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Abstract

In classical homological algebra one defines the derived functor of an additive
covariant functor F : Mody — Mody,. Our goal is to generalize this
such that F' need not be additive. In order to do this we introduce the
ordinal number category A, the category of simplicial objects s€ induced
by the category %, and we define the functors N : sMody — Chﬂ\r and
r: Chﬁ — sModp which form an equivalence of categories called the Dold-
Kan correspondence. We will use these functors to give a new definition of
the derived functor of F’ which does not require F' to be additive, and which
coincides with the classical definition if F' is additive. In the end we give
some examples in which we apply the left derived functor of a non-additive
functor.

Resumé

I klassisk homologisk algebra definerer man den differentierede funktor af en
additiv kovariant funktor F' : Modp — Mody:. Vores mal er at generalisere
dette, saledes at F' ikke behgver at veere additiv. For at gere dette introdu-
cerer vi ordinaltal-kategorien A, kategorien af simplicielle objekter s% indu-
ceret af en kategori %, og vi definerer funktorerne N : sMody — Chﬁ
og I' : Chﬁ — sModjy, hvilke udger en sekvivalens af kategorier kaldet
Dold-Kan korrespondancen. Vi vil benytte disse funktorer til at give en
ny definition af den differentierede funktor af F', som ikke kraever, at I er
additiv, og som stemmer overens med den klassiske definition, hvis F' er
additiv. Til sidst giver vi nogle eksempler, hvor vi anvender den venstre
differentierede funktor af en ikke-additiv funktor.
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1 Introduction and Homological Algebra

1.1 Introduction

This project is inspired by the article [2], written by Albrecht Dold and
Dieter Puppe in 1958. In the article they define a projective simplicial
resolution of a A-module (A being a ring) and use the functor N : sModp —
Chi‘, which we define in Section 2.3, to define derived functors of non-
additive functors. We will go about this in a different way. We define the
functor T" : Chﬁ — sMod, which together with N forms an equivalence
of categories, the so called Dold-Kan correspondence (see Section 2.3), and
which preserve homotopy (see Section 3.1). By using the fact that homotopy
in sMod, does not depend on additivity, when applying a non-additive
functor to a simplicial A-module, we still preserve homotopy. These facts
combined allow us to define the derived functor of a non-additive functor.

The first main result of this project is Theorem 2.3.4, the Dold-Kan
correspondence. In [4] they give a sketch of the proof and in [8] they call it
an easy consequence. Section 2 is dedicated to defining this theorem, and
giving a detailed proof.

The other main result of this project is Theorem 3.2.4 which shows that
Definition 3.2.3 is a generalization of the classical derived functors studied
in classical homological algebra. Section 3 is dedicated to showing that the
Dold-Kan correspondence preserves homotopy, and applying this in order to
give a generalized definition of derived functors. In the end we will give some
examples of how to use the left derived functor of a non-additive functor.

1.2 Chain Complexes and Classical Derived Functors

Classical homological algebra deals with chain complexes of modules and
derived functors of additive functors. We start out by recalling the relevant
definitions and important theorems which can be found in [6]. In the follow-
ing A will denote a unital ring (with non-zero unit), and we will be working
over (left or right) A-modules.

Definition 1.2.1. A graded A-module C, a collection (C,)nez of A-modules.
A map f of degree d between two graded modules Cy and D,, written f :
Ce — D,, is a collection of homomorphisms (f,)nez such that f, : C,, —
Dy 1q. If f has degree d we write |f| = d.

A chain complex C, is a graded A-module together with a map 0 : Cy —
C, of degree —1 called the differential, such that 9,410, = 0. We call
[ : Ce = Do a morphism if |f| = 0 and f commutes with differentials, i.e.



if f,0n+1 = Onfn. Note that here 0,41 is a differential in Cy and 0, is a
differential in D,.

The category Ch™ is the category in which chain complexes of A-modules
are the objects and the morphisms are morphisms between chain complexes.
Furthermore if Cy is a chain complex where C,, = 0 for n < 0, we call C, a
non-negative chain complex. We let Chﬁ denote the subcategory of Ch” in
which the objects are non-negative chain complexes of A-modules.

With these basic definitions in mind we can define what homology is.
From now on Cy and D, are chain complexes unless other is notet.

Definition 1.2.2. The n’th homology module of C, is the module H,,(Cs) =
ker 0y, /Im0y4+1 and H(C,) is the graded A-module (Hy,(Ce))pnez. If f: Co —
D, is a morphism of chain complexes let H(f) = (Hn(f))nez : H(Cs) —
H(D,) be the induced map between graded A-modules of degree 0. This
makes H(—) into a functor. Moreover f is called a quasi-isomorphism,
written f : Ae = B, if H,(f) : Hy(As) — H,(B,) is an isomorphism for

every n.

Definition 1.2.3. Let f,g: Cy — Do be morphisms. We say that f and g
are homotopic, written f =~ g, if there exists a map > : Cq — D, of degree
+1 such that

fn — gn = 8nJrlzn + X,-10n.

Moreover we call ¥ a homotopy from f to g and write X : f ~ g.

Two chain complexes C,, D, are said to be homotopy equivalent if there
exist morphisms f : Cq — D,, g : Dy — C4 such that gf ~ idc, and fg ~
idp,. Moreover the morphism f (and g) is called a homotopy equivalence.

It is now time to recall some important theorems from homological al-
gebra. These all play an important part in defining derived functors.

Theorem 1.2.4. Let f,g: Co — Do be morphisms. If f ~ g then H(f) =
H(g) : H(Cs) — H(Ds,).

Corollary 1.2.5. If Cy and Do are homotopy equivalent and f : Co — Ds
1s a homotopy equivalence, then f is a quasi-isomorphism.

Theorem 1.2.6. The homotopy relation "~" is an equivalence relation in
Ch".

Before stating the next theorem recall that if F': Mody — Mody: is
a (covariant) functor of modules and C, is a chain complex, then there is



an induced chain complex F'C, given by the collection of modules (FC,)
and the differentials F'9, : FC, — FC,_1. Moreover if f : Coy — D, is
a morphism then F(f) is the induced morphism where F(f), = F(f) :
FC, — FD,.

Theorem 1.2.7. If f ~ g : Cq — Do and if F' : Mody — Mody: is an
additive functor, then H(Ff) = H(Fg) : H(FC,) — H(FD,)

Definition 1.2.8. Let C, be a non-negative chain complex. Then C, is
called projective if C,, is projective for all n > 0, and C, is called acyclic if
H,(Co) =0forn > 1. A projective and acyclic complex P, is called a projec-
tive resolution of a A-module A if there exists an isomorphism Ho(P,) = A.
Similarly we define a free resolution.

Theorem 1.2.9. Let A be a A-module. Then A has a projective resolution.
Moreover two rojective resolutions of A are homotopy equivalent.

The next theorem is a generalization of [6] Theorem IV.4.1. A proof of
this can be found in [7] Lemma 2.3.6.

Theorem 1.2.10. Let P, be a non-negative projective chain complex. Then
every diagram
Ce
I, ”Niﬁ
e
7/

P, i> D,
where Cy and Do are chain complezes, w is a surjective quasi-isomorphism
and g is a morphism, there exists a morphism f : Py — C, such that wf = g.
Furthermore f is unique up to homotopy.

Definition 1.2.11. Let F : Modyx — Modys be a functor. Then F is
said to be additive if for any A-modules A and B and any homomorphisms
o, : A — B then F(p+ ) = Fp+ Fi.

Theorem 1.2.12. Let F' : Mody — Mody: be a covariant functor. Then F
1s additive if and only if for any A-modules Ay, ..., A, the homomorphism
(Fra)iey « @i, FA; — F(@PL, Ai) is an isomorphism, where 14, is the
inclusion map A; — @ A;.

Definition 1.2.13 (Classical Left Derived Functors). Let F' : Mody —
Mody/ be an additive (covariant) functor and define the n’th left derived
functor of F, denoted L,F, in the following way: let A be a A-module



and P, a projective resolution of A. Then let L,F(A) = H,F(P,). Let
¢ € Homp(A,B) and P, and Q. be projective resolutions of A and B
respectively. By considering A and B as chain complexes A, and B, where
Ag = A and A, = 0 for n # 0 and correspondingly for B,, Theorem 1.2.10
implies the existence of a morphism f, : P, — Qe which is unique up to
homotopy. Then let L,F(¢) = H,F(f,). This makes L,F : Mody —
Mod,: into a (covariant) functor.

Note that due to the above theorems L, F(A) does not depend (up to
isomorphism) on the choice of projective resolution P,, and L,F(y) does
not depend (up to isomorphism) on the choice of projective resolutions P,
and (. or of the choice of f, : Py — Q.

Every definition and theorem above can be dualized. This gives rise to
the n’th right derived functor R"F : Mod, — Mod,: of an additive functor
F : Modp — Modp which is the dual definition of the left derived functor.

One of our goals in this project is to generalize the definition of left
(and right) derived functors such that it is not necessary to assume that
F' is additive. But in order to do this we must introduce the Dold-Kan
correspondence and find some nice properties of this correspondence.

2 The Dold-Kan Correspondence

2.1 The Ordinal Number Category

The Dold-Kan correspondence is an equivalence of categories between non-
negative chain complexes and simplicial objects. In order to understand
the Dold-Kan correspondence one must understand simplicial objects, and
in order to understand simplicial objects one must understand the ordinal
number category. In this section we define the ordinal number category and
define the morphisms cofaces and codegeneracies. We formulate the cosim-
plicial identities and prove that every morphism has a unique factorization
of an injective and a surjective morphism, called the epi-monic factorization.

Definition 2.1.1. The ordinal number category A is the category in which
the objects are the totally ordered sets [n] = ({0,1,...,n}, <) for any non-
negative integer n, and the morphisms are the weakly order-preserving maps
¢ : [n] = [m]. Moreover the cofaces are the morphisms d' : [n — 1] — [n],
0 <¢ < n given by

i )k for k < i
d(k)_{ kE+1 fork>i



and the codegeneracies are the morphisms s’ : [n+1] — [n], 0 < i < n given

by
i )k for k <1
Swy_{klka>i

Remark 2.1.2. Note that the coface d* : [n — 1] — [n] is the injective mor-
phism which ”skips” i in [n], and the codegeneracy s® : [n + 1] — [n] is
the surjective morphism where s'(i) = s'(i + 1) = i. Furthermore for any
injective morphism ¢ : [n] = [m] where ¢(k) = iy it can easily be verified
that o = d™d™!...dintligin—1. .. giotlgio=l... q1qY if n < m and ¢ = id if
n = m. Thus any injective morphism which is not the identity is a composite
of cofaces.

Theorem 2.1.3. Any morphism ¢ : [n] — [m] can be written as a composite
of cofaces and codegeneracies.

Proof. We prove this by induction on n. Any morphism ¢ : [0] — [m] is
injective for any m and thus a composite of cofaces or the identity by Remark
2.1.2. Assume that the assertion is true for n and let ¢ : [n + 1] — [m].
If ¢ is injective the result follows from Remark 2.1.2. If ¢ is not injective
there exists a k € [n + 1] such that (k) = ¢(k 4+ 1). Define the morphism
¢ [n] = [m] by ¢'(i) = (i) for i < k and ¢'(i) = (i + 1) for i > k.
Then ¢ = ¢'s¥ and since ¢’ can be written as a composite of cofaces and
codegeneracies, so can ¢. 0

Due to this theorem whenever we look at something related to the mor-
phisms of A it suffices to look at the cofaces and codegeneracies. This will
be very useful later on. The following lemma, the cosimplicial identities,
will be used often.

Lemma 2.1.4 (The Cosimplicial Identities). In the ordinal number category
A the following identities called the cosimplicial identities hold:

dd = did! ifi <j
sidh = disi—1 ifi<j
sld) =id = sId/ !

sidh = d'—tsl ifi>75+1
sist = sisitl ifi<j

Proof. We only prove the first identity. The rest are proved in a similar
facion.



Let i < j and k € [n]. Then

N i b k if k< i
WW%%=W<{k+1 Tk>?}): k+1 ifi<kk+l<j
Hh=t k+2 ifj<k+1
and
. . k if k<
mm*a»:f<{z+1 §Z§3:1}>: k+1l ifi<kk+l<j
aE=J k+2 ifj<k41
Hence d’d’ = d'd’~' if i < j. O

The following theorem gives a unique way of writing a surjective mor-
phism as a composite of codegeneracies. This will be used frequently later
on.

Theorem 2.1.5. Any surjective morphism o : [n] — [m| where o # id
can be written as a composite of codegeneracies o = 71872 ... gin—m qith
m > j1 > -+ > jp—m > 0. Furthermore this form is unique for every
surjective morphism.

Proof. We prove this by induction on n. For n = 1 the only surjective
morphism (which is not id) is s’. Assume that the assertion is true for some
n and let m < n 4+ 1 and a surjective map o : [n + 1] — [m] be given. Let
j € [n+ 1] be the least element where o(j) = o(j + 1). Then there exists
a surjective morphism o’ : [n] — [m] such that o = o’s?. If o’ = id we are
done. Hence we can assume that m < n. Then by assumption there exist
(unique) m > j1 > -+ > jp_m > 0 such that o/ = s/t ... s/n-m,  Assume
that 7 > jn—m. Then

st (Jn-m +1) = ghnm (Jn-m +1) = sinom (Jn-m) = sinm s/ (Jn—m)

and thus o(jp—m) = 0(jn—m + 1), which contadicts the minimality of j.
Hence j < jn—m.

Next assume that m > 57 > -+ > jpom = 0, m > 43 > -
in—m > 0 such that ¢ = s/t ... gln-m = gl ... gln—m  Agsume that j,_m
Iy« ka1l = Gkt1, ik < ix for some k. Then s7% - .. sin=m (jp+n—m—Fk)
gk and s% - .. stn-m (jr4n—m—k) = s%(jp+1) = jr+1. Since s/ fixes j, for
j > jr and fixes jp +1 for j > i), we get that s/t --- s/n-m(jp+n—m—k) = jp
and s% .- sn=m (5. +n —m — k) = jp + 1 which is a contradiction. Hence
the composite of codegeneracies is unique. O

v



Another important fact in the ordinal number category is that every mor-
phism has a unique factorization of an injective and a surjective morphism.
This is the epi-monic factorization.

Theorem 2.1.6 (The Epi-monic Factorization). Every morphism ¢ : [n] —
[m] has a unique factorization ¢ = po where p is injective and o is surjec-
tive. This factorization is called the epi-monic factorization of ¢.

Proof. Theorem 2.1.3 and the cosimplicial identities imply the existence of
such a factorization. Let p; : [k;] — [m] be injective and o; : [n] — [k]
be surjective for ¢ = 1,2, such that ¢ = pj01 = pg0o9. Since o; maps
onto [k;] and p; maps to k; + 1 distinct elements in [m], ¢ must map to
k1 4+ 1 = ko 4 1 distinct elements, and since puq, po are injective with equal
image p1 = pg := p. For j € [n] we get po1(j) = po2(y) which implies that
01(j) = o2(j) since p is injective. Hence o1 = 09. O

Remark 2.1.7. We can use the first cosimplicial identity to reorder any com-
position of cofaces to be of the form in Remark 2.1.2 and the last cosimplicial
identity to reorder any composition of codegeneracies to be of the form in
Theorem 2.1.5. The proof of this is easily verified and is therefor omitted.
This will be useful in the next section when showing that something is in
fact a simplicial object.

2.2 Simplicial Objects

In this section we want to apply our knowledge of the ordinal number cate-
gory to define simplicial objects in a category %, which are a generalization
of non-negative chain complexes, and define the category s% of simplicial
objects in 4. Then we will introduce the simplicial identities and define
what homotopy is on a simplicial category.

Definition 2.2.1. A simplicial object in a category % is a contravariant
functor A from A to ¥. The category s% is the category of simplicial
objects in ¥ with morphisms being the natural transformations between the
simplicial objects. Moreover we call A,, := A([n]) the n-simplex, d; := A(d”)
the faces and s; := A(s?) the degeneracies of A. In general if ¢ is a morphism
in A we denote A(p) by ¢*.

Lemma 2.2.2 (The Simplicial Identities). For any simplicial object A the
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following identities called the simplicial identities hold:

dz‘dj = j—ldi ifi<yg
dl'Sj = ijldi ZfZ < ]
dij =1id = dj+18j
disj = deifl ifi>j5+1
$iSj = Sj+18i ifi <j
Proof. Follows from Lemma 2.1.4. O

Remark 2.2.3. Note that the simplicial identities together with Theorem
2.1.6 and Remark 2.1.7 imply that in order to check that a collection of
n-simplices with faces and degeneracies is in fact a simplicial object, it is
enough to check that the faces and degeneracies respect the simplicial identi-
ties. Furthermore when checking that a map f : A — B isin fact a morphism
of simplicial objects, one should check that f = (f, : A, — Bp)n>0 com-
mutes with faces and degeneracies, i.e. that f,d; = d;fn+1 and fr118; = sifn
for every n.

Just as in the category of chain complexes we can define homotopy in
a simplicial category. But the definition of homotopy in the category of
chain complexes uses the additivity of the category which we do not have.
Therefor we must go about this in a different way.

Definition 2.2.4. Let € be some category and let f,g : A — B be mor-
phisms in s€. We say that f is homotopic to g, written f ~ g, if there exist
morphisms A : A, = Byy1, 0 <4 <nin ¢ such that

doho = fn
dn+lhn = Gn
dihj = hjfldi ifi <y
djyrhjrr = djtah;
dih]’ = hjdi,1 ifi>j5+1
S,;hj = hj_;_lsi if ¢ S]
Sih]’ = hjsi_l if 4 > 7.

Furthermore we call h a homotopy from f to g and write h : f ~ g.

That this definition of homotopy and the definition of homotopy on chain
complexes are the same, will be proven in Section 3.1.

Remark 2.2.5. Let Set denote the category of sets and A[n] denote the n’th
standard simplex, i.e. the functor Homa(—,[n]) : A — Set. Homotopy in
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sSet is defined such that f,g: X — Y are homotopic, f ~ g, if the diagram

X x A0 =2 X
f
h

o

X x A[1]

; 0
idXxd T g

X x A0 =2 X

Y

commutes for some morphism % (see [4] Section 1.6). It turns out that this
definition is equivalent to Definition 2.2.4. The advantage of our definition
is that it works on any category s%.

Note that in contrary to homotopy on chain complexes, the homotopy
” on an arbitrary category s% need not be an equivalence rela-
tion. But it can be shown that "~ is an equivalence relation if the target
of the morphisms are Kan Complexes (see [8], §6). Since simplicial modules
are Kan Complexes this implies that "~" is an equivalence relation on the
category of simplicial modules. In Theorem 3.1.4 we go about this in an-
other way, and show that ”~" is an equivalence relation on the category of
simplicial modules using the Dold-Kan correspondence.

relation 7~

Definition 2.2.6. Let € be some category and let A, B be objects in s% .
We say that A and B are homotopic equivalent if there exist morphisms
f:A— Bandg:B — Asuch that fg ~ids and gf ~ idp.

2.3 The Dold-Kan Correspondence

As mentioned in the beginning of section 2.2, simplicial objects are a gen-
eralization of non-negative chain complex. This is because of the Dold-Kan
correspondence which gives an equivalence between the category of non-
negative chain complexes and the category of simplicial modules. In this
section we define the functors N : sMody — Chﬂ\r and I': Chﬂ\r — sModj
and show that these induce an equivalence of categories, the Dold-Kan cor-
respondence.

In the following A will denote a unital ring (with non-zero unit), Modx
will denote the category of (left or right) A-modules and Chf\Ir will denote
the category of non-negative chain complexes of A-modules. Furthermore
we call the objects in sMody for simplicial A-modules.

12



Definition 2.3.1. Let the functor N : sMody — Chﬁ‘r be defined in the
following way: for a simplicial A-module A let

n—1
N(A) = () kerd; € Ap.
i=0
with differentials 0, = (—1)"d,, : N(A), — N(A),—1. For a morphism
f:+A— Bwelet N(f), = fn: N(A), — N(B),, ie. f, restricted
to N(A),. The non-negative chain complex N(A) is called the normalized
compler and is denoted N A.

It might not be clear that N is a functor but this is easily shown. By
the simplicial identities d;d,, = d,_1d; and thus 9, : NA, - NA,_1is a
well-defined and 90 = 0. Hence N A is a non-negative chain complex of A-
modules. Let f: A — B be a morphism in sMody. Then for any x € NA,
and i < n we get d;fn(x) = fn_1d;(x) = 0 and hence N(f),, is well-defined.
Furthermore

Ofn(x) = (=1)"dnfn(2) = (=1)" fn1dn(2) = frn10(z)

and hence N f is a morphism. If f : A — B and g : B — C then clearly
N(gf) = N(g)N(f). Moreover N(id) = id and thus N : sModp — Chﬁ is
a functor.

Now define the Moore complex A, of any simplicial A-module A as the
chain complex of A-modules Aq : -+ — Ay — A7 — Ag with differentials

n

On = (—1)id;: Ay — Ay y
=0

That 90 = 0 follows from the simplicial identities. Let

n—1

DA, = Zlm(si) CA,.
i=0

Note that for x € A,_1 the simplicial identities imply that

n

Osj(z) = Z(—l)idisj (z)

=0
Jj—1 n

= D (—Vispndi() + > (=1)'s;dip1(z) € DA,
i=0 i=j+2

13



and thus we get a chain complex Aq/DA : -+ — A;/DA; — Ayg/DAy
where the differentials are the induced homomorphisms 0 : A,/DA, —
Ap—1/DA,_1. The following theorem shows that this chain complex is iso-
morphic to the normalized complex NA and thus we need not distinguish
between these.

Theorem 2.3.2. For any simplicial A-module A the composite
NA— A, 5 A,/DA

(where 7 is the canonical projection) is an isomorphism of chain complexes.

Proof. Let

J
NjAp = (\ker(d;) € Ap,  DjAn:=) Im(s;) C A,
=0 =0

and let ¢; denote the composite N;A, — A, 5 A, /DjA,. We wish to
show that ¢; is an isomorphism by induction on j and n. Let x € A,.
Then [z — sodo(x)] = [z] € A,/Im(sg) and x — dpso(z) € ker(dp) since
do(z — sodo(2)) = do(z) — dosodo(z) = 0 and thus ¢o(z — sodo(z)) = [z].
Hence ¢ is surjective. Let z € ker(¢p). Then there exists y € A,_;
such that so(y) = x and we get that 0 = do(z) = dpso(y) = y. Hence
x = 59(y) = 0 and thus ¢y is injective.

Given n > j, assume that ¢y : Ny A, — A /Dy Ay, is an isomorphism
for every k < j where k < m < n. Consider the diagrams

NjflAn(—> A, T An/Dj—lAn NjflAn i> An/Dj—lAn

| o

N; A, A, —"> A,/D;A, N;A, ’> An/DjA,

Since both squares in the first diagram commute, so does the second di-
agram, since this is the composite square in the first diagram. Let x €
Ap,. Due to the second diagram above there exists y € N;_1A4, such
that 7¢;_1(y) = [z] € An/D;jA,. As before y — s;d;(y) € N;jA, and
iy — s;d;(y)) = [y — sjd;j(y)] = [z]. Hence ¢; is surjective.

It remains to show that ¢; is injective. For x € N;_1A,_1 we get
disj(x) = sj—1d;(z) = 0 for i < j and thus s; : Nj_1A,—1 = N;j_1 A, is well-
defined. Furthermore s;s; = s;5;_1 fori < jand thuss; : A,—1/Dj_14p—1 —

14



An/Dj_1 A, is well-defined. Hence we get the following diagram

Sj

Nj—lAn—l Nj_lAn <—)NjAn

Nl%‘—l NJ/(bj—l \Ld)j

S5

An—l/Dj—lAn—l - An/Dj—lAn s An/DjAn

which has commutative squares. Let x € A, such that 7([z]) = [0]. Then
there exist zg,...,x; € Ap—1 such that © = >~7_ s;(2;). Hence

sj([x;]) = [sj(z;)] =

ZSZ({L'Z)] = [x] S An/Dj_lAn
1=0

and thus ker 7 C s;(A,—1/Dj_1An—1). Now let z € N; A, such that ¢;(z) =
0. Using that the squares in the above diagram commute, that the ¢;_;
are isomorphisms and that kerm C s;(A4,-1/Dj_1An—1) we can find a y €
Nj_1A,_1 such that sj(y) = z. Hence 0 = d;j(z) = d;s;(y) = y and thus
z=s;(y)=0.

Hence ¢, is an isomorphism and since (—1)"d,| Na, = S (—1)id| Na, it
follows that ¢,, commutes with differentials for every n. Hence the composite
NA<—s A, 5 As/DA is an isomorphism. O

Definition 2.3.3. Let I' : Ch/}r — sMody be the functor defined in the
following way: let C, be a non-negative chain complex of A-modules. Define

I(Coni= B Cm
o:[n]—[m]
The face d; : I'(Ce)r, = I'(Ce)n—1 is defined in the following way: let o :
[n] — [m] and pog be the epi-monic factorization of od®. On the coordinate
corresponding to o we define

Loy () if p=1id
di(z) =< 0 ifu=d,j<m

(=)™, 0(z) if p=d™
where ¢4, is the inclusion map into the coordinate corresponding to oy. The
degeneracy s; : I'(Ce)pn, — I'(Co)pnt1 is defined on the coordinate correspond-
ing to o by

Sj(l') = lgsi (1‘)
For a morphism of chain complexes f = (f,) : Co — Do we define I'(f)

by F(f)n = <Lﬂfm>a:[n}—»[m]'
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From this point on we let ¢, : Cp, — I'(Co)n, = @ Cy, for o : [n] - [m]
denote the inclusion map into the coordinate corresponding to o. Note
that it is not at all clear why I' is a functor. In order to make sure that I is
indeed a functor we need to show that I'(C,) is in fact a simplicial A-module,
i.e. by Remark 2.2.3 to show that the faces and degeneracies respect the
simplicial identities, that I'(f) commutes with the faces and degeneracies,
that T'(¢gf) = T'(g)T'(f) and that I'(id) = id.

We will only show that the first simplicial identity holds. The rest is
more or less similar (and easier) to prove. Given o : [n] — [m] and i < j,
let pio1 = od?, 202 = o1d’, U303 = od' and Hhaoy = o3d’~! be the epi-
monic factorizations. We wish to show that d;d; and d;_1d; are equal on
the coordinate corresponding to o. Note that ujpus = usps and o9 = o4 due
to the uniqueness of the epi-monic factorization.

If ppe = id then py = id and po = id because of the uniqueness
of the epi-monic factorization. Similarly pus = id and pg4 = id and thus
did;j(z) = toy(z) and dj_1d;(z) = 1o, (T) = gy ().

If pipe = d¥ for some k < m then either w1 =td and pg = dF or H1 = dk
and po = id by the uniqueness of the epi-monic factorization. But the same
holds for p3 and p4 and thus if £ < m then d;d;(z) = dj_1d;(xz) = 0, and if
k =m then d;d;(x) = dj_1d;(z) = (=1)"14,0(x).

Assume that pipo : [m — 2] — [m]. Then py = d* and s = d' for some
k,l. The only p; and pp for which d;d;(x) is not immediately 0 (by the
definition of the faces) is if y; = d™ and py = d™!. But then

didj(xz) = (=1)"djte, 0(x) = —14,00(z) = 0.

Similarly we get that d;j_1d;(z) = 0 and thus d;d; = d;_1d;.

Hence I'(C,) is a simplicial A-module. We will now show that T'(f)
commutes with the faces and degeneracies. On the coordinate corresponding
to o : [n] = [m] we get that

L(Int18i(x) = T(ntitosi (2) = tosi fm(2) = Site fm(x) = 8il'(f)n(2)

and hence I'(f) commutes with degeneracies. Let pog be the epi-monic
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factorization of od’. On the coordinate corresponding to o we get

L(f)n-1tay (x) if p=id
D(f)p—1di(z) = 0 if p=d" k<m
(=D)"C(fIn-1teo0(x) if p=d™
Laofm(x) if p=id
= 0 if p=d" k<m
(D)™t Dfm(a)  ifp—dm
diLcrfm(x>
= &il(f)n().

Hence I'(f) commutes with faces. Let f : Co — Do and g : Dy — FE,.

Then F(gf)n = <Lagmfm> = (Lagm><bc7fm> = F(g)nr(f)n‘ Since F(ld)n =
(Lg) = id it follows that T' is a functor from Ch{\F to sMody. We now have
enough definitions to state the Dold-Kan correspondence.

Theorem 2.3.4 (The Dold-Kan Correspondence). The functors N and T’
form an equivalence of the categories Chﬁ and sMod, .

The proof of this equivalence is rather long and complicated and thus
the rest of this section is devoted to proving this theorem.

Theorem 2.3.5. Any non-negative chain complex Co of A-modules is iso-
morphic to NT(Cs) in ChY.

Proof. Let Co be a non-negative chain complex of A-modules. We wish to
show that I'(Ce)e/DI'(C,) is isomorphic to C, (here I'(C,)s denotes the
Moore complex of I'(C,)). First note that for any n

n—1 n—1
DF(C')TL = Z Im(sl) = Z Im (<L05i>0:[n—1}—»[m})
=0 =0

For any surjective morphism o : [n] — [m] with m # n, Theorem 2.1.5
implies that there exist og : [n — 1] — [m] and i € {0,...,m} such that
o = 0ps'. Hence Do jn)—fm)mpn Cm € DI'(Ca)n and since os' # id for any
o:[n—1] = [m] and i € {0,...,m} we get DI'(Ce)n C Dy.n)-fmmen Cm-

Hence o o
o:[n]—[m] ~¥m
['(Ce)n/DI'(Co)p =
@a:[n]—»[m],m;én Cm

= Ch.
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It remains to show that the diagram

D(Ca)n/DT(C)y —2 T(Ca)p—1/DI(Ca)n1

; -

Cn 9 Cnf 1

commutes. Consider the Moore complex I'(C,)e which has differentials of
the form Y1 ((—=1)'d; : T(Cq)p, — T'(Ce)n—1. Let x € Cy, and & € T(Ch),,
be the element which is x on the coordinate corresponding to id and zero
everywhere else. Then by the construction of d; we get

D (F1)'di(@) = (-1)"(=1)"tiad(x) = tiad()

1=0

which implies that the above diagram commutes. Hence by Theorem 2.3.2
we get that
NT(C,) 2 T(Cy)e/DT(Cy) = C,, in Ch?.

Corollary 2.3.6. The functors NI' and IChj‘_ are naturally isomorphic.

Proof. For every non-negative chain complex C, let ¢“* be the composite
of
NT(C,y) = T(Ca)e = T(Ca)a/DI(Cy) = Ci.

Theorem 2.3.2 and the proof of Theorem 2.3.5 imply that ¢©* is an isomor-
phism. Let f : Ce — Do be a morphism. If the squares in the diagram

NT(Cy)—>T(Cy)e —>T(C4)e/DT(Cy) — C,

Nrml I/‘ff/)l lf

NT(Dy) = T'(Da)e ——=T'(Da)e/DI'(Ds) — Ds

IR

commute, then ¢ is a natural isomorphism of NT' and IChﬁ‘r' Here I'(f) is

—

viewed as a morphism between the Moore complexes, and I'( f) is the induced
morphism between quotients, which is well-defined since I'(f) commutes
with degeneracies. For x € NT'(C,),, we get that




where the last equality follows since NT'(f), =T’ Hence the

(Dalnrca).,
first square commutes. Let (z,) € I'(Ce)n. ThenI'(f), ([(z5)]) = [(tofm)(2s)]
which by the proof of Theorem 2.3.5 is just id* f,(x;q) = fn(xiq) when
mapped to D,,. Since [(z,)] is mapped to x;q in C,, it follows that the sec-

ond square commutes. Hence NI' and ICh¢ are naturally isomorphic. [

Our next goal is to prove that ''N(A) = A for any simplicial A-module
A. In order to do this we will require some lemmas about the ordinal number
category.

Lemma 2.3.7. If 0 : [n] — [m] and d* : [n — 1] — [n] such that the epi-
monic factorization of odF is d™oq for some surjective morphism oq, then
k=n.

Proof. 1t is clear if ¢ = id. Assume that £ < m < n and write ¢ =
sl ... gIn=m uniquely with m > j1 > -+ > jn—m > 0 by Theorem 2.1.5.
Due to the uniqueness of the epi-monic factorization, the cosimplicial iden-
tities imply that ¥ = m and j; > k = m for ¢ = 1,...,n — m which is
a contradiction. Now assume that m < & < n. Then by the cosimplicial
identities
o-dk — Sjl . Sjnfmdk — Sjl . Sjnfmfldk_lsjnfm.

If k — 1 = m we get the same contradiction as above. Hence k — 1 > m. By

doing this recursively we get that k — (n —m — 1) > m which implies that
k=n. O

Remark 2.3.8. Note that this lemma gives us another way to define the faces
di : T(Ce)p, = T'(Ce)p—1 for i =0,...,n—1: on the coordinate corresponing
to o : [n] = [m] we get

v toai(w) if od" is surjective
di(z) = { 0 otherwise

Furthermore if o : [n] — [m] and n > m write o = s/t - - s/n=m uniquely
with m > j1 > -+ > jn—m > 0. Then by the cosimplicial identities

O-dn — Sjl . Sjnfmdn — Sjldm+1sj2 . Sjnfm‘

Hence od" is either surjective or od® = d™o¢’ where o/ = s/t ...gln—m .
[n —1] — [m —1]. This allows us to define the face d;, : I'(Ce)pn, — I'(Co)n—1
on the coordinate corresponding to ¢ as

do(z) = Loai (T) if od’ is surjective
T (=1)™ed(x)  otherwise
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Consider the set of surjective morphisms o : [n] — [m] with n > m.
Theorem 2.1.5 induces a total order < on this set by

§06960 . 69 < 615060 50 < slslsl 0 <o < g™,

We will need this total order to formulate the next lemma and also for
proving Theorem 2.3.10 below.

Lemma 2.3.9. Letn >m > j1 >+ 2 jn—m =0, and let p = din—m ...d0 .
[m] — [n]. If o : [n] — [m] such that op = id then o < s/t .. gin-m,

Proof. Let m > j1 > -+ 2 jn_m > 0and m > iy > -+ > iy > 0 such
that at least one jj, # ij and st - .. sfn—m < g1 ... gln—m_If j; = j; then the
cosimplicial identities imply that

S .. ginemgin=m . g —  gi2 ... gin—m giitn—m—1gjiitn—m—1 gjn_m g2

— 8i2 . Sin—mdjn—m e d.72

which gives us the exact same problem for surjective morphisms from [n — 1]

onto [m]. Hence we will without loss of generality assume that i; > j;.
Note that for 0 < k<n—m—1weget that i1+n—m—-1—%k > i >

J1 >+ > Jn—m. Hence the cosimplicial identities imply that

11 .

S . Sin—mdjn—m e dJl — Si2 . Si"—m8i1+nim71djn_m s djl

— 3i2 - Sin—mdjn—m - d]l S’ilf1

which can never be the identity morphism on [m] since i; — 1 and i; are
mapped to the same element. ]

We now have enough tools in order to prove the following theorem which
is the second part of the Dold-Kan correspondence.

Theorem 2.3.10. Any simplicial A-module A is isomorphic to TN(A) in
sMody.

Proof. Given A € sModj, let ¥, : @[n}—»[m} NA,, — A, be given on the
summand corresponding to o by ¥, (x) = o™ () (i.e. Yn = (0" |N A, ) o:[n]—[m])-
First we wish to show that 1, is an isomorphism by induction on n. Ob-
serve that NAy = Ap. Since the only (surjective) map [0] — [0] is id, we
get that ¥y = id : Ag — Ap which is an isomorphism. Assume that ¥ is an
isomorphism for £ < n. The diagram

BNAR T Ay

ls@- lsz-
UVn

DNA, 2= A,
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commutes for all ¢ = 0,...,n — 1 since

sin—1(z) = si(0™) () = (s:07)(2) = {(05")")(x) = (") t51) (@) = Yusi(2).

Hence it follows that DA, C Im(v,). Let x € A,. By Theorem 2.3.2 let
y € N A, such that ¢, (y) = [y] = [z] € A,,/DA,, and let z € DA, such that
x =y + z. Then there exists zg € @ N A, such that 1, (z9) = z and thus

U (Lid(y) + 20) = id*(y) + ¢Yn(20) =y + 2 = x.

Hence 1, is surjective.
We wish to show that the diagram

B NA, B 4y

L

@NAmLAk

commutes for every i = 0,...,k. Let o : [k] - [m], 0 < i < k be given
and let pog be the epi-monic factorization of od’. Then on the coordinate
corresponding to o we get

Vk—1loo (T) if p=1id
Yp_1di(z) = 0 if u=d,l<m
(=1 p—1t00 ((=1)"dm(2))  if p=d™
oj(x) if p=1id
= 0 if u=d,l<m
ojdm () if p=dm

= oy’ (2) = (00)*(2) = (0d')* (x) = dio™ (z) = ditpn(z)

where we used that z € NA,,. Hence the above diagram commutes.

Let (z5) € @ NA,, such that ¥, ((zs)) = 0, and let m < n. We wish
to prove that z, = 0 for every o : [n] — [m] by induction on ¢ using the
total order <. Remark 2.3.8 implies that the coordinate in dp---do((zs))
corresponding to id is the sum of all 2, where d°---d° is a section for
o.! Now Lemma 2.3.9 implies that the only surjective morphism which has

Note that in [4] Proposition III.2.2 they choose a section p for a surjective morphism
oo and say that the coordinate in pu*((z,)) corresponding to id is z,. But this is only
the case if 0 = s°---5s% or ¢ = s™-.-s™ and we choose the section p = d°---d° or
u=dm ... d™T! respectively. Otherwise the coordinate corresponding to id in u*((z,))

will be the sum of all z, for which p is a section of o.
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d®---d® as a section is s%---s". Hence dy---do((2o))id = T0..50. Since 1y,
commutes with faces we get that

Ymdo - - - do((25)) = do - - - dopn((75)) = 0

and since ¥y, is an isomorphism z....0 = 0.

Given oy : [n] — [m] assume that z, = 0 for every o < oy where o # 0.
Write 09 = s/t -+ s/n=m with m > j; > -+ > j,_m > 0. Again Remark
2.3.8 implies that the coordinate in dj, ---dj,_,.((z5)) corresponding to id
is the sum of all z, where d/m-» ... d/ is a section for ¢. But Lemma 2.3.9
implies that if od/m— ... d/" = id then ¢ < g and thus by our hypothesis
the coordinate in dj, - --d;,_, ((z+)) corresponding to id is x,,. As before

Umdj, -+ dj, ., ((20)) = djy -+ dj,, ., Vn((20)) =0
and since vy, is an isomorphism z,, = 0. Hence z, = 0 for every o # id.
Finally we get that 0 = ¥, ((z,)) = >_ 0*(2,) = x;4 and hence 1), is injective
and thus an isomorphism.

Since ¥y, commutes with faces and degeneracies, (1),,) is an isomorphism
in sMody and thus 'N(A) = A in sMod,. O

Corollary 2.3.11. The functors I'N and Isproa, are naturally isomorphic.

Proof. For any simplicial A-module A let ¢ be the isomorphism defined in
the proof of Theorem 2.3.10. It remains to show that the diagram

A
IN(A) - 4

o]
,(Z}B
commutes for any A, B € sModp and any f : A — B. But this follows
easily since
VR TN (f)n = 08 (o finl ya ) = (0" Fin| s )
and
fndfff = fn<a*‘NAm> = <f”0-*‘NAm> = <O-*fm‘NAm>

where the last equality follows since f; commutes with degeneracies (and
faces) for any k. Hence I'N and Igvod, are naturally isomorphic. O

With this last corollary we can finally give a proof of the Dold-Kan
correspondence.

Proof of the Dold-Kan Correspondence. The equivalence is a direct conse-
quence of Corollary 2.3.6 and Corollary 2.3.11. O
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3 Derived Functors of Non-additive Functors

3.1 The Dold-Kan Correspondence and Homotopy

When defining the classical derived functors, homotopy played a big part.

The same is the case for us. In this section we prove that the functors

N and I' which induce the Dold-Kan correspondence preserve homotopy.
2 2

Furthermore we use this to show that the homotopy relation "~” is an
equivalence relation on sModj,.

Theorem 3.1.1. The functor N preserves homotopy, i.e. if f,g: A — B
and f ~ g then N(f) ~ N(g).

Proof. Let f,g: A — Bin sMody such that f ~ g, and let h be a homotopy
from f to g. Define ¥/ = (X)) by
n .
o= (=1)hi s Ay — Bny1.
i=0
Let Ae and B, be the Moore complexes of A and B respectively, and f, g :
A, — B, the induced morphisms. By the definition of h we get

n+l n
On1%y, = D D (~1)Hd;h,
i=0 j=0
n j—1 n—1 n+1
= fon—9gn+ Z Z(—l)z-whjfldi + Z Z (=) hjd;—y
Jj=11=0 J=0i=j+2
n—1 n
= fon—9n— Z(_I)th Z(_l)ldi
=0 i=0

Hence fp, — gn = Ont1X), + Xp—10, and thus ¥/ : f ~ g. Note that for
0<j<n-1

n J

E/nSj = Z(—l)thS] = Z(—l)i8j+1hi + Z (—1)i5jhi_1

1=0 =0 1=j+1

and therefor 3/ (DA,) C DB,+1. Hence the induced maps %,, : A,/DA,, —
By+1/DBy,11 are well-defined. Furthermore since f and g commute with
degeneracies, the induced morphisms f,ﬁ : Ag/DA — Bo/DB are well-
defined and clearly ¥ : f ~g.
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Let ¢4 : NA — A,/DA and ¢® : NB — B,/DB be the isomorphisms
from Theorem 2.3.2. We wish to show that (¢Z)~'S ¢4 : N(f) ~ N(g). We
get that

Ons1 (08 1) " Sndht + (68) ' Sn10y_10n
(65) " Oy 150 + Sn100) 7
= (85) " fudty — (65)  Gnoi.

Since N(f), = f"‘NA the squares in the diagram

NA, = A, —"~ A,/DA,

N(f)nJ/ lfn l}l

commute, and hence fo¢2 = ¢BN(f),. Similarly gno?t = ¢BN(g)n, and
hence
(0F) " fud = (65) ' Gudn = N(f)n — N(g)n.

This gives us the homotopy (¢?)~1X ¢4 : N(f) ~ N(g). O

Theorem 3.1.2. The functor I' preserves homotopy, i.e. if f,g: Ce — Dy
and f ~ g then I'(f) ~T'(g).

Proof. Let f,g: Cq = Dg in Chﬂxr such that f ~ g, and let X be a homotopy
from f to g. We define h} : I'(Ce);, — I'(De)pn+1 in the following way:
let o : [n] - [m]. If o = idput k=0 and ¢ = idyq. If not write
oc=s.-.gln-m withm>751> 2 jnom =>0. Thenlet 0 < k< n-—-m
be given such that jp +n—m —k+1> jand jr11 +n—m—k < j and
put 6 = s/ gl gt ginem s 1] = [m + 1]. Now we define h?
on the coordinate corresponding to o by

tem (fm(x) = Epm—10(z)) + (=1)"165m(x) fk=n—j
h?(l’) = [’smfl&fm(x) - Lsm&Em—la(IE) ifk=n—j—1
sz7n+m+k5.fm($) if k <n —j -1

This will give us a homotopy h : I'(f) ~ I'(g). We will first prove that
dn+1hy = I'(g)n and then that d;h; = hj_1d; if i < j. The rest are left for
the reader to do on a cold and lonely night.

Let o : [n] — [m]. If o = idlet ¢ = id, ). If not, write o = §I ... gin=m,
Since j1+n—m <nlet 6 = s/t --- s/»=m : [n+1] — [m+1]. The cosimplicial
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identities imply that s™5d"t! = 0s"d"*! = o and 5d"*' = d™lo and
hence on the coordinate corresponding to o we get
dn1hn(z) = dpgi1(tems(fm(2) = Zm-10(2)) + (1) 165m ()
= to(fin(2) = Tn10(x) + (=1)™HO8,, (2))
= logm(7)
= T(g)n(2).
Hence dyr1hn = T'(g)n.

Now let i < j < n. We wish to show that d;h? = h”"d;. On the
coordinate corresponding to id we get

tsn ([ () = Bn-10(2)) + (=1)"tigXn () if j =n

hj(x) =< tgn-1fn(z) — tsnXp_10(x) ifj=n—1
Lgi fr () ifj<n-—1
By the cosimplicial identities s/d’ = d’s’~! and s"d’ = d's"!. Hence

d;hj(x) = 0 and since d;(x) = 0 we get that d;hj(x) = hj_1d;(x) = 0 on the
coordinate corresponding to id.

Let o : [n] — [m] with n > m and write ¢ = s/t - - s/»=m. Define k and
o as in the construction of h;. First note that since j1 +n—-—m—-1>--- >
Jjr +n —m —k > j > i the cosimplicial identities imply that

od = g§lt...gIn-mgi

gIkt1 ... gIn—m giktn—m—=k _  jitn—m—1 7

skl .. gIn—m Jigiktn—m—k=1___ ji+n—m=—2

and that
Gdi = ghtl.. . giktlgikt1 ... gin-m i
= sjk-H - Sjnfmsjk'f‘n_m—k-i-l . Sj1+n—md7j

—  gIkt1 ... gIn—m Jigiktn—m—k _ jitn-m-1

Hence by the uniqueness of the epi-monic factorization od’ is surjective if

and only if ¢d’ is surjective. Now note that since j —n +m +k > jrpy1 >

00 2 Jn—m We get
ijn+m+k5_di Sj7n+m+k8jk+1 . Sjn—mdisjk+n*m*k . Sj1+n7m71

— Ikt ... gin-m gl Jigiktn—m—k _  jitn-—m—1

= glk+1. .. Sjn—mdisj—lsjk+n—m—k ... ghtn—m—1

gkt .. gIn—m i gktn—m—k=1 _  ji+n—m=2j—1

= ods .
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Again by the uniqueness of the epi-monic factorization s7~"*™+*5d¢ is sur-
jective if and only if od’ is surjective. Similarly we also get s7t1-n+mtkgqi
is surjective if and only if od’ is surjective.

All these facts combined together with Remark 2.3.8 imply, that if od’ is
not surjective then on the coordinate corresponding to o we get d;h;(xz) =0
and d;(x) = 0 and hence d;hj(z) = hj_1d;(x).

If od’ is surjective, then by what we showed above

tomgai (fm(x) = X0(@)) + (=1)"5ai5(x) fk=n—j
dihj(z) = tgm-15qi fm(T) — tgmz4i20(2) itk=n—j—-1
Lgi—ntmikggi fm () ifk<n—j—1

on the coordinate corresponding to o. Furthermore if od’ is surjective,
then s/k+1 ... sin-mdl is surjective and by the cosimplicial identities can be
written as g+1 ... gin-m—1 with Jk+1 = tk+1 = -+ 2> ip—m—1. Hence odt =
Il ... gIkglk+1 ... gin—m-1 with m > > > g > iy > D i1 >
0. Note that jy+(n—1)—m—k+1>j—1and igy1 + (n—1) —m —
k < j—1 since ig41 < jr+1. By Remark 2.3.8 d;(z) = t,4:(x) and since
odt = st gkt lglitt ... gin-m-1 we get that

Lgmgdi (fm(x) - Ea(x)) + (_1)m//5-di2($) k=n—j
hj—1di(x) = ¢ tgm—15qi fm(T) — tgmzqiX0(x) k=n—j—1
Ls(j—l)—(n—1)+m+k(}difm(fﬂ) k<mn —7—1

on the coordinate corresponding to o and hence d;h;(x) = hj_1d;(x) when
od" is surjective. Hence d;h; = hj_1d; whenever i < j.
O

Hence I' and N preserve homotopy when passing between non-negative
chain complexes and simplicial modules. This is an important property
which amongst other things allow us to generalize the notion of derived
functors which we will do in the following section. But first let us apply
it to give a short proof of the homotopy relation on morphisms between
simplicial modules beeing an equivalence relation.

Lemma 3.1.3. Let f,g: A — B insMody. IfTN(f) ~TN(g) then f ~ g.

Proof. Let h: TN(f) ~T'N(g) and let 1) : TN(A) 5 A, % :TN(B) 5 B
be the isomorphisms from Corollary 2.3.11. Now f = ¢BTN(f)(x4)~"
and g = »PTN(g)(vA)~! and since ¢4 and ¥ commute with faces and
degeneracies it easily follows that ¢ h(wA)*1 cf~g. O
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Corollary 3.1.4. The homotopy relation "~" is an equivalence relation in
sMody .

Proof. First recall that the homotopy relation in Chﬁ\r is an equivalence
relation. Let f,g,h: A — B be morphisms in sMody. Then N(f) ~ N(f)
and hence I'N(f) ~ I'N(f). By Lemma 3.1.3, f ~ f and hence "~” is
reflexive.

Assume that f ~ ¢g. Then N(f) ~ N(g) and since this relation is
symmetric it follow that N(g) ~ N(f). Hence I'N(g) ~ I'N(f) and by
Lemma 3.1.3 it follows that g ~ f. Hence "~" is symmetric.

Finally assume that f ~ g and g ~ h. Then N(f) ~ N(g) and N(g) ~
N (h) which implies that N(f) ~ N(h). Thus 'N(f) ~ I'N(h) and by
Lemma 3.1.3 it follows that f ~ h. Hence "~” is transitive and thus an
equivalence relation. ]

3.2 Derived Functors of Non-additive Functors

In Section 1.2 we defined the classical left derived functor of an additive
covariant functor F' : Modpy — Mody/. In this section we give a new defi-
nition of left derived functors of a functor F': Mody — Modys which does
not require F' to be additive, and then show that if F' is indeed additive, this
definition coincides with the defintion of the classical left derived functor.

Let F : Mody — Mody: be a (covariant) functor and let f : A — B
be a morphism in sMod,. We define FA to be the simplicial A’-module
where the n-simplices are F'(A,) and the faces and degeneracies are F'd;
and F's; respectively. Moreover we define the morphism Ff : FA — FB
to be the morphism where (F'f),, = Ff, : (FA), — (FB),. This makes
F : sMody — sMody: into a functor. Note that if f,g : A — B and
h:fo~gthen Fh: Ff ~ Fg. This is clear since e.g. Fd;Fh; = F(d;h;) =
F(hj_1d;) = Fhj_1Fd; for i < j. Hence the functor F' : sMody — sMod,:
preserves homotopy, and thus the covariant functor NFT : Chﬁ — Chf
preserves homotopy due to Theorem 3.1.1 and Theorem 3.1.2.

We wish to use this to generalize the notion of left derived functors.
Again let F' : Mody — Mody: be a functor, let A be a A-module and P,
be a projective resolution of A. Define for n > 0

LP*F(A) := H,(NFI'P,),

i.e. the n’th homology module of NFT'P,. The following theorem states
that it does not matter which projective resolution of A we choose.
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Theorem 3.2.1. Let F': Modyx — Mody: be a functor, A a A-module and
Ps, Qo projective resolutions of A. Then LP*F(A) = L;QL'F(A) for every n.

Proof. From section 1.2 we know that P, and () are homotopic equiva-
lent and thus NFT'P, and NFI'Q, are homotopic equivalent since NFT
preserves homotopy and maps identity morphisms to identity morphisms.
Again from section 1.2 we know that any homotopy equivalence f : NFI'Py —
NFTQ, is a quasi-isomorphism and thus H,(f) : LF*F(A) — Lg’F(A) is
an isomorphism. O

Now let A, B be A-modules and ¢ € Homp (A, B). Let Py and Qe be
projective resolutions of A and B respectively. By Theorem 1.2.10 there
exists a morphism f, : P — (s, which is unique up to homotopy, such that
the diagram

Po*N>>A
fo l‘ﬂ
Q.*N»B

commutes. Here we think of A and B as beeing chain complexes where
Ag= A, A, =0 for n # 0 and similarly for B. Now for n > 0 we define

LI?F(p) :== H,(NFTf,) : LI F(A) — L9 F(B).

The following theorem shows that this definition does not depend on the
projective resolutions P, and Qe or of the choice of f,.

Theorem 3.2.2. Let F' : Modyx — Mody: be a functor, A and B be A-
modules, ¢ : A — B be a homomorphism, PL, P2 be projective resolutions
of A and QL Q? be projective resolutions of B, and ffo : PP — Q% be some
morphisms induced by Theorem 1.2.10 for i = 1,2. Then for every n > 0
the diagram

L FA) —= L Fa)
5 F(ga)l lLf;’F(w)
Lé F(B)—= LY F(B)

commutes for some isomorphisms.
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Proof. By Theorem 1.2.10 there exist morphisms gll, : P! — P2 and gf, :
P2 — P} such that the diagram

commutes. Furthermore Theorem 1.2.10 implies that gggllj ~ idp1. Similarly
gzl,gg ~ idp2 and hence g; and gf, are homotopy equivalences of P} and
P2. Similarly we get morphisms g; c QL = Q2 and gg : Q2 = Q! such
that a similar diagram commutes and such that g(} and gg are homotopy
equivalences of QL and Q2. Hence we get a commutative diagram

Qe =—>B~—Q3

95

and again by Theorem 1.2.10 we get that fé ~ gg fg% g}). Since N FT preserves
homotopy NFTfL ~ NFF(gg gg})) and also NFFg}) and NFFgg are homo-
topy equivalences and thus quasi-isomorphisms. Hence H, (NFT( f;)) =
H,(NFI(g; jg;)) and thus we get a commutative diagram

Lyft}’F(%)l
(Hn(NFTg2))
L3 F(B) ———> LY F(B)

We can now give the definition of a left derived functor.

Definition 3.2.3 (Left Derived Functor). Let F' : Mody — Mody: be
a covariant functor and define the n’th left derived functor of F, L,F :
Modp — Mody: as follows: let A be a A-module and let P, be a projective
resolution of A. Then let L,F(A) = LF*F(A). Let ¢ : A — B be a
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homomorphism and let P, and () be projective resolutions of A and B
respectively. Choose a morphism f, : P, — Qe by Theorem 1.2.10. Then

let Lo F(p) = L F(p).

By Theorem 3.2.1 and Theorem 3.2.2, L, F is uniquely determined up
to isomorphism, just as the classical definition of derived functors. Our next
goal is to show that if the functor F' : Mody — Mod,: is additive then
the Defintion 3.2.3 coincides with the definition of the classical left derived
functor.

Theorem 3.2.4. Let F': Mody — Mody: be an additive covariant functor.
Then Definition 1.2.13 and Definition 3.2.3 are equivalent.

In order to prove this we will require some lemmas.

Lemma 3.2.5. Let F : Mody — Mody: be an additive covariant functor.
Then NFT'Cq = FC, for any non-negative chain complez.

Proof. We will first show that FI'Cy = I'F'C,. Recall that since F' is addi-
tive, the morphism of modules

(Fig)

is an isomorphism for every n. Hence it remains to show that this isomor-
phism commutes with faces and degeneracies for every n. Let o : [n] — [m)]
and let pog be the epi-monic factorization of od’. Then on the coordinate
corresponding to o we get

(Figy) () if p=1id
(Fior)di(z) =< 0 if u=d k<m
(=D)"™(Floo) (FO)(x) if p=d™
where we used that the differentials in F'Co are (F0,),>0. Again on the
coordinate corresponding to o we get

(Fligy) () if p=1id
Fdi(Fiy)(x) = F(dite)(x) = ¢ 0 if u=d" k<m
F((=1)™5,0)(x) if p=dm

which is clearly equal to (F'i,)d;(x). Hence (Fi,) commutes with faces.
Again let o : [n] — [m]. On the coordinate corresponding to o we get

(Fior)si(x) = (Fior)tosi(2) = (Flog)(x) = F(site)(x) = Fsi(Fior)(2).
Hence (F'i,) commutes with degeneracies and thus FI'Cy = I'FC,. Now
the Dold-Kan correspondence implies that NFI'Cy = NI'FCe =2 FC,. [
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Lemma 3.2.6. Let F': Modyx — Mody: be an additive covariant functor
and let f: Coq — Do be a morphism. Then the diagram

FC,—— NFTC,

Ffl J/NFFf

FD, —= NFTD,
commutes for some isomorphisms.

Proof. First we will show that the diagram

(TFC)n 2L (FTCL),

(FFf)ni l(Frm
(TFD.), 2L (FT D).,

1%

Il

is commutative for any n. Let o : [n] — [m]. On the coordinate correspon-
ding to o we get

<FLJ’>(FFf)n(x) = <FLO'/>LUFfm(‘r) = F(Lafm)(x) = F(F(f)nLU)(x)
(FLf )n(Fior) ().

Consider the diagram

FC, —= NTFC, —> NFTC,
F fl iNPF f lNFF f
FD,——> NTFD, —> NFTD,
By what we just proved the second square commutes, and due to the Dold-

Kan correspondence the first square commutes. Hence the composite square
commutes. O

With this lemma we now have enough tools to prove Theorem 3.2.4.

Proof of Theorem 8.2.4. Let F': Mody — Modys be an additive covariant
functor, A be a A-module and P, be a projective resolution of A. By Lemma
3.2.5, FP, 2 NFT'P, and hence H,(FP,) = L,F(A) for every n.

Let ¢ : A — B be a homomorphism between modules, let Py and Qe be
projective resolutions of A and B respectively and let f, : Po — Qo be a
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morphism induced by Theorem 1.2.10. Then Lemma 3.2.6 implies that the
diagram

H,(FP,) ——= L,F(A)
Hn(ngo)i anF«a)
H,(FQ.) — L, F(B)

commutes for every m. Hence Definition 1.2.13 and Definition 3.2.3 are
equivalent. ]

Remark 3.2.7 (Right Derived Functor). In order to generalize the right de-
rived functor one must go about this in a different way, which we will shortly
sketch. We define cosimplicial objects in a category % to be the covariant
functors between A and %. Then one can define functors N and I' which
form an equivalence of the category of non-negative cochain complexes and
the category of cosimplicial modules, i.e. another version of the Dold-Kan
correspondence. Again one can show that N and I' preserve homotopy. Now
let F': Mody — Mody/ be a covariant functor. We define the n’th right
derived functor, R"F : Mody — Mod,/ in the following way: let A be a
A-module and I, be an injective resolution of A (i.e. the dual of a projective
resolution). Then R"F(A) := H"(NFT1I,), i.e. the n’th cohomology mod-
ule of the non-negative cochain complex N FI'I,. Let ¢ : A — B be a homo-
morphism and let I, and J, be injective resolutions of A and B respectively.
By the dual of Theorem 1.2.10 there is an induced morphism f, : Is — J,
which is unique up to homotopy. Then we define R"F'(¢) := H"(NFT f,).

Just as for the left derived functor, this definition does not depend on
the choice of injective resolution I, or of the choice of the induced morphism
fo- One can then show that if F' is an additive functor this definition coin-
cides with the classical definition of the right derived functor of an additive
functor.

3.3 Applications and Examples

Every theorem in Section IV.5 in [6] can be fitted such that it applies to
Definition 3.2.3, by adding to the theorem that the functor must be additive.
Note that we do not need to change Proposition 5.2, 5.5 and 5.6 since they
recuire our functor F' to be left (or right) exact, which implies that it is
additive. In this section we generalize Proposition IV.5.3 in [6], and by
introducing the symmetric power and the symmetric algebra functors, we
give some examples of how to apply the left derived functor of a non-additive
functor.
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We start out by proving a generalization of Proposition IV.5.3 in [6]

Theorem 3.3.1. Let F': Modyx — Mody: be a functor and P a projective
A-module. Then LoF(P) = FP and L,F(P)=0 forn > 1.

Proof. Let P, be the non-negative chain complex where Py = P and P, =0
for n # 0. This is a projective resolution of P. Note that I' P, is the simplicial
module where (I'P,),, = P for every n and every face and degeneracy is idp.
Hence FT'P, is the simplicial module where (FT'P,),, = F' P and every face
and degeneracy is idrp and since keridpp = 0

NFTPy:---—=0—0— FP
Hence LoF(P) = FP and L,F(P) =0 forn > 1. O
The next theorem is a direct consequence of Proposition IV.5.4 in [6].

Theorem 3.3.2. Let F : Mody — Mody: be an additive functor. Then
L, F is additive for every n.

One may ask if L, F is additive even though F' is not additive. This is
not the case in general. In order to give an example of this not being true
we define the symmetric power and the symmetric algebra of a module.

Definition 3.3.3 (Symmetric Power and Symmetric Algebra). For a A-
module A and n > 1 let A®™ denote the n’th tensor power of A, ie. A®y
-+ @A A where there are n factors. Now define the equivalence relation
"~ on A¥™ by a1 @ - Qa, ~ b @+ ® b, if and only if there exists a
permutation o € S;, such that a1 ® --- ® an = by(1) ® -+ @ by(,). We define
the functor S™ : Mody — Mody for n > 1 such that S™"(A) = A®"/ ~ and
for a homomorphism ¢ : A — B let S"(¢) be the induced homomorphism
PR ®¢: SYA) — S*(B). Furthermore we denote S°(A) = A and
SO(p) = idy. We call S™(A) the n’th symmetric power of A.

Now define the functor S : Mody — Mody by S(A) = P,,~,5"(A)
and for a homomorphism ¢ : A — B let S(¢) = 0,50 S™(¢). We call S(A)
the symmetric algebra of A. -

Note that S™ is not additive for n > 2. E.g. consider the A-modules
A and A% If S™ was additive then S™(A?) = S™(A)% but S™(A) = A and
S™(A?) =2 A™*! and thus S™ is not additve. Since A and A? are free modules
Theorem 3.3.1 implies that LyS™ is not additive for n > 2. Hence L, F is
generally non-additive for a non-additive functor F' : Mlody — Mody:.
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In the first example we wish to calculate LyS(Z/p) and L1S(Z/p) where
Z/p is a Z/p*-module and p is a prime number. This is a nice example of
how to apply the left derived functor of a non-additive functor in general.
Note that if S : Mody — Mody then there is a canonical isomorphism
S(B;_, A) = Az, ..., 2z, by mapping each basis element to a variable.

Example 3.3.4. Let A := Z/p? for some prime number p. We wish to
calculate LoS(Z/p) and L1S(Z/p). Note that Py : --- - A B3 A B Aisa
projective resolution of Z/p. Now we get that (ST P,)p = S(A) = Afz] and
that (STP,s); = S(Ag @ Aijg) = Afz,y] where = corresponds to s and y to
id. Since Ssp(z™) = z™ for n > 0 we get that

Alz,yl — Alz,y]

(NSTPR,); = Tmoso — Ajr] yAlz, ).

Note that the quotient above is not zero since Az, y| is a A-module and not
an algebra. Now since Sdy(y) =0, Sdi(z) = z, Sdi(y) = —pz we get that

O (a"y™) = (Sdo — Sd1)(2"y™) = —(—p)"a" "
where we used that m > 1. Hence Imd; = pxA[z] and thus

Alz]
prAfz]

LoS(Z/p) = =A@ x(Z/p)[z] = S(Z/p)

Our next goal is to find ker ;. We consider the polynomials which map
to polynomials of the form az™t!. These are the polynomials of the form
y>orga;x"'y'. We get that

n n
i <y 2 amn_iyi) =pY_ai(=p)'z"" = pagz™"!
=0 =0

and thus y > ", a;x" "y’ € ker 9 if and only if ag € Z/p. Hence ker 9 =
(y*Alz,y]) @ D,.>1 Z/p by the isomorphism ¢ given by

nomy | (az™y™,0) ifm>1
plaz"y )_{ (0, tpa) ifm=1

Now (ST Ps)2 = S(Agg0 @ Ago @ Ayt @& Ajg) = Alx,y, z, w] where x cor-
responds sYs?, y to s, z to s' and w to id. We get that Sso(z"y™) = 2"y™
and Ssi(z"y™) = 2"z™. Hence ImSsg +ImSs; = Alz, y] + Az, z] and thus

Alz,y, z,w]

(NSTF.) = Alz,y) + Alz, 2]

= wAlz,y, 2z, w] © yzAz,y, z].
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Now for m > 1
Do (zFylzmw™) = (Sdy — Sdy 4 Sdy)(aFyl2"w™) = (—1)ipttmghtlyntm

since Sdow = Sdyw = 0 and thus O2(wAlzx,y, z,w]) = pyAlz,y]. Now for
l,n>1 we get

82($kylzn) — _xklern + (_p)lxk+lyn
where we used that Sdoz = 0, Sdiy = Sd1z =y, Sdoyy = —px and Sd?z = y.
It can now be verified that that

Imdy = y((y — px)Alz,y] + pAlz,y]) = ker 0
and thus LoS(Z/p) = 0.

Our next goal is to give a generalized form of how to calculate LoS?(A)
for any A-module A.

Example 3.3.5. Let A be a A-module and P, : --- P, — P, — P be a
projective resolution of A and denote the differentials &', as not to confuse
these with the differentials @ in NS?T'P,. Then (T'Py)g = Py and thus
(NS?’TP,)y = S%(Py). Note that since (S%dy — S?d;)(ImS?sp) = 0 we
get that Imd; = Im(S%dy — S?d;) by Theorem 2.3.2, where S%dy — S%d; :
(S2TPa)1 = ((Pryia ® Py0)¥%/ ~) = (S*TPs)o = S?(Py). Here we indexed
the modules in (I'P,); by the surjective morphism [1] — [m] to which they
correspond. Let (ay,az) @ (b, b2) € (Pyia ® Py 0)®%. Then

(S%dy — S?dy)[(a1, az) @ (b1, ba)]

[do(a1,a2) ® do(b1,b2)] — [di(a1,a2) @ di(b1, b2)]
= [a2 ®@bo] — [(a2 — 9'(a1)) ® (b2 — 0'(b1))]

[(az — 0'(a1) @ 9'(b1)] + [b2 ® O'(a1)]

Clearly Im(S2dy — S%d;) = (Py ®x Imd})/ ~ and hence

S2P (Py@p Py)/ ~
2 . 0 . 0 @A 10
LoS™(4) = Im(S%dg — S%dy)  (Po ®p Imd))/ ~

Example 3.3.5 gives us an easy way of calculating LoS?(A) for some
A-module A. Our final example shows us how we can use this in a simple
matter.
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Example 3.3.6. Let k be a field and A := k[z,y]. We will use Example
3.3.5 to show that LoS?(k) = k and LoS?(k?) = k3, where k := A/(zA+yA).
Let P, :--- — 0 — A — A2 — A be the projective resolution of k where
O1(a,b) = ax + bx. Then

(ARpAAN)/ ~ -~ A

LoS™(k) = (A@p (zA+yA)/ ~  zA+yA K

Let Qo = Po@ Py : --- — 0 — A? — A* — A? which is a projective resolution
of k2. Using the canonical isomorphism (A? @5 A?)/ ~ = A3 one can easily
verify that (A2 ®, (zA +yA))/ ~= (xA + yA)3. Hence

(A? @p A%)/ ~ A? 3

o~

(AZon (wh + AP/~ @At ghp "

LoS%(k?) =
Let A : A — A% be given by A(a) = (a,a) for any A-module A. We wish to

show that for A : k — k% we have LoS?A = {id, 2id,id}. The diagram

PO*N»]{I

N

Q04N>>k2

is commutative, where A, is the morphism whichis A: P, = P, ® P, = Qy
in degree n. Now

(STA) = A®A: S*(A) = A — S%(A?) = A3

We now get that (A ® A)(a) = (a,2a,a) and thus LyS?A : k — k3 is given
by LoS?A(a) = (a,2a,a) which is that LoS?A = {id, 2id, id}.
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