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Abstract

In this project out of course scope we present the theory needed to state the Tannaka
duality for symmetric fusion categories. Specifically that if A is a symmetric fusion cate-
gory and A admits a fiber functor Φ: A → VectC then we have an monoidal equivalence
A ' Rep(Aut⊗ Φ). In particular we prove that for a finite group G, the category of finite
dimensional representations of G, RepG, is a symmetric fusion category. This is mainly
done by lifting properties of VectC to RepG.

The project starts by discussing the tensor product of vector spaces both through con-
struction and through its universal property. We then discuss k-algebras and show that
these are naturally thought of as the monoid objects in Vectk. Finally we show an equiv-
alence of the categories RepG ' C[G]-Mod(VectC). We then abstract from the theory of
the tensor product of vector spaces, to the theory of monoidal categories. In particular we
introduce monoidal functors and monoidal natural transformations, braided and symmetric
monoidal categories and braided monoidal functors. We then introduce dualizable objects
and rigid monoidal categories. We then turn to enriched categories, in particular we discuss
Abelian categories, simple objects in abelian categories and semi simple abelian categories.
Here a noteworthy result we prove is Schur’s Lemma. Which specialize to the case of linear
categories in a particularly nice way. Namely that For a simple object X in a linear category
End(X) ∼= C. Then to state the theorem of Tannaka duality for symmetric fusion categories
we then combine the notions of monoidal categories and linear categories, by requiring com-
patibility between the two. This defines tensor categories and fusion categories.

The final part of this project will be dedicated to proving a slightly weaker statement.
To prove this statement we prove The Tannaka reconstruction theorem of C-algebras and
use this to prove the Tannaka duality for representations of a finite group G.
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Introduction and motivation

The goal of this project out of course scope is to showcase the work i have done with my advisor
Thomas in the third and fourth term of the second year of my bachelors degree.

In this project we present the prerequisites to the theory of fusion categories with the goal of
presenting the statement of Tannaka duality for symmetric fusion categories first proved by
Deligne. This theorem answers a very rudimentary type of questions in mathematics to which
i will give an analogy. It is easy to see that the finite direct sum cyclic groups is an finitely
generated abelian group. One might then to think ask the question are all finitely generated
abelian groups isomorphic to some finite direct sum of cyclic groups. This is of course a well
known fact. In a similar fashion one can show the category of representations of a finite group
G is a symmetric fusion category. The question to be answered is then do all symmetric fusion
categories arise this way and the answer given by Deligne in 1990 is yes. However before we
are able ask this question in a rigid manor, we will need both vocabulary and theory. We will
present the theory to stringently ask this question.

We will assume that the reader is familiar with elementary notions from category, linear algebra
and group theory. In particular we will assume that the reader are comfortable with universal
properties, various (co)limits and basic examples of these. Standard textbooks and references
for the subjects presented in this project would be [Mac13], [nLa], [Wei95], [Kel82], [Eti+16],
[Rie14] and [Tel05]. The project is mostly self contained with only theorems of little significants
to this project proofed by reference.

One unfortunate thing lacking from this project is a proper chapter on string diagram formalism.
I have written an appendix, this is however quite incomplete. For a more complete introduction
i propose the paper [Bar15].

Notation. We use a couple of conventions in this project in particular ' will always mean an
equivalence of categories. A ∼= B will mean that A and B are isomorphic in some category. When
handling natural transformation we will only denote components of the natural transformation
with indices if we fear the lack thereof might further complicate the proof.
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1 TENSOR PRODUCTS AND ALGEBRAS IN VECTK

1 Tensor products and algebras in Vectk

Given two vector spaces V,W over a field k, one generally has multiple ways of constructing
new vector spaces from these. One reoccurring construction will be the direct sum V ⊕W , of V
and W . Another one is the tensor product V ⊗W - this section will concern itself with tensor
products, both through the direct construction and through the universal property of tensor
products. Following this we will define algebras in the category of vector spaces over a field k
and compare the categorical and classical notion of these.

1.1 Construction of the tensor product

We now concretely construct the tensor products of two vector spaces over a field k.

Definition 1.1. Let V,W ∈ Vectk, we define the tensor product V ⊗W to be as following

V ⊗W := F (V ×W )/ ∼,

Where F (A) denotes the free vector space with basis A and is the equivalence relation ”∼” is
generated by the relation that for all a, b ∈ V and c, d ∈W and r ∈ k.

(a+ b, c) ∼ (a, c) + (b, c),

(a, c+ d) ∼ (a, c) + (a, d),

r(a, c) ∼ (ra, c), and

r(a, c) ∼ (a, rc).

We denote the equivalence class of (v, w) ∈ V ×W by v⊗w. Additionally if V,W, S, T ∈ Vectk
and f : V →W , g : S → T are linear maps then one can define the tensor product map by

f ⊗ g : V ⊗ S →W ⊗ T
v ⊗ s 7−→ f(v)⊗ g(s).

This construction yields a linear map and will be used multiple times in the following chapters,
and is essential to multiple proofs in this chapter.

1.2 The universal property of the tensor products

Now we introduce the universal property of tensor products and show that the tensor product
of vector spaces satisfy a plethora of properties.

Definition 1.2. If V,W, T ∈ Vectk and φ : V ×W → T is a bilinear map we say that (T, φ) is the
tensor product of V and W if for every vector space X ∈ Vectk and bilinear map ψ : V ×W → X
there exist a unique linear map f : T → X such that the following diagram

V ×W T

X

φ

ψ
∃!f

commutes.

Using this definition its easy to see that T is unique up to isomorphism, and we will state
without proof that the tensor product defined earlier satisfies this universal property. It is easy
to see V ⊗W ∼= W ⊗V by the linear map τV,W where v⊗w 7→ w⊗ v. We are now able to prove
a few propositions about the tensor product.
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1 TENSOR PRODUCTS AND ALGEBRAS IN VECTK

Remark. Given a pair of vector spaces (V,W ) ∈ Vectk×Vectk the procedure of assigning their
tensor product, and taking pairs of linear maps and assigning their tensor product of maps is a
bifunctor

⊗ : Vectk×Vectk → Vectk .

Proposition 1.3. For all U, V,W ∈ Vectk their exists an isomorphism, called the associator,

αUVW : (U ⊗ V )⊗W → U ⊗ (V ⊗W )

natural in all three arguments.

Proof. Let U, V,W ∈ Vectk, and define the following maps φ : U ×V ×W → (U ⊗V )⊗W given
by φ(x, y, z) = (x⊗y)⊗z and ψ : (U ×V ×W → U ⊗ (V ⊗W ) by ψ(x, y, z) = x⊗ (y⊗z). Then
by the universal property of the tensor product their exist a linear map αUVW : (U⊗V )⊗W →
U ⊗ (V ⊗W ) such that

(U × V )×W (U ⊗ V )⊗W

U ⊗ (V ⊗W )

φ

ψ
αUV W

commutes. One can obtain a linear map α−1
UVW : U ⊗ (V ⊗W ) → (U ⊗ V ) ⊗W in a similar

fashion. It is routine to check that these are mutually inverse. We now check that αUVW is
natural in U, V and W . Let U, V,W,U ′, V ′,W ′ ∈ Vectk and f : U → U ′, g : V → V ′ and
h : W →W ′ be linear maps. Thus for (a⊗ b)⊗ c ∈ (U ⊗ V )⊗W we see that

(αU ′V ′W ′((f ⊗ g)⊗ h))((a⊗ b)⊗ c) =αU ′V ′W ′((f(a)⊗ g(b))⊗ h(c))

= f(a)⊗ (g(b)⊗ h(c)) =(f ⊗ (g ⊗ h))αUVW ((a⊗ b)⊗ c)

Showing that α is indeed a natural isomorphism.

The tensor product of vector spaces also admit two more natural isomorphisms of special inter-
est.

Proposition 1.4. For all V ∈ Vectk their exists isomorphisms l : k⊗V → V and r : V ⊗k → V ,
called the left and right unitors, natural in V .

Proof. Let V ∈ Vectk then define the map l : k⊗V → V by the function k⊗V 3 r⊗x 7→ rx ∈ V .
This is clearly a linear map, it is the extension of the scalar multiplication of V by the tensor

product and given the data V
f→W in Vectk it holds that

lW (idk⊗f(r ⊗ x)) = lW (r ⊗ f(x)) = rf(x) = f(rx) = f(lV (r ⊗ x)).

Showing that l is natural in V . The construction and subsequent proof for the right unitor is
analogous and therefor omitted.

This shows that k in some sense is the unit with respect to tensoring on the left and right.

Theorem 1.5 (Coherence theorem). For all A,B,C,D ∈ Vectk the following diagrams com-
mute

((A⊗B)⊗ C)⊗D (A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

(A⊗B)⊗ (C ⊗D) A⊗ (B ⊗ (C ⊗D))

αA⊗BCD

αABC⊗idD αAB⊗CD

idA⊗αBCD

αABC⊗D
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1 TENSOR PRODUCTS AND ALGEBRAS IN VECTK

and

(A⊗ k)⊗B A⊗ (k ⊗B)

A⊗B

αAkB

r⊗idB idA⊗l

Remark. These diagrams are usually known as the pentagon and triangle diagrams.

Proof. Let A,B,C,D ∈ Vectk then for ((a⊗ b)⊗ c)⊗d ∈ ((A⊗B)⊗C)⊗D we see by applying
the associators that

(αABC⊗DαA⊗BCD)(((a⊗ b)⊗ c)⊗ d) = αABC⊗D((a⊗ b)⊗ (c⊗ d))

= a⊗ (b⊗ (c⊗ d)) = idA⊗αBCD(a⊗ ((b⊗ c)⊗ d))

= (idA⊗αBCD ◦ αAB⊗CD)((a⊗ (b⊗ c))⊗ d) = (idA⊗αBCD ◦ αAB⊗CD ◦ αABC ⊗ idD)(((a⊗ b)⊗ c)⊗ d)

showing the commutativity of the pentagon diagram. Similarly for (a ⊗ r) ⊗ b ∈ (A ⊗ k) ⊗ B
we check that

r ⊗ idB((a⊗ r)⊗ b) = ar ⊗ b = a⊗ rb = idA⊗l(a⊗ (r ⊗ b)) = idA⊗l(αAkB((a⊗ r)⊗ b)

showing the commutativity of the triangle diagram.

1.3 Algebras in Vectk

We now introduce k-algebras and algebras in the category of vector spaces and compare the
classical definitions to the categorical definitions. In particular we show that these definitions
are equivalent.

Definition 1.6. An algebra A over a field k is a vector space A ∈ Vectk equipped with a
bilinear product A × A → A, mapping (x, y) 7→ xy. Additionally for all x, y, z ∈ A we require
the that multiplication is associative i.e. (xy)z = x(yz) and there exist an element 1 ∈ A such
that 1x = x1 = x. A is said to be an commutative k-algebra if for all x, y ∈ A it holds that
xy = yx.
An algebra homomorphism between k-algebras A and B is a linear map f : A → B such that
for 1, x, y ∈ A and 1 ∈ B the following equalities hold

f(1) = 1

f(xy) = f(x)f(y).

Using the previously defined tensor product of vector spaces we can define the notion of an
algebra in the category of vector spaces over a field k.

Definition 1.7. An object A ∈ Vectk is an algebra object in Vectk if it can be equipped with
maps e : k → A and µ : A⊗A→ A such that the following diagrams commute

(A⊗A)⊗A A⊗ (A⊗A) A⊗A

A⊗A A

αA,A,A

µ⊗idA

idA⊗µ

µ

µ

k ⊗A A⊗A A⊗ k

A

e⊗idA

l
µ

idA⊗e

r

Here l and r denote the left and right unitors. We will call the first diagram the associativity
axiom and the second diagram the unitality axiom. The triple (A,µ, e) is called an algebra in
Vectk. An algebra A is called commutative if
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1 TENSOR PRODUCTS AND ALGEBRAS IN VECTK

A⊗A A⊗A

A

µ

τA,A

µ

commutes. We will call this the commutativity axiom. Here τA,A denotes the map x⊗y 7→ y⊗x.
An homomorphism of algebras A,B is a map f ∈ Vectk(A,B) such that the following two
diagram commutes

A⊗A B ⊗B

A B

f⊗f

µA µB

f

.

k A

B

e2

e1

f

We now prove our first theorem, namely that these notions of algebra are equivalent.

Theorem 1.8. If A ∈ Vectk then

1. A is an k-algebra if and only if A is an algebra object in Vectk.

2. A is an commutative k-algebra if and only if A is an commutative algebra object in Vectk.

3. f : A → B is an homomorphism of k-algebras if and only if f : A → B is an homomor-
phism of algebras A and B.

Proof. 1. Let A be a k-algebra. Then the composition of A induces a linear map µ : A⊗A→
A induced by the universal property of the tensor product. We know check that the
coherence axioms are satisfied. Note that it is adequate to see this is satisfied for pure
tensors. Thus let x, y, z ∈ A. Then

(µ(µ⊗ idA))((x⊗ y)⊗ z) = µ((xy)⊗ z) = (xy)z = x(yz).

Here the last equality is the associativity of the product in A. Now similary

(µ(idA⊗µ(αA,A,A)))((x⊗ y)⊗ z) = (µ(idA⊗µ))(x⊗ (y ⊗ z)) = µ(x⊗ (yz)) = x(yz)

showing that the associativity diagram commutes. Furthermore let r ∈ k. Then we define
e : k → A to be the linear map defined by k 3 1 7→ 1 ∈ A. Then

(µ(e⊗ idA))(r ⊗ x) = µ((r · 1)⊗ x) = µ(1⊗ (r · x)) = 1(r · x) = r · x = l(r ⊗ x)

showing the commutativity with the left unitor. The proof for the right unitor is analogous
and therefor omitted. This shows that A is an algebra object.
Now let (A,µ, e) be an algebra object. Then define the product to be the composite

A × A p→ A ⊗ A µ→ A. Here p denotes the bilinear map defined by (x, y) 7→ x ⊗ y. We
now show associativity and unitality. Let x, y, z ∈ A. Then

(xy)z = µ(p(µ(p(x, y)), z)) = µ(µ(x⊗ y)⊗ z) ∗= µ(x⊗ µ(y ⊗ z)) = µ(p(x, µ(p(y, z)))) = x(yz)

Here ”*” follows from the associativity diagram showing that the multiplication is asso-
ciative. Now we show that 1 := e(1) acts as the unit in in A. Let x ∈ A. Then by the
unitality diagram

1x = e(1)x = (µ(e⊗idA))(1⊗x) = l(1⊗x) = x = r(x⊗1) = (µ(idA⊗e))(x⊗1) = xe(1) = x1
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1 TENSOR PRODUCTS AND ALGEBRAS IN VECTK

the bilinearity of the multiplication and the construction of the tensor product ensures
that scaler multiplication satisfies the appropriate relations. This shows that A is an
k-algebra completing the proof of 1.

2. Let A be an commutative k-algebra. By 1. A is an algebra object. Thus for x, y ∈ A
and using the commutativity of A it holds that µ(x ⊗ y) = xy = yx = µ(τA,A(x ⊗ y)).
Similary if A is an commutative algebra then by 1. A is an k-algebra. Thus since the
commutativity diagram commutes xy = µ(x⊗ y) = µ(y ⊗ x) = yx. This shows that A is
an commutative k-algebra.

3. Let A,B be k-algebras and f : A→ B an homomorphism of k-algebras. If x, y ∈ A then

f(µA(x⊗ y)) = f(xy) = f(x)f(y) = µB(f(x)⊗ f(y)) = (µB(f ⊗ f))(x⊗ y).

Similary if f : A→ B is a homomorphism of algebras then in particular f is linear. Also
for x, y ∈ A it follows that

f(xy) = f(µA(p(x, y))) = µB((f ⊗ f)(p(x, y))) = f(x)f(y).

evaluating at 1 ∈ A shows that f preserves units thus finishing the proof.

From now on these notions of algebras will be used interchangeably.

Example 1.9. If G is a group one can define an k-algebra k[G] = span(G) where for a, b ∈ k and
g, h ∈ G we define the multiplication by (ag)(bh) = abgh, extending with distributive laws, and
with unit e ∈ k[G].

1.4 Modules over algebras

In this section we will define the notion of a module over an algebra and homomorphisms
between such modules. Furthermore we show that representations of a group G corresponds
bijectively to modules over the group algebra k[G]. In fact this extends to an equivalence
Rep(G) ' C[G]-Mod(VectC) of the category of k-linear representations of G with the category
of k[G]-modules.

Definition 1.10. If A is an algebra over a field k a left module over A is a vector space
N ∈ Vectk equipped with a map ρ : A⊗N → N such that the following diagrams commute

k ⊗N A⊗N

N

l

e⊗idN

ρ .

called the unitality diagram and the second diagram called the action property

(A⊗A)⊗N A⊗ (A⊗N) A⊗N

A⊗N N

µ⊗idN

αAAN idA⊗ρ

ρ

ρ

A homomorphism f : (N1, ρ1) → (N2, ρ2) of left A modules is a linear map f : N1 → N2 such
that

9



2 MONOIDAL CATEGORIES

A⊗N1 A⊗N2

N1 N2

idA⊗f

ρ1 ρ2

f

commutes.

Remark. The category of left modules over an k-algebra A is usually denoted A-Mod(Vectk).

A reoccurring construction in this project is category of representations of a group G.

Definition 1.11. Let G be a group. A representation (V, ρ) of G is a vector space V over C
and a group homomorphism ρ : G→ Aut(V ). 1

Remark. For a representation (V, ρ) of G we define the dimension of the representation to be
dim(V, ρ) = dimV .

Definition 1.12. If (V, ρV ) and (W,ρW ) are representations of a group G, a linear map f :
V →W is G-linear if for all g ∈ G

V W

V W

f

ρV (g) ρW (g)

f

commutes.

It is clear that the identity map is G-linear and that the composition of G-linear maps is again
G-linear. We now have the ingredients to define the category of representations of a group G.

Definition 1.13. For a group G. The category RepG of representations of a group G, has as
objects finite dimensional representations (V, ρV ) and as arrows G-linear maps.

We will now conclude this chapter by showing our main theorem

Theorem 1.14. If G is a group then C[G]- Mod(VectC) ' RepG

Proof. If V is a left C[G]-module then the composite

G C[G] AutVi ρ(−⊗−)

With g 7→ ρ(g⊗ =). This is clearly well defined, since G is a group. It is also easily seen to be a
group homomorphism. If on the other hand (V, ρ) is a representation The map p : C[G]⊗V → V
with g ⊗ v 7→ ρV (g)(v), defines an action on V .

2 Monoidal categories

We have now discussed the notion of algebras in the category Vectk, first through a classical
description and then through a more modern categorical approach and shown that these are in
fact equivalent notions. We have shown that Vectk has a lot of additional structure. The goal
of this chapter will be define the categorification of this structure (monoidal categories) and
describe additional examples of such categories.

Definition 2.1. A monoidal category consists of the following data

1We will mainly concern us with complex representations in this project and therefor this definition is specified
further, it is however easy to generalise.
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2 MONOIDAL CATEGORIES

• A category C .

• A bifunctor
⊗ : C × C → C .

• An object 1 ∈ C called the unit.

• A natural isomorphism α : (−⊗−)⊗− ⇒ −⊗ (−⊗−), such that for all A,B,C,D ∈ C

((A⊗B)⊗ C)⊗D (A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

(A⊗B)⊗ (C ⊗D) A⊗ (B ⊗ (C ⊗D))

αA⊗BCD

αABC⊗idD αAB⊗CD

idA⊗αBCD

αABC⊗D

commutes.

• And two natural isomorphisms r : −⊗ 1⇒ − and l : 1⊗− → − such that

(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B

αAkB

r⊗idB idA⊗l

commutes for all A,B ∈ C .

Notation. Given a monoidal category (C ,⊗, 1, α, l, r) we will usually suppress, the associators
and unitors and write (C ,⊗, 1).

Example 2.2. In fact Theorem 2.5 shows that (Vectk,⊗, k) is indeed a monoidal category. An-
other example of a monoidal category is the monoidal category (Set,×, {∗}), with Set as cat-
egory, the cartesian product and the one point set as unit. Additionally For any monoidal
category (C ,⊗, 1) the category (C op,⊗op, 1) with A⊗op B :− B ⊗A for all A,B ∈ C op.

We will now use the monoidal structure on VectC to produce a monoidal structure on RepG.

Definition 2.3. Let (V, ρv) and (W,ρW ) be representations of a group G then we define the
the tensor product of the representations (V, ρV ) and (W,ρW ) to be the representation (V ⊗
W,ρV⊗W ) with ρV⊗W (g)(−) := ρV (g)(−)⊗ρW (g)(−) for all g ∈ G. For G-linear maps f : X →
Y and g : X ′ → Y ′ we define the tensor product of G-linear maps to be the tensor product
linear maps f ⊗ g : X ⊗X ′ → Y ⊗ Y ′.

It is clear that the tensor product of representations is again a representation we will now show
that the tensor product of G-linear maps is indeed G-linear.

Notation. From now on we will suppress the group homomorphisms and just say that V is a
representation is a representation of a group G. Thus from now on ρV will always mean the
corresponding group homomorphism ρV : G→ AutV .

Proposition 2.4. If X,X ′, Y and Y ′ are representations of a group G and f : X → X ′ and
h : Y → Y ′ are G-linear maps then f ⊗ h : X ⊗ Y → X ′ ⊗ Y ′ is G-linear.

Proof. Let g ∈ G then for all x⊗ y ∈ X ⊗ Y

f ⊗ h(ρX⊗Y (g)(x⊗ y)) = f ⊗ h(ρX(g)(x)⊗ ρY (g)(y)) = f(ρX(g)(x))⊗ h(ρY (g))
∗
= ρX′(g)(f(x))⊗ ρY ′(g)(h(y)) = ρX′⊗Y ′(g)(f(x)⊗ h(y)) = ρX′⊗Y ′(g)(f ⊗ h(x⊗ y))

at ”*” we use the G-linearity of f and h thus completing the proof.
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2 MONOIDAL CATEGORIES

Corrolary. For all V,W,U ∈ RepG the associator αVWU : (V ⊗W ) ⊗ U → V ⊗ (W ⊗ U) is
G-linear and natural in all arguments.

This is clear from the definitions and the proof therefor is omitted.

Proposition 2.5. For a group G the category RepG is monoidal with the tensor product of
representations and unit C given the trivial representation t : G→ AutC defined g 7→ id for all
g ∈ G.

Proof. We now check that the left and right unitors are G-linear. If V is a representation of G
then for all g ∈ G and all r ⊗ v ∈ C⊗ V

l(t(g)(r)⊗ ρV (g)(v)) = l(1⊗ rρV (g)(v)) = ρV (g)(rv) = ρV (g)(l(r ⊗ v).

The proof for the right unitor is analogous and therefor omitted then by Theorem 2.5 the
pentagon and triangle diagram commutes, thus showing (RepG,⊗, (C, t)) is a monoidal cate-
gory.

This gives us our second example of a monoidal category.

Remark. A monoidal category (C ,⊗, 1) is called strict if the associator, the left and right unitors
are all identity maps. In fact a theorem due to Mac Lane [Mac13] states that every monoidal
category is equivalent to a strict monoidal category.

In an attempt to abstract from the notions algebras defined in definition 2.7 one defines the
following.

Definition 2.6. If (C ,⊗, 1) is a monoidal category a monoid object in C consists of the following

• an object A ∈ C .

• A map e : 1→ A, this is usually referred to as the unit map.

• A map µ : A⊗A→ A, usually referred to as the multiplication map.

Such that the following diagrams (associativity)

(A⊗A)⊗A A⊗ (A⊗A) A⊗A

A⊗A A

αAAA

µ⊗idA

idA⊗µ

µ

µ

and (unitality)

1⊗A A⊗A A⊗ 1

A

e⊗idA

l
µ

idA⊗e

r

commute.
A homomorphism of monoids (A,µA, eA) and (B,µB, eB) is a map f : A → B such that the
following diagrams

A⊗A B ⊗B

A B

f⊗f

µA µB

f

and

1 A

B

eA

eB
f

commute.

12
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Remark. We will denote the category of monoids in a monoidal category C by Mon C . Thus
part 1 and 3 of theorem 2.8 establishes that Mon(Vectk) ' Algk. Where Algk denotes the
category of k-algebras and algebra homomorphisms.

In a similar fashion we can define the notion of a module over a monoid.

Definition 2.7. If (A,µ, e) is a monoid in a monoidal category C a left module over A consists
of

• an object N ∈ C .

• A map ρ : A⊗N → N called the action.

Such that

1. (Unitality) The following diagram commutes

k ⊗N A⊗N

N

l

e⊗idN

ρ .

2. (action property) and the following diagram

(A⊗A)⊗N A⊗ (A⊗N) A⊗N

A⊗N N

µ⊗idN

αAAN idA⊗ρ

ρ

ρ

commutes.

A homomorphism of A-modules (N, ρN ) and (N, ρM ) is a map f : N →M such that

A⊗N A⊗M

N M

idA⊗f

ρN ρM

f

commutes. We denote the category of left A-modules in C by AMod -C .

This concludes the first step in the process of defining symmetric fusion categories which Tan-
naka duality concerns.

3 Monoidal functors

We will in this section explore notion of structure preserving morphisms between monoidal and
k-linear categories and maps between these. Additionally we will prove that monoidal functors
preserve duals and use this fact to prove that given two monoidal categories out of a rigid
category any monoidal natural transformation between these will be an monoidal isomorphism.

Definition 3.1. Let (C ,⊗C , 1C ) and (D ,⊗D , 1D) be monoidal categories. A lax monoidal
functor is a

13



3 MONOIDAL FUNCTORS

• functor F : C → D .

• A morphism ε : 1D → F (1C ).

• A natural transformation with components µX,Y : F (X) ⊗D F (Y ) → F (X ⊗C Y ) for all
X,Y ∈ C .

Such that for all X,Y, Z ∈ C the following diagrams commute:

• (Associativity)

(F (X)⊗D F (Y ))⊗D F (Z) F (X)⊗D (F (Y )⊗D F (Z))

F (X ⊗C Y )⊗D F (Z) F (X)⊗D (F (Y ⊗C Z))

F ((X ⊗C Y )⊗C ) F (X ⊗C (Y ⊗C Z))

α

µX,Y ⊗id id⊗µY,Z

µX⊗Y,Z µX,Y⊗Z

F (α)

.

• (Unitality)

1D ⊗D F (X) F (1C )⊗D F (X)

F (X) F (1⊗C X)

ε⊗id

lD µ1C ,X

F (lC )

and

F (X)⊗D 1D F (X)⊗D F (1C )

F (X) F (X ⊗C 1C )

rD

id⊗ε

µX,1C

F (rC )

.

Monoidal functors will play the role of structure preserving functors between monoidal cate-
gories. One example of this is the following proposition:

Proposition 3.2. Let (C ,⊗C , 1C ) and (D ,⊗D , 1D) be monoidal categories and F : C → D a
lax monoidal functor. If (A,µ, e) is a monoid object in C then F (A) can be made into monoid
in D with multiplication given by the composite

µ∗ : F (A)⊗D F (A) F (A⊗C A) F (A)
ηA,A F (µ)

and unit map given by

e∗ : 1D F (1C ) F (A)ε F (e)
.

Proof. Let η : F (−)⊗D F (−)⇒ F (−⊗C −) be a the natural transformation F comes equipped
with. We consider the diagram

(F (A)⊗D F (A))⊗D F (A) F (A)⊗D (F (A)⊗D F (A)) F (A)⊗D F (A⊗C A)

F (A⊗C A)⊗D F (A) F ((A⊗C A)⊗C A) F (A⊗C (A⊗C A)) F (A)⊗D F (A)

F (A)⊗D F (A) F (A⊗C A)

F (A⊗C A) F (A)

η⊗id

α id⊗η

id⊗F (µ)
η

η

F (µ)⊗id

F (µ⊗id)

F (α)

F (id⊗µ)
η

η F (µ)

F (µ)

14
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by functorality of ⊗D the outer square of the diagram is exactly the associativity coherence
of the multiplication of F (A). Since A is monoid in C the functorality of F makes the lower
pentagon commutes. The two triangles commute by the naturality of η and the upper square
commutes by the monoidality of F . Hence µ∗ satisfies the associativity axiom. In a similar
sense we consider the diagram

1D ⊗D F (A) F (1C )⊗D F (A) F (A)⊗D F (A) F (A)⊗D F (1C ) F (A)⊗D 1D

F (1C ⊗C A) F (A⊗C A) F (A⊗C 1C )

F (A)l

ε⊗id

η

F (e)

η

id⊗F (e)

η

id⊗ε

r

F (l)

F (e⊗id)

F (µ)
F (r)

F (id⊗e)

. The commutativity of this diagram ensures that e∗ satisfies the unitality condition in a
similar fashions as the commutativity of the former diagram assured associativity. For the
commutativity of this diagram we only show the commutativity the left side, since the the
argument showing the commutativity of the right side is analogous. The cell to the left is
commutative by the unitality condition of F . Since A is a monoid in C the functorality of
F ensures the commutativity of the inner triangle. At last the naturality of η ensures the
commutativity of the inner square. Hence (F (A), µ∗, e∗) is a monoid in D .

Definition 3.3. Let (C ,⊗C , 1C ) and (D ,⊗D , 1D) be monoidal categories a lax monoidal functor
F : C → D is a monoidal functor F : C → D if the map ε is an isomorphism and the natural
transformation µ is an natural isomorphism.

Example 3.4. The forgetful functor U : RepG→ VectC is a monoidal functor.

And this extends to the notion of natural transformations aswell.

Definition 3.5. Let (C ,⊗C , 1C ) and (D ,⊗D , 1D) be monoidal categories and F,G : C ⇒ D be
monoidal functors. A natural transformation η : F ⇒ G is a monoidal natural transformation
if for all A,B ∈ C the following diagrams

F (A)⊗D F (B) G(A)⊗D G(B)

F (A⊗C B) G(A⊗C B)

µF

η⊗η

µG

η

and

1D

F (1C ) G(1C )

εF

εG

η

commute.

Definition 3.6. If F : C → D is a monoidal functor then we define the group of monoidal
automorphisms on F to be the group Aut⊗ F . With composition of natural transformations to
as multiplication.

4 Braiding and symmetry

In this section we will define the notion of a braided monoidal category and extend this to a
symmetric monoidal category. Furthermore we will show that Vectk is a symmetric monoidal
category and extend this to RepG for a group G.

Definition 4.1. Let (C ,⊗, 1) be a monoidal category and S : C × C → C × C the functor
defined by S(A,B) = (B,A) and similary for maps. A braiding β on ⊗ is a monoidal natural
isomorphism depicted in the diagram below

15



4 BRAIDING AND SYMMETRY

C × C C

C × C

⊗

S
β

⊗

Such that for all A,B,C ∈ C the following diagrams commute

A⊗ (B ⊗ C) (B ⊗ C)⊗A

(A⊗B)⊗ C B ⊗ (C ⊗A)

(B ⊗A)⊗ C B ⊗ (A⊗ C)

β

αα

β⊗id

α

id⊗β

(A⊗B)⊗ C C ⊗ (A⊗B)

A⊗ (B ⊗ C) (C ⊗A)⊗B)

A⊗ (C ⊗B) B ⊗ (A⊗ C).

β

α−1α−1

id⊗β

α−1

β⊗id

A monoidal category is called braided if it has a braiding. If for all A,B ∈ C βB,AβA,B = idA⊗B
we say C is a symmetric monoidal category.

Remark. For a braided monoidal category (C ,⊗, 1, β) we will usually suppress the braiding and
write (C ,⊗, 1) is a braided monoidal category.

Proposition 4.2. For V,W ∈ Vectk the map βV,W : V ⊗W →W ⊗V defined by v⊗w 7→ w⊗v
is a linear map additionally βV,W is an isomorphism natural in V and W and βV,W defines a
symmetric braiding for ⊗.

Proof. By the universal property of the tensor product it is clear that βV,W is a linear isomor-
phism of vector spaces. To see that βV,W is natural in V and W let f : V → V ′ and g : W →W ′.
Then for v ⊗ w ∈ V ⊗W

βV ′,W ′(f ⊗ g)(v ⊗ w) = g(w)⊗ f(v) = (g ⊗ f)βV,W (v ⊗ w)

showing the naturality thus showing β is a natural isomorphism β : ⊗ ⇒ ⊗ ◦ S. We will only
show commutativity of the first diagram, since the argument for the 2nd is analogous. Let
U ∈ Vectk and (v ⊗ w)⊗ u ∈ (V ⊗W )⊗ U then

αβα ((v ⊗ w)⊗ u) = w ⊗ (u⊗ v) = id⊗β (w ⊗ (u⊗ v)) = (id⊗β)α(β ⊗ id) ((v ⊗ w)⊗ u)

showing the commutativity. The symmetry is clear from the definition of β.

To see that this extends to RepG we prove the following proposition:

Proposition 4.3. If G be a group and V,W ∈ RepG then βV,W is G-linear.

16
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Proof. It is clear that for g ∈ G

βV,W (ρV (g)(v)⊗ ρW (g)(w)) = ρW (g)(w)⊗ ρV (g)(v) = ρW ⊗ ρV (g)(βV,W (v ⊗ w))

thus βV,W is G-linear.

This shows that RepG is a symmetric monoidal category. We will now look back at monoid
objects and define commutative monoid object.

Definition 4.4. Let (C ,⊗, 1) be a symmetric monoidal category and M ∈ C a monoid object.
We say that M is a commutative monoid if the following diagram commutes

M ⊗M M ⊗M

M

βM,M

µ µ .

Remark. We denote the category of commutative monoids in a symmetric monoidal cate-
gory C by CMon C . Thus Theorem 2.8 establishes equivalence of categories namely that
CMon(Vectk) ' CAlgk, where CAlgk denotes the category of commutative k-algebras and
algebra homomorphisms.

We will now generalize the hom-tensor adjunction of vector spaces to the setting of monoidal
categories.

Definition 4.5. Let (C ,⊗, 1) be a symmetric monoidal category. C is closed if for all A ∈ C
the functor

−⊗A : C → C

Has a right adjoint [−, A] : C → C . We will name the object [A,B] the internal hom from A
to B.

Notation. We will abuse notation and denote the internal hom of in a closed monoidal category
C by the C (A,B) for A,B ∈ C . In cases where the internal and external hom can not be
identified in a natural way, we will denote the internal hom by C (A,B).

Proposition 4.6. If G is a group then RepG is a closed monoidal category.

Proof. We have already shown that RepG is a symmetric monoidal category. Now for represen-
tations V,W ∈ RepG. The representation hom(V,W ) with the action on on hom(V,W ) given
by ρhom(V,W )(g)(f) = ρW (g)(f(ρV (g)−1(−))). We know that we have an adjunction

−⊗A a Vectk(A,−).

We will now show that the components of the unit and counit of the hom-tensor adjunction are
G-linear with respect to the representation just defined. Thus lifting the adjunction to RepG.
Let g ∈ G and v ∈ V .

εV (ρhom(V,W )(g)(f)⊗ ρV (g)(v)) = εV (ρW (g)(f(ρV (g)−1(−)))⊗ ρV (g)(v))

= ρW (g)(f(ρV (g)−1(ρV (g)(v))))

= ρW (g)(f(ρV (g−1g)(v)))

= ρW (g)(f(v)).

One similarly shows that the counit is G-linear.
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At last we have a notion of monoidal natural transformations compatible with braidings

Definition 4.7. Let (C ,⊗C , 1C ) and (D ,⊗D , 1D) be braided monoidal categories. A (lax)
monoidal functor is a braided (lax) monoidal functor if for all A,B ∈ C the following diagram

F (A)⊗D F (B) F (B)⊗D F (A)

F (A⊗C B) F (B ⊗C A)

µ

β

µ

F (β)

commutes.

Remark. If the braided categories mentioned are symmetric, we will say that F is a symmetric
monoidal functor.

5 Duals and rigidity

During this chapter we will define the notion of duals in a monoidal category.

Definition 5.1. Let (C ,⊗, 1) be a monoidal category and A ∈ C . We say that A∗ is a right
dual of A if there exists map ev : A⊗A∗ → 1 and coev : 1→ A∗ ⊗A such that the composites

A A⊗ 1 A⊗ (A∗ ⊗A) 1⊗A Al−1 id⊗ coev (ev⊗ id)◦α−1
r

and

A∗ 1⊗A∗ (A∗ ⊗A)⊗A A∗ ⊗ 1 Ar−1 coev⊗ id (id⊗ ev)◦α l

equal the identities. We say that C is right rigid if all objects has a right dual.

Their is an analogous definition of a left dual.

Definition 5.2. Let (C ,⊗, 1) be a monoidal category and A ∈ C . We say that ∗A is a left dual
of A if there exists maps ev′ : ∗A⊗A→ 1 and coev′ : 1→ A⊗ ∗A satisfying similarly relations.
A category in which every object has a left dual is called left rigid. A category in which every
object has a right and left dual is called rigid.

Remark. These equations are normally called the snake equations.

We will finish of this section by showing that RepG is rigid and we will do this in parts firstly
we will show that the full subcategory Veck of finite dimensional vector spaces and linear maps
is rigid and then show that the evaluation and coevaluation maps in Veck are G-linear thus
showing that RepG is rigid.

Proposition 5.3. The category Veck is right rigid.

Proof. Let V be a finite dimensional vector space. Consider the dual vector space hom(V, k)
and the maps ev : V ⊗ hom(V, k) → k given by v ⊗ f 7→ f(v) and given a basis {e1, . . . , en} of
V and its corresponding dual basis {e1, . . . , en} of hom(V, k) where we define

coev : k → hom(V, k)⊗ V

r 7−→ r

n∑
i=1

ei ⊗ ei

18
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We will now check that the composites defined in definition of rigid categories is indeed the
identity. Let v =

∑n
i=1 aiei ∈ V

v 7→ v ⊗ 1 7→ v ⊗

(
n∑
i=1

ei ⊗ ei

)

= v ⊗

(
n∑
i=1

ei ⊗
n∑
i=1

ei

)

7→

(
n∑
i=1

aiei ⊗
n∑
i=1

ei

)
⊗

n∑
i=1

ei

7→
n∑
i=1

ai ⊗
n∑
i=1

ei 7→
n∑
i=1

aiei = v

Showing that the 1st snake equation is satisfied. The argument for the 2nd is similar and it is
therefor excluded. At last since this argument could have been givin in a similar fashion for left
duals we conclude that Veck is rigid.

We will now define the dual representation of a representation V and show that the previously
defined maps ev, coev are G-linear.

Proposition 5.4. For a group G the category RepG is rigid.

Proof. Let (V, ρV ) be a representation of G, we define the dual representation to be the pair
(hom(V, k), ρV ∗) where for all v ∈ V ρV ∗(g)(f(v)) = f(ρV (g−1)(v)). If g ∈ G then

ev(ρV⊗V ∗(g)(v ⊗ f)) = ev(ρV (g)(v)⊗ ρV ∗(g)(f))

= ρV ∗(g)(f(ρ(g)(v)))

= f(ρV (g−1)(ρV (g)(v)))

= f(ρV (g−1g)(v))

= f(v) = t(g)(f(v))

= t(g)(ev(v ⊗ f))

Showing that the evaluation map is G-linear. Since it is sufficient to check for basis elements
we get that for 1 ∈ k

ρ∗(g)(coev(1)) = ρ∗(g)

(
n∑
i=1

ei ⊗ ei

)
=

n∑
i=1

ei(ρ(g−1)(−))⊗ ρ(g)(ei)

=

n∑
i=1

(
n∑

m=1

g−1
mie

n

)
⊗

 n∑
j=1

gijej


=

n∑
i=1

n∑
m=1

n∑
j=1

g−1
migij(e

m ⊗ ej)

=

n∑
j=1

n∑
m=1

(δmj(e
m ⊗ ej))

=

n∑
i=1

ei ⊗ ei.

Thus showing that the coevaluation map is G-linear. Hence RepG is a right rigid category.
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Theorem 5.5. Let (C ,⊗C , 1C ) and (D ,⊗D , 1D) be monoidal category and (F : C → D , η, ε) a
monoidal functor. If c ∈ C has a right dual c∗ ∈ C . Then F (c∗) is a right dual of F (c).

Proof. We claim that the composites

ev∗ : F (c)⊗D F (c∗) F (c⊗C c∗) F (1C ) 1D
η F (ev) ε−1

coev∗ : 1D F (1C ) F (c∗ ⊗C c) F (c∗)⊗D F (c)ε F (coev) η−1

act as the evaluation and coevaluation maps of the pair F (c) and F (c∗). To prove that the first
snake equation is satisfied it suffices to show that the following diagram commutes:

F (c)⊗D F (1C ) F (c)⊗D 1D F (c) 1D ⊗D F (c) F (1C )⊗D F (c)

F (c)⊗D F (c∗ ⊗C c) F (c⊗C 1C ) F (1C ⊗C c) F (c⊗C c∗)⊗D F (c)

F (c⊗C (c∗ ⊗C c)) F ((c⊗C c∗)⊗C c)

F (c)⊗D (F (c∗)⊗D F (c)) (F (c)⊗D F (c∗))⊗D F (c)

η
id⊗F (coev)

id⊗ε l

F (l−1)

r ε−1⊗id

η

η

id⊗η−1

F (id⊗ coev)

F (r)
F (ev)⊗id

η
F (α−1)

F (ev⊗ id)

α−1

η⊗id

since the commutativity of the outer rim is equivalent to ev∗ and coev∗ satisfying the the first
snake equation. The see that the diagram commutes one needs only realize that the triangles
at the top commute by the unitality property of monoidal functors. The left and right square
commute by the naturality of η. The inner pentagon commutes by since c and c∗ satisfy the snake
equation in and since F is a functor. At last the lower polygon commutes by the associativity
constraint on F . The argument to see the second snake equation is satisfied is analogous and
thus excluded.

This is a very useful fact, which will be used not only in the next lemma, but it also allows us
to prove a very important adjunction of functors.

Lemma 5.6. Let (C ,⊗C , 1C ) and (D ,⊗D , 1D) be monoidal categories with C rigid and F,G : C →
D monoidal functors. If η : F ⇒ G is a monoidal natural transformation then η is monoidal
natural isomorphism.

Proof. Let F,G : C → D monoidal functors from a rigid monoidal category C and η : F → G a
monoidal natural transformation. Let C ∈ C and consider the map:

G(C)

ηC

F (C)

The claim is that this is an inverse to ηC . By functorality we conclude the following
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G(C)

ηC

F (C)

ηC

G(C)

=

G(C)

ηC ηC

G(C)

Then by monoidality of η we conclude:

G(C)

ηC ηC

G(C)

=

G(C)

ηC

G(C)

then by naturality of η

G(C)

ηC =

G(C)

G(C)

G(C)

=

G(C)

G(C)

η

Showing that this is indeed a left inverse of ηC . The proof showing that this is also a right
inverse is similar and thus omitted from this exposition.

6 Enriched categories and Abelian categories

In this section discuss enriched categories, a categorical construction enabling that the hom-
sets in a category to have the additional structure of being objects in a monoidal category.
Expanding further one this notion we will define abelian categories, which are categories similar
to the category Ab of abelian groups and group homomorphisms. Finally this enables us define
short exact sequences.

6.1 Enriched categories

We will now define enriched categories, functors and natural transformations.

Definition 6.1. Let (V ,⊗, 1) be a monoidal category. A category C enriched in V consists of
the following:

• a collection of objects Ob C .

• For all objects A,B ∈ C an object C(A,B) ∈ V .

• For all maps f ∈ C (A,B) a map f : 1→ C(A,B) in V .

• A map idA : 1→ C(A,A) in V corresponding to the identity arrow idA : A→ A in C .

• For all A,B,C ∈ C map ◦ABC : C(B,C)⊗ C(A,B)→ C(A,C) in V .
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Such that the following three diagrams commute

(C(C,D)⊗ C(B,C))⊗ C(A,B) C(B,D)⊗ C(A,B)

C(A,D)

C(C,D)⊗ (C(B,C)⊗ C(A,B)) C(C,D)⊗ C(A,C)

α

◦BCD⊗idC(A,B)

◦ABD

idC(C,D)⊗◦ABC

◦ACD

and

1⊗ C(A,B) C(B,B)⊗ C(A,B)

C(A,B)

idB ⊗ idC(A,B)

l ◦ABB

,

C(A,B)⊗ 1 C(A,B)⊗ C(A,A)

C(A,B)

idC(A,B)⊗ idA

r ◦AAB

for all A,B,C,D ∈ C .

Example 6.2. The category Vectk of vector spaces of a field k is enriched over the category
(V ectk,⊗, k).For all pairs of vector spaces V,W the vector space Vectk(V,W ) to be the vector
space of morphisms. The composition is constructed with the universal property of the tensor
product. Showing that the appropriate diagrams commute is a matter of diagram chase, much
similar to how we checked commutativity several times during this project.

Definition 6.3. Let (V ,⊗, 1) be a monoidal category and C ,D be V -categories. A V -enriched
functor F : C → D (V -functor for short) consists of the following:

• A map F : Ob(C )→ Ob(D).

• For all X,Y ∈ C a map

FX,Y : C (X,Y )→ D(F (X), F (Y ))

in V such that the following diagrams commute for all X,Y, Z ∈ C

C (Y, Z)⊗ C (X,Y ) C (X,Z)

D(F (Y ), F (Z))⊗D(F (X), F (Y )) D(F (X), F (Z))

FY,Z⊗FX,Y

◦

FX,Z

◦

1 C (X,X)

D(F (X), F (X)).

idX

idF (X)
FX,X

additionally there is also a notion of enriched natural transformation.

Definition 6.4. Let (V ,⊗, 1) be a monoidal category, C ,D be V -categories and F,G : C → D
be V -functors. A V -natural transformation α : F ⇒ G consists of a collection of morphisms
αX : 1→ D(F (X), G(X)) indexed by X ∈ C . Such that for all X,Y ∈ C the following diagram
commutes

C (X,Y ) D(F (X), F (Y ))

D(G(X), G(Y )) D(F (X), G(X))

GX,Y

FX,Y

(αY )∗

(αX)∗

With this we have established all the theory of a general enriched category, that we will need.
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6.2 Additive categories

We will now specialize the theory to categories and enriched in abelian groups. Furthermore
we will look at additive categories which are Ab-categories with additional structure. This will
lead us to the rich theory of abelian categories.

Definition 6.5. A category C is a Ab-category if C is enriched in the category (Ab,⊗Z,Z).

This is equivalent to the statement that for all A,B ∈ C the homset C (A,B) is an abelian
group and composition of maps is Z-bilinear.

Definition 6.6. A category C is said to have direct sums if C has products and coproducts
and for all finite index set I with Xi ∈ C for all i ∈ I then∐

i∈I
Xi →

∏
i∈I

Xi

is an isomorphism.

Notation. We will denote the direct sum by ⊕ instead of the product/coproduct symbol.

Definition 6.7. An Ab-category C is an additive category if it has finite direct sums.

It is a well known fact that Vectk direct sums a more surprising fact is that RepG has.

Proposition 6.8. If G is a group then RepG has direct sums.

Proof. Let V,W ∈ RepG. Define the representation ρV⊕W : G → Aut(V ⊕ W ) to be the
composite

G G×G AutV ×AutW Aut(V ⊕W )∆ ρV ×ρW ×

This clearly defines a representation. To see this is indeed a product in RepG let X be a
representation of G and f : X → V and h : X → W be G-linear maps. As these are in
particular linear maps, they induce a unique linear map t : X → V ⊕W satisfying the universal
property in VectC, this is in fact G-linear since if g ∈ G

t(ρX(g)(x)) = (f(ρX(g)(x)), h(ρX(g)(v)))

= (ρV (g)(f(x)), ρW (g)(h(x))) = ρV⊕W (g)(t(x)).

Showing that t is G-linear. The argument showing that this is also a coproduct is similar and
therefor left out.

Definition 6.9. Let C and D be Ab-categories. A functor F : C → D is additive if for all
X,Y ∈ C the map

F : C (X,Y )→ D(F (X), F (Y ))

is a group homomorphism.

Remark. It is clear that additive functors are exactly the Ab enriched functors.

Definition 6.10. Let C be a category an object A ∈ C is said to be initial if for all B ∈ C
there exist precisely one map A → B. Dually A is said to be terminal if there exist precisely
one map B → A. If A is both terminal and initial A is called a zero object.

It is easy to see that initial, terminal and zero objects are unique up to isomorphism. We
therefor talk about the zero object 0.

Example 6.11. The category Vectk has zero objects, namely the zero dimensional vector space
0. This is easily extended to RepG for some group G.
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6 ENRICHED CATEGORIES AND ABELIAN CATEGORIES

Definition 6.12. Let C be a category with a zero object 0 and the data f : A → B in C .
Then the pair K ∈ C and ker f : K → A is called the kernel of f if

A B

K 0

f

ker f

commutes and it holds that for any other pair (K ′, k : K ′ → A) such that fk factors through 0
there exists a unique map h : K ′ → K such that

K A B

K ′ 0

ker f f

∃!h
k

commutes. We will usually also denote K by ker f .

We say that C has kernels is for all maps f : A→ B in has a kernel.

In classical algebraic settings the inclusion from a kernel is typically injective. There is a similary
result for categorical kernels namely

Proposition 6.13. Let C be an additive category and f : A→ B a map in C . If f has a kernel
then the map i : ker f → A is a monomorphism.

Proof. If for C ker f A
h

g

i ih = ig. Then the composite fih = fig = 0, hence by the

universal property of the kernel there exists a unique map z : C → ker f such that iz = ih = ig.
By the uniqueness of z it holds that z = h = g. Hence i is a monomorphism.

Definition 6.14. Let C be a category with a zero object 0 and A,B ∈ C with a map f : A→ B.
The cokernel of f is an object C with a map c : B → C such that

A B

0 C

f

c

commutes universally i.e. such that for any object X and map h : B → X that factors through
0 their exists a unique map g : C → X making

A B

0 X C

f

h
c

g

commute. The category C is said have cokernels if all maps has a cokernel.

In the section on semi-simple categories we will prove Schur’s lemma, to do this we will need
the following lemmata.

Lemma 6.15. Let C be an additive category and f : A→ B a map in C .

1. f is monic if and only if for all g : X → A if fg = 0 then g = 0.

2. f is epic if and only if for all h : B → K if hf = 0 then h = 0.

Proof. Let C be an additive category and f : A→ B be a map in C .

24



6 ENRICHED CATEGORIES AND ABELIAN CATEGORIES

1. f being monic is equivalent to for all X ∈ C the map

C (X,A)→ C (X,B)

g 7−→ fg

being injective. However C is additive hence the homs are abelian group and the induced
map is a group homomorphism. Thus the map of homs induced by f is injective if and
only if for all g ∈ C (X,A) it holds that if fg = 0 then g = 0.

2. In a similar fashion f is epic if and only map induced by precomposing is injective. We can
therefor by the previous argument conclude that f is epic if and only for all h ∈ C (B,K)
if hf = 0 then f = 0.

Lemma 6.16. Let C be an additive category and f : A→ B a map in C .

1. If f has a kernel then f is monic if and only if ker f = 0.

2. If f has a cokernel then f is epic if and only if coker f = 0.

Proof. Let f : A→ B be a map in an additive category C .

1. If f : A→ B has a kernel and f is monic then for the inclusion i : ker f → A it holds that
fi = f0 = 0 thus since f is monic i = 0. If i : ker f → A = 0 then if for g : X → A it
holds that fg = 0 by the universal property of the kernel their exists a map h : X → ker f
such that g = ih = 0, by assumption i = 0 thus h = 0.

2. The proof for the 2nd statement is analogous and therefore omitted.

We will not show that Vectk is abelian but the next proposition will show the method one would
use to go about proving this.

Proposition 6.17. The category Vectk has kernels. With ker f = {v ∈ V | f(v) = 0} and the
inclusion map being the kernel of a linear map f : V →W .

Proof. Let V,W ∈ Vectk and f : V → W be a linear map. Then fi : ker f → B clearly factors
through 0. Now let (K,h : K → A) be another pair such that fh factors through 0. Thus
for v ∈ K then since fh(v) = 0 we know that h(v) ∈ ker f . We then define g : K → ker f by
g(v) = h(v). This is clearly well defined and linear by the linearity of h. It is also the case that
ig = h. Now to see that g is unique remember that the inclusion is injective, which is exactly
the monos of Vectk, showing the uniqueness of g.

This proof tells us that the usual algebraic notion of a kernel is exactly the previously defined
notion. While out of the scope of this project this proof generalises to the category RMod of
R-modules and R-linear maps. Before diving further in to the definition of an abelian category,
we will take a stint into representation theory, if only to define the appropriate notions to show
that RepG is abelian.

Definition 6.18. Let G be a group and (V, ρ) a representation of G. A subspace W of V is
called an invariant subspace of V if for all v ∈W and g ∈ G we have ρ(g)(v) ∈W . An invariant
subspace is canonically a representation with the representation given by ρW : G → AutW
where ρW (g) = ρ(g) |W . Such a representation is called a subrepresentation of (V, ρ).

A not so surprising result is that the zero dimensional vector space equiped with the trivial
representation is the zero object of RepG.
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6 ENRICHED CATEGORIES AND ABELIAN CATEGORIES

Proposition 6.19. Let V,W ∈ RepG for some group G. If f : V →W is G-linear then ker f
and im f are invariant subspaces of V and W .

We will only show the proof for the kernel. The argument for the image is similar.

Proof. Let v ∈ ker f then for g ∈ G

f(ρV (g)(v)) = ρW (g)(f(v)) = ρW (g)(0) = 0.

Thus ρV (g)(v) ∈ ker f .

It follows from construction that the inclusion of a subrepresentation is G-linear. This lets us
conclude the following.

Proposition 6.20. If G is a group then RepG has kernels.

Proof. Since VectC has kernels and the inclusion is G-linear then (ker f, i : ker f → V ) is the
kernel of any G-linear map f : V →W .

Additionally we are able to define a notion of quotient representation.

Definition 6.21. Let V be a representation of a group G and W an invariant subspace. We
define the quotient representation to be the pair (V/W, ρV/W ) where ρV/W (g)(v+W ) = ρ(g)(v)+
W .

To see this is well defined let v, v′ be elements of some coset v + W . Then v − v′ ∈ W thus
ρ(g)(v − v′) ∈ W . There for ρ(g)(v) + W = ρ(g)(v′) + W . Just like with the inclusion it is
evident that the canonical projection p : V → V/W is G-linear. This will be important in
showing that RepG has cokernels. To realize that RepG has cokernels, for a G-linear map of
representations f : V →W inspect the quotient W/ Im f with the projection p : W →W/ Im f .

6.3 Abelian categories

We will now introduce the theory of abelian categories and additionally we will show that the
category RepG is an abelian category.

Definition 6.22. A category C is abelian if

• C is Additive.

• C has kernels and cokernels.

• Every mono is the kernel of its cokernel and every epi is the cokernel of its kernel.

Theorem 6.23. If G is a group then RepG is abelian.

Proof. To see that RepG is Ab-enriched one need only realise that composition of G-linear maps
is G-linear thus the map induced by the tensor product of vector spaces is G-linear, therefor
since VectC is enriched in VectC, in particular Ab, then so is RepG. By Proposition 4.5 RepG
has direct sums thus RepG is additive and by proposition 4.12 it has kernels and a similar
argument shows that it has cokernels. At last since every G-linear map is in particular a linear
map, then since VectC satisfies the third condition it follows that RepG also is. Showing that
RepG is abelian.

We have now shown that RepG is an abelian monoidal category.

Definition 6.24. Let C be an abelian category. For f : A→ B we define Im f := ker(coker f).

Proposition 6.25. Any map f : A→ B in an abelian category C factors through Im f .
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Proof. Consider the diagram:

Im f

A B 0

0 coker f

i
∃!g

f

p

This diagram commutes by the definition of cokernels and since Im f is a kernel. In particular
since pf = 0 there exists a unique map g : A→ Im f such that ig = f .

We can now define exactness as follows

Definition 6.26. Let C be an abelian category and the sequence of maps

. . . Xn−1 Xn Xn+1 . . .
fn−1 fn

is said to be exact at degree n if Im fn−1 = ker fn. It is called exact if it is exact at every degree.
A short exact sequence is an exact sequence of the form

0 X Y Z 0.

Definition 6.27. Let C ,D be abelian categories, F : C → D an additive functor and

0 A B C 0

be a short exact sequence.

• The functor F is left exact if 0 F (A) F (B) F (C) is exact.

• The functor F is right exact if F (A) F (B) F (C) 0 is exact.

• The functor F is exact if its both left and right exact.

7 Simples and semi-simples

Given an abelian category C a question one might ask is if all objects can be written as the
direct sum of more well understood objects. This property is called semi-simplicity and will be
the subject of this section.

Definition 7.1. Let C be an abelian category and A ∈ C . An object B ∈ C is called a
subobject of A if there exists a monomorphism B → A.

It is clear that the subobjects in Vectk are subspaces and this does in fact extend to subrepre-
sentations in RepG.

Proposition 7.2. Let G be a group if W is a subrepresentation of V then W is a subobject of
V

Proof. The inclusion map is a G-linear monomorphism.

Definition 7.3. Let C be an abelian category and A ∈ C .

• A is simple if the only subobjects of A are 0 and A itself.

• A is semi-simple if A ∼=
⊕

i∈I Si where Si is simple for all i ∈ I.
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• The category C is called semi-simple if all objects in C are semi-simple.

Remark. It is a well known fact that the category FinVectk of finite dimensional vector spaces
and linear maps is semi simple.

The rest of this section will be dedicated to showing that if G is a finite group then RepG is
semi-simple. This is however not as easy an fact to show as in the case of FinVectk. To do
this we will use the well known fact that any finite dimensional vector space V can be equipped
with an inner product.
The following definition and results on representation theory is inspired by [Tel05].

Definition 7.4. Let V be a representation of a group G equipped with an inner product 〈−,−〉.
We say that 〈−,−〉 is unitary if for all g ∈ G

〈−,−〉 = 〈ρ(g)(−), ρ(g)(−)〉

While not every inner product is unitary we can always construct an unitary inner product.

Theorem 7.5 (Weyl’s unitary trick). If V is a representation of a finite group G equiped with
an inner product 〈−,−〉 then

〈−,−〉′ = 1

|G|
∑
g∈G
〈ρ(g)(−), ρ(g)(−)〉

is an unitary inner product on the representation V .

Proof. It is clear that linearity in the first argument and conjugate linearity in the second
argument is preserved by this construction. Therefor assume for v ∈ V that 〈v, v〉′ = 0 then

1

|G|
∑
g∈G
〈ρ(g)(v), ρ(g)(v)〉 = 0⇔

∑
g∈G
〈ρ(g)(v), ρ(g)(v)〉 = 0⇔ 〈ρ(g)(v), ρ(g)(v)〉 = 0 ∀g ∈ G,

showing that 〈−,−〉′ is positive definite, since ρ(g) is an isomorphism for all g ∈ G and the since
addition and multiplication of positive positive numbers preserve the sign. To see that 〈−,−〉′
is unitary let h ∈ G then

〈ρ(h)(−), ρ(h)(−)〉′ = 1

|G|
∑
g∈G
〈ρ(g)(ρ(h)(−)), ρ(g)(ρ(h)(−))〉

=
1

|G|
∑
g∈G
〈ρ(gh)(−), ρ(gh)(−)〉

∗
=

1

|G|
∑
g∈G
〈ρ(g)(−), ρ(g)(−)〉

The equality at ”*” follows from the fact that the action of left multiplication is free invariant
and transitive on G.

The proof that RepG is semi-simple if G is finite now comes in two pieces. Showing that every
for invariant subspace the orthogonal complement of that subspace is also invariant and using
this to show that every representation of a finite group is semi-simple.

Theorem 7.6. Let V be a representation of a finite group G with unitary inner product 〈−,−〉
and W an invariant subspace of V then the orthogonal complement W⊥ is an invariant subspace.

Proof. Let v ∈ W⊥ then 〈v, v′〉 = 0 = 〈ρ(g)(v), ρ(g)(v′)〉 for all g ∈ G and all v′ ∈ W . Then
since ρ(g−1)(w) ∈W for all w ∈W let v′ = ρ(g−1)(w). By this we can conclude that

〈ρ(g)(v), ρ(g)(v′)〉 = 〈ρ(g)(v), w〉 = 0

for all w ∈W . Hence W⊥ is also an invariant subspace.
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Corrolary. If V is a finite dimensional representation of a finite group G then V is semi-simple
in RepG.

Proof. We proceed by induction on the dimension n of V . If n = 1 then V is simple. Assume
dimV = n. We may assume that V is an unitary representation by Weyl’s trick. We may also
assume that V is not simple hence V has an invariant subspace W then by theorem 6.6 that
W ’s orthogonal complement W⊥ is also an invariant subspace and dimW < n and dimW⊥ < n
thus by the induction assumption W =

⊕
i∈I Si and W⊥ =

⊕
j∈J Sj with Si and Sj simple for

all i ∈ I and j ∈ J . Therefore

V = W ⊕W⊥ =
⊕

i∈(I
∐
J)

Si.

Hence we conclude that V is semi-simple.

Finally we will show Schur’s lemma in terms of simple objects in an abelian therefore we can
conclude this section with the fact that RepG is semi-simple.

Theorem 7.7 (Schur’s lemma). Let C be an abelian category and let A,B ∈ C be simple
objects. If f : A→ B then f is an isomorphism or f = 0.

Proof. Let f : A→ B be a non-zero map. Consider the diagram:

ker f A Im f B coker fk

f

p i c

Since k is a monomorphism ker f is a subobject of A but f is non-zero so k = 0 thus f is monic.
Then Im f = A and f = i but Im f is a kernel thus f is monic. Thus since B is simple A ∼= 0
or A ∼= B however since f is non-zero A ∼= B.

In fact this gives a good characterization of homs on simple objects.

Corrolary. If A ∈ C is simple then C (A,A) is a division ring.

This fact is clear and the proof is omitted. We will later rephrase this corollary in a specific
case.

8 Linear and tensor categories

In this chapter we will define linear and tensor categories, these notions will tie together the
teory of monoidal categories and abelian categories.

Definition 8.1. A category C is linear if C is an abelian category such that the homspaces
are complex vector spaces.

We have shown that for a group G the category RepG is an abelian category. It is however in
fact linear.

Theorem 8.2. If G is a group then the category RepG is linear.

Proof. In the proof showing RepG is abelian we used that vector spaces are in particular abelian
groups.

This additional structure on the homs in RepG actually expands to Schur’s lemma to the
following case:
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10 YONEDA LEMMA

Proposition 8.3 (Schur’s Lemma in a linear category.). If A is a simple object in a linear
category C then End(A) is a division algebra.

The proof is essentially the same as in the case of abelian categories and therefor excluded once
again. In the case where k is an algebraically closed field it is a well known fact that any division
algebra A over k must be isomorphic to k. See for example [Coh12] for a proof.

Definition 8.4. Let C ,D be linear categories an additive functor is linear if the map

F : C (A,B)→ D(F (A), F (B))

is linear for all A,B ∈ C

Now to connect the notions of monoidality and linearity we have the following definition:

Definition 8.5. a linear monoidal category (C ,⊗, 1) is a tensor category if the bifunctor ⊗ is
linear on hom sets and 1 is simple.

Definition 8.6. A functor F : C → D between tensor categories is tensor if it is linear and
monoidal.

Definition 8.7. A functor F : C → VectC between tensor categories C ,D is a fiber functor if
it is tensor and exact

Example 8.8. The forgetful functor is fiber functor.

9 Fusion categories

In this chapter we take the final steps towards defining symmetric fusion categories and finish
showing that RepG is symmetric fusion.

Definition 9.1. Let (C ,⊗, 1) be a tensor category. The category C is fusion if C is semi-
simple, rigid, the unit 1 is a simple object and have finitely many isomorphism classes of simple
objects

Remark. We say that a fusion category C is braided/symmetric if the monoidal structure on C
is braided/symmetric.

We have shown that during this project shown that for a finite group G the category RepG is
a symmetric fusion category.

10 Yoneda lemma

In this section we will prove the Yoneda lemma, a classic theorem of category theory. Both
in the standard case and in the case of an enriched a category. The Yoneda lemma captures
a great deal of categorical philosophy, namely that objects are determined uniquely by their
relations to other objects.

10.1 The classical Yoneda lemma

Notation. For C ,D categories, We denote functor category from C to D by Fun(C ,D) and for
F,G ∈ Fun(C ,D) we denote the hom-set from F to G by Nat(F,G).
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Theorem 10.1 (Yoneda Lemma). Let C be a category and F : C → Set be a functor and
X ∈ C an object. Then their is a bijection

y : Nat(C (X,−), F )
∼=−→ F (X)

given by α : C (X,−)⇒ F 7→ αX(idX). Additionally this bijection is natural in both X and F .

Proof. We start by constructing an inverse ỹ to y. For Z ∈ C and f ∈ C (X,Z) we get from
the naturality of α that

C (X,X) F (X)

C (X,Y ) F (Z)

αX

f∗ F (f)

αZ

commutes. In particular F (f)(αX(idX)) = αZ(f). We then define ỹ : F (X)→ Nat(C (X,−), F )
where we map s ∈ F (X) to the natural transformation with components

βZ : C (X,Z) −→ F (Z)

g 7−→ F (g)(s)

Then we check that these are mutually inverse (ỹy)(α) = ỹ(αX(idX)). On components this is
given by βZ(f) = F (f)(αX(idX)) = αZ(f) and thus we conclude (ỹy)(α) = α. We also see that

(yỹ)(s) = F (idX)(s) = idF (X)(s) = s.

We now prove that this is natural in F and X. We define the following two functors

E,N : C × Cat(C , Set)→ Set

Defined on objects X ∈ C and F ∈ Cat(C ,Set) as

N(X,F ) = Nat(C (X,−), F ),E(X,F ) = F (X)

and on morphisms (f, α) : (X,F ) → (Y,G) for f ∈ C (X,Y ) and Nat(F,G) is given by the
composites

N(f, α)(β)Z = C (Y,Z)
f∗−→ C (X,Z)

βZ−→ F (Z)
αZ−→ G(Z)

E(f, α) = G(f)αX = αY F (f)

We now check that

Nat(C (X,−), F ) F (X)

Nat(C (Y,−), G) G(Y )

N(f,α)

yX,F

E(f,α)

yY,G

commutes. Let β ∈ Nat(C (X,−), F ), the first composite is

β
yX,F7−→ βX(idX)

E(f,α)7−→ (αY F (f))(βX(idX)) = αY (βY (f)) = (αY βY )(f)

and the second composite gives us

β
N(f,α)7−→ N(f, α)(β)

yY,G7−→ N(f, α)(β)(idY ) = (αY βY )(f∗(idY )) = αY βY (f)

hence y is natural in F and X.
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Before we prove a next corollary we will prove the following lemma.

Lemma 10.2. If F : C → D is a fully faithfull functor then F reflects isomorphisms.

Proof. Let X,Y ∈ C with F (X) ∼= F (Y ). Suppose f : F (X) → F (Y ) is this isomorphism.
Then by the fullness of F their exists a map g : X → Y such that F (g) = f . Additionally let
g′ : Y → X be the map such that F (g′) = f−1. Then by functorality we get

F (g′g) = F (g′)F (g) = f−1f = idF (X) = F (idX)

thus by the faithfulness of F g′g = idX . One similarly sees that gg′ = idY .

Corrolary. Let C be a category and X,Y ∈ C then X ∼= Y if and only if C (X,−) ∼= C (Y,−)

Proof. The if part is clear. For the only if the Yoneda lemma implies that the Yoneda embedding

Y : C → Fun(C op,Set)

C 3 X 7→ C (X,−)

f 7→ f∗

is fully faithfull thus it reflects isomorphisms. Hence X ∼= Y .

This concludes are view on the Yoneda lemma. This will act as the recipe for which we prove
the VectC enriched Yoneda lemma.

10.2 The VectC-enriched Yoneda lemma

Unfortunately we the functors of particular interest for us are enriched functors. There is
however a version of the Yoneda lemma compatible with the theory of enriched categories. This
subsection will provide a proof of the case in which we enrich over VectC.

Proposition 10.3. If F,G : C → VectC are functors then Nat(F,G) is a vector space.

We will only sketch the proof this, since checking all the other axioms is essentially the same.

Proof. Let α, β ∈ Nat(F,G) and for all X ∈ VectC define (α+β)X :− αX +βX . If f ∈ C (X,Y )
then

(αY + βY )(F (f)) = αY (F (f)) + βY F (f) = G(f)αX +G(f)αX = G(f)(αX + βX)

Thus showing the sum of two natural transformations again is a natural transformation.

If we consider a VectC-enriched category C and an object X ∈ C , then the functors C (X,−)
and C (−, X) are VectC-enriched functors. In particular there is a version of the Yoneda lemma
that applies to the hom functors of VectC enriched categories.

Theorem 10.4 (The VectC-enriched Yoneda lemma). Let C be a VectC category, F : C →
VectC a VectC-functor and X ∈ C . Then there is an isomorphism of vector spaces

Nat(C (X,−), F ) ∼= F (X)

which sends natural transformations α to αX(idX).

The proof is essentially the same as for the non enriched Yoneda lemma, the only addition is
to check that the maps are in the proof are indeed linear. This is easily done. Therefor we
omit the proof. This makes the enriched Yoneda embedding fully faithful, hence it reflects
isomorphisms.
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11 Tensored categories

in this section we will present the theory of tensored categories. We will state the theorems of
this section in the context of a general a closed symmetric monoidal category (C ,⊗, 1) and a
C -category D . However ever since we have not proven the general enriched Yoneda lemma, the
reader will have to take on faith that these can be proven in this context. We will only need
the case in which C = Vectk, which was proven earlier.

Definition 11.1. Let (C ,⊗, 1) be closed symmetric monoidal category and D be a C -category.
The category D is tensored if for all a ∈ C and m their exists a object a ·m ∈ D such that for
all n ∈ D their is a isomorphism

D (a ·m,n) ∼= C (a,D(m,n)).

We can now consider the functor

M : C → End D

a 7→ a · −

It turns that M is a monoidal functor, which provides us with a number of interesting lemmata.

Theorem 11.2. Let D be a tensored C -category. The functor M : C → End D is monoidal.

Proof. Since End D is a strict monoidal category, we will only show the existens of isomorphisms(
c′ ⊗ c

)
·m

∼=−→ c′ · (c ·m)

m
∼=−→ 1 ·m

for all c′, c ∈ C and m ∈ D . Consider the isomorphisms on homs

D
(
(c′ ⊗ c) ·m, k

) ∼= C (c′ ⊗ c,D(m, k))
∼= C (c′,C (c,D(m, k)))
∼= C (c′,D(c ·m, k))
∼= D(c′ · (c ·m), k).

These isomorphisms follow from repeated use of the tensoring identity and the hom-tensor
adjunction in C . It now follows from the yoneda lemma that

(c′ ⊗ c) ·m ∼= c′ · (c ·m)

naturally in c′, c and m. Similary it follows

D(1 ·m,n) ∼= C (1,D(m,n)) ∼= D(m,n)

hence by the yoneda lemma it follows that

1 ·m ∼= m

naturally in m.

We have now established that the functor M is a monoidal functor, if equipped with the iso-
morpisms of theorem 12.2. We can now apply the theory of monoidal categories and functors
we have developed in earlier sections of the project.
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Lemma 11.3. If D is a category tensored in C and c ∈ C has a right dual c∗ then then there
is an isomorphism

D(c ·m,n) ∼= D(m, c∗ · n)

natural in m,n ∈ D . More consisely we have an adjunction

c · − a c∗ · −.

Proof. The functor M : C → End D is monoidal thus M(c) has a right dual M(c∗). Hence c∗ ·−
is a right dual of a · −. Then since the right duals in End D are particularly the right adjoints.
Hence we get the proposed natural isomorphism.

Using this lemma we can now prove the following.

Lemma 11.4. If D is a category tensored in C , and c ∈ C has a dual c∗ we have an isomorphism

D(m, c · n) ∼= c⊗D(m,n)

natural in m,n and c.

Proof. Consider the isomorphisms

C (x,D(m, c · n)) ∼= C (x,D(c∗ ·m,n))
∼= C (x,C (c∗,D(m,n)))
∼= C (x,C (1, c⊗D(m,n)))
∼= C (x, c⊗D(m,n)).

These all follow from the various results proved in this chapter.

In particular a symmetric fusion category is tensored over VectC.

Theorem 11.5. If A is a symmetric fusion category then A is tensored over VectC with V ·X =
X⊕ dimV .

Proof. Consider the isomorphisms

A (X⊕ dimV , Y ) ∼=
⊕

dimV

A (X,Y )

∼=
⊕

dimV

VectC(C,A (X,Y ))

∼= VectC(C⊕ dimV ,A (X,Y ))
∼= VectC(V,A (X,Y ))

The first isomorphisms follows from the fact that in an additive category, direct sums commute
with the hom functors. The second follow by the definition of homs in a VectC enriched category.
The third is again the fact that homs and direct sums commute. The last is clear.

This finishes the section on tensored categories.
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12 Tannaka duality

In this section we will give the statement of the Tannaka duality and prove the tannaka duality
for a special class of symmetric fusion categories. Additionally we will state and prove two
reconstruction theorems one of which is essential to the version of Tannaka duality we prove in
this project.

Theorem 12.1 (Tannaka duality theorem for symmetric fusion categories). If A is a symmetric
fusion category and F : A → VectC is a fiber functor. Then their is a monoidal equivalence of
categories

Φ: A
'−→ Rep(Aut⊗(F )).

The proof of this theorem was given by Deligne in [Del90].

12.1 The Tannaka reconstruction theorems

For a category C one can define C -representations of a group G.

Definition 12.2. Let G be a group and consider the corresponding deelooping category G and
let C be a category. A C -representation of G is a functor F : G→ C .

It is easy to see that if C = VectC this corresponds to representations of G. Additionally its
easy to see that a natural transformation from of two representations of G is exactly a G-linear
map.

Definition 12.3. Let a group G and C a category. A G-equivariant map2 between repre-
sentations F,G is a natural transformation α : F ⇒ G. Additionally the category RepC G of
C -representations of a group G, we define to be the category:

RepC (G) := Fun(G,C ).

This allows us to state the simplest version of Tannaka duality namely

Theorem 12.4 (Tannaka reconstruction theorem for Set-representations.). Let G be a group
and

U : RepSet(G)→ Set

be the functor which sends F : G → Set to F (∗) and acts trivially one morphisms. Then there
is a group isomorphism

Aut(U) = End(U) ∼= G.

Proof. Consider the Yoneda embedding

Y : G→ RepSetG

with Y (∗) = G(∗,−) and Y (g) being the action of right multiplication by g. By the Yoneda
lemma their exists a family of isomorphisms parametrized by ρ ∈ RepSet(G)

τρ : Nat(G(∗,−), ρ) ∼= ρ(∗) = U(ρ)

which is natural in ρ, this also follows from the Yoneda lemma. Now by multiple applications
of the Yoneda lemma it follows that

EndU ∼= Nat(Nat(G(∗,−)),Nat(G(∗,−)))
∼= Natop(G(∗,−), G(∗,−))
∼= G(∗, ∗) = G

Since G is a group it follows that EndU = AutU .

2Typically we will just say G-map.
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This proof only use that G is a group at end. Besides the conclusion this would hold for any
monoid. In fact this is a special case of a more general reconstruction theorem. We are however
only concerned with another special case of this theorem.

Definition 12.5. Let

(
C ,⊗

C
, 1

)
be a VectC-enriched monoidal category and (A,µ, e) be a

monoid in C . The delooping category of A is the VectC-enriched category A with ob(A) = {∗}
and A(∗, ∗) = C (A,A) and composition

µ : A⊗
C
A→ C (A,A)

and identity
e : C→ C (A,A)

With this definition comes a generalized definition of a representation of a monoid object.

Definition 12.6. Let

(
C ,⊗

C
, 1

)
be a monoidal category and (A,µ, e) be a monoid in C . We

define the category of representations of A to be the category

RepA := VectC Fun(A,VectC)

of VectC-enriched functors from A to VectC.

Proposition 12.7. Let G be a group. Then there is an equivalence of categories

RepG ' RepC[G]

Proof. This is immediately clear from Theorem 1.14.

We can now prove the Tannaka reconstruction theorem for C-algebras.

Theorem 12.8 (Tannaka reconstruction theorem for C-algebras). Let G be a finite group and

U : RepC[G]→ VectC

be the functor with U(ρ) = ρ(∗) and which acts trivially on morphisms. Then there is an
isomorphism of vector spaces

C[G] ∼= EndU.

In particular this induces an equivalence of categories RepC[G] ' Rep(EndU)

This proof is analogous to the Set case and therefor we will skip some of the details.

Proof. Consider the Yoneda embedding

Y : C[G]→ RepC[G]

with Y (∗) = C[G](∗,−) which acts on morphisms by right multiplication. From the enriched
Yoneda lemma we get a natural isomorphism with components

τρ : Nat(C[G](∗,−), ρ) ∼= ρ(∗) = U(ρ).

Thus by repeated use of the Yoneda lemma we conclude that

EndU ∼= Nat(Nat(C[G](∗,−),−),Nat(C[G](∗,−),−))

∼= Natop(C[G](∗,−),C[G](∗,−))

∼= C[G](∗, ∗) = C[G]

It is clear that isomorphic representing object gives rise to an equivalence of categories.

This theorem essentially half of the ingredients to the Tannaka duality presented in the next
subsection.
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12.2 Tannaka duality for representations of finite groups

This section will be the conclusion of the project and will be dedicated to proving Tannaka
duality for a special class of symmetric fusion categories namely the category of representations
of finite groups.

Theorem 12.9 (Tannaka duality for representations of finite groups). Let G be a finite group
and

U : RepC[G]→ VectC

With U(ρ) = ρ(∗) and which acts trivially on arrows. Then there exists an equivalence of
categories

RepG ' Rep(Aut⊗ U)

Proof. From Proposition 12.7 we get an equivalence

RepG ' RepC[G].

Then from Theorem 12.8 we conclude that

RepG ' RepC[G] ' Rep(EndU)

Now consider and α ∈ Aut⊗ U

φ : C[Aut⊗ U ]→ EndU

α 7→ α

This is clearly an injective algebra homomorphism. Thus we conclude

|G| = dimC[G] = dim EndU ≥ dimC[Aut⊗ U ] = |Aut⊗ U |.

It suffices to show |G| ≤ |Aut⊗ U | to see that C[Aut⊗ U ] ∼= EndU . Now consider the map

ψ : G→ Aut⊗ U

where ψ(g) is the natural transformation β with components

ψ(g)(V,ρV ) = ρV (g)

this is a natural transformation since a G-linear map f : V → W is still G-linear after the
forgetful functor. It is also clear that monoidal since we have defined the tensor product of
representations to be exactly this. while not strictly necessary for the proof ψ is also a group
homomorphism. At last suppose ψ(g) = ψ(h) for g, h ∈ G. Then for all (V, ρV ) ∈ RepG there
is an equality ρV (g) = ρV (h). In particular this holds for the regular representation on C[G],
where G acts on C[G] by left multiplication i.e. ρreg(g)(x) = gx. Thus since ρreg(g) = ρreg(h)
we in particular get that

g = ge = ρreg(g)(e) = ρreg(h)(e) = he = h.

Hence ψ is injective. Therefor |G| ≤ |Aut⊗ U |. We conclude that

dim EndU = dimC[Aut⊗ U ]

hence φ is a isomorphism thus

Rep(EndU) ' RepC[Aut⊗ U ].

Now it follows from Proposition 12.7 that

RepG ' RepC[Aut⊗ U ] ' Rep(Aut⊗ U).
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Appendix A - String diagrams.

Through out this project we will make use of string diagram formalism. A string diagram is
a computational tool that corresponds to a schema of morphisms with parentheses and units
applied at will in a monoidal category C with varying degree of additional structure.

Notation. For a category C we use the following conventions:

• composition is computed vertically from bottom to top.

• An object A ∈ C is denoted by a node
A

• The identity map idA is denoted by a string

A

A

• a map f : A → B in C is drawn by adding a label on the string and changing the
corresponding codomain node i.e.

A

B

f

with the convention that maps appropriately composeable

A

B

f

g

= g ◦ f

A

B

• Assume now that (C ,⊗, 1) is a monoidal category.

• Two string horizontally next to each other are to be interpreted as the tensor product of
maps.

• Maps with the monoidal unit 1 as domain or codomain will be suppressed.

• Natural transformations (applied locally) is expressed as switching the order of labeling.

This of course only uses the structure of monoidality. But we will now demonstrate how duals
and braidings give additional flexibility in computations with string diagrams.

Notation. From now on we will suppress the object nodes unless if their is no risk of confusion.

Notation. Let (C ,⊗, 1, β) be a braided monoidal category. For A,B ∈ C . We denote βA,B by
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A

B

B

A

The fact that β−1β = id thus corresponds to:

=

and a symmetric monoidal category satisfies:

=

Notation. If (C ,⊗, 1) is a monoidal category and A ∈ C and A has right (left) dual then we
define the evaluation and coevaluation (the left dual is the mirror image) as:

coev:
A∗ A

A A∗
ev:

Making the snake equations the following string diagram:

=

and its mirror image.

Theorem 12.10 (Joyal and Street). If (C ,⊗, 1) is a rigid monoidal category, then any evalu-
ation of a string diagram is invariant under planar isotopy.

The proof of this theorem is out the scope of this project but the theorem is included anyways
to ensure the reader of soundness of computations with string diagram. The proof however is
included in Joyal and Streets article [JS91].
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