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Introduction

The main goal with this project is to develop a model for algebraic K-theory for permutative
categories using the in�nite loop space machinery developed by G. Segal in [1]. Another major
goal is to relate this notion of K-theory to the usual K-theory developed by D. Quillen in [2].

The in�nite loop space machinery relies on a generalization of monoids called Γ-spaces and
their associated spectra. We will therefore develop the theory for both Γ-spaces and spectra,
although both are �bare-bone� introductions.

Any model for K-theory should intrinsically be a homotopical notion, therefore we also
develop the homotopy theory for Γ-space, i.e. we give model structures on the category of
Γ-spaces.

We begin by recalling some classical de�nitions and ideas from algebraic K-theory. For a
detailed account see fx. J. Rosenberg [3].

De�nition (K0(R)) Let R be a ring, and denote by iR the set of isomorphism classes of
�nitely generated projective R-modules. iR is an abelian monoid under direct sum. Then the
0'th K-theory group of R is de�ned to be the Grothendieck group of iR, i.e.

K0(R) = Z[iR]/ ∼ where [P ] + [Q] ∼ [P ⊕Q].

Where Z[iR] is the free abelian group generated by the elements of iR.

Considering this construction, and the ad hoc de�nitions of K1 and Milnor's K2, the idea
that spectra should play an integral role seems rather ex nihilo. This magni�cent insight is due
to Quillen.

De�nition (The K-theory spectrum of R) Given a commutative ring R, there is a spectrum
K(R) which arises from the in�nite loop space BGL(R)+, i.e. BGL(R)+ is weakly equivalent
to 0'th space of a Ω-spectrum. Here the �+� is Quillens plus-construction. The higher alge-
braic K-theory groups of R are the homotopy groups of the in�nite loop space BGL(R)+, i.e.
πn(BGL(R)+) for n > 0.

The K-theory spectrum which we develop will contain the K-theory of a commutative ring
through realizing iR as a permutative category denoted PR. The machinery which we develop
will show that BGL(R)+ is an in�nite loop space.
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Chapter 1

Γ-spaces and their associated spectra

In this chapter we introduce spectra and Γ-spaces, and we will show how to obtain one from
the other. Furthermore we motivate spectra by explaining their relation to the more familiar
concept of cohomology theories. This chapter is based on J.F. Adams' [4], E. Browns [5], A.K.
Bous�eld & E.M. Friedlanders [6], and G. Segal [1].

1.1 Spectra and cohomology theories

We will see that cohomology theories are represented by spectra through the classical result due
to E. Brown often called Browns representability theorem. Whenever we write space we will
mean a topological space which is compactly generated, Hausdor�, and pointed. Furthermore
continuous maps will also be pointed. Let S1 be the simplicial circle ∆1/∂∆1, and let Sn be the
n-fold smash product of S1.

De�nition 1.1.1. A spectrum, A, is a sequence of pointed simplicial sets {An}n∈N and mor-
phisms σn ∶ S1∧An → An+1, which we will call structure maps. A morphism of spectra f ∶ A→ B
is a sequence of maps (fi)n∈N such that the following diagram commutes,

S1 ∧An S1 ∧Bn

An+1 Bn+1.

S1∧fn

σA
n σB

n

fn+1

The collection of spectra and morphisms of spectra assemble into a category, which we will
denote Sp.

Note that there are many di�erent models for spectra, e.g. taking spaces instead of simplicial
sets. We shall occasionally consider this model, mainly for certain motivating examples, which
are more easily accessed using this model. We will write Sp(Top) for the category of spectra in
topological spaces.

De�nition 1.1.2. Given a A ∈ Sp with structure maps σn ∶ ΣAn → An+1, then for k ∈ Z the
n'th homotopy group of A, is πn(A) = colimk πn+k(Ak). The colimit is formed along the maps

πn+k(Ak) πn+k+1(Σ(Ak)) πn+k+1(Ak+1)
Σ(−) πn+k+1(σk)

We will say that a map of spectra is an equivalence if it induces isomorphisms on homotopy
groups.

As already mentioned cohomology theories are represented by spectra in the following sense.

Proposition 1.1.3. Given a spectrum A, write An(−) ∶ sSetop → Ab for the functor X ↦
[X,An]. Here sSetop is the opposite category of sSet. This functor satis�es the Eilenberg-
Steenrod axioms, hence it de�nes a cohomology theory.
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Proof. We verify the axioms. We start with the suspension isomorphism, which is a consequence
of the suspension loop space adjunction Σ ⊣ Ω.

An(X) = [X,An] ≃ [X,ΩAn+1] ≃ [ΣX,An+1] = An+1(ΣX).

Next we verify the wedge isomorphism, which is a consequence of the mapping objects turning
coproducts into products

An(⋁
i∈I
Xi) = [⋁

i∈I
Xi,An] ≃ ∏

i∈I
[Xi,An] = ∏

i∈I
An(Xi).

Homotopy invariance is clear. Let

Y X C,i p

be a co�ber sequence. We expand it to a homotopy pushout square, and obtain the following
diagram of homotopy pushout squares,

Y X ●

● C ΣY ●

● ΣX ΣC . . .

⋮ ⋮ ⋱

i

p

η

−Σi

−Σp

−Ση

Which gives rise to a long exact sequence

... An(X) An(Y ) An+1(C) An+1X An+1(Y ) ...

An+1(ΣY )

≅

p∗ −i∗

η∗

The converse statement, that cohomology theories give rise to spectra, is also true and is
called the Brown representability theorem. The following is a slight reformulation of the original
result proved in [5].

Theorem 1.1.4. Let Ho(Topc●) denote the homotopy category of connected pointed topological
spaces. A functor F ∶ Ho(Topc●)op → Set∗ is representable precisely if

� F takes coproducts to products,

� F takes weak pushouts to weak pullbacks.

Since we chose simplicial sets as our model, the classical result does not apply, we therefore
use a re�nment due to J. Jardine [7].
Note that sSet∗ equipped with Quillen-Kan model structure satis�es the conditions of Brown
representability in the sense of [7]. Let X ∈ sSet∗, and Hn(X,R) ∶=Hn(Z(X),R), where Z(X)
is chain complex associated to the simplicial abelian group Z[X] which n'th level is the free
abelian group generated by the n-simplicies of X. The theorem applies, and it secures the
existence of a simplicial set, En, and a natural equivalences [X,En] ≅ [X,ΩEn+1], where Ω is
adjoint to Σ, which are induced from weak equivalences En → ΩEn+1, hence {En}n∈N assemble
into a spectrum.

We will now give some examples of spectra.
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Example 1.1.5 (The suspension spectrum). Given a pointed simplicial set X, the suspension
spectrum Σ∞X is the sequence of pointed simplicial sets {ΣnX}n∈N with natural isomorphisms
σ ∶ Σ(ΣnX) → Σn+1X as the structure maps. Thus for each pointed simplicial set X we have
a spectrum Σ∞X. This assignment is functorial: Let φ ∶ X → Y be a morphism of pointed
simplicial set, then we de�ne (Σ∞φ)n ∶= Σnφ = φ ∧ idSn ∶X ∧ Sn → Y ∧ Sn, which assemble to a
morphism of spectra Σ∞φ ∶ Σ∞X → Σ∞Y . Hence we have a functor Σ∞ ∶ sSet∗ → Sp.

There is a functor Ω∞ ∶ Sp → sSet∗. Let X ∈ Sp, then Ω∞(X) is given by colimnΩnXn. It
can be shown that Σ∞ and Ω∞ form an adjunction (Σ∞,Ω∞).

Example 1.1.6 (Sphere spectrum). The suspension spectrum of the 0-sphere S0, is denoted S.
The natural isomorphisms S1 ∧ Sn → Sn+1 are the structure maps.

Example 1.1.7 (Eilenberg-Mac Lane spectrum). For this particular example consider Top as
the model for spectra. Let A ∈ Ab. The Eilenberg-Mac Lane spectrum is de�ned as the sequence
{K(A,n)}n∈N of Eilenberg-Mac Lane spaces, hence the name. The structure maps are given
as the adjoint maps to the homotopy equivalence σ ∶ K(A,n − 1) → ΩK(A,n). It is denoted
HA. An element in (HA)n can be viewed as a formal A-linear combination of points in Sn,
in the sense of Dold-Thom [8]. Due to this viewpoint it is easy to see that the assignment of
an Eilenberg-Mac Lane spectrum to an abelian group is functorial: given φ ∶ A → B, we obtain
(Hφ)n ∶ (HA)n → (HB)n, given by (Hφ)n(∑aixi) = ∑φ(ai)xi. This de�nes a morphism of
spectra Hφ ∶HA→HB. Hence we obtain a functor H ∶ Ab→ Sp(Top).

De�nition 1.1.8. A Ω-spectrum E is a spectrum, such that the adjoint maps of the structure
maps σ̃n ∶ En → ΩEn+1 is a weak equivalence.

Example 1.1.9. The Eilenberg-Mac Lane spectrum is an example of an Ω-spectrum, because
homotopy equivalences are the weak equivalences in the classic model structure on topological
space.

1.2 Γ-spaces

The usualK0-group of a ring R, is constructed from an abelian monoid, which is group completed
by the Grothendieck construction. The analog of the monoid in our setting is that of a Γ-space.
In this section we will de�ne Γ-spaces, see how they are generalizations of monoids, and consider
a long list of examples. All of the examples will play a role later in the text.

De�nition 1.2.1 (Segals Category). Let Fin∗ denote the category of �nite pointed sets. Segals
category is de�ned as

Γop ∶= iFin∗

Where iFin∗ is isormorphism classes of �nite pointed sets.

We denote by n+ ∶= {●,1,2, ..., n} the representative for the isomorphism class of sets with
n non-basepoint elements, where 0+ ∶= {●}. A map m+ → n+ in Γop can be speci�ed by giving
preimages of non-basepoint elements. Hence it is convenient to employ the following notation,
for 0 < i ≤ n let pi ∶ n+ → 1+ be the map given by p−1({1}) = {i}.

De�nition 1.2.2 (Γ-object). Let C be a pointed category, with initial/terminal object ●. A
Γ-object is a C - valued presheaf on Γ. A Γ-space is in explicit terms a functor A ∶ Γop → sSet∗.
These evidently assemble into a category, which we will denote it by Γ(sSet∗).

The following example shows that Γ-spaces are generalizations of abelian monoids.
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Example 1.2.3. Every abelian monoid gives a Γ-space. Consider M an abelian monoid. It
de�nes a Γ-space M with

M(m+) = ∏
i∈m+∖{●}

M

for m+ ∈ Γop and n ≥ 0.

Example 1.2.4. Γ-spaces are special cases of simplicial sets. Consider the following functor
from ∆→ Γ given by [m] ↦m+ and f ∶ [m] → [n] to θ ∶m+ → n+ where θ(i) = {j ∈ n+∣f(i− 1) <
j ≤ f(i)}. Hence the (co)limits in Γ(sSet∗) are calculated levelwise, just as in sSet∗.

Example 1.2.5. [The Γ-space S] There is an inclusion of Γop into sSet∗ by sending n+ ↦ ∆n,
we call this inclusion the sphere spectrum Γ-space, and denote it S.

Example 1.2.6 (Eilenberg-Mac Lane objects). Consider A ∈ Ab and think of it as a pointed
set (0 = ●). We can associate to A a Γ-set HA (Γ-object in Set) in the following way,

n+ ↦HA(n+) = A⊗Z[n+ ∖ {●}] ≅ A⊗ (Z⊕ ...⊕Z) ≅ A⊕n.

Let φ ∶ n+ → m+ be a morphism in Γop, then we obtain a homomorphism HA(φ) ∶ HA(n+) →
HA(m+), given by

(a1, ..., an) ↦ (( ∑
j∈φ−1(1)

aj), ..., ( ∑
j∈φ−1(m)

aj))

where m0 = ●. HA will be referred to as Eilenberg-Mac Lane objects associated to A, because
we shall later relate spectra and Γ-objects, and under this relation these objects give rise to the
Eilenberg-Mac Lane spectra.

We will now give some examples of how to form new Γ-spaces from old. These will turn out
to play an integral role when we de�ne the strict model structure on Γ(sSet∗).

Example 1.2.7. [n-truncation] Let in ∶ Γn → Γ denote the inclusion of the full subcategory
of Γ with no more than n non-basepoint elements. We de�ne the n-truncation functor Tn ∶
Γ(sSet∗) → Γn(sSet∗), where Γn(sSet∗) is de�ned analogously to Γ(sSet∗). Tn is de�ned by
sending A ∶ Γ→ sSet∗ to A ○ in ∶ Γn → sSet∗.

Example 1.2.8. [Skeleton of Γ-space] Consider the functor

skn ∶ Γn(sSet∗) → Γ(sSet∗),

which is called the n-skeleton functor, and it is given for A ∈ Γn(sSet∗) by

(sknA)(m+) = colimk+→m+,k≥nA(k+).

This functor is the left adjoint of Tn.

Example 1.2.9. [Coskeleton of Γ-space] Consider the functor

cskn ∶ Γn(sSet∗) → Γ(sSet∗),

which is called the n-coskeleton functor, and it is given A ∈ Γn(sSet∗) by

(csknA)(m+) = lim
m+→j+,j≥n

A(j+).

This functor is the right adjoint of Tn.
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Example 1.2.10. [Γn+] For n+ ∈ Γ, we de�ne a Γ-space Γn+ ∈ Γ(sSet∗), which is given by

Γn+(m+) = HomΓop(n+,m+).

Note that Γ1+ ≅ S.

We want Γ-spaces to be a homotopical version of abelian monoids, hence we need a neutral
element. The �rst guess is to set A(0+) as the unit; for this to �t into a homotopy theoretical
setting, A(0+) should be weakly equivalent to ●, which in general is not true. So to obtain a
useful notion we will have to require a few conditions on our Γ-spaces.

De�nition 1.2.11. [Special Γ-space] A Γ-space A is special if for each n ∈ N the maps

ϕn ∶=
n

∏
i=1

pi ∶ A(n+) →
n

∏
i=1

A(1+),

are weak equivalences. The maps ϕn are often called Segal maps. Furthermore we require A(●)
to be weakly equivalent to ●. The category of special Γ-spaces is the full subcategory generated
by the special Γ-spaces, we denote it sΓ(sSet∗).

Intuitively one should think of A(1+) as the �underlying space� of a Γ-space A, and A(n+)
as �a model for the n-fold product of A�.

There is the following alternative de�nition of special.

Proposition 1.2.12. A Γ-space A is special if and only if

(p∗n, p∗m) ∶ A(n+ ∨m+) ≃ A(n+) ×A(m+).

Where pn ∶ n+ ∨m+ → n+ is the map which sends m+ to the basepoint, and is the identity on n+.

Proof. An easy induction argument, using n+ ∨ 1+ ≅ (n + 1)+, gives the desired result.

In [1] the de�nition of Γ-spaces is our notion of special Γ-space. We choose to make this
distinction because Γ(sSet∗), as we shall see has the structure of a closed simplicial model cat-
egory, while sΓ(sSet∗) is not even (co)complete, see [6].

The following proposition solidi�es our intuition that special Γ-spaces should be a homotopi-
cal version of abelian monoids.

Proposition 1.2.13. If A is a special Γ-space, then π0(A(1+)) is an abelian monoid.

Proof. Because π0 preserve �nite products, we can de�ne the multiplication as

π0(A(1+)) × π0(A(1+)) ≃ π0(A(2+)) π0(A(1+)),
µ∗

where µ ∶ 2+ → 1+ is de�ned by µ−1({1}) = {1,2}. That π0(A(1+)) is abelian follows by the
following diagram

2+

2+ 1+

µ
s

µ

Where s de�nes as 1↦ 2 and 2↦ 1, which makes the following diagram commutative

π0(A(1+)) × π0(A(1+)) π0(A(2+))

π0(A(1+)) × π0(A(1+)) π0(A(2+))

≅

S s∗

≅
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Where S swaps the factors in the product. Hence π0(A(1+)) is a abelian monoid.

De�nition 1.2.14. A special Γ-space A is called very special (or group-like) if the above mul-
tiplication gives π0(A(1+)) an abelian group structure.

It turns out that there is an equivalent de�nition. Let mn ∶ n+ → 1+ be given by m−1
n ({1}) =

{1, ..., n} and let pn ∶ n+ → (n− 1)+ be given by p−1
n ({i}) = {i} for 1 ≤ i ≤ n− 1 and p−1

n ({n}) = ●.

Proposition 1.2.15. A Γ-space A is very special if and only if for each n ∈ N the diagram

A(n+) A(1+)

A((n − 1)+) ●

mn

pn

is a homotopy pullback.

Proof. We are going to proceed by induction on n. The induction start will by far be the most
challenging part. Consider the diagram when n = 2, then we need to show that A is very special
if and only if the map

(p1,m2) ∶ A(2+) → A(1+) ×A(1+),

is a weak equivalence. At this point we will use the following fact: If P is a homotopy associative
H-space, then P is an H-group, if and only if the shear map σ ∶ P ×P → P ×P , which is given by
σ(x, y) = (x,xy) is a weak equivalence, see [9] 2.4.28 for a proof. Note that the special condition
on A ensures that this fact applies to A(1+). Consider the following diagram in which (p1, p2)
is a weak equivalence because we assumed that A was special,

A(2+) A(1+) ×A(1+)

A(1+) ×A(1+)

(p1,p2)

(p1,m2)
σ

From which we see that (p1,m2) is a weak equivalence if and only σ is. We have a homotopy
inverses if and only if σ is a weak equivalence, i.e. π0(A(1+)) is an abelian group. Hence
π0(A(1+)) is an abelian group if and only if σ is a weak equivalence if and only if (p1,m2) is
which is true if and only if the diagram is a homotopy pullback for n = 2. n > 2 follows easily
by induction.

1.3 The spectrum associated to a Γ-space

In this section we explain how one can associate a spectrum to a Γ-space A. We do this by �rst
prolonging A to a functor sSet∗ → sSet∗ and then to a functor Sp→ Sp.

As mentioned it turns out that the category of spectra and the category of Γ-spaces are
Quillen equivalent. To make sense of this we must equip both categories with model struc-
tures, and construct an adjunction. The above prolongation will be one of the functors in this
adjunction. Before undergoing the mayor task of de�ning the model structures, and thereby
formulating their homotopy theories, we construct the adjunction. We will not show that it
constitutes a Quillen equivalence.

Lemma 1.3.1. Let A be a Γ-space. Then it induces a functor A ∶ sSet∗ → sSet∗. Given a
Γ-space A, we will abuse notation and denote the induced endofunctor on sSet∗ as A.
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Proof. Lets �rst extend A from Γ to Fin∗. For each pointed set S of cardinality n + 1 choose a
pointed isomorphism αS ∶ S → n+, and then set A(S) = A(n+), and if f ∶ S → T is a function of
pointed �nite sets let A(f) = A(αtfα−1

S ). Hence A ∶ Fin∗ → sSet∗.
Now given a pointed set X view it as a poset over its �nite subsets, and form the �ltered

colimit indexed over the subsets, and set

A(X) ∶= colimY ⊆X A(Y ).

Note that for this to be well-de�ned we require a axiom of choice, since each colimit has to be
chosen, and not just remain a representative of the isomorphism class of choices. This extends
A to a functor A ∶ Set∗ → sSet∗ in the following way.

For each X ∈ sSet∗, using A we can produce a pointed bisimplicial set from it, given by
([n], [m]) ↦ A(Xn)m. We de�ne

A(X) = {[n] ↦ A(Xn)n}.

Which extends A to a functor A ∶ sSet∗ → sSet∗.

Remark 1.3.2. Let K be a �nite based simplicial set, we can view it as a functor K ∶ ∆op → Γ.
Let X be a Γ-space. Using an prolongation as in 1.3.1, one can show that X(∣K ∣) de�ned as
the coend

X(∣K ∣) = ∫
n+∈Γop

F (n+, ∣K ∣) ∧X(n+)

where F (−,−) is based mapping space, is homeomorphic to the geometric realization of the
simplicial space [k] ↦ X(Kk). We will use this fact in the proof for many of our results, e.g
3.2.1.

Example 1.3.3. Consider C ∈ Γn−1(sSet∗), as de�ned in 1.2.7. Now there is a canonical map
between the n − 1-skeleton and n − 1-coskeleton, because of them being adjoint pairs,

(skn−1C)(n+) → (cskn−1C)(n+).

Now as seen in 1.2.4 and the above it is natural to view Γ-spaces as sSet∗, so lets consider the
factorization coming from a model structure on sSet∗,

(skn−1C)(n+) →K → (cskn−1C)(n+).(1.1)

We can prolong C to an object Cn in Γn(sSet∗) by setting Cn(n+) = K. The factorization
1.1 agrees with the one obtained via the same procedure applied to Cn. This fact will let us
construct factorizations inductively on the n-truncations of a Γ-space.

Another formulation of the prolongation de�ned in 1.3.1 is in terms of left Kan extension,
which extends a Γ-space A to an endofunctor on sSet∗ in a single swoop. Consider the inclusion
of i ∶ Γop → sSet∗, and a given Γ-space A, and form the left Kan extension of A along i

Γop sSet∗

sSet∗

A

i
LaniA

Where i is the inclusion constructed via the inclusion described in 1.2.5. Yet another way is
that of the following coend A ∶ sSet∗ → sSet∗,

A(X) = ∫
k+∈Γop k

∏X ∧A(k+).

This construction is not so enlightning, but it is very useful.
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Lemma 1.3.4. Given a Γ-space A, its induced endofunctor on sSet∗ induces an endofunctor
on Sp.

Proof. Given X,Y ∈ sSet∗. The endofunctor A is obtain via lemma 1.3.1. Consider the map

X → F (A(Y ),A(X ∧ Y ))
x↦ A(Y →X ∧ Y ),

where Y → X ∧ Y is de�ned as y ↦ x ∧ y, which is a map A(Y ) → A(X ∧ Y ). Consider the
adjoint of this map,

X ∧A(Y ) → A(X ∧ Y )

Now for a spectrum P , with n'th level Pn we de�ne A(P ) ∈ Sp as (A(P ))n = A(Pn) equipped
with the structural maps constructed via the above simplicial map

S1 ∧A(Pn) → A(S1 ∧ Pn) → A(Pn+1).

This extends the endofunctor A on sSet∗ to an endofunctor on Sp.

Theorem 1.3.5. A Γ-space A determines a spectrum, denoted A(S). Hence we have a functor
(−)(S) ∶ Γ(sSet∗) → Sp.

Proof. Lemma 1.3.4 A induces an endofunctor on Sp, apply this to S, to obtain the desired
spectrum.

Other than being part of a Quillen adjunction this functor has many interesting consequences,
for one via Brown representability, we have that Γ-spaces give cohomology theories. We can
also de�ned the associated (reduced) homology theory: let K ∈ sSet∗,

H̃∗(K,A) ∶= π∗(A(S)) ∧K.

At this point we have constructed one of the functors for our adjoint pair, the other one is
signi�cantly easier to de�ne.

De�nition 1.3.6. Given X,Y ∈ Sp, and n+ ∈ Γop consider

Φ(X,Y )(n+) = HomSp(
n

∏X,Y )

Φ(X,Y ) is a Γ-space.

The following is an elaboration of the proof given in [6].

Lemma 1.3.7. Let A be a Γ-space. There is an isomorphism in Sp, given as

A(X) ≅ ∐
n≥0

(
n

∏X) ∧A(n+)/ ∼

Where ∼ is given by relating φ∗(x) and φ∗(x) where φ ∶m+ → n+ in Γop and x ∈ (∏nX)∧A(m+),
via

(∏mX) ∧A(m+) (∏nX) ∧A(m+) (∏nX) ∧A(n+).
φ∗

φ∗

Proof. Consider a Γ-space A, via the coend construction discussed earlier we may prolong A to
a functor sSet∗ → sSet∗, furthermore per. de�nition of the coend we have an isomorphism of
simplicial sets for each S ∈ sSet∗,

A(S) ≅ ∫
k+∈Γop k

∏S ∧A(k+) ≅ ∐
n≥0

(
k

∏S) ∧A(k+)/ ∼

Where ∼ is a relation analogous to that given in the lemma, just for simplicial sets. Now
prolonging A to a functor Sp→ Sp, gives the desired isomorphism.
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Theorem 1.3.8. For X,Y ∈ Sp and A ∈ Γ(sSet∗), there is a natural isomorphism

HomSp(A(X), Y ) ≅ HomΓ(sSet∗)(A,Φ(X,Y ))

Proof. ConsiderA,X,Y as in the theorem. Let n+ ∈ Γop, and let ηn+ ∈ HomΓ(sSet∗)(A(n+),Φ(X,Y )(n+))
be the n+-component of a natural tranformation η ∈ HomΓ(sSet∗)(A,Φ(X,Y )). Note that if we
can show η corresponds to a map A(X) → Y in Sp, we are done. Let φ ∶ n+ →m+, then we have
naturality squares for η, because maps of Γ(sSet∗) are natural transformations. Furthermore
we have the corresponding naturality square, under the ∧-Hom adjunction:

A(n+) Hom(∏nX,Y )

A(m+) Hom(∏mX,Y ),

ηn+

ηm+

A(n+) ∧∏nX Y

A(m+) ∧∏mX Y.

ηn+

id

ηm+

Note that the square to the right, incodes that the maps η ∶ A(−)∧∏(−)X → Y is ∼W -invariant,
hence via the universal property of the quotient we obtain a unique map

∐
n≥0

(
n

∏X) ∧A(n+)/ ∼W → Y

which under the isomorphism given in 1.3.7, gives a map A(X) → Y , hence we obtain the desired
natural isomorphism.

Plugging S into the above theorem, gives the following corollary which is of great interest to
us, since it is the key-result in relating Γ-spaces and spectra.

Corollary 1.3.9. There is an adjunction

(−)(S) ∶ Γ(sSet∗) → Sp,

Φ(S,−) ∶ Sp→ Γ(sSet∗).

13





Chapter 2

Model structures on the category of

Γ-spaces

We will now develop a model structure for the category of Γ-spaces. The model structure we will
construct is called stable model structure. We will not prove every detail during this endeavor,
but will provide references or sketch of proofs when we do not. Our model structure is going to
be a Bous�eld localization of Γ(sSet∗) equipped with another model structure called the strict
model structure, we consider this one �rst.

2.1 The strict model structure

De�nition 2.1.1. A map of Γ(sSet∗) f ∶ A→ B is called a

� Strict weak equivalence if f(n+) ∶ A(n+) → B(n+) is weak equivalence in sSet∗ for n ≥ 1.

� Strict co�bration if the induced map

(skn−1B)(n+) ∐
(skn−1A)(n+)

A(n+) → B(n+)

is injective and Σn acts freely on the simplices of B(n+) not in the image. sk was de�ned
in 1.2.8.

� Strict �bration if the induced map

A(n+) → (cskn−1A)(n+) ∏
(cskn−1B)(n+)

B(n+),

is a �bration in sSet∗. csk was de�ned in 1.2.9.

These classes of maps constitute a model structure. We are not going to give all details in
the proof, see [6] for the remaining details .

Theorem 2.1.2. The category of Γ-spaces becomes a proper closed simplicial model category,
when equipped with the strict weak equivalences, strict co�brations and strict �brations. This is
called the strict model structure.

Proof. Because (co)limits and weak equivalences are de�ned levelwise, and thus de�ned in sSet∗,
which is bicomplete, and has the 2-out-of-3-property for weak equivalences, it is elementary to
show that this is also true for Γ(sSet∗).
The fact that if f is a retract of g and g is a strict weak equivalence, strict �bration, or strict
co�bration, then so is f , follows from it being true in a certain subcategory of sSet∗, denoted
Σn(sSet∗), see [6] proposition 3.3, equipped with a closed model structure very akin to the one
developed by Quillen [10] in II.4. Consider the following diagram
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A X

B Y

i p

where i is a strict co�bration and p a strict �bration, then we wish to show that the �ller map
B →X exists if either i or p is a strict weak equivalence. The two cases are very similiar, so we
will omit one half. Let i be a strict trivial co�bration. For each n ≥ 0 we apply the n-truncation,
as de�ned in 1.2.7, to the diagram above

Tn(A) Tn(X)

Tn(B) Tn(Y )

Tn(i) Tn(p)

We can construct each of these truncated �llers un ∶ Tn(B) → Tn(X), and then inductively
construct the �ller u ∶ B → X. This a delicate (and technical) procedure and is, in many ways,
the main di�culty in the proof.

We only need to show that every map f ∶ A→ B in Γ(sSet∗) can be factored f = p ○ i where
i is a strict co�bration and p is a strict �bration, and one of i or p is trivial. Assume i is trivial.

Suppose inductively that we have a factorization for the n − 1-truncation,

Tn−1(A) → Tn−1(C) → Tn−1(B) ∈ Γ(sSet∗),

for some n ≥ 1. Now using the before mentioned closed model category structure on Σn(sSet∗)
one may obtain a factorization of canonical map between the skeleton and the coskeleton, in
Σn(sSet∗) given as

(skn−1C)(n+) ∐
(skn−1A(n+)

→K → (cskn−1C)(n+) ∏
cskn−1B)(n+)

B(n+).

The desired factorization A→ C → B is obtained using an inductive procedure and 1.3.3.
We omit the proof that the closed model structure, is also simplicial, as it is a elementary

consequence of the closed model category properties of sSet∗.

2.2 The stable model structure

We now have the model structure which we are going to localize, lets de�ne the weak equivalence
and �brations of our stable model structure.

De�nition 2.2.1. A map of Γ(sSet∗) f ∶ A→ B, is called a

� Stable weak equivalence if f∗ ∶ π∗(A(S)) → π∗(B(S)) is an isomorphism.

� Stable �bration if it has the right lifting property for the strict trivial co�brations.

Example 2.2.2. We give here an elementary example of a stable equivalence. Consider the
Γ-space constructed from an abelian monoid in example 1.2.3. Let M̃ denote the universal
abelian group generated by M , we note that the Γ-space map M → M̃ is a stable equivalence,
because we have isomorphisms π∗(M(Sn)) → π∗(M̃(Sn)) for n ≥ 1, this fact is shown in [11]
Cor. 5.7.

Our main goal is to prove the following theorem, which is theorem 5.2 of [6].

Theorem 2.2.3. The category of Γ-spaces has the structure of a closed simplicial model cat-
egory, when equipped with the stable weak equivalences, the strict co�brations and the stable
�brations. This model structure is called the stable model structure.

Before we do this lets �rst remind ourselves of the notion of a Bous�eld localization.
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Theorem 2.2.4. Let C be a proper model category with a functor T ∶ C → C and a natural
transformation η ∶ 1→ T such that the following axioms hold

(1) If f ∶X → Y is a weak equivalence, then so is Tf ∶ TX → TY .

(2) For each X ∈ C , the maps ηTX , TηX ∶ TX → TTX are weak equivalences.

(3) Consider a pullback square in C

V X

W Y

k

f

h

If f is a �bration between �brant objects such that ηX ∶ X → TX, ηY ∶ Y → TY , and
Th ∶ TW → TY are weak equivalences, then Tk ∶ TV → TX is a weak equivalence.

Then the following notions de�ne a proper model structure on C : a morphism is a T -co�bration
if and only if it is a co�bration, a T -equivalence if and only if Tf ∶ TX → TY is a weak
equivalence, and T -�bration if and only if f is a �bration and the commutative diagram

X TX

Y TY

ηX

f Tf

ηX

is homotopy cartesian.

Before we move on to the proof of 2.2.3, we need to construct the endofunctor T . We will
need an intermediate construction which in fact is a localization functor, but in the framework
of symmetric spectra. Note that A(S) is naturally a symmetric spectrum via the action of Σn
on Sn. This construction uses the stable model structure de�ned in [6]. Let Q ∶ SpΣ → SpΣ,
where SpΣ is the category of symmetric spectra, and η ∶ 1 → Q be such that for each spectrum
X, ηX ∶ X → QX is a stable weak equivalence of spectra and QX is Ω-spectrum, i.e. a �brant
object in the stable model structure for spectra. A speci�c model for Q is given as

(QX)n = lim
i→∞

Sing Ωi∣Xn+1∣

Where Sing is the singular chains functor Top → sSet∗. For details see [12] Lemma 2.1.3. An
alternative construction which is very well described can be found in [13] p. 79.

Finally lets de�ne T ∶ Γ(sSet∗) → Γ(sSet∗) as T (A) = Φ(S,Q(A(S))), where Φ and A are
de�ned in 1.3.5 and 1.3.6. Let η ∶ 1→ T be the canonical transformation.

Now that we have the localization functor T one would think that we are ready to prove
2.2.3, but unfortunately the following theorem is true.

Lemma 2.2.5. Axiom (3) of 2.2.4 does not hold for Γ(sSet∗) equipped with the strict model
structure.

Proof. Consider the abelian monoid given by

M = {n ∈ Z∣n ≥ 0} ∪ {O}

with the usual addition for the non-negative integers and with O + O = 0, O + 0 = O, and
O + n = n for n ≥ 1. Note that the universal abelian group generated by M , M̃ is Z. Now
consider D = {0,O} ⊂ M . Consider the pullback square in Γ(sSet∗) where we consider each
abelian monoid as a Γ-space via 1.2.3,
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D 0

M Z

⊆

The inclusion D ⊆M is a stable �bration. From 2.2.2 M → Z is a stable equivalence, but D → 0
is not, hence this shows that axiom (3) fails.

Because of this very unfortunate fact we need to do some more work to employ 2.2.4. The
following lemma will remedy this problem.

Lemma 2.2.6. For a pullback square in Γ(sSet∗),

A X

B Y

h

k

suppose j is a strict �bration with X and Y very special and that

π0(X(1+)) ≅ π0(X(S)) π0(Y (S)) ≅ π0(Y (1+))
j∗

is surjective. If k is a stable equivalence, then so is h.

We will not prove this lemma, the details can be seen in [6] B.3 and 4.3.

Sketch of proof of 2.2.3. We will prove this fact by applying 2.2.4 to Γ(sSet∗) with the strict
model structure described in 2.1.2. Again we will implicitly use the stable model structure on
spectra de�ned in [6], since our de�nition of T relied on that of Q. It can be shown that for
each Γ-space A, ηA ∶ A→ T (A) is a stable weak equivalence and T (A) is stricly �brant and very
special. Note that the T -(co)�brations and T -equivalences of 2.2.4, are the same as the stable
�brations, strict co�bration and stable weak equivalences de�ned above. Hence we only need to
show that the axioms of 2.2.4 are satis�ed. The �rst two axioms hold because Q satis�es them.
But as seen in lemma 2.2.5 axiom (3) fails. When we are in this situation it turns out that
all the closed model category axioms hold for Γ(sSet∗) with the three classes described above,
except the factoring axiom. To be precise we still need to show that a morphism can be factored
as a trivial strict co�bration and a stable �bration. This axiom is usually proven using axiom
(3), which is not available to use, but we can use 2.2.6 instead. We will not give the details
that show we are justi�ed in substituting axiom (3) with 2.2.6, this is described in [6] Lemma
5.4.

We end this section with a characterisation of the stably �brant objects of Γ(sSet∗), and
give a large class of Γ-spaces which are co�brant. Furthermore we give a construction which can
be thought of as a co�brant replacement.

Lemma 2.2.7. Let X be a Γ-space. Then X is stably �brant if and only if it is very special
and the map X(n+) → ● is a �bration of simplicial sets for all n+ ∈ Γ.

Remark 2.2.8. In some places in the literature X is called pointwise �brant when the map
X(n+) → ● is a �bration of simplicial sets for all n+ ∈ Γ. Likewise X → Y is called a pointwise
�bration ifX(n+) → Y (n+) is a �bration of simplicial sets, for each n+ ∈ Γ, e.g. [14]. Analogously
for co�bration and weak equivalences. The pointwise weak equivalences, and (co)�brations,
constitute a closed simplicial model category for the detail see [15].

Proof of 2.2.7. Assume �rst that X is stably �brant. We start by showing that X is pointwise
�brant. X → ● has the lifting property with respect to all maps that are strict trivial co�brations,
hence in particular pointwise co�brations, i.e X is pointwise �brant. We show that X is special.
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Consider the map Γn+ ∨Γm+ → Γn+∨m+ ≅ Γn+ ×Γm+ , it can be shown that it is a co�bration and
a homotopy equivalence, hence a stable equivalence. From this it follows that

HomΓ(sSet∗)(Γ
n+∨m+ ,X) → HomΓ(sSet∗)(Γ

n+ ∨ Γm+ ,X)(2.1)

is a stable equivalence and a stable �bration, hence a pointwise equivalence and a pointwise
�bration. We have the following elementary isomorphism

X(n+ ∨m+) ≅ HomΓ(sSet∗)(Γ
n+∨m+ ,X),

X(n+) ×X(m+) ≅ HomΓ(sSet∗)(Γ
n+ ∨ Γm+ ,X).

Hence because (2.1) is an equivalence, X is special. As mentioned in example 1.2.10, Γ1+ ≅ S.
From this fact and similarly to the above, the map

S ∨ S S × Si∨∆

is a stable equivalence. Consider the induced map

π0(HomΓ(sSet∗)(S ∨ S,X)) π0(HomΓ(sSet∗)(S × S,X))(i∨∆)∗

Using the isomorphisms above, and Γ1+ ≅ S we obtain

π0(X(1+)) × π0(X(1+)) π0(X(1+)) × π0(X(1+))
(a,b)↦(a,ab)

This map has an inverse because X is �brant: it has the lifting property with respect to strict
trivial co�brations, which allow us to construct an inverse, analogously to how the inverse was
constructed in the proof of 1.2.15. Hence X is very special.

Now assume conversely that X is pointwise �brant and very special. Let X → Y → ● be a
factorization into a map that is a strict trivial co�bration i ∶X → Y followed by a stable �bration
Y → ●. Since X is very special and Y is stably equivalent it is also very special, hence i must
be a pointwise equivalence. Because of this i has a section, which comes from the pointwise
model structure described in 2.2.8, i.e. X is a retract of a stably �brant object, and hence stably
�brant itself, because (in the pointwise model structure) there exists a lift in the diagram

X X

Y ●.

id

i

Example 2.2.9. Γn+ is co�brant, which can be seen by directly plugging ● → Γn+ into the
de�nition of strict co�bration.

The above example is essentially what makes the �co�brant replacement� work. We will need
the following lemma for the proof. See [16] Chapter IV, Proposition 1.9.

Lemma 2.2.10. Suppose that X → Y is a map of bisimplicial sets such that Xn → Yn are
weak equivalences of simplicial sets. Then the induced map of associated diagonal simplicial sets
d(X) → d(Y ) is a weak equivalence.

Theorem 2.2.11. There exists a endofunctor B ∶ Γ(sSet∗) → Γ(sSet∗) for which BX is point-
wise co�brant for every X, and has a simplicial structure. Furthermore there exists a natural
tranformation η ∶ B→ 1 such that ηX ∶ BX(M) →X(M) is a weak equivalence of simplicial sets.
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Proof. Consider a Γ-space X. Lets construct a simplicial Γ-space, given by

BX(n+)p = ⋁
(n0

+
,...,np

+
)∈∏p Γop

X(n0
+) ∧HomΓop(n0

+, n
1
+) ∧ ... ∧HomΓop(np−1

+ , np+) ∧HomΓop(np+, n+).

With face and degeneracy maps

di(f ∧ α1 ∧ ... ∧ αp ∧ β) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(X(α1)(f) ∧ α2 ∧ ... ∧ αp ∧ β) i = 0,

(f ∧ α1 ∧ ... ∧ αi+1 ○ αi ∧ ... ∧ β i ≤ i ≤ p − 1

(f ∧ α1 ∧ ... ∧ αp−1 ∧ (β ○ αp) i = p
sj(f ∧ α1 ∧ ... ∧ αp ∧ β) = (f ∧ ... ∧ αj ∧ id∧αj+1 ∧ ... ∧ β)

BX is an example of the simplicial bar construction, which will play an integral role in the
proofs of the next section. Note that because Γn+ is co�brant, BM is co�brant for every n+ ∈ Γ,
i.e. pointwise co�brant.

Consider the natural tranformation

ηX ∶ BX X

(f ∧ α1 ∧ ... ∧ β) X(β ○ αp ○ ... ○ α1)(f)

It is elementary to check that for each n+ ∈ Γop we obtain a simplicial homotopy inverse to
ηX(n+) by sending f ∈ X(n+) to (f ∧ idn+ ∧... ∧ idn+). BX commutes with �ltered colimits,
because it is a bar construction (i.e. a colimit), and so does X, hence ηX is an equivalence on
all pointed sets and so by 2.2.10, ηX is an equivalence for all pointed simplicial sets because
BX and X are applied degreewise. Thus, for all pointed simplicial sets S ∈ sSet∗ the map
ηX(S) ∶ BX(S) →X(S) is a weak equivalence.
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Chapter 3

Main theorems on Γ-spaces

This section is dedicated to proving two of the main theorems of [1]. The �rst theorem, which is
theorem 3.1.6, gives a criterion on the Γ-space which insures that its associated spectrum is an
Ω-spectrum. This will be proved using an inductive procedure using the shift functor de�ned in
3.1.4.

As already mentioned to obtain the K0-group of a ring R, one takes an abelian monoid, and
group complete it via the Grothendieck construction. The second theorem, theorem 3.2.2, is the
homotopical analog of group completion. The theorem gives a criterion on the Γ-space which
secures that its associated spectrum is almost an Ω-spectrum. Furthermore it insures that one
of the structure maps in the associated spectrum is a group completion map. Lets begin with
the �rst theorem.

3.1 A(S) is an Ω-spectrum

The proofs are based on the proofs given in [13]. We begin by collecting useful results, some of
which prove and some of which we give references to. For later reference we state the following
technical lemma.

Lemma 3.1.1. Let f ∶X → Y be a morphism of simplicial spaces, such that for every face map
di[n − 1] → [n] the square

Xn Xn−1

Yn Yn−1

d∗i

fn fn−1

d∗i

is a homotopy pullback. Then for every m ≥ 0, the square

Xm ×▽m ∣∣X ∣∣

Ym ×▽m ∣∣Y ∣∣

fm×▽m

is a homotopy pullback. Here ∣∣ − ∣∣ is the fat realization, for details see the appendices of [1].

We are going to de�ne two functors which both are going to be integral parts of the proof
of the �rst main theorem. Both are sorts of shift functors, very akin to the shift functor for
spectra.

De�nition 3.1.2. [Translate of simplicial space] Let T ∶ ∆ → ∆ be the functor, which shifts
each object up, T ([n]) = [n + 1] and likewise for a morphism α, we have T (α)(0) = 0 and
T (α)(i) = α(i − 1) + 1 for i ≥ 1. Let X be a simplicial space, then the translate of X is TX.
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Lemma 3.1.3. Let X0 be the 0th level of a simplicial space X. Then ∣TX ∣ has the same
homotopy type as X0.

Proof. We are simply going to write down an explicit homotopy. Note that there are simplicial
maps X0 → TX, and TX → X0 respectively, given as sn+1

0 ∶ X0 → Xn+1 and dn+1
1 ∶ Xn+1 → X0.

Note that the composite X0 → TX → X0 is the identity. On the other hand, the collection
hi ∶ TnX → Tn+1X de�ned by hi = si+1

0 ○ di1 for 0 ≤ i ≤ n, de�nes a simplicial homotopy in the
sense of [17]. Explicitly d1 ○ h0 = id and dn+2 ○ hn = sn+1

0 ○ dn+1
1 and

di+1 ○ hj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

hj−1 ○ di+1 i < j
di+1 ○ hi−1 i = j
hj ○ di i > j

and si+1 ○ hj =
⎧⎪⎪⎨⎪⎪⎩

hj+1 ○ si+1 i ≥ j
hj ○ si i > j

.

which means that the two maps are homotopic, the result follows from corollary 11.10 in [18].

De�nition 3.1.4. [Shift of a Γ-space] Given a Γ-space A, then the shifted Γ-space sh(A) is
de�ned as sh(A) = A(S1 ∧ −).

Lemma 3.1.5. If A is special, then sh(A) is special. Furthermore if sh(A) is connected, sh(A)
is very special.

Proof. Assume A is special. Consider n+ and m+ �nite pointed sets, then we have

sh(A)(n+ ∨m+) = A(S1 ∧ (n+ ∨m+))
≅ A((S1 ∧ n+) ∨ (S1 ∧m+))
≃ A(S1 ∧ n+) ×A(S1 ∧m+) = sh(A)(n+) × sh(A)(m+).

Thus sh(A) is special. We omit the remainder of the proof.

Theorem 3.1.6. Let A be a co�brant very special Γ-space. Then the spectrum A(S) is an
Ω-spectrum.

Proof. Consider the structure map σ0 ∶ S1 ∧A(S0) → A(S1) of the spectrum X(S), and apply
the suspension loop space adjunction to obtain σ̃0 ∶ A(S0) → ΩA(S1). We start by showing
that σ̃0 is a weak equivalence. Consider the simplicial space BA ∶ ∆op → Top de�ned as the
composite

∆op Γop Top.S1 A

Note by 1.3.2 the space A(S1) is homeomorphic to ∣BA∣.
We de�ne a new simplicial space EA ∶ ∆op → Top as EA ∶= BA ○ T , where T is the translate

de�ned in 3.1.2. There is a morphism of simplicial spaces d0 ∶ EA → BA, which arises in the
following way. The morphism in ∆, d0 ∶ [n] → [n+1] = T ([n]) lets us form the following diagram

[n] [n]

T ([n]) T ([n]).

d0

id

d0

id

which shows that d0 is a component of a natural transformation, which we will also denote by
d0 ∶ id∆ → T . Hence precomposing with d0, gives morphisms d∗0 ∶ (EA)n = (BA)n+1 → (BA)n
which assemble into a morphism of simplicial spaces d0 ∶ EA → BA. For every morphism
v ∶ [0] → [n] ∈ ∆, we can form the following square

(EA)n (EA)0

(BA)n (BA)0.

v∗

d∗0 d∗0

v∗
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Now note that (BA)0 = A(S1
0) = ●, because A was a special Γ-space. A homotopy pullback over

a point, is weakly equivalent to a product of the two o�-diagonal objects. Hence the square is
a homotopy pullback if the following map is a weak equivalence,

(d∗0, T (v)∗) ∶ A(S1
n+1) → A(S1

1) ×A(S1
n).(3.1)

Here we have used that (EA)n = A(S1
n+1) and (BA)n × (EA)0 = A(S1

1) × A(S1
n). There are

two cases, either v(0) = 0 or not. First if v(0) = 0, then one can show that d∗0 ∶ S1
n+1 → S1

n and
T (v)∗ ∶ S1

n+1 → S1
1 are complementary projections, hence the map is a weak equivalence, because

A was special. Now if v(0) ≥ 1, then one may also show that T (v)∗ ∶ S1
n+1 → S1

1 is a iterated
fold map, which makes the map from (3.1) a weak equivalence, because A was very special.

Let di ∶ [n − 1] → [n] be any face map in ∆. Consider the following diagram

(EA)n (EA)m+1 (EA)0

(BA)n (BA)m (BA)0.

d∗i

d∗0 d∗0

v∗

d∗0

d∗i v∗

By the above the right square, and the outer rectangle are homotopy pullbacks, which implies
that the left square is too, for a proof of this fact see [16] chapter IV. Now apply 3.1.1 to the
morphism d0 ∶ EA→ BA obtained earlier. This implies that the following square is a homotopy
pullback

(EA)0 ∣∣EA∣∣

(BA)0 ∣∣BA∣∣.

∣∣d0∣∣

Here ∣∣ − ∣∣ is the fat realization. Since A is a co�brant Γ-space the simplicial spaces EA and BA
the inclusions of degenerate simplices ⋃i si(EAn−1) → (EA)n and ⋃i si(BAn−1) → (BA)n are
closed co�brations in the classical model structure on topological spaces, i.e EA and BA are
proper. Because of this the natural maps ∣∣EA∣∣ → ∣EA∣ and ∣∣BA∣∣ → ∣BA∣ are weak equivalences,
for details see the appendices [1]. Which implies that the following diagram is a homotopy
pullback

(EA)0 ∣EA∣

(BA)0 ∣BA∣.

Note that (EA)0 = A(S1
1) = A(S0), ∣BA∣ = A(S1) and, as already noted, (BA)0 = ●. Fur-

thermore because (BA)0 is contractible, 3.1.2 implies that ∣EA∣ = ∣T (BA)∣ is also contractible,
therefore we obtain a homotopy pullback diagram

A(S0) ●

● A(S1).

t

Hence we obtain a weak equivalence from A(S0) → hofib(t), and thus a weak equivalence
A(S0) → ΩA(S1), which in fact is the adjoint structure map σ̃.

At this point we still need to handle the higher structure maps of A(S). Consider the n-fold
shifted Γ-space from 3.1.4, which can be seen as a functor on �nite sets through a prolongation
of the Γ-space shn(A), from a functor Γ → sSet∗ to a functor Fin∗ → sSet∗, see the proof of
1.3.1. By the �rst part the adjoint structure map ∣ shn(A)(S0)∣ → Ω∣ shn(A)(S1)∣ is a weak
equivalence, but this map is isomorphic to the adjoint structure map σ̃n ∶ A(Sn) → ΩA(Sn+1),
hence A(S) is a Ω-spectrum.
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3.2 A(S) is a positive Ω-spectrum

The proof of the second main theorem, is a consequence of the following lemma.

Lemma 3.2.1. Given a A a co�brant special Γ-space, there exists a Γ-space Ã and a morphism
f ∶ A→ Ã which satis�es the following properties

1. The map f(1+) ∶ A(1+) → Ã(1+) induces an isomorphism

H∗(A(1+),Z)[(π0(A(S0))−1] →H∗(Ã(1+),Z).

2. The map A(S1) → Ã(S1) is a weak equivalence.

3. The Γ-space Ã is very special.

We will postpone the lengthy proof of the lemma, until after we see its application, namely
the second main theorem.

Theorem 3.2.2. Let A be a co�brant special Γ-space. The adjoint structure map σ̃ ∶ A(S0) →
ΩA(S1) is a group completion map, hence it induces an isomorphism,

H∗(A(S0),Z)[(π0(A(S0))−1] →H∗(ΩA(S1),Z).

Furthermore A(S) is a positive Ω-spectrum, i.e. an Ω-spectrum from the 1st level and up.

Proof. We will for notational ease denoted (π0(A(S0)) simply as π. Let Ã be as in 3.2.1.
Consider the commutative square

A(1+) Ã(1+)

ΩA(S1) ΩÃ(S1).

f(1+)

σ0 σ0

Ωf(S1)

Note that Ã(1+) = Ã(S0), hence the right vertical map is a weak equivalence via 3.1.6 because Ã
is very special according to 3.2.1(3). The lower horizontal map is a weak equivalence because of
3.2.1(2), and the fact that Ω preserve weak equivalences. Hence we get a commutative diagram
of homology rings,

H∗(A(1+),Z)[π−1] H∗(Ã(1+),Z)

H∗(ΩA(S1),Z) H∗(Ω(Ã(S1),Z),

f(1+)∗

(σ0)∗ (σ0)∗
(Ωf(S1))∗

Property 3.2.1(1) implies that the top horizontal map is an isomorphism, and because the right
vertical map and the lower horizontal map was induced from weak equivalences, they are also
isomorphisms. Hence the left vertical map (σ0)∗ is an isomorphism, which when noting that
A(1+) = A(S0) gives the desired isomorphism.

Via 3.2.1(2) A(S1) → Ã(S1) is a weak equivalence. Ω preserve weak equivalences so
ΩA(S1) → ΩÃ(S1) is a weak equivalence. Furthermore note that Ã(S) is an Ω-spectrum by
3.2.1(3) and 3.1.6. These two facts implies that A is a positive Ω-spectrum.

Remark 3.2.3. Now if M is an H-space the multiplication induces a ring structure in its ho-
mology, called the Pontrjagin ring of M , and lets view π0(M) as a multiplicative subset of the
Pontrjagin ring H●(M,Z).

Lemma 3.2.4. Let X be a homotopy commutative H-space. Then H∗(X,F)[π0(X)−1] is a
Hopf algebra.
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Proof. The proof that H∗(X,F) is an bialgebra will be given in the proof of lemma 3.2.1. We
will only de�ne the antipode on H∗(X,F) here. Suppose �rst that X is path connected. Let
∆ ∶ X → X × X be the diagonal map. Let φ ∶ H∗(X,F) → H∗(X,F) ⊗ H∗(X,F), be the
comultiplication. Consider 1 ∈ H0(X,F) and let it be represented by ∆0 → X, then we have
ψ(x) = 1⊗1. To analyze the e�ect of ψ on the higher homology groups we consider the following
diagram, and one where we collapse the �rst factor instead of the second.

H∗(X,F) H∗(X ×X,F) H∗(X,F) ⊗H∗(X,F)

H∗(X × {●},F) H∗(X,F) ⊗H∗({●},F)

H∗(X,F) H∗(X,F) ⊗Z

ψ

id

≅

≅

≅

≅

≅

Where we've used the Künneth isomorphism, and the rest of the maps are the obvious ones.
From the above diagram it is evident that for x ∈H∗(X,F) for deg(x) > 0

ψ(x) = x⊗ 1 +∑x′ ⊗ x′′ + 1⊗ x.

Where we sum over tensors x′⊗x′′ for which x′ and x′′ satisfy deg(x′) > 0 and deg(x′′) > 0. Now
in the case where X is not path connected, we consider g ∶ ∆0 →X represent a path component
Xg ⊆ X. Assume that x ∈ im(H∗(Xg,F) → H∗(X,F)) and deg(x) > 0. Then we have that
ψ(g) = g ⊗ g, and

ψ(x) = x⊗ g +∑x′ ⊗ x′′ + g ⊗ x

which follows from the connected case and naturality of ψ with respect to inclusions. Now
since X was an H-space it has a Pontrjagin product ● ∶ H∗(X,F) ⊗ H∗(X,F) → H∗(X,F).
Because X is homotopy commutative we may assume the Pontrjagin ring H∗(X,F) is graded
commutative. We will now de�ne the map c ∶ H∗(X,F) → H∗(X,F)[π0(X)−1] which is going
to lift to the antipode. Let g ∶ ∆0 → X represent a path component Xg, then g is invertible in
H∗(X)[π(X)−1] and we de�ne c(g) = g−1, and extend this map to all of H0(X) by F-linearity.
For x ∈H∗(Xg,F) ⊆H∗(X,F) with deg(x) > 0, de�ne inductively

c(x) = −x ● g−2 −∑x′ ● c(x′′) ● g−1

and extend this to all of H∗(X,F) by F-linearity. It is elementary to check that c is a ring
homomorphism with respect to the Pontrjagin product and that c(π0(X)) ⊆ π0(X). Hence by
the universal property of localization c induces an F-algebra homomorphism

c ∶H∗(X,F)[π0(X)−1] →H∗(X,F)[π0(X)−1].

Now let ε ∶ H∗(X,F)[π0(X)−1] → F be the unit induced by X → {e} where e is the unit with
respect to the Pontrjagin product, and let η ∶ F→H∗(X,F)[π0(X)−1] be the counit induced by
{e} → X. Note that for all g ∶ ∆0 → X we have that ε(g) = 1, and for all x ∈ H∗(X,F) with
deg(x) > 0 we have that ε(x) = 0.

We wish to show that (●(id⊗x)ψ) = ηε, namely that c constitutes an antipode. Consider
g ∶ ∆0 →X, then

(●(id⊗x)ψ)(g) = g ● c(g) = g ● g−1 = e = η(1) = (ηε)(g).

Let x ∈H∗(X) and assume deg(x) > 0, then we have

(●(id⊗x)ψ)(x) = x ● x−1 +∑x′ ● c(x′′) + g ⋅ c(x)
= x ● x−1 +∑x′ ● c(x′′) + g ⋅ (−x ● g−2 −∑x′ ● c(x′′) ● g−1)
= 0.

which proves the claim.

25



Proof of 3.2.1. Consider a �nite pointed set X, and form the following homotopy pullback

Pk(X) A(∆[1]k ∧X)

A(∆[1]k ∧X) A(S1
k ∧X)

Where lower left copy of ∆[1] is pointed at 0, and the upper right copy of ∆[1] is pointed at
1. As k varies, the structure maps of ∆[1] and S1, and the functoriality of homotopy pullback
makes Pk(X) into a simplicial space [k] ↦ Pk(X). Let Ã(X) = ∣[k] ↦ Pk(X)∣.

Proof of 3.2.1(1). Let F denote any �eld, and denote the homology of A(1+) with F-
coe�cients H∗(A(1+),F) as H. Consider diagonal map ∆ ∶ Ã(1+) → Ã(1+)×Ã(1+), and consider
its induced map

H∗(Ã(1+),F) H∗(Ã(1+) × Ã(1+),F)

H∗(Ã(1+),F) ⊗H∗(Ã(1+),F).

∆∗

ψ
≅

Where the vertical isomorphism is the Künneth isomorphism which applies because Tor-term
vanishes in F-coe�cients, hence we obtain a comultiplication on H∗(Ã(1+),F), denote it ψ.
Now as already noted in the proof of 1.2.15, Ã(1+) is an H-space, hence via 3.2.3, we obtain
multiplication on H∗(Ã(1+),F). The multiplication m is given as

H∗(X̃(1+) × Ã(1+),F) H∗(Ã(2+),F) H∗(Ã(1+) × Ã(1+),F)

H∗(Ã(1+),F) ⊗H∗(Ã(1+),F) H∗(Ã(1+),F)

H∗((p1)∗,(p2)∗)−1

≅

H∗((p1)∗,µ∗)

(pr2)∗

m

Where both isomorphisms are the Künneth isomorphism. The multiplication and comultiplica-
tion grantsH∗(Ã(1+),F) the structure of a F-bialgebra, i.e it is (co)associative, (co)commutative
and has (co)unit. The above shows the missing part of 3.2.4.

Since Ã(1+) is de�ned as the geometric realization of a simplicial space

∣[k] ↦ Pk(1+)∣ = (∐
n≥0

Xn ×∆n)/ ∼

Where ∼ is the usual relation (x, di(y)) ∼ (si(x), y). Consider its n'th truncation, de�ned as
in ∶= ∐n≥i≥0Xi × ∆i. There is a canonical map in → ∣P●(1+)∣, consider the n'th truncations
image under this map and denote it Fn∣P●(1+)∣. These give a �ltation

... ⊆ Fn∣P●(1+)∣ ⊆ Fn+1∣P●(1+)∣ ⊆ ...

This �ltration gives rise to a spectral sequence of F-algebras converging to the homology of
Ã(1+) with coe�cients in F, as described in [19] p. 109.

E1
p,q =Hp(Pq(1+),F) ⇒Hp+q(Ã(1+),F).(3.2)

According to [18] Theorem 11.14 the E2-page is

E2
p,q =Hp(Hq(P●(1+),F)),

where for each �xed q ≥ 0 Hq(P●(1+),F) is regarded as a chain complex with di�erential ∂n =
∑n(−1)i(di)∗) where di are the face maps in the simplicial space P●(1+). Now consider the
Γ-space A, for which we have weak equivalences A(∆[1]k) → A(1+)k+1 which follows from
the isomorphism ∆[1]k ≅ ⋁k+1

i=1 S
0, and 1.2.12. Therefore we obtain the following commutative

diagram
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A(∆[1]k) A(S1
k) A(∆[1]k)

A(1+)k+1 A(1+)k A(1+)k+1

∼ ∼ ∼

Hence we obtain the following diagram of homotopy pullbacks

Pk(1+) A(∆[1]k)

P A(1+)k+1

A(∆[1]k) A(S1
k)

A(1+)k+1 A(1+)k

∼ ∼

∼ ∼

Note that that the homotopy pullback P is weakly equivalent to A(1+)k+2. Therefore we obtain
isomorphisms

H∗(Pk(1+),F) ≅H∗(A(1+)k+2,F) ≅H∗(A(1+),F) ⊗ ...⊗H∗(A(1+),F),(3.3)

where the second isomorphism is the Künneth isomorphism. This is a description of the chain
complex appearing on the E2-page of the spectral sequence in 3.2. Under this isomorphism
the simplicial structure maps of H∗(Pk(1+),F) become the face and degeneracy maps of the
simplicial bar construction for the bialgebra H, B(H⊗H,H,F), namely the simplicial F-module
[k] ↦ (H ⊗H) ⊗ (⊗k

i=1H) ⊗ F. Explicitly they become the maps

di((h⊗ h′) ⊗ (h1 ⊗ ...⊗ hk) ⊗ v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m((h,h′), ψ(h1)) ⊗ h2 ⊗ ...⊗ hk ⊗ v if i = 0

(h⊗ h′) ⊗ (h1 ⊗ ...⊗m(hi, hi+1) ⊗ ...⊗ hk) ⊗ v if 0 < i < k
(h⊗ h′) ⊗ (h1 ⊗ ...⊗ ε(hk) ⋅ v) if i = k.

si((h⊗ h′) ⊗ (h1 ⊗ ...⊗ hk) ⊗ v) = (h⊗ h′) ⊗ (h1 ⊗ ...⊗ hi−1 ⊗ 1⊗ hi ⊗ ...⊗ hk) ⊗ v

Here m ∶ H ⊗H → H is the multiplication induced on H through A(1+)'s H-space structure
analogous to how the multiplication on the homology of Ã(1+) was de�ned earlier.

Therefore, the chain complex needed on the E2-page of the spectral sequence in 3.2 is

... (H ⊗H) ⊗H ⊗ ...⊗H ⊗ F ... (H ⊗H) ⊗H ⊗ F 0
∂n ∂n d0−d1

Let us denote this chain complex B●(H ⊗H,H,F). B●(H ⊗H,H,F) is the chain complex whose
homology de�nes the relative Tor-group, see [20] p. 288. I.e there is an isomorphism

TorHp,∗(H ⊗H,F) ≅H∗(B●(H ⊗H,H,F)).(3.4)

Hence from the de�nition of the spectral sequence we have

E2
p,∗ = TorHp,∗(H ⊗H,F).

The multiplicative subset π acts trivially on F, because the action is the one of H∗(A(1+),F)
on H∗({●},F) via the augmentation map ε. Hence F is π-local. Now localization is an exact
functor, so it commutes with homology, therefore it commutes with Tor, so we obtain a natural
map for every p ≥ 1 induced by the localization morphism of H-modules H⊗H → (H⊗H)[π−1],
where we view H ⊗H as a H-module via the diagonal action using the coproduct ψ.

TorHp,∗(H ⊗H,F) → TorH[π−1]
p,∗ ((H ⊗H)[π−1],F)
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These localization maps are isomorphisms because the left hand side was local. Now via 3.2.4
we have that H[π−1] is an Hopf algebra with antipode c as de�ned in the proof of 3.2.4. We will

use this fact to realize that (H ⊗H)[π−1] is �at, ensuring that TorH[π−1]
p,∗ ((H ⊗H)[π−1],F) = 0,

such that the spectral sequence 3.2 collapses at the E2-page.
Consider the following composition of maps

H ⊗H H ⊗H ⊗H H ⊗H[π−1] ⊗H H[π−1] ⊗H[π−1],1⊗ψ 1⊗c⊗1 m⊗1

We denote the composition Φ, which via the universal property of localization induces a map

Φ ∶ (H ⊗H)[π−1] →H[π−1] ⊗H[π−1].

Next consider the composition

H ⊗H H ⊗H ⊗H (H ⊗H)[π−1]1⊗ψ m⊗1

Which also induces a map

Ψ ∶H[π−1] ⊗H[π−1] → (H ⊗H)[π−1].

It can be shown that both Φ and Ψ are H-linear with the diagonal action on (H ⊗H)[π−1] and
the action on the hand fact of H[π−1] ⊗H[π−1], and that they are inverse to one another. Φ
is an isomorphism of H[π−1]-modules, and because the right hand side is free, we deduce that
(H ⊗H)[π−1] is free, which implies that it is �at. So as mentioned earlier we have

TorHp,∗(H ⊗H,F) = 0

for p ≥ 1, hence it is only the 0'th column of the E2-page of the spectral sequence 3.2 that is
non-zero. Since the di�erentials on page k > 1 has positive horizontal degree E2 = E∞. Therefore
the ⊕p+q=nE

∞
p,q is isomorphic to the associated graded homology, but we actually get more, we

obtain a map from ⊕pE∞
p,n−p →Hn, because the succesive quotient which de�nes E∞

p,n−p is trivial
because there is only a single non-zero column. Hence we obtain an isomorphism of algebras,

(H ⊗H) ⊗H F ≅ TorH0,∗(H ⊗H,F) ≅H∗(Ã(1+),F).

Furthermore consider the following string of isomorphisms

(H ⊗H) ⊗H F (H ⊗H)[π−1] ⊗H[π−1] F H[π−1] ⊗ (H[π−1] ⊗H[π−1] F) H[π−1].(1) (2) (3)

Where (1) is the p = 0 of 3.4, (2) is Φ and reordering of the localizations, and (3) is via �rst
considering F as a trivial H[π−1]-module, and consider H[π−1] as a F-module, which we can
because it was a F-bialgebra. Combining these two isomorphisms shows property 1.

Proof of 3.2.1(3). Consider �nite pointed sets B and C, and form the following commu-
tative diagram using that ∧ distributes over ∨,

A(∆[1]k ∧ (B ∨C)) A(S1
k ∧ (B ∨C)) A(∆[1]k ∧ (B ∨C))

A(∆[1]k ∧B) ×A(∆[1]k ∧C) A(S1
k ∧B) ×A(S1

k ∧C) A(∆[1]k ∧B) ×A(∆[1]k ∧C)

∼ ∼ ∼

The vertical maps are weak equivalences because A is special. Hence we obtain the following
diagram of homotopy pullbacks
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Pk(A ∨B) A(∆[1]k ∧ (B ∨C))

P A(∆[1]k ∧B) ×A(∆[1]k ∧C)

A(∆[1]k ∧ (B ∨C)) A(S1
k ∧ (B ∨C))

A(∆[1]k ∧B) ×A(∆[1]k ∧C) A(S1
k ∧B) ×A(S1

k ∧C)

∼ ∼

∼
∼

Note that the homotopy pullback P is weakly equivalent to Pk(B) × Pk(C), hence we have a
weak equivalence Pk(B ∨C) → Pk(B)×Pk(C). Geometric realization commutes with products,
so we obtain a weak equivalence

Ã(B ∨C) → Ã(B) × Ã(C),

hence Ã is special. From the proof of 3.2.1(1), it is clear that the homology algebra structure
H̃ ∶=H∗(Ã(1+),F) is de�ned such that the following diagram commutes

H̃ ⊗ H̃ H̃ ⊗ H̃

H∗(Ã(1+) × Ã(1+),F) H∗(Ã(2+),F) H∗(Ã(1+) × Ã(1+),F)

≅

Φ

≅

≅
H∗(p1∗,p

2
∗
)−1

H∗(p1∗,(m2)∗)

Here the vertical maps are the Künneth isomorphism. Via property 3.2.1(1), H̃ is isomorphic
to H∗(A(1+),F)[π−1], in particular H̃ is an Hopf algebra. Denote the antipode by c ∶ H̃ → H̃.
De�ne Φ and its inverse Ψ as in 3.2.1(1). Because the map (p1

∗, p
2
∗) ∶ A(2+) → A(1+) × A(1+)

is a weak equivalence, we deduce from 1.2.15 that the induced map of (p1
∗, (m2)∗) ∶ A(2+) →

A(1+) ×A(1+) is an isomorphism on homology. Now this map is an isomorphism of homology
groups and the fundamental group, hence via [21] Corollary 1, page 79 it is a weak equivalence.
Which shows that the Γ-space Ã is very special.

Proof of 3.2.1(2). A(S1) is isomorphic to the geometric realization of the simplicial space
[k] ↦ A(S1

k), hence as described before the simplicial skeletal �ltration comes with a spectral
sequence

E1
p,q =Hp(A(S1

q ),F) ⇒Hp+q(A(S1),F),

Because A is special A(S1
k) is weakly equivalent to A(1+)k, hence analogous to 3.3, we have

H∗(A(S1
k),F) ≅H∗(A(1+)k,F) ≅H∗(A(1+),F) ⊗ ...⊗H∗(A(1+),F).

Again via an analogous procedure as in the proof of 3.2.1(1), the simplicial structure maps
become the maps in the simplicial bar construction B(F,H,F). From which we have

E2
p,∗ = TorHp,∗(F,F).

Ã was special via property 3.2.1(3), so the above argument applies to Ã, so we have

H∗(Ã(S1
k),F) ≅H∗(Ã(1+)k,F) ≅H∗(Ã(1+),F) ⊗ ...⊗H∗(Ã(1+),F).
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Applying the identi�cation H∗(Ã(1+),F) ≅H∗(A(1+),F)[π−1] given in the proof of 3.2.1(1), the
structure maps become the maps in B(F,H[π−1],F), so we obtain

Ẽ2
p,∗ = TorH[π−1]

p,∗ (F,F).

The map f ∶ A→ Ã induces a map between these two spectral sequence,

E2
p,∗ = TorHp,∗(F,F) H∗(A(S1),F)

Ẽ2
p,∗ = TorH[π−1]

p,∗ (F,F) H∗(Ã(S1),F)

f(S1)∗

Because π act invertibly on F, F as a H-module is already π-local, hence the induced map on
Tor-groups is an isomorphism. The spectral sequences are concentrated in the �rst quadrant,
hence we can conclude that the induced map f(S1)∗ is an isomorphism for all �elds F. This
implies that f(S1)∗ is a isomorphism of integral homology. Now A(S1) and Ã(S1) are loop
spaces, hence they are H-spaces. They are furthermore path connected, which implies they are
simple spaces. The well known fact that H∗(−,Z)-equivalence between simple spaces are weak
equivalences, implies that f(S1)∗ is an weak equivalence.
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Chapter 4

The K-theory spectrum of a permutative

category

In this chapter we �nally de�ne the K-theory spectrum associated to a permutative category.
We will also deal with the main example, where we consider the permutative category of �nitely
generated projective R-modules, PR.

4.1 Γ-categories and the K-theory spectrum

Lets �rst de�ne permutative categories and see how they �t into the Γ-object formalism.

De�nition 4.1.1. A permutative category C is a symmetric monoidal category (C ,⊕,0, α, l, r, b)
where the associator a, the left and right unitors l and r, and the braiding b isomorphisms are
identities.

Construction 4.1.2. We will now construct a category C (n+) from a permutative category C
and n+ ∈ Γ.

� An object X of C (n+) is a collection X = {XS , ρS,T } consisting of

� an object XS of C for all S ⊆ n+ ∖ {●}.
� an isomorphism ρS,T ∶XS ⊕XT →XS∪T for every pair of disjoint subsets S and T of
n+.

� A morphism f ∶X →X ′ in C (n+) consists of morphisms fS ∶XS →X ′
S for all S as above,

such that f∅ = id0 and such that the following square commutes for every pair of disjoint
subsets S and T ,

XS ⊕XT XS∪T

X ′
S ⊕X ′

T X ′
S∪T .

ρS,T

fS⊕fT fS∪T

ρ′S,T

This data is subject to the following conditions

� X∅ = 0 and ρS,∅ = idXS
∶XS ⊕X∅ →XS for all S.

� For all mutually disjoint subsets S,T,U of n+ the following squares commute

XS ⊕XT XS∪T

XT ⊕XS XT∪S

ρS,T

bXS,Xt id

ρT,S

XS ⊕XT ⊕XU XS∪T ⊕XU

XS ⊕XT∪U XS∪T∪U .

ρS,T⊕idXU

idXS
⊕ρT,U ρS∪T,U

ρS,T∪U
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Lemma 4.1.3. The C construction is a covariant functor C ∶ Γop → Cat, hence give rise to
Γ-category.

Proof. Let α ∶ m+ → n+ be a morphism in Γop, we de�ne α∗ ∶ C (m+) → C (n+) in the following
way. Let X ∈ C (m+), then

α∗(X) = {(α∗(X))S , (α∗(ρ))S,T } = {Xα−1(S), ρα−1(S),α−1(T )}.

Note that α is based, hence α−1(S) does not contain the basepoint. Consider f ∶X →X ′, then we
de�ne α∗(f) ∶ α∗(X) → α∗(X ′) at each S ⊆ n+∖{●} as (α∗(f))S = fα−1(S). It is straightforward
to check that this gives rise to a functor α∗ ∶ C (m+) → C (n+). Given another map β ∶ k+ →m+
in Γop, we force the last functor condition to hold, by setting (αβ)∗(S) = β∗(α∗(S)) for all
S ∈ n+ ∖ {●}, hence (αβ)∗ = α∗ ○ β∗ ∶ C (k+) → C (n+).

The following theorem shows that given a permutative category C , then the Γ-category C
is a special Γ-space.

Proposition 4.1.4. Consider a small permutative category C , then C satis�es the following
properties

(1) C (0+) is terminal in Cat.

(2) For every pair n+, m+ in Γ, the functor

(p∗n+ , p
∗
m+

) ∶ C (n+ ∨m+) → C (n+) ×C (m+),

induced from the morphisms pn+ ∶ n+ ∨m+ → n+ which sends m+ to the basepoint, and is the
identity on n+, is a equivalence of categories.

(3) C (1+) ≅ C

Proof. (1) Per. de�nition of C the objects of C (0+) are collections {XS , ρS,T } indexed by
S ⊂ 0+ not containing the basepoint. There is only one such S, namely S = ∅, which by the
axioms of C gives X∅ = 0 which is additive neutral element of the permutative category C .
Hence C (0+) = ●, i.e. the one point category, which is terminal in Cat.
(2) Because (n+ ∨m+) ≅ (n +m)+ showing the above equivalence is equivalent to showing
that

P∗ =
n

∏
i=1

(pi)∗ ∶ C (n+) → C (1+) × ... ×C (1+)

where pi ∶ n+ → 1+ is the map which sends all element but the i'th element to the basepoint.
Let X ∈ C (n+) then P∗ is de�ned as

P∗(X) = P∗({XS , ρS,T }) = (X{1}, ...,X{n})

We de�ne the inverse, Q ∶ C (1+) × ... ×C (1+) → C (n+) as

Q((X{1}, ...,X{n})) = { ⋃
S⊂n+∖{●}

{⊕
i∈S

X{i}}, ⋃
i,j∈n+

ρ{i},{j} ∶X{i} ⊕X{j} →X{i,j}}

Now note that we may construct ρS,T for any disjoint S,T ⊂ n+, by iteratively applying ρ{i},{j}
according to S and T . We will now describe this a bit more precise, �rst note that

XS ⊕XT .... ⊕p∈SX{p} ⊕⊕q∈T X{q} ... XS∪T

ρS,T

≅ ≅
≅ ≅
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This means that

{ ⋃
S⊂n+∖{●}

{⊕
i∈S

X{i}}, ⋃
i,j∈n+

ρ{i},{j} ∶X{i} ⊕X{j} →X{i,j}} ≅ {XS , ρS,T }

Knowing this it is easy to see that P∗ and Q are inverses. This amounts to an equivalence of
categories and not an isomorphism, because there is a choice associated to the construction of
ρS,T , namely the order of application of ρ{i},{j}.

(3) There is only one subset of 1+ ∖ {●} besides the emptyset, hence an object X ∈ C (1+),
is the �collection� {X{1}} where the data of the isomorphisms is super�uous, hence the objects
are in one-to-one correspondence with the objects of C .

At this point we wish to obtain a spectrum associated to a given permutative category C . If
we apply the nerve functor N to our Γ-category C we obtain a Γ-space. We can then evaluate
on spheres according to 1.3.5, to obtain a spectrum.

De�nition 4.1.5. The K-theory spectrum of a permutative category C is the spectrum,

K(C ) = ∣N●(C )∣(S).

We de�ne the i'th K-group of the permutative category C as

πi(K(C )) ∶= colimn πi+n(K(C )n)

Lemma 4.1.6. For every permutative category C the K-theory spectrum K(C ) is a Ω-spectrum
from the 1st level and up.

Proof. Note that the nerve functor is covariant Cat → sSet∗ and it is continuous. In particular
it preserves products and terminal objects. Furthermore it sends equivalences of categories to
homotopy equivalences of simplicial sets. Geometric realization is also a covariant continuous
functor sSet∗ → Top∗, which sends homotopy equivalences of simplicial sets to homotopy equiv-
alences, hence 4.1.4 gives us that ∣N●C ∣ is a special Γ-space. Apply 3.2.2 to obtain the desired
result.

4.2 K-theory of rings

Consider a associative unital ring R. Consider the category of �nitely generated projective R-
modules PR, whose objects are isomorphism classes of projective R-modules and morphisms are
R-linear isomorphisms. The usual direct sum of modules ⊕ ∶ PR × PR → PR gives (PR,⊕) the
structure of a permutative category.

Via the above the K-theory spectrum of PR, K(PR) is a Ω-spectrum from the 1st level and
above.

We will in this section try to identify the in�nite loop space of the K-theory spectrum
K(PR). For the sake of notational simplicity we set P = ∣N●(PR)∣. Observe that we constructed
P from a permutative category, this together with N● and ∣ − ∣ being continuous functors,
hence preserves �nite products, implies that P (1+) is topological monoid. Furthermore we
have Ω∞(K(PR)) ≃ Ω(P (S1)) per. de�nition.

Lemma 4.2.1. We have the following equivalence of spaces P (S1) ≅ B(P (1+)).

Proof. From the proof of 4.1.6 we see that P is special, hence the n'th simplicial level of P (S1)
is

P (S1
n) ≃ P (1+) × ... × P (1+).

This implies that we have the following equivalence in each simplicial level of P (S1
● ) ≅ B●(P (1+)),

where B● is the simplicial bar construction which we've already utilized a couple of times in the
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previous proofs. The structure maps of B●(P (1+)) are given as described in the proof of 2.2.11.
If we apply geometric realization to this equivalence, we obtain the desired equivalence of spaces
P (S1) ≅ B(P (1+)). This is a consequence of [22] theorem A.4.

This lemma lets us get a better handle on P (S1), which will turn out to give us a better
handle on its loop space Ω(P (S1)).

Lemma 4.2.2. There is an isomorphism of spaces P (1+) ≅ ⊔[P ]B(Aut(P )).

Proof. Note that P can be seen as the following composition of functors

Γ Cat sSet∗ Top∗
PR N●

∣−∣

If we consider PR(1+), then via property (3) of 4.1.4, we obtain PR(1+) ≅ PR, and then we are
applying the classifying space functor B = ∣N●(−)∣. Lets analyze the nerve of PR. Given two
isomorphisms classes of projective R-modules [P ] and [Q], there are no morphisms between
them, because the morphisms in PR are the R-linear isomorphisms, hence there are only com-
positions of automorphisms from each isomorphism class. Hence we have an isomorphism of
categories PR ≅ ⊔[P ] Aut(P ) given by sending [P ] ↦ Aut(P ), and sending ϕ ∶ [P ] → [P ] to the
corresponding element in Aut(P ). The classifying space functor commutes with disjoint unions,
hence we obtain the desired isomorphism.

Before proceeding, we need a small intermezzo on co�nality of permutative categories, to
better understand P (1+)∞. This discussion is based on [23] p. 115-116.

Let D be a full subcategory of a symmetric monoidal category C . If D contain 0 and it is
closed under �nite products it is also symmetric monoidal.

De�nition 4.2.3. We say that D is co�nal in C if for every object C ∈ C there exists a C ′ ∈ C
such that C ⊕ C ′ is isomorphic to an element of D . If one considers isomorphism classes of
objects in C and D , this becomes the usual co�nality notion for abelian monoids.

Lemma 4.2.4. Let FR be the subcategory of PR consisting of �nitely generated free R-modules.
Denote by F = ∣N●(FR)∣. Then the monoid π0(F (1+)) is co�nal in π0(P (1+)).

Proof. Note that FR is co�nal in PR, because every projective R-module is a summand of a free
R-module. The above result easily follows.

Now lets pick up where we left. Combining the lemma 4.2.1 and 4.2.2 we obtain

Ω(P (S1)) ≅ Ω(B(⊔
[P ]

B(Aut(P )))).(4.1)

The symmetry functors in PR give P (1+) the structure of a homotopy commutative topological
monoid. We now invoke the following version of the group completion theorem which due to
Oscar Randal-Williams [24], which now applies to P (1+). The language and notation is that of
G.Segal and D.McDu�'s [25].

Theorem 4.2.5. Let M be a homotopy commutative topological monoid, and denote by [x] the
path component of an element x ∈M . Let m1,m2, ... ∈M , be a sequence of elements such that for
every m ∈M and n ∈ N, there exists k ≥ 0 such that [m] is a right fact of [mn+1 ⋅mn+2 ⋅ ... ⋅mn+k]
in the discrete monoid π0(M). Form

M∞ = hocolim(M M ...).⋅m1 ⋅m2

Then the McDu�-Segal comparison map

M∞ hofib∗(π) Ω(B(M))s

t
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induces an isomorphism on homology with all systems of local coe�cients on Ω(B(M)).

Let consider P (1+)∞, recall that the directed homotopy colimit is weakly equivalent to
a mapping telescope. Because π0(F (1+)) → π0(P (1+)) is co�nal, we may choose the sequence
m1,m2, ... to be the constant sequence [R], [R], ..., where [R] ∈ π0(P (1+)) is the path component
of the free module of rank 1. Hence we may consider the following mapping telescope

P (1+)∞ ≃ Tel (P (1+) P (1+) ...).⊕[R] ⊕[R]

Theorem 4.2.5 now implies that

P (1+)∞ → Ω(B(P (1+))

is a homology equivalence with all local coe�cients on Ω(B(P (1+))), i.e. it is an acyclic map.
As explained in [24] a consequence of this is the fact that the fundamental group of P (1+)∞,

for every choice of basepoint, has a perfect commutator subgroup. Now apply the plus-construction
with respect to this perfect subgroup to each path-component of P (1+)∞ separately. The result
is an acyclic map P (1+)+∞ → Ω(B(P (1+)) which in addition induces an isomorphism of funda-
mental groups hence it is a weak homotopy equivalence. Ω(B(P (1+)) is an grouplike homotopy
commutative H-space, therefore all its path components are homotopy equivalent.

This implies that we have the following equivalence

P (1+)+∞ ≃ π0(ΩBP (1+)) ×Ω0(BP (1+)),(4.2)

where Ω0(BP (1+)) is the path component of the identity. Recall that π0(Ω(B(M)) ≅ G(π0(M))
for any homotopy commutative topological monoid M , where G is the Grothendieck group
construction. Applying this to our situation yields

π0(Ω(B(P (1+))) = G(π0(P (1+))) ≅ G(iR) ∶=K0(R).

Via this, 4.2.5, and (4.2), we have that

P (1+)+∞ ≃K0(R) ×Ω0(BP (1+)),(4.3)

The path component of the identity Ω0(BP (1+)) is given by the in�nite mapping telescope

Tel (BAut(0) BAut(R) ...)⊕[R] ⊕[R]

Note that the automorphisms of Rn are GLn(R), hence the telescope is BGL(R). Hence

P (1+)+∞ ≃K0(R) ×BGL(R)+.(4.4)

Combining by (4.1), (4.4), and (4.3)

K0(R) ×BGL(R)+ ≃ P (1+)+∞ ≃ Ω(B(⊔
[P ]

B(Aut(P )))) ≃ Ω∞(K(PR))

This in particular shows that BGL(R)+ is homotopy equivalent to an in�nite loop space.
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