only if for any Λ-modules A1, . . . , An the homomorphism
〈FιAi〉ni=1 :

⊕n
i=1 FAi → F (

⊕n
i=1Ai) is an isomorphism, where ιAj is the

inclusion map Aj →
⊕n

i=1Ai.

Definition 1.2.13 (Classical Left Derived Functors). Let F : ModΛ →
ModΛ′ be an additive (covariant) functor and define the n’th left derived
functor of F , denoted LnF , in the following way: let A be a Λ-module
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and P• a projective resolution of A. Then let LnF (A) = HnF (P•). Let
ϕ ∈ HomΛ(A,B) and P• and Q• be projective resolutions of A and B
respectively. By considering A and B as chain complexes A• and B• where
A0 = A and An = 0 for n 6= 0 and correspondingly for B•, Theorem 1.2.10
implies the existence of a morphism fϕ : P• → Q• which is unique up to
homotopy. Then let LnF (ϕ) = HnF (fϕ). This makes LnF : ModΛ →
ModΛ′ into a (covariant) functor.

Note that due to the above theorems LnF (A) does not depend (up to
isomorphism) on the choice of projective resolution P•, and LnF (ϕ) does
not depend (up to isomorphism) on the choice of projective resolutions P•
and Q• or of the choice of fϕ : P• → Q•.

Every definition and theorem above can be dualized. This gives rise to
the n’th right derived functor RnF : ModΛ →ModΛ′ of an additive functor
F : ModΛ →ModΛ′ which is the dual definition of the left derived functor.

One of our goals in this project is to generalize the definition of left
(and right) derived functors such that it is not necessary to assume that
F is additive. But in order to do this we must introduce the Dold-Kan
correspondence and find some nice properties of this correspondence.

2 The Dold-Kan Correspondence

2.1 The Ordinal Number Category

The Dold-Kan correspondence is an equivalence of categories between non-
negative chain complexes and simplicial objects. In order to understand
the Dold-Kan correspondence one must understand simplicial objects, and
in order to understand simplicial objects one must understand the ordinal
number category. In this section we define the ordinal number category and
define the morphisms cofaces and codegeneracies. We formulate the cosim-
plicial identities and prove that every morphism has a unique factorization
of an injective and a surjective morphism, called the epi-monic factorization.

Definition 2.1.1. The ordinal number category ∆ is the category in which
the objects are the totally ordered sets [n] = ({0, 1, . . . , n},≤) for any non-
negative integer n, and the morphisms are the weakly order-preserving maps
ϕ : [n] → [m]. Moreover the cofaces are the morphisms di : [n − 1] → [n],
0 ≤ i ≤ n given by

di(k) =

{
k for k < i
k + 1 for k ≥ i
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and the codegeneracies are the morphisms si : [n+ 1]→ [n], 0 ≤ i ≤ n given
by

si(k) =

{
k for k ≤ i
k − 1 for k > i

Remark 2.1.2. Note that the coface di : [n − 1] → [n] is the injective mor-
phism which ”skips” i in [n], and the codegeneracy si : [n + 1] → [n] is
the surjective morphism where si(i) = si(i + 1) = i. Furthermore for any
injective morphism ϕ : [n] � [m] where ϕ(k) = ik it can easily be verified
that ϕ = dmdm−1 · · · din+1din−1 · · · di0+1di0−1 · · · d1d0 if n < m and ϕ = id if
n = m. Thus any injective morphism which is not the identity is a composite
of cofaces.

Theorem 2.1.3. Any morphism ϕ : [n]→ [m] can be written as a composite
of cofaces and codegeneracies.

Proof. We prove this by induction on n. Any morphism ϕ : [0] → [m] is
injective for any m and thus a composite of cofaces or the identity by Remark
2.1.2. Assume that the assertion is true for n and let ϕ : [n + 1] → [m].
If ϕ is injective the result follows from Remark 2.1.2. If ϕ is not injective
there exists a k ∈ [n + 1] such that ϕ(k) = ϕ(k + 1). Define the morphism
ϕ′ : [n] → [m] by ϕ′(i) = ϕ(i) for i ≤ k and ϕ′(i) = ϕ(i + 1) for i > k.
Then ϕ = ϕ′sk and since ϕ′ can be written as a composite of cofaces and
codegeneracies, so can ϕ.

Due to this theorem whenever we look at something related to the mor-
phisms of ∆ it suffices to look at the cofaces and codegeneracies. This will
be very useful later on. The following lemma, the cosimplicial identities,
will be used often.

Lemma 2.1.4 (The Cosimplicial Identities). In the ordinal number category
∆ the following identities called the cosimplicial identities hold:

djdi = didj−1 if i < j
sjdi = disj−1 if i < j
sjdj = id = sjdj+1

sjdi = di−1sj if i > j + 1
sjsi = sisj+1 if i ≤ j

Proof. We only prove the first identity. The rest are proved in a similar
facion.
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Let i < j and k ∈ [n]. Then

djdi(k) = dj
({

k if k < i
k + 1 if k ≥ i

})
=


k if k < i
k + 1 if i ≤ k, k + 1 < j
k + 2 if j ≤ k + 1

and

didj−1(k) = di
({

k if k < j − 1
k + 1 if k ≥ j − 1

})
=


k if k < i
k + 1 if i ≤ k, k + 1 < j
k + 2 if j ≤ k + 1

Hence djdi = didj−1 if i < j.

The following theorem gives a unique way of writing a surjective mor-
phism as a composite of codegeneracies. This will be used frequently later
on.

Theorem 2.1.5. Any surjective morphism σ : [n] � [m] where σ 6= id
can be written as a composite of codegeneracies σ = sj1sj2 · · · sjn−m with
m ≥ j1 ≥ · · · ≥ jn−m ≥ 0. Furthermore this form is unique for every
surjective morphism.

Proof. We prove this by induction on n. For n = 1 the only surjective
morphism (which is not id) is s0. Assume that the assertion is true for some
n and let m < n + 1 and a surjective map σ : [n + 1] � [m] be given. Let
j ∈ [n + 1] be the least element where σ(j) = σ(j + 1). Then there exists
a surjective morphism σ′ : [n] � [m] such that σ = σ′sj . If σ′ = id we are
done. Hence we can assume that m < n. Then by assumption there exist
(unique) m ≥ j1 ≥ · · · ≥ jn−m ≥ 0 such that σ′ = sj1 · · · sjn−m . Assume
that j > jn−m. Then

sjn−msj(jn−m + 1) = sjn−m(jn−m + 1) = sjn−m(jn−m) = sjn−msj(jn−m)

and thus σ(jn−m) = σ(jn−m + 1), which contadicts the minimality of j.
Hence j ≤ jn−m.

Next assume that m ≥ j1 ≥ · · · ≥ jn−m ≥ 0, m ≥ i1 ≥ · · · ≥
in−m ≥ 0 such that σ = sj1 · · · sjn−m = si1 · · · sin−m . Assume that jn−m =
in−m, . . . jk+1 = ik+1, jk < ik for some k. Then sjk · · · sjn−m(jk+n−m−k) =
jk and sik · · · sin−m (jk+n−m−k) = sik(jk+1) = jk+1. Since sj fixes jk for
j ≥ jk and fixes jk+1 for j ≥ ik we get that sj1 · · · sjn−m(jk+n−m−k) = jk
and si1 · · · sin−m(jk + n −m − k) = jk + 1 which is a contradiction. Hence
the composite of codegeneracies is unique.
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Another important fact in the ordinal number category is that every mor-
phism has a unique factorization of an injective and a surjective morphism.
This is the epi-monic factorization.

Theorem 2.1.6 (The Epi-monic Factorization). Every morphism ϕ : [n]→
[m] has a unique factorization ϕ = µσ where µ is injective and σ is surjec-
tive. This factorization is called the epi-monic factorization of ϕ.

Proof. Theorem 2.1.3 and the cosimplicial identities imply the existence of
such a factorization. Let µi : [ki] → [m] be injective and σi : [n] → [ki]
be surjective for i = 1, 2, such that ϕ = µ1σ1 = µ2σ2. Since σi maps
onto [ki] and µi maps to ki + 1 distinct elements in [m], ϕ must map to
k1 + 1 = k2 + 1 distinct elements, and since µ1, µ2 are injective with equal
image µ1 = µ2 := µ. For j ∈ [n] we get µσ1(j) = µσ2(j) which implies that
σ1(j) = σ2(j) since µ is injective. Hence σ1 = σ2.

Remark 2.1.7. We can use the first cosimplicial identity to reorder any com-
position of cofaces to be of the form in Remark 2.1.2 and the last cosimplicial
identity to reorder any composition of codegeneracies to be of the form in
Theorem 2.1.5. The proof of this is easily verified and is therefor omitted.
This will be useful in the next section when showing that something is in
fact a simplicial object.

2.2 Simplicial Objects

In this section we want to apply our knowledge of the ordinal number cate-
gory to define simplicial objects in a category C , which are a generalization
of non-negative chain complexes, and define the category sC of simplicial
objects in C . Then we will introduce the simplicial identities and define
what homotopy is on a simplicial category.

Definition 2.2.1. A simplicial object in a category C is a contravariant
functor A from ∆ to C . The category sC is the category of simplicial
objects in C with morphisms being the natural transformations between the
simplicial objects. Moreover we call An := A([n]) the n-simplex, dj := A(dj)
the faces and sj := A(sj) the degeneracies of A. In general if ϕ is a morphism
in ∆ we denote A(ϕ) by ϕ∗.

Lemma 2.2.2 (The Simplicial Identities). For any simplicial object A the
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following identities called the simplicial identities hold:

didj = dj−1di if i < j
disj = sj−1di if i < j
djsj = id = dj+1sj
disj = sjdi−1 if i > j + 1
sisj = sj+1si if i ≤ j

Proof. Follows from Lemma 2.1.4.

Remark 2.2.3. Note that the simplicial identities together with Theorem
2.1.6 and Remark 2.1.7 imply that in order to check that a collection of
n-simplices with faces and degeneracies is in fact a simplicial object, it is
enough to check that the faces and degeneracies respect the simplicial identi-
ties. Furthermore when checking that a map f : A→ B is in fact a morphism
of simplicial objects, one should check that f = (fn : An → Bn)n≥0 com-
mutes with faces and degeneracies, i.e. that fndi = difn+1 and fn+1si = sifn
for every n.

Just as in the category of chain complexes we can define homotopy in
a simplicial category. But the definition of homotopy in the category of
chain complexes uses the additivity of the category which we do not have.
Therefor we must go about this in a different way.

Definition 2.2.4. Let C be some category and let f, g : A → B be mor-
phisms in sC . We say that f is homotopic to g, written f ' g, if there exist
morphisms hni : An → Bn+1, 0 ≤ i ≤ n in C such that

d0h0 = fn
dn+1hn = gn

dihj = hj−1di if i < j
dj+1hj+1 = dj+1hj

dihj = hjdi−1 if i > j + 1
sihj = hj+1si if i ≤ j
sihj = hjsi−1 if i > j.

Furthermore we call h a homotopy from f to g and write h : f ' g.

That this definition of homotopy and the definition of homotopy on chain
complexes are the same, will be proven in Section 3.1.

Remark 2.2.5. Let Set denote the category of sets and ∆[n] denote the n’th
standard simplex, i.e. the functor Hom∆(−, [n]) : ∆ → Set. Homotopy in
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sSet is defined such that f, g : X → Y are homotopic, f ' g, if the diagram

X ×∆[0] ∼= X
f

((RRRRRRRRRRRRRRRR

id×d1

��
X ×∆[1]

h // Y

X ×∆[0] ∼= X

g

66llllllllllllllll
id×d0

OO

commutes for some morphism h (see [4] Section I.6). It turns out that this
definition is equivalent to Definition 2.2.4. The advantage of our definition
is that it works on any category sC .

Note that in contrary to homotopy on chain complexes, the homotopy
relation ”'” on an arbitrary category sC need not be an equivalence rela-
tion. But it can be shown that ”'” is an equivalence relation if the target
of the morphisms are Kan Complexes (see [8], §6). Since simplicial modules
are Kan Complexes this implies that ”'” is an equivalence relation on the
category of simplicial modules. In Theorem 3.1.4 we go about this in an-
other way, and show that ”'” is an equivalence relation on the category of
simplicial modules using the Dold-Kan correspondence.

Definition 2.2.6. Let C be some category and let A,B be objects in sC .
We say that A and B are homotopic equivalent if there exist morphisms
f : A→ B and g : B → A such that fg ' idA and gf ' idB.

2.3 The Dold-Kan Correspondence

As mentioned in the beginning of section 2.2, simplicial objects are a gen-
eralization of non-negative chain complex. This is because of the Dold-Kan
correspondence which gives an equivalence between the category of non-
negative chain complexes and the category of simplicial modules. In this
section we define the functors N : sModΛ → ChΛ

+ and Γ : ChΛ
+ → sModΛ

and show that these induce an equivalence of categories, the Dold-Kan cor-
respondence.

In the following Λ will denote a unital ring (with non-zero unit), ModΛ

will denote the category of (left or right) Λ-modules and ChΛ
+ will denote

the category of non-negative chain complexes of Λ-modules. Furthermore
we call the objects in sModΛ for simplicial Λ-modules.
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Definition 2.3.1. Let the functor N : sModΛ → ChΛ
+ be defined in the

following way: for a simplicial Λ-module A let

N(A)n =

n−1⋂
i=0

ker di ⊆ An.

with differentials ∂n = (−1)ndn : N(A)n → N(A)n−1. For a morphism
f : A → B we let N(f)n = fn : N(A)n → N(B)n, i.e. fn restricted
to N(A)n. The non-negative chain complex N(A) is called the normalized
complex and is denoted NA.

It might not be clear that N is a functor but this is easily shown. By
the simplicial identities didn = dn−1di and thus ∂n : NAn → NAn−1 is a
well-defined and ∂∂ = 0. Hence NA is a non-negative chain complex of Λ-
modules. Let f : A→ B be a morphism in sModΛ. Then for any x ∈ NAn
and i < n we get difn(x) = fn−1di(x) = 0 and hence N(f)n is well-defined.
Furthermore

∂fn(x) = (−1)ndnfn(x) = (−1)nfn−1dn(x) = fn−1∂(x)

and hence Nf is a morphism. If f : A → B and g : B → C then clearly
N(gf) = N(g)N(f). Moreover N(id) = id and thus N : sModΛ → ChΛ

+ is
a functor.

Now define the Moore complex A• of any simplicial Λ-module A as the
chain complex of Λ-modules A• : · · · → A2 → A1 → A0 with differentials

∂n =
n∑
i=0

(−1)idi : An → An−1

That ∂∂ = 0 follows from the simplicial identities. Let

DAn :=
n−1∑
i=0

Im(si) ⊆ An.

Note that for x ∈ An−1 the simplicial identities imply that

∂sj(x) =
n∑
i=0

(−1)idisj(x)

=

j−1∑
i=0

(−1)isj+1di(x) +
n∑

i=j+2

(−1)isjdi+1(x) ∈ DAn−1

13



and thus we get a chain complex A•/DA : · · · → A1/DA1 → A0/DA0

where the differentials are the induced homomorphisms ∂ : An/DAn →
An−1/DAn−1. The following theorem shows that this chain complex is iso-
morphic to the normalized complex NA and thus we need not distinguish
between these.

Theorem 2.3.2. For any simplicial Λ-module A the composite

NA ↪→ A•
π→ A•/DA

(where π is the canonical projection) is an isomorphism of chain complexes.

Proof. Let

NjAn :=

j⋂
i=0

ker(di) ⊆ An, DjAn :=

j∑
i=0

Im(si) ⊆ An

and let φj denote the composite NjAn ↪→ An
π→ An/DjAn. We wish to

show that φj is an isomorphism by induction on j and n. Let x ∈ An.
Then [x − s0d0(x)] = [x] ∈ An/Im(s0) and x − d0s0(x) ∈ ker(d0) since
d0(x − s0d0(x)) = d0(x) − d0s0d0(x) = 0 and thus φ0(x − s0d0(x)) = [x].
Hence φ0 is surjective. Let x ∈ ker(φ0). Then there exists y ∈ An−1

such that s0(y) = x and we get that 0 = d0(x) = d0s0(y) = y. Hence
x = s0(y) = 0 and thus φ0 is injective.

Given n > j, assume that φk : NkAm → Am/DkAm is an isomorphism
for every k < j where k ≤ m ≤ n. Consider the diagrams

Nj−1An
� � // An

π // An/Dj−1An

π

��

Nj−1An
∼=

φj−1

// An/Dj−1An

π

��
NjAn

� ?

OO

� � // An
π // An/DjAn NjAn

� ?

OO

φj // An/DjAn

Since both squares in the first diagram commute, so does the second di-
agram, since this is the composite square in the first diagram. Let x ∈
An. Due to the second diagram above there exists y ∈ Nj−1An such
that πφj−1(y) = [x] ∈ An/DjAn. As before y − sjdj(y) ∈ NjAn and
φj(y − sjdj(y)) = [y − sjdj(y)] = [x]. Hence φj is surjective.

It remains to show that φj is injective. For x ∈ Nj−1An−1 we get
disj(x) = sj−1di(x) = 0 for i < j and thus sj : Nj−1An−1 → Nj−1An is well-
defined. Furthermore sjsi = sisj−1 for i < j and thus sj : An−1/Dj−1An−1 →
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An/Dj−1An is well-defined. Hence we get the following diagram

Nj−1An−1

φj−1∼=
��

sj // Nj−1An

φj−1∼=
��

NjAn? _oo

φj
��

An−1/Dj−1An−1
sj // An/Dj−1An

π // An/DjAn

which has commutative squares. Let x ∈ An such that π([x]) = [0]. Then
there exist x0, . . . , xj ∈ An−1 such that x =

∑j
i=0 si(xi). Hence

sj([xj ]) = [sj(xj)] =

[
j∑
i=0

si(xi)

]
= [x] ∈ An/Dj−1An

and thus kerπ ⊆ sj(An−1/Dj−1An−1). Now let x ∈ NjAn such that φj(x) =
0. Using that the squares in the above diagram commute, that the φj−1

are isomorphisms and that kerπ ⊆ sj(An−1/Dj−1An−1) we can find a y ∈
Nj−1An−1 such that sj(y) = x. Hence 0 = dj(x) = djsj(y) = y and thus
x = sj(y) = 0.

Hence φn is an isomorphism and since (−1)ndn
∣∣
NAn

=
∑

(−1)idi
∣∣
NAn

it
follows that φn commutes with differentials for every n. Hence the composite
NA ↪→ A•

π→ A•/DA is an isomorphism.

Definition 2.3.3. Let Γ : ChΛ
+ → sModΛ be the functor defined in the

following way: let C• be a non-negative chain complex of Λ-modules. Define

Γ(C•)n :=
⊕

σ:[n]�[m]

Cm.

The face di : Γ(C•)n → Γ(C•)n−1 is defined in the following way: let σ :
[n] � [m] and µσ0 be the epi-monic factorization of σdi. On the coordinate
corresponding to σ we define

di(x) =


ισ0(x) if µ = id
0 if µ = dj , j < m
(−1)mισ0∂(x) if µ = dm

where ισ0 is the inclusion map into the coordinate corresponding to σ0. The
degeneracy si : Γ(C•)n → Γ(C•)n+1 is defined on the coordinate correspond-
ing to σ by

sj(x) = ισsj (x).

For a morphism of chain complexes f = (fn) : C• → D• we define Γ(f)
by Γ(f)n := 〈ισfm〉σ:[n]�[m].

15



From this point on we let ισ : Cm → Γ(C•)n =
⊕
Ck for σ : [n] � [m]

denote the inclusion map into the coordinate corresponding to σ. Note
that it is not at all clear why Γ is a functor. In order to make sure that Γ is
indeed a functor we need to show that Γ(C•) is in fact a simplicial Λ-module,
i.e. by Remark 2.2.3 to show that the faces and degeneracies respect the
simplicial identities, that Γ(f) commutes with the faces and degeneracies,
that Γ(gf) = Γ(g)Γ(f) and that Γ(id) = id.

We will only show that the first simplicial identity holds. The rest is
more or less similar (and easier) to prove. Given σ : [n] � [m] and i < j,
let µ1σ1 = σdj , µ2σ2 = σ1d

i, µ3σ3 = σdi and µ4σ4 = σ3d
j−1 be the epi-

monic factorizations. We wish to show that didj and dj−1di are equal on
the coordinate corresponding to σ. Note that µ1µ2 = µ3µ4 and σ2 = σ4 due
to the uniqueness of the epi-monic factorization.

If µ1µ2 = id then µ1 = id and µ2 = id because of the uniqueness
of the epi-monic factorization. Similarly µ3 = id and µ4 = id and thus
didj(x) = ισ2(x) and dj−1di(x) = ισ4(x) = ισ2(x).

If µ1µ2 = dk for some k ≤ m then either µ1 = id and µ2 = dk or µ1 = dk

and µ2 = id by the uniqueness of the epi-monic factorization. But the same
holds for µ3 and µ4 and thus if k < m then didj(x) = dj−1di(x) = 0, and if
k = m then didj(x) = dj−1di(x) = (−1)mισ2∂(x).

Assume that µ1µ2 : [m− 2]→ [m]. Then µ1 = dk and µ2 = dl for some
k, l. The only µ1 and µ2 for which didj(x) is not immediately 0 (by the
definition of the faces) is if µ1 = dm and µ2 = dm−1. But then

didj(x) = (−1)mdiισ1∂(x) = −ισ2∂∂(x) = 0.

Similarly we get that dj−1di(x) = 0 and thus didj = dj−1di.
Hence Γ(C•) is a simplicial Λ-module. We will now show that Γ(f)

commutes with the faces and degeneracies. On the coordinate corresponding
to σ : [n] � [m] we get that

Γ(f)n+1si(x) = Γ(f)n+1ισsi(x) = ισsifm(x) = siισfm(x) = siΓ(f)n(x)

and hence Γ(f) commutes with degeneracies. Let µσ0 be the epi-monic
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factorization of σdi. On the coordinate corresponding to σ we get

Γ(f)n−1di(x) =


Γ(f)n−1ισ0(x) if µ = id
0 if µ = dk, k < m
(−1)mΓ(f)n−1ισ0∂(x) if µ = dm

=


ισ0fm(x) if µ = id
0 if µ = dk, k < m
(−1)mισ0∂fm(x) if µ = dm

= diισfm(x)

= diΓ(f)n(x).

Hence Γ(f) commutes with faces. Let f : C• → D• and g : D• → E•.
Then Γ(gf)n = 〈ισgmfm〉 = 〈ισgm〉〈ισfm〉 = Γ(g)nΓ(f)n. Since Γ(id)n =
〈ισ〉 = id it follows that Γ is a functor from ChΛ

+ to sModΛ. We now have
enough definitions to state the Dold-Kan correspondence.

Theorem 2.3.4 (The Dold-Kan Correspondence). The functors N and Γ
form an equivalence of the categories ChΛ

+ and sModΛ.

The proof of this equivalence is rather long and complicated and thus
the rest of this section is devoted to proving this theorem.

Theorem 2.3.5. Any non-negative chain complex C• of Λ-modules is iso-
morphic to NΓ(C•) in ChΛ

+.

Proof. Let C• be a non-negative chain complex of Λ-modules. We wish to
show that Γ(C•)•/DΓ(C•) is isomorphic to C• (here Γ(C•)• denotes the
Moore complex of Γ(C•)). First note that for any n

DΓ(C•)n =

n−1∑
i=0

Im(si) =

n−1∑
i=0

Im
(
〈ισsi〉σ:[n−1]�[m]

)
For any surjective morphism σ : [n] � [m] with m 6= n, Theorem 2.1.5
implies that there exist σ0 : [n − 1] � [m] and i ∈ {0, . . . ,m} such that
σ = σ0s

i. Hence
⊕

σ:[n]�[m],m 6=nCm ⊆ DΓ(C•)n and since σsi 6= id for any
σ : [n− 1] � [m] and i ∈ {0, . . . ,m} we get DΓ(C•)n ⊆

⊕
σ:[n]�[m],m6=nCm.

Hence

Γ(C•)n/DΓ(C•)n =

⊕
σ:[n]�[m]Cm⊕

σ:[n]�[m],m 6=nCm
∼= Cn.
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It remains to show that the diagram

Γ(C•)n/DΓ(C•)n
∂′ //

∼=
��

Γ(C•)n−1/DΓ(C•)n−1

∼=
��

Cn
∂ // Cn−1

commutes. Consider the Moore complex Γ(C•)• which has differentials of
the form

∑n
i=0(−1)idi : Γ(C•)n → Γ(C•)n−1. Let x ∈ Cn and x̃ ∈ Γ(C•)n

be the element which is x on the coordinate corresponding to id and zero
everywhere else. Then by the construction of di we get

n∑
i=0

(−1)idi(x̃) = (−1)n(−1)nιid∂(x) = ιid∂(x)

which implies that the above diagram commutes. Hence by Theorem 2.3.2
we get that

NΓ(C•) ∼= Γ(C•)•/DΓ(C•) ∼= C•, in ChΛ
+.

Corollary 2.3.6. The functors NΓ and IChΛ
+

are naturally isomorphic.

Proof. For every non-negative chain complex C• let φC• be the composite
of

NΓ(C•) ↪→ Γ(C•)•
π→ Γ(C•)•/DΓ(C•)

∼=→ C•.

Theorem 2.3.2 and the proof of Theorem 2.3.5 imply that φC• is an isomor-
phism. Let f : C• → D• be a morphism. If the squares in the diagram

NΓ(C•)
� � //

NΓ(f)

��

Γ(C•)•
π // Γ(C•)•/DΓ(C•)

∼= //

Γ̃(f)
��

C•

f

��
NΓ(D•)

� � // Γ(D•)•
π // Γ(D•)•/DΓ(D•)

∼= // D•

commute, then φ is a natural isomorphism of NΓ and IChΛ
+

. Here Γ(f) is

viewed as a morphism between the Moore complexes, and Γ̃(f) is the induced
morphism between quotients, which is well-defined since Γ(f) commutes
with degeneracies. For x ∈ NΓ(C•)n we get that

Γ̃(f)nπ(x) = Γ̃(f)n([x]) = [Γ(f)n(x)] = π(Γ(f)n(x)) = πNΓ(f)n(x)
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where the last equality follows since NΓ(f)n = Γ(f)n
∣∣
NΓ(C•)n

. Hence the

first square commutes. Let (xσ) ∈ Γ(C•)n. Then Γ̃(f)n([(xσ)]) = [〈ισfm〉(xσ)]
which by the proof of Theorem 2.3.5 is just id∗fn(xid) = fn(xid) when
mapped to Dn. Since [(xσ)] is mapped to xid in Cn it follows that the sec-
ond square commutes. Hence NΓ and IChΛ

+
are naturally isomorphic.

Our next goal is to prove that ΓN(A) ∼= A for any simplicial Λ-module
A. In order to do this we will require some lemmas about the ordinal number
category.

Lemma 2.3.7. If σ : [n] � [m] and dk : [n − 1] → [n] such that the epi-
monic factorization of σdk is dmσ0 for some surjective morphism σ0, then
k = n.

Proof. It is clear if σ = id. Assume that k ≤ m < n and write σ =
sj1 · · · sjn−m uniquely with m ≥ j1 ≥ · · · ≥ jn−m ≥ 0 by Theorem 2.1.5.
Due to the uniqueness of the epi-monic factorization, the cosimplicial iden-
tities imply that k = m and ji > k = m for i = 1, . . . , n − m which is
a contradiction. Now assume that m < k ≤ n. Then by the cosimplicial
identities

σdk = sj1 · · · sjn−mdk = sj1 · · · sjn−m−1dk−1sjn−m .

If k− 1 = m we get the same contradiction as above. Hence k− 1 > m. By
doing this recursively we get that k − (n −m − 1) > m which implies that
k = n.

Remark 2.3.8. Note that this lemma gives us another way to define the faces
di : Γ(C•)n → Γ(C•)n−1 for i = 0, . . . , n−1: on the coordinate corresponing
to σ : [n] � [m] we get

di(x) =

{
ισdi(x) if σdi is surjective
0 otherwise

Furthermore if σ : [n] � [m] and n > m write σ = sj1 · · · sjn−m uniquely
with m ≥ j1 ≥ · · · ≥ jn−m ≥ 0. Then by the cosimplicial identities

σdn = sj1 · · · sjn−mdn = sj1dm+1sj2 · · · sjn−m .

Hence σdn is either surjective or σdn = dmσ′ where σ′ = sj1 · · · sjn−m :
[n− 1] � [m− 1]. This allows us to define the face dn : Γ(C•)n → Γ(C•)n−1

on the coordinate corresponding to σ as

dn(x) =

{
ισdi(x) if σdi is surjective
(−1)mισ′∂(x) otherwise
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Consider the set of surjective morphisms σ : [n] � [m] with n > m.
Theorem 2.1.5 induces a total order � on this set by

s0s0s0 · · · s0 � s1s0s0 · · · s0 � s1s1s0 · · · s0 � · · · � sm · · · sm.

We will need this total order to formulate the next lemma and also for
proving Theorem 2.3.10 below.

Lemma 2.3.9. Let n > m ≥ j1 ≥ · · · ≥ jn−m ≥ 0, and let µ = djn−m · · · dj1 :
[m]→ [n]. If σ : [n] � [m] such that σµ = id then σ � sj1 · · · sjn−m.

Proof. Let m ≥ j1 ≥ · · · ≥ jn−m ≥ 0 and m ≥ i1 ≥ · · · ≥ in−m ≥ 0 such
that at least one jk 6= ik and sj1 · · · sjn−m � si1 · · · sin−m . If i1 = j1 then the
cosimplicial identities imply that

si1 · · · sin−mdjn−m · · · dj1 = si2 · · · sin−msi1+n−m−1dj1+n−m−1djn−m · · · dj2

= si2 · · · sin−mdjn−m · · · dj2

which gives us the exact same problem for surjective morphisms from [n−1]
onto [m]. Hence we will without loss of generality assume that i1 > j1.

Note that for 0 ≤ k ≤ n−m− 1 we get that i1 + n−m− 1− k ≥ i1 >
j1 ≥ · · · ≥ jn−m. Hence the cosimplicial identities imply that

si1 · · · sin−mdjn−m · · · dj1 = si2 · · · sin−msi1+n−m−1djn−m · · · dj1

= si2 · · · sin−mdjn−m · · · dj1si1−1

which can never be the identity morphism on [m] since i1 − 1 and i1 are
mapped to the same element.

We now have enough tools in order to prove the following theorem which
is the second part of the Dold-Kan correspondence.

Theorem 2.3.10. Any simplicial Λ-module A is isomorphic to ΓN(A) in
sModΛ.

Proof. Given A ∈ sModΛ, let ψn :
⊕

[n]�[m]NAm → An be given on the
summand corresponding to σ by ψn(x) = σ∗(x) (i.e. ψn = 〈σ∗|NAm〉σ:[n]�[m]).
First we wish to show that ψn is an isomorphism by induction on n. Ob-
serve that NA0 = A0. Since the only (surjective) map [0] → [0] is id, we
get that ψ0 = id : A0 → A0 which is an isomorphism. Assume that ψk is an
isomorphism for k < n. The diagram⊕

NAm

si
��

ψn−1

∼=
// An−1

si

��⊕
NAm

ψn // An
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commutes for all i = 0, . . . , n− 1 since

siψn−1(x) = si〈σ∗〉(x) = 〈siσ∗〉(x) = 〈(σsi)∗〉(x) = 〈σ∗〉〈ισsi〉(x) = ψnsi(x).

Hence it follows that DAn ⊆ Im(ψn). Let x ∈ An. By Theorem 2.3.2 let
y ∈ NAn such that φn(y) = [y] = [x] ∈ An/DAn and let z ∈ DAn such that
x = y + z. Then there exists z0 ∈

⊕
NAm such that ψn(z0) = z and thus

ψn(ιid(y) + z0) = id∗(y) + ψn(z0) = y + z = x.

Hence ψn is surjective.
We wish to show that the diagram

⊕
NAm

ψk−1 // Ak−1

⊕
NAm

di

OO

ψk // Ak

di

OO

commutes for every i = 0, . . . , k. Let σ : [k] � [m], 0 ≤ i ≤ k be given
and let µσ0 be the epi-monic factorization of σdi. Then on the coordinate
corresponding to σ we get

ψk−1di(x) =


ψk−1ισ0(x) if µ = id
0 if µ = dl, l < m
(−1)mψk−1ισ0((−1)mdm(x)) if µ = dm

=


σ∗0(x) if µ = id
0 if µ = dl, l < m
σ∗0dm(x) if µ = dm

= σ∗0µ
∗(x) = (µσ0)∗(x) = (σdi)∗(x) = diσ

∗(x) = diψk(x)

where we used that x ∈ NAm. Hence the above diagram commutes.
Let (xσ) ∈

⊕
NAm such that ψn((xσ)) = 0, and let m < n. We wish

to prove that xσ = 0 for every σ : [n] � [m] by induction on σ using the
total order �. Remark 2.3.8 implies that the coordinate in d0 · · · d0((xσ))
corresponding to id is the sum of all xσ where d0 · · · d0 is a section for
σ.1 Now Lemma 2.3.9 implies that the only surjective morphism which has

1Note that in [4] Proposition III.2.2 they choose a section µ for a surjective morphism
σ0 and say that the coordinate in µ∗((xσ)) corresponding to id is xσ0 . But this is only
the case if σ = s0 · · · s0 or σ = sm · · · sm and we choose the section µ = d0 · · · d0 or
µ = dm+1 · · · dm+1 respectively. Otherwise the coordinate corresponding to id in µ∗((xσ))
will be the sum of all xσ for which µ is a section of σ.
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d0 · · · d0 as a section is s0 · · · s0. Hence d0 · · · d0((xσ))id = xs0···s0 . Since ψk
commutes with faces we get that

ψmd0 · · · d0((xσ)) = d0 · · · d0ψn((xσ)) = 0

and since ψm is an isomorphism xs0···s0 = 0.
Given σ0 : [n] � [m] assume that xσ = 0 for every σ � σ0 where σ 6= σ0.

Write σ0 = sj1 · · · sjn−m with m ≥ j1 ≥ · · · ≥ jn−m ≥ 0. Again Remark
2.3.8 implies that the coordinate in dj1 · · · djn−m((xσ)) corresponding to id
is the sum of all xσ where djm−n · · · dj1 is a section for σ. But Lemma 2.3.9
implies that if σdjm−n · · · dj1 = id then σ � σ0 and thus by our hypothesis
the coordinate in dj1 · · · djn−m((xσ)) corresponding to id is xσ0 . As before

ψmdj1 · · · djn−m((xσ)) = dj1 · · · djn−mψn((xσ)) = 0

and since ψm is an isomorphism xσ0 = 0. Hence xσ = 0 for every σ 6= id.
Finally we get that 0 = ψn((xσ)) =

∑
σ∗(xσ) = xid and hence ψn is injective

and thus an isomorphism.
Since ψk commutes with faces and degeneracies, (ψn) is an isomorphism

in sModΛ and thus ΓN(A) ∼= A in sModΛ.

Corollary 2.3.11. The functors ΓN and IsModΛ
are naturally isomorphic.

Proof. For any simplicial Λ-module A let ψA be the isomorphism defined in
the proof of Theorem 2.3.10. It remains to show that the diagram

ΓN(A)
ψA //

ΓN(f)
��

A

f

��
ΓN(B)

ψB // B

commutes for any A,B ∈ sModΛ and any f : A → B. But this follows
easily since

ψBn ΓN(f)n = ψBn 〈ισfm
∣∣
NAm
〉 = 〈σ∗fm

∣∣
NAm
〉

and
fnψ

A
n = fn〈σ∗

∣∣
NAm
〉 = 〈fnσ∗

∣∣
NAm
〉 = 〈σ∗fm

∣∣
NAm
〉

where the last equality follows since fk commutes with degeneracies (and
faces) for any k. Hence ΓN and IsModΛ

are naturally isomorphic.

With this last corollary we can finally give a proof of the Dold-Kan
correspondence.

Proof of the Dold-Kan Correspondence. The equivalence is a direct conse-
quence of Corollary 2.3.6 and Corollary 2.3.11.
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3 Derived Functors of Non-additive Functors

3.1 The Dold-Kan Correspondence and Homotopy

When defining the classical derived functors, homotopy played a big part.
The same is the case for us. In this section we prove that the functors
N and Γ which induce the Dold-Kan correspondence preserve homotopy.
Furthermore we use this to show that the homotopy relation ”'” is an
equivalence relation on sModΛ.

Theorem 3.1.1. The functor N preserves homotopy, i.e. if f, g : A → B
and f ' g then N(f) ' N(g).

Proof. Let f, g : A→ B in sModΛ such that f ' g, and let h be a homotopy
from f to g. Define Σ′ = (Σ′n) by

Σ′n =

n∑
i=0

(−1)ihi : An → Bn+1.

Let A• and B• be the Moore complexes of A and B respectively, and f, g :
A• → B• the induced morphisms. By the definition of h we get

∂n+1Σ′n =

n+1∑
i=0

n∑
j=0

(−1)i+jdihj

= fn − gn +

n∑
j=1

j−1∑
i=0

(−1)i+jhj−1di +

n−1∑
j=0

n+1∑
i=j+2

(−1)i+jhjdi−1

= fn − gn −
n−1∑
j=0

(−1)jhj

n∑
i=0

(−1)idi

= fn − gn − Σ′n−1∂n.

Hence fn − gn = ∂n+1Σ′n + Σn−1∂n and thus Σ′ : f ' g. Note that for
0 ≤ j ≤ n− 1

Σ′nsj =
n∑
i=0

(−1)ihisj =

j∑
i=0

(−1)isj+1hi +
n∑

i=j+1

(−1)isjhi−1

and therefor Σ′n(DAn) ⊆ DBn+1. Hence the induced maps Σn : An/DAn →
Bn+1/DBn+1 are well-defined. Furthermore since f and g commute with
degeneracies, the induced morphisms f̃ , g̃ : A•/DA → B•/DB are well-
defined and clearly Σ : f̃ ' g̃.
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Let φA : NA → A•/DA and φB : NB → B•/DB be the isomorphisms
from Theorem 2.3.2. We wish to show that (φB)−1ΣφA : N(f) ' N(g). We
get that

∂n+1(φBn+1)−1Σnφ
A
n + (φBn )−1Σn−1φ

A
n−1∂n

= (φBn )−1(∂n+1Σn + Σn−1∂n)φAn

= (φBn )−1f̃nφ
A
n − (φBn )−1g̃nφ

A
n .

Since N(f)n = fn
∣∣
NAn

the squares in the diagram

NAn
� � //

N(f)n
��

An
π //

fn
��

An/DAn

f̃n
��

NBn
� � // Bn

π // Bn/DBn

commute, and hence f̃nφ
A
n = φBnN(f)n. Similarly g̃nφ

A
n = φBnN(g)n, and

hence
(φBn )−1f̃nφ

A
n − (φBn )−1g̃nφ

A
n = N(f)n −N(g)n.

This gives us the homotopy (φB)−1ΣφA : N(f) ' N(g).

Theorem 3.1.2. The functor Γ preserves homotopy, i.e. if f, g : C• → D•
and f ' g then Γ(f) ' Γ(g).

Proof. Let f, g : C• → D• in ChΛ
+ such that f ' g, and let Σ be a homotopy

from f to g. We define hnj : Γ(C•)n → Γ(D•)n+1 in the following way:
let σ : [n] � [m]. If σ = id put k = 0 and σ̃ = id[n+1]. If not write
σ = sj1 · · · sjn−m with m ≥ j1 ≥ · · · ≥ jn−m ≥ 0. Then let 0 ≤ k ≤ n −m
be given such that jk + n −m − k + 1 > j and jk+1 + n −m − k ≤ j and
put σ̃ = sj1+1 · · · sjk+1sjk+1 · · · sjn−m : [n+ 1] � [m+ 1]. Now we define hnj
on the coordinate corresponding to σ by

hnj (x) =


ιsmσ̃(fm(x)− Σm−1∂(x)) + (−1)mισ̃Σm(x) if k = n− j
ιsm−1σ̃fm(x)− ιsmσ̃Σm−1∂(x) if k = n− j − 1
ιsj−n+m+kσ̃fm(x) if k < n− j − 1

This will give us a homotopy h : Γ(f) ' Γ(g). We will first prove that
dn+1h

n
n = Γ(g)n and then that dihj = hj−1di if i < j. The rest are left for

the reader to do on a cold and lonely night.
Let σ : [n] � [m]. If σ = id let σ̃ = id[n+1]. If not, write σ = sj1 · · · sjn−m .

Since j1+n−m ≤ n let σ̃ = sj1 · · · sjn−m : [n+1] � [m+1]. The cosimplicial
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identities imply that smσ̃dn+1 = σsndn+1 = σ and σ̃dn+1 = dm+1σ and
hence on the coordinate corresponding to σ we get

dn+1hn(x) = dn+1(ιsmσ̃(fm(x)− Σm−1∂(x)) + (−1)mισ̃Σm(x))

= ισ(fm(x)− Σm−1∂(x) + (−1)m+m+1∂Σm(x))

= ισgm(x)

= Γ(g)n(x).

Hence dn+1hn = Γ(g)n.
Now let i < j ≤ n. We wish to show that dih

n
j = hn−1

j−1 di. On the
coordinate corresponding to id we get

hj(x) =


ιsn(fn(x)− Σn−1∂(x)) + (−1)nιidΣn(x) if j = n
ιsn−1fn(x)− ιsnΣn−1∂(x) if j = n− 1
ιsjfn(x) if j < n− 1

By the cosimplicial identities sjdi = disj−1 and sndi = disn−1. Hence
dihj(x) = 0 and since di(x) = 0 we get that dihj(x) = hj−1di(x) = 0 on the
coordinate corresponding to id.

Let σ : [n] � [m] with n > m and write σ = sj1 · · · sjn−m . Define k and
σ̃ as in the construction of hj . First note that since j1 + n−m− 1 > · · · >
jk + n−m− k ≥ j > i the cosimplicial identities imply that

σdi = sj1 · · · sjn−mdi

= sjk+1 · · · sjn−msjk+n−m−k · · · sj1+n−m−1di

= sjk+1 · · · sjn−mdisjk+n−m−k−1 · · · sj1+n−m−2

and that

σ̃di = sj1+1 · · · sjk+1sjk+1 · · · sjn−mdi

= sjk+1 · · · sjn−msjk+n−m−k+1 · · · sj1+n−mdi

= sjk+1 · · · sjn−mdisjk+n−m−k · · · sj1+n−m−1.

Hence by the uniqueness of the epi-monic factorization σdi is surjective if
and only if σ̃di is surjective. Now note that since j − n + m + k ≥ jk+1 ≥
· · · ≥ jn−m we get

sj−n+m+kσ̃di = sj−n+m+ksjk+1 · · · sjn−mdisjk+n−m−k · · · sj1+n−m−1

= sjk+1 · · · sjn−msjdisjk+n−m−k · · · sj1+n−m−1

= sjk+1 · · · sjn−mdisj−1sjk+n−m−k · · · sj1+n−m−1

= sjk+1 · · · sjn−mdisjk+n−m−k−1 · · · sj1+n−m−2sj−1

= σdisj−1.

25



Again by the uniqueness of the epi-monic factorization sj−n+m+kσ̃di is sur-
jective if and only if σdi is surjective. Similarly we also get sj+1−n+m+kσ̃di

is surjective if and only if σdi is surjective.
All these facts combined together with Remark 2.3.8 imply, that if σdi is

not surjective then on the coordinate corresponding to σ we get dihj(x) = 0
and di(x) = 0 and hence dihj(x) = hj−1di(x).

If σdi is surjective, then by what we showed above

dihj(x) =


ιsmσ̃di(fm(x)− Σ∂(x)) + (−1)mισ̃diΣ(x) if k = n− j
ιsm−1σ̃difm(x)− ιsmσ̃diΣ∂(x) if k = n− j − 1
ιsj−n+m+kσ̃difm(x) if k < n− j − 1

on the coordinate corresponding to σ. Furthermore if σdi is surjective,
then sjk+1 · · · sjn−mdi is surjective and by the cosimplicial identities can be
written as sik+1 · · · sin−m−1 with jk+1 ≥ ik+1 ≥ · · · ≥ in−m−1. Hence σdi =
sj1 · · · sjksik+1 · · · sin−m−1 with m ≥ j1 ≥ · · · ≥ jk ≥ ik+1 ≥ · · · ≥ in−m−1 ≥
0. Note that jk + (n − 1) −m − k + 1 > j − 1 and ik+1 + (n − 1) −m −
k ≤ j − 1 since ik+1 ≤ jk+1. By Remark 2.3.8 di(x) = ισdi(x) and since
σ̃di = sj1+1 · · · sjk+1sik+1 · · · sin−m−1 we get that

hj−1di(x) =


ιsmσ̃di(fm(x)− Σ∂(x)) + (−1)mισ̃diΣ(x) k = n− j
ιsm−1σ̃difm(x)− ιsmσ̃diΣ∂(x) k = n− j − 1
ιs(j−1)−(n−1)+m+kσ̃difm(x) k < n− j − 1

on the coordinate corresponding to σ and hence dihj(x) = hj−1di(x) when
σdi is surjective. Hence dihj = hj−1di whenever i < j.

Hence Γ and N preserve homotopy when passing between non-negative
chain complexes and simplicial modules. This is an important property
which amongst other things allow us to generalize the notion of derived
functors which we will do in the following section. But first let us apply
it to give a short proof of the homotopy relation on morphisms between
simplicial modules beeing an equivalence relation.

Lemma 3.1.3. Let f, g : A→ B in sModΛ. If ΓN(f) ' ΓN(g) then f ' g.

Proof. Let h : ΓN(f) ' ΓN(g) and let ψA : ΓN(A)
∼=→ A, ψB : ΓN(B)

∼=→ B
be the isomorphisms from Corollary 2.3.11. Now f = ψBΓN(f)(ψA)−1

and g = ψBΓN(g)(ψA)−1 and since ψA and ψB commute with faces and
degeneracies it easily follows that ψBh(ψA)−1 : f ' g.
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Corollary 3.1.4. The homotopy relation ”'” is an equivalence relation in
sModΛ.

Proof. First recall that the homotopy relation in ChΛ
+ is an equivalence

relation. Let f, g, h : A→ B be morphisms in sModΛ. Then N(f) ' N(f)
and hence ΓN(f) ' ΓN(f). By Lemma 3.1.3, f ' f and hence ”'” is
reflexive.

Assume that f ' g. Then N(f) ' N(g) and since this relation is
symmetric it follow that N(g) ' N(f). Hence ΓN(g) ' ΓN(f) and by
Lemma 3.1.3 it follows that g ' f . Hence ”'” is symmetric.

Finally assume that f ' g and g ' h. Then N(f) ' N(g) and N(g) '
N(h) which implies that N(f) ' N(h). Thus ΓN(f) ' ΓN(h) and by
Lemma 3.1.3 it follows that f ' h. Hence ”'” is transitive and thus an
equivalence relation.

3.2 Derived Functors of Non-additive Functors

In Section 1.2 we defined the classical left derived functor of an additive
covariant functor F : ModΛ →ModΛ′ . In this section we give a new defi-
nition of left derived functors of a functor F : ModΛ →ModΛ′ which does
not require F to be additive, and then show that if F is indeed additive, this
definition coincides with the defintion of the classical left derived functor.

Let F : ModΛ → ModΛ′ be a (covariant) functor and let f : A → B
be a morphism in sModΛ. We define FA to be the simplicial Λ′-module
where the n-simplices are F (An) and the faces and degeneracies are Fdi
and Fsi respectively. Moreover we define the morphism Ff : FA → FB
to be the morphism where (Ff)n = Ffn : (FA)n → (FB)n. This makes
F : sModΛ → sModΛ′ into a functor. Note that if f, g : A → B and
h : f ' g then Fh : Ff ' Fg. This is clear since e.g. FdiFhj = F (dihj) =
F (hj−1di) = Fhj−1Fdi for i < j. Hence the functor F : sModΛ → sModΛ′

preserves homotopy, and thus the covariant functor NFΓ : ChΛ
+ → ChΛ′

+

preserves homotopy due to Theorem 3.1.1 and Theorem 3.1.2.
We wish to use this to generalize the notion of left derived functors.

Again let F : ModΛ → ModΛ′ be a functor, let A be a Λ-module and P•
be a projective resolution of A. Define for n ≥ 0

LP•n F (A) := Hn(NFΓP•),

i.e. the n’th homology module of NFΓP•. The following theorem states
that it does not matter which projective resolution of A we choose.
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Theorem 3.2.1. Let F : ModΛ →ModΛ′ be a functor, A a Λ-module and
P•, Q• projective resolutions of A. Then LP•n F (A) ∼= LQ•n F (A) for every n.

Proof. From section 1.2 we know that P• and Q• are homotopic equiva-
lent and thus NFΓP• and NFΓQ• are homotopic equivalent since NFΓ
preserves homotopy and maps identity morphisms to identity morphisms.
Again from section 1.2 we know that any homotopy equivalence f : NFΓP• →
NFΓQ• is a quasi-isomorphism and thus Hn(f) : LP•n F (A) → LQ•n F (A) is
an isomorphism.

Now let A,B be Λ-modules and ϕ ∈ HomΛ(A,B). Let P• and Q• be
projective resolutions of A and B respectively. By Theorem 1.2.10 there
exists a morphism fϕ : P• → Q•, which is unique up to homotopy, such that
the diagram

P•

fϕ
��

∼ // // A

ϕ

��
Q•

∼ // // B

commutes. Here we think of A and B as beeing chain complexes where
A0 = A, An = 0 for n 6= 0 and similarly for B. Now for n ≥ 0 we define

L
fϕ
n F (ϕ) := Hn(NFΓfϕ) : LP•n F (A)→ LQ•n F (B).

The following theorem shows that this definition does not depend on the
projective resolutions P• and Q• or of the choice of fϕ.

Theorem 3.2.2. Let F : ModΛ → ModΛ′ be a functor, A and B be Λ-
modules, ϕ : A → B be a homomorphism, P 1

• , P
2
• be projective resolutions

of A and Q1
•, Q

2
• be projective resolutions of B, and f iϕ : P i• → Qi• be some

morphisms induced by Theorem 1.2.10 for i = 1, 2. Then for every n ≥ 0
the diagram

L
P 1
•
n F (A)

L
f1
ϕ
n F (ϕ)

��

∼= // L
P 2
•
n F (A)

L
f2
ϕ
n F (ϕ)
��

L
Q1
•

n F (B)
∼= // L

Q2
•

n F (B)

commutes for some isomorphisms.
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Proof. By Theorem 1.2.10 there exist morphisms g1
p : P 1

• → P 2
• and g2

p :
P 2
• → P 1

• such that the diagram

P 2
•

∼ ψ2
p
����

g2
p

  @
@

@
@

P 1
•

g1
p

>>~
~

~
~

ψ1
p

∼ // // A P 1
•

∼
ψ1
p

oooo

commutes. Furthermore Theorem 1.2.10 implies that g2
pg

1
p ' idP 1

•
. Similarly

g1
pg

2
p ' idP 2

•
and hence g1

p and g2
p are homotopy equivalences of P 1

• and
P 2
• . Similarly we get morphisms g1

q : Q1
• → Q2

• and g2
q : Q2

• → Q1
• such

that a similar diagram commutes and such that g1
q and g2

q are homotopy
equivalences of Q1

• and Q2
•. Hence we get a commutative diagram

P 1
•

g1
p

,,
∼
// //

f1
ϕ

��

A

ϕ

��

P 2
•∼

oooo

f2
ϕ

��
Q1
•
∼ // // B Q2

•
∼oooo

g2
q

kk

and again by Theorem 1.2.10 we get that f1
ϕ ' g2

qf
2
ϕg

1
p. Since NFΓ preserves

homotopy NFΓf1
ϕ ' NFΓ(g2

qf
2
ϕg

1
p) and also NFΓg1

p and NFΓg2
q are homo-

topy equivalences and thus quasi-isomorphisms. Hence Hn(NFΓ(f1
ϕ)) =

Hn(NFΓ(g2
qf

2
ϕg

1
p)) and thus we get a commutative diagram

L
P 1
•
n F (A)

L
f1
ϕ
n F (ϕ)

��

Hn(NFΓg1
p)

∼=
// L
P 2
•
n F (A)

L
f2
ϕ
n F (ϕ)
��

L
Q1
•

n F (B)
(Hn(NFΓg2

q ))−1

∼=
// L
Q2
•

n F (B)

We can now give the definition of a left derived functor.

Definition 3.2.3 (Left Derived Functor). Let F : ModΛ → ModΛ′ be
a covariant functor and define the n’th left derived functor of F , LnF :
ModΛ →ModΛ′ as follows: let A be a Λ-module and let P• be a projective
resolution of A. Then let LnF (A) = LP•n F (A). Let ϕ : A → B be a
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homomorphism and let P• and Q• be projective resolutions of A and B
respectively. Choose a morphism fϕ : P• → Q• by Theorem 1.2.10. Then

let LnF (ϕ) = L
fϕ
n F (ϕ).

By Theorem 3.2.1 and Theorem 3.2.2, LnF is uniquely determined up
to isomorphism, just as the classical definition of derived functors. Our next
goal is to show that if the functor F : ModΛ → ModΛ′ is additive then
the Defintion 3.2.3 coincides with the definition of the classical left derived
functor.

Theorem 3.2.4. Let F : ModΛ →ModΛ′ be an additive covariant functor.
Then Definition 1.2.13 and Definition 3.2.3 are equivalent.

In order to prove this we will require some lemmas.

Lemma 3.2.5. Let F : ModΛ →ModΛ′ be an additive covariant functor.
Then NFΓC• ∼= FC• for any non-negative chain complex.

Proof. We will first show that FΓC• ∼= ΓFC•. Recall that since F is addi-
tive, the morphism of modules

(ΓFC•)n =
⊕

[n]�[m] FCm
〈Fισ〉
∼=
// F
(⊕

[n]�[m]Cm

)
= (FΓC•)n

is an isomorphism for every n. Hence it remains to show that this isomor-
phism commutes with faces and degeneracies for every n. Let σ : [n] � [m]
and let µσ0 be the epi-monic factorization of σdi. Then on the coordinate
corresponding to σ we get

〈Fισ′〉di(x) =


(Fισ0)(x) if µ = id
0 if µ = dk, k < m
(−1)m(Fισ0)(F∂)(x) if µ = dm

where we used that the differentials in FC• are (F∂n)n≥0. Again on the
coordinate corresponding to σ we get

Fdi〈Fισ′〉(x) = F (diισ)(x) =


(Fισ0)(x) if µ = id
0 if µ = dk, k < m
F ((−1)mισ0∂)(x) if µ = dm

which is clearly equal to 〈Fισ′〉di(x). Hence 〈Fισ〉 commutes with faces.
Again let σ : [n] � [m]. On the coordinate corresponding to σ we get

〈Fισ′〉si(x) = 〈Fισ′〉ισsi(x) = (Fισsi)(x) = F (siισ)(x) = Fsi〈Fισ′〉(x).

Hence 〈Fισ〉 commutes with degeneracies and thus FΓC• ∼= ΓFC•. Now
the Dold-Kan correspondence implies that NFΓC• ∼= NΓFC• ∼= FC•.
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Lemma 3.2.6. Let F : ModΛ → ModΛ′ be an additive covariant functor
and let f : C• → D• be a morphism. Then the diagram

FC•
∼= //

Ff

��

NFΓC•

NFΓf

��
FD•

∼= // NFΓD•

commutes for some isomorphisms.

Proof. First we will show that the diagram

(ΓFC•)n
〈Fισ〉
∼=
//

(ΓFf)n
��

(FΓC•)n

(FΓf)n
��

(ΓFD•)n
〈Fισ〉
∼=
// (FΓD•)n

is commutative for any n. Let σ : [n] � [m]. On the coordinate correspon-
ding to σ we get

〈Fισ′〉(ΓFf)n(x) = 〈Fισ′〉ισFfm(x) = F (ισfm)(x) = F (Γ(f)nισ)(x)

= (FΓf)n〈Fισ′〉(x).

Consider the diagram

FC•
∼= //

Ff

��

NΓFC•
∼= //

NΓFf

��

NFΓC•

NFΓf

��
FD•

∼= // NΓFD•
∼= // NFΓD•

By what we just proved the second square commutes, and due to the Dold-
Kan correspondence the first square commutes. Hence the composite square
commutes.

With this lemma we now have enough tools to prove Theorem 3.2.4.

Proof of Theorem 3.2.4. Let F : ModΛ →ModΛ′ be an additive covariant
functor, A be a Λ-module and P• be a projective resolution of A. By Lemma
3.2.5, FP• ∼= NFΓP• and hence Hn(FP•) ∼= LnF (A) for every n.

Let ϕ : A→ B be a homomorphism between modules, let P• and Q• be
projective resolutions of A and B respectively and let fϕ : P• → Q• be a
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morphism induced by Theorem 1.2.10. Then Lemma 3.2.6 implies that the
diagram

Hn(FP•)
∼= //

Hn(Ffϕ)

��

LnF (A)

LnF (ϕ)
��

Hn(FQ•)
∼= // LnF (B)

commutes for every n. Hence Definition 1.2.13 and Definition 3.2.3 are
equivalent.

Remark 3.2.7 (Right Derived Functor). In order to generalize the right de-
rived functor one must go about this in a different way, which we will shortly
sketch. We define cosimplicial objects in a category C to be the covariant
functors between ∆ and C . Then one can define functors N and Γ which
form an equivalence of the category of non-negative cochain complexes and
the category of cosimplicial modules, i.e. another version of the Dold-Kan
correspondence. Again one can show that N and Γ preserve homotopy. Now
let F : ModΛ → ModΛ′ be a covariant functor. We define the n’th right
derived functor, RnF : ModΛ → ModΛ′ in the following way: let A be a
Λ-module and I• be an injective resolution of A (i.e. the dual of a projective
resolution). Then RnF (A) := Hn(NFΓI•), i.e. the n’th cohomology mod-
ule of the non-negative cochain complex NFΓI•. Let ϕ : A→ B be a homo-
morphism and let I• and J• be injective resolutions of A and B respectively.
By the dual of Theorem 1.2.10 there is an induced morphism fϕ : I• → J•
which is unique up to homotopy. Then we define RnF (ϕ) := Hn(NFΓfϕ).

Just as for the left derived functor, this definition does not depend on
the choice of injective resolution I• or of the choice of the induced morphism
fϕ. One can then show that if F is an additive functor this definition coin-
cides with the classical definition of the right derived functor of an additive
functor.

3.3 Applications and Examples

Every theorem in Section IV.5 in [6] can be fitted such that it applies to
Definition 3.2.3, by adding to the theorem that the functor must be additive.
Note that we do not need to change Proposition 5.2, 5.5 and 5.6 since they
recuire our functor F to be left (or right) exact, which implies that it is
additive. In this section we generalize Proposition IV.5.3 in [6], and by
introducing the symmetric power and the symmetric algebra functors, we
give some examples of how to apply the left derived functor of a non-additive
functor.
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We start out by proving a generalization of Proposition IV.5.3 in [6]

Theorem 3.3.1. Let F : ModΛ →ModΛ′ be a functor and P a projective
Λ-module. Then L0F (P ) = FP and LnF (P ) = 0 for n ≥ 1.

Proof. Let P• be the non-negative chain complex where P0 = P and Pn = 0
for n 6= 0. This is a projective resolution of P . Note that ΓP• is the simplicial
module where (ΓP•)n = P for every n and every face and degeneracy is idP .
Hence FΓP• is the simplicial module where (FΓP•)n = FP and every face
and degeneracy is idFP and since ker idFP = 0

NFΓP• : · · · → 0→ 0→ FP

Hence L0F (P ) = FP and LnF (P ) = 0 for n ≥ 1.

The next theorem is a direct consequence of Proposition IV.5.4 in [6].

Theorem 3.3.2. Let F : ModΛ → ModΛ′ be an additive functor. Then
LnF is additive for every n.

One may ask if LnF is additive even though F is not additive. This is
not the case in general. In order to give an example of this not being true
we define the symmetric power and the symmetric algebra of a module.

Definition 3.3.3 (Symmetric Power and Symmetric Algebra). For a Λ-
module A and n ≥ 1 let A⊗n denote the n’th tensor power of A, i.e. A⊗Λ

· · · ⊗Λ A where there are n factors. Now define the equivalence relation
”∼” on A⊗n by a1 ⊗ · · · ⊗ an ∼ b1 ⊗ · · · ⊗ bn if and only if there exists a
permutation σ ∈ Sn such that a1 ⊗ · · · ⊗ an = bσ(1) ⊗ · · · ⊗ bσ(n). We define
the functor Sn : ModΛ →ModΛ for n ≥ 1 such that Sn(A) = A⊗n/ ∼ and
for a homomorphism ϕ : A → B let Sn(ϕ) be the induced homomorphism
ϕ ⊗ · · · ⊗ ϕ : Sn(A) → Sn(B). Furthermore we denote S0(A) = Λ and
S0(ϕ) = idΛ. We call Sn(A) the n’th symmetric power of A.

Now define the functor S : ModΛ → ModΛ by S(A) =
⊕

n≥0 S
n(A)

and for a homomorphism ϕ : A→ B let S(ϕ) =
⊕

n≥0 S
n(ϕ). We call S(A)

the symmetric algebra of A.

Note that Sn is not additive for n ≥ 2. E.g. consider the Λ-modules
Λ and Λ2. If Sn was additive then Sn(Λ2) ∼= Sn(Λ)2 but Sn(Λ) ∼= Λ and
Sn(Λ2) ∼= Λn+1 and thus Sn is not additve. Since Λ and Λ2 are free modules
Theorem 3.3.1 implies that L0S

n is not additive for n ≥ 2. Hence LnF is
generally non-additive for a non-additive functor F : ModΛ →ModΛ′ .
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In the first example we wish to calculate L0S(Z/p) and L1S(Z/p) where
Z/p is a Z/p2-module and p is a prime number. This is a nice example of
how to apply the left derived functor of a non-additive functor in general.
Note that if S : ModΛ → ModΛ then there is a canonical isomorphism
S(
⊕n

i=1 Λ) ∼= Λ[x1, . . . , xn] by mapping each basis element to a variable.

Example 3.3.4. Let Λ := Z/p2 for some prime number p. We wish to

calculate L0S(Z/p) and L1S(Z/p). Note that P• : · · · → Λ
·p→ Λ

·p→ Λ is a
projective resolution of Z/p. Now we get that (SΓP•)0 = S(Λ) ∼= Λ[x] and
that (SΓP•)1 = S(Λs0 ⊕ Λid) ∼= Λ[x, y] where x corresponds to s0 and y to
id. Since Ss0(xn) = xn for n ≥ 0 we get that

(NSΓP•)1 =
Λ[x, y]

ImSs0
=

Λ[x, y]

Λ[x]
= yΛ[x, y].

Note that the quotient above is not zero since Λ[x, y] is a Λ-module and not
an algebra. Now since Sd0(y) = 0, Sd1(x) = x, Sd1(y) = −px we get that

∂1(xnym) = (Sd0 − Sd1)(xnym) = −(−p)mxn+m

where we used that m ≥ 1. Hence Im∂1 = pxΛ[x] and thus

L0S(Z/p) =
Λ[x]

pxΛ[x]
∼= Λ⊕ x(Z/p)[x] ∼= S(Z/p)

Our next goal is to find ker ∂1. We consider the polynomials which map
to polynomials of the form axn+1. These are the polynomials of the form
y
∑n

i=0 aix
n−iyi. We get that

∂1

(
y

n∑
i=0

aix
n−iyi

)
= p

n∑
i=0

ai(−p)ixn+1 = pa0x
n+1

and thus y
∑n

i=0 aix
n−iyi ∈ ker ∂1 if and only if a0 ∈ Z/p. Hence ker ∂1

∼=
(y2Λ[x, y])⊕

⊕
n≥1 Z/p by the isomorphism ϕ given by

ϕ(axnym) =

{
(axnym, 0) if m > 1
(0, ιna) if m = 1

Now (SΓP•)2 = S(Λs0s0 ⊕ Λs0 ⊕ Λs1 ⊕ Λid) ∼= Λ[x, y, z, w] where x cor-
responds s0s0, y to s0, z to s1 and w to id. We get that Ss0(xnym) = xnym

and Ss1(xnym) = xnzm. Hence ImSs0 + ImSs1 = Λ[x, y] + Λ[x, z] and thus

(NSΓP•)2 =
Λ[x, y, z, w]

Λ[x, y] + Λ[x, z]
∼= wΛ[x, y, z, w]⊕ yzΛ[x, y, z].
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Now for m ≥ 1

∂2(xkylznwm) = (Sd0 − Sd1 + Sd2)(xkylznwm) = (−1)lpl+mxk+lyn+m

since Sd0w = Sd1w = 0 and thus ∂2(wΛ[x, y, z, w]) = pyΛ[x, y]. Now for
l, n ≥ 1 we get

∂2(xkylzn) = −xkyl+n + (−p)lxk+lyn

where we used that Sd0z = 0, Sd1y = Sd1z = y, Sd2y = −px and Sd2z = y.
It can now be verified that that

Im∂2 = y((y − px)Λ[x, y] + pΛ[x, y]) = ker ∂1

and thus L0S(Z/p) = 0.

Our next goal is to give a generalized form of how to calculate L0S
2(A)

for any Λ-module A.

Example 3.3.5. Let A be a Λ-module and P• : · · ·P2 → P1 → P0 be a
projective resolution of A and denote the differentials ∂′, as not to confuse
these with the differentials ∂ in NS2ΓP•. Then (ΓP•)0 = P0 and thus
(NS2ΓP•)0 = S2(P0). Note that since (S2d0 − S2d1)(ImS2s0) = 0 we
get that Im∂1 = Im(S2d0 − S2d1) by Theorem 2.3.2, where S2d0 − S2d1 :
(S2ΓP•)1 = ((P1,id ⊕ P0,s0)⊗2/ ∼) → (S2ΓP•)0 = S2(P0). Here we indexed
the modules in (ΓP•)1 by the surjective morphism [1] � [m] to which they
correspond. Let (a1, a2)⊗ (b1, b2) ∈ (P1,id ⊕ P0,s0)⊗2. Then

(S2d0 − S2d1)[(a1, a2)⊗ (b1, b2)]

= [d0(a1, a2)⊗ d0(b1, b2)]− [d1(a1, a2)⊗ d1(b1, b2)]

= [a2 ⊗ b2]− [(a2 − ∂′(a1))⊗ (b2 − ∂′(b1))]

= [(a2 − ∂′(a1)⊗ ∂′(b1)] + [b2 ⊗ ∂′(a1)]

Clearly Im(S2d0 − S2d1) = (P0 ⊗Λ Im∂′1)/ ∼ and hence

L0S
2(A) =

S2P0

Im(S2d0 − S2d1)
=

(P0 ⊗Λ P0)/ ∼
(P0 ⊗Λ Im∂′1)/ ∼

Example 3.3.5 gives us an easy way of calculating L0S
2(A) for some

Λ-module A. Our final example shows us how we can use this in a simple
matter.
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Example 3.3.6. Let k be a field and Λ := k[x, y]. We will use Example
3.3.5 to show that L0S

2(k) = k and L0S
2(k2) = k3, where k := Λ/(xΛ+yΛ).

Let P• : · · · → 0 → Λ → Λ2 → Λ be the projective resolution of k where
∂1(a, b) = ax+ bx. Then

L0S
2(k) =

(Λ⊗Λ Λ)/ ∼
(Λ⊗Λ (xΛ + yΛ))/ ∼

∼=
Λ

xΛ + yΛ
= k.

Let Q• = P•⊕P• : · · · → 0→ Λ2 → Λ4 → Λ2 which is a projective resolution
of k2. Using the canonical isomorphism (Λ2 ⊗Λ Λ2)/ ∼∼= Λ3 one can easily
verify that (Λ2 ⊗Λ (xΛ + yΛ))/ ∼∼= (xΛ + yΛ)3. Hence

L0S
2(k2) =

(Λ2 ⊗Λ Λ2)/ ∼
(Λ2 ⊗Λ (xΛ + yΛ)2)/ ∼

∼=
Λ3

(xΛ + yΛ)3
= k3

Let ∆ : A→ A2 be given by ∆(a) = (a, a) for any Λ-module A. We wish to
show that for ∆ : k → k2 we have L0S

2∆ = {id, 2id, id}. The diagram

P•
∼ // //

∆•
��

k

∆
��

Q•
∼ // // k2

is commutative, where ∆• is the morphism which is ∆ : Pn → Pn⊕Pn = Qn
in degree n. Now

(S2Γ∆)0 = ∆⊗∆ : S2(Λ) = Λ→ S2(Λ2) = Λ3

We now get that (∆⊗∆)(a) = (a, 2a, a) and thus L0S
2∆ : k → k3 is given

by L0S
2∆(a) = (a, 2a, a) which is that L0S

2∆ = {id, 2id, id}.
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