
Frobenius algebras & two dimensional TQFT’s
Fagprojekt ved Matematisk Institut, Københavns Universitet

Steffen Christensen Supervisor: Nathalie Wahl

June 25, 2010

Abstract

In this project equivalence between the category, cFAk, of com-
mutative frobenius algebras and category, 2dTQFTk, of symmetric
monoidal functors from the category, 2Cob, of two dimensional cobor-
disms to the category, Vectk, of vector spaces over a field will be shown.
This is done through a graphical description of commutative frobenius
algebras that allows for immediate comparing with the structure and
description that we give of the cobordisms.

* * *

I dette projekt vil ækvivalens mellem kategorien, cFAk, af kom-
mutative frobenius algebraer og kategorien, 2dTQFTk, af symmetrisk
monoidale funktorer fra kategorien, 2Cob, af to dimensionelle cobor-
dismer til kategorien, Vectk, af vektorrum over et legeme blive vist.
Dette er gjort via en grafisk beskrivelse af kommutative frobenius alge-
braer, som lægger op til en umiddelbar sammenligning med strukturen
og beskrivelsen, vi giver af cobordismerne.

1 Introduction

The goal of this project is to prove the following main theorem.

Theorem 1.1 (Main theorem). 2dTQFTk and cFAk are equivalent as
categories.

The approach of proving this will be “top-down”. The reason for this is
that the main reference that is used, [Kock], is a 200 page elaborate book on
the topic. So in order to cut away enough material but still present a detailed
version of the proof, the presentation need to be one-eyed with respect to
only present material sufficient for giving the proof. A top down approach
helps doing that while also assisting the reader in keeping track of where we
are and what we need next.

In this section we will translate the notions involved in stating the the-
orem to highlight the first layer of “dependencies” that we are looking for.

1

Commutative frobenius algebra 2

The definition of the two categories, 2dTQFTk and cFAk, involved in the
statement of the main theorem is something we obviously want to know.
We will now give the definitions that will be used, but we will through out
the rest of this presentation elaborate on them and show that they makes
sense. In fact, apart from proving the claimed equivalence, describing these
categories is almost the entire content of this presentation. From this elab-
oration the equivalence will become a lot easier to deal with, as seen in the
last section of this presentation.

Definition 1.2 (cFAk). The category of commutative frobenius algebras,
called cFAk, has commutative frobenius algebras over a field k as objects
and frobenius algebra homomorphisms between them as morphisms.

Definition 1.3 (2dTQFTk). The category of 2 dimensional topological
quantum field theories, called 2dTQFTk, has symmetric monoidal func-
tors from 2Cob to Vectk as objects and monoidal natural transformations
between those as morphisms.

Definition 1.4 (2Cob). The category of 2 dimensional cobordisms, called
2Cob, has natural numbers representing disjoint union of circles as object’s
and cobordisms between them as morphisms.

Definition 1.5 (Vectk). The category of vector spaces over a field k, called
Vectk, has vector spaces over k as objects and k-linear maps between them
as morphisms.

The rest of the presentation is divided into three sections. In the first
we will describe the category cFAk. We will show a series of equivalent for-
mulations of what it is to be a frobenius algebra. We start from a standard
formulation and move towards a formulation from which we can do a graph-
ical representation of a frobenius algebra. Given this we show the central
formulation that we apply in the proof of the main theorem. In the second
section we describe the category 2dTQFTk and according to the definition
above1, it especially involves a study of structures of the category 2Cob.
Finally in the last section we give the proof of the main theorem.

Before we get into action I would like to thank: Professor Nathalie Wahl
for kind and insightful supervision, the topology group/SYM centre for pro-
viding a motivating ambiance, fellow student Marc Stephan for helpful con-
versations and my family for coping with me in general.

2 Commutative frobenius algebra

In this section we will describe the category of commutative frobenius alge-
bra. Especially we will show tree equivalences of frobenius algebras, hence

1

Commutative frobenius algebra 3

on object level of the category. This embraces the object level of the main
theorem.

First we will recall some algebraic preliminaries.

Definition 2.1 (k-vector space). A k-vector space is an abelian group, A,
equipped with a map A×k→ A such that it’s actually just a k-module over
A. They are the objects in Vectk.

Definition 2.2 (k-algebra). A k-algebra is a k-vector space, A, equipped
with maps µ : A⊗A→ A and η : k→ A such that the diagrams

A⊗A⊗A

A⊗A A⊗A

A

µ⊗ idA idA ⊗ µ

µ µ

k×A A⊗A A⊗ k

A

η ⊗ idA

µ

idA × η

commutes.

Now we will describe frobenius algebras and study those, then later we
will add some extra requirement on it in order to define what we mean by
commutative frobenius algebra, which is the objects of cFAk.

Definition 2.3 (Null-space). For a linear functional f : A → k over k-
algebra A we call {x ∈ A | f(x) = 0} the null-space and refer to it as Null(f).

Then the following definition of a frobenius algebra makes sense.

Definition 2.4 (Frobenius algebra by ε). A frobenius algebra, (A, ε), is a
finite k-algebra equipped with a linear functional ε : A→ k, such that there
is no non-zero ideal of A contained in Null(ε). We call ε the frobenius form.

We want to arrive at an equivalent definition of a frobenius algebra,
namely the following, where we do not specify a frobenius form but rather
a frobenius paring. We want this equivalence not only to give depth to the
object level of the main theorem, but also to give rise to a graphical repre-
sentation of the structure that set a frobenius algebra aside from just being
an (finite) k-algebra.

Commutative frobenius algebra 4

Definition 2.5 (Frobenius algebra by β). A frobenius algebra, (A, β), is a
finite k-algebra equipped with an associative non-degenerate paring β : A⊗
A→ k. β is called the frobenius paring.

So what we set out for now is to show this equivalence. In order to do
that, and before we present the necessary algebraic preliminaries, we give in
the following lemma another equivalent formulation on the requirement on
ε in definition (2.4).

Lemma 2.6. Let f : A→ k be a linear functional. Then no non-trivial left
ideal of A is in Null(f) iff f(Ay) = 0⇒ y = 0.

Proof. We show both directions by contra position. ” ⇒ ”: Assume ∃y 6= 0
(y ∈ A) st. f(Ay) = 0. Then Ay is a non-zero principle ideal of A, hence
especially and ideal, where f(Ay) = 0, so Ay ⊆ Null(f). ” ⇐ ”: Assume
I non-zero left ideal of A st. I ⊆ Null(f). That means ax ∈ I, hence
f(ax) = 0, for all x ∈ I and a ∈ A. Since I is non-zero, ∃y 6= 0 in I s.t.
f(ay) = 0 for all a ∈ A, hence f(Ay) = 0.

In order to show the equivalence between definition (2.4) and (2.5) we
first define the needed notions, namely pairing, non-degeneracy and associa-
tivity of a pairing. And then show the equivalence.

Definition 2.7 ((Co-)Pairing). A pairing between two vector spaces, V and
W , is a linear map β : V ⊗W → k. On elements we write it as the map that
v ⊗ w 7→ 〈v, w〉. Similarly a co-pairing is a linear map γ : k→ V ⊗W .

Definition 2.8 (Non-degenerate pairing). A pairing, β, as above, is called
non-degenerate in W if there exists a corresponding co-pairing, γ, as above,
such that

W
γ⊗idW−−−−→W ⊗ V ⊗W idW⊗β−−−−→W

is the identity on W . And similarly it is called non-degenerate in V if (β ⊗
idV)◦(idV ⊗γ) = idV . It is called, just, non-degenerate if it is non-degenerate
in both variables.

Definition 2.9 (Associative pairing). A pairing, β : M ⊗ N → k is called
associative if 〈ma, n〉 = 〈m, an〉 for m ∈M , n ∈ N and a ∈ A all k-algebras.

We will use two small lemmas, which relate pairings non-degeneracy and
linear functionals, to show the equivalence.

Lemma 2.10. Let V and W be vector spaces and let β : V ⊗W → k by
v ⊗ w 7→ 〈v, w〉 be a pairing, then the following is equivalent

(i) β is non-degenerate,

(ii) 〈v, w〉 = 0∀v ∈ V ⇒ w = 0 and W is finite,

Commutative frobenius algebra 5

(iii) 〈v, w〉 = 0∀w ∈W ⇒ v = 0 and V is finite.

Proof. We will just show (i)⇔ (ii) as (i)⇔ (iii) is analogue.
”(i)⇒ (ii)”. Assume β is non-degenerate, then by the given co-pairing,

γ, we can look at the general element in W ⊗ V that is the image of 1k by
γ, that is

∑n
i=1wi ⊗ vi for some wi ∈ W and vi ∈ V . The non-degeneracy

property then say that when we map w through the composition we will get
the following:

w
γ⊗idW7−→

n∑
i=1

wi ⊗ vi ⊗ w
idW⊗β7−→

n∑
i=1

wi〈vi, w〉 = w.

As this is true for any w ∈W imply that W is spanned by the wi’s hence of
finite dimension. Now when we assume 〈v, w〉 = 0 ∀v ∈ V then in particular
〈vi, w〉 = 0, since not all vi = 0 we conclude w = 0.

”¬(ii) ⇒ ¬(i)”. We assume ∃w 6= 0, w ∈ W with W finite such that
〈v, w〉 = 0 ∀v ∈ V . We assume β is non-degenerate, then as above when
we map the general element of W through the composition given by the
non-degeneracy requirement we get that

∑n
i=1wi〈vi, w〉 = w. Independently

of choice of γ, we get by our assumption that there exists a non-zero w ∈W
such that w = 0. This contradiction then imply that β is not non-degenerate
(in W).

Lemma 2.11. There is a one-to-one correspondence between linear func-
tionals and associative pairings.

Proof. Given a linear functional, ε : A→ k, we can define a pairing A⊗A→
k by x ⊗ y 7→ ε(xy). Given a z ∈ A, then as xz ⊗ y 7→ ε((xz)y) and
x⊗ zy 7→ ε(x(zy) and ε((xz)y) = ε(x(zy) we see it is associative.

On the other hand, given a associative pairing, β : A⊗A→ k by x⊗y 7→
〈x, y〉, we can define a linear functional A→ k by a 7→ 〈a, 1A〉 = 〈1A, a〉.

So given such ε we get by this construct a new linear functional by
a 7→ ε(1Aa) = ε(a1A), that is we get exactly ε back. Similarly, given such
associative pairing β we get by the constructions a associative pairing by
x⊗ y 7→ 〈xy, 1A〉 = 〈1A, xy〉, that is we get β back.

Theorem 2.12. Definition (2.4) and (2.5) are equivalent.

Proof. By lemma (2.11) it follows that the definitions are equivalent if it
follows Null(ε) contains no non-zero left-ideal of A iff β is non-degenerate.
We denote the pairing as 〈·, ·〉. From lemma (2.10) we know that β is non-
degenerate iff 〈A, y〉 = 0⇒ y = 0 which again is the same as saying ε(Ay) =
0 ⇒ y = 0 (be the previous lemma). Finally we apply lemma (2.6) to see
that this is the same as saying Null(ε) does not contain any non-zero left
ideal of A.

Commutative frobenius algebra 6

2.1 Graphical representation

Now we are ready to construct a graphical representation of these algebraic
data and structures of the frobenius algebras. The aim is to use these to
prove more facts about them, that we need to show the main theorem. To
be more precise; we want to show that a frobenius algebra has a co-algebra
structure where the co-unit is the frobenius form. We want to do that via
calculations on the object we get from our graphical representation. Further
we will show that this is actually one half of yet another equivalent definition
of a frobenius algebra, namely that if we are given a vector space with
multiplication and co-multiplication and corresponding units that satisfy
that the multiplication and co-multiplication commutes, called the frobenius
relation, then it is a frobenius algebra. We will show this equivalence.

But first let us recall what a co-algebra is.

Definition 2.13. A co-algebra over a field k is a k-vector space, A, equipped
with linear maps δ : A→ A⊗A and ε : A→ k such that the diagrams

A⊗A⊗A

A⊗A A⊗A

A

δ ⊗ idA idA ⊗ δ

δ δ

k×A A⊗A A⊗ k

A

ε⊗ idA

δ

idA × ε

commutes.

So we want to construct such δ and show that our frobenius form, ε,
satisfy the co-unit condition.

The starting point is the morphisms of the k-algebra, say, A: unit η,
identity idA and multiplication µ. We will represent graphically as pictured
here:

It is in order to explain how they make sense. For each of them we
have the domain of the map they represent on the left and the co-domain

Commutative frobenius algebra 7

on the right. We will often refer to them as input and output. Input and
outputs that come from A is pictured with a circle. The map is a map
A⊗A→ A and, in the picture that represent it, the upper input is the first
factor in A⊗A and the lower input is the second factor. When we map form
the ground field, k, the input is not represented with a circle, but with a
cap. In other words, if we let An be A tensored with it self n times, then
we can express maps An → Am for n,m ≥ 0 where we also pay attention
to the order of the factors in the tensor power. This explains the machinery
for constructing the graphical representation, and that it is well-defined.

Then the requirements on these morphisms to be a k-algebra is repre-
sented as: First the associativity:

=

Then the unit requirement:

= =

We still have the frobenius form, ε and the frobenius pairing, β, to work
with. We will represent these as:

Figure 2.1: Frobenius form, Pairing

Remark 2.14. We note that these two representation is compatible with the
statement in lemma (2.11). That is:

= = =

We can not show either of the equivalent conditions from lemma (2.6)
of a frobenius algebra expressed via the frobenius form hold. I.e. the ideal
we can not present, also implications. But we can express the one involving
the associative pairing, since it is essential involving commutative diagrams,
which we can express without graphical representation.

The associativity of the frobenius pairing is expressed as:

Commutative frobenius algebra 8

=

and follows from the associativity of the multiplication, µ.
Then we need it to be non-degenerate. We recall from definition 2.8

that this means that for a pairing, β, there exists a co-pairing, γ, such that
(idW ⊗ β) ◦ (γ ⊗ idW) = idW and (β ⊗ idV) ◦ (idV ⊗ γ) = idV . Which is
translated to the following:

∃ st. = =

The relation we will refer to as the snake relation.
Now we will define the co-multiplication.

Definition 2.15. The co-multiplication, δ, is defined as the following:

:= =

As we see it is a composition of co-pairing and multiplication, and and
we use the two equalities since we need this to be co-associative, since that
the requirement on the co-multiplication. We first show that the right most
equality holds then show that it satisfy the co-associativity. To show the
right most equation we first need the following lemma.

Lemma 2.16. The following equations holds

= =

Proof. The proof is simply to use the snake relation by adding and removing
identities as needed. I will do one side, the other is analogous just using the

Commutative frobenius algebra 9

other part of the snake relation. So:

=

= =

Lemma 2.17. The co-multiplication is well defined. I.e. the following hold

=

Proof. The proof follows by the previous lemma, that is used in the first
and last equality below, and the associativity of the pairing, that is used in
the middle equality.

= =

=

We now want to show that this co-multiplication satisfy the co-associativity
regiment as formulated in definition 2.13. Namely:

Lemma 2.18. It holds that

=

Commutative frobenius algebra 10

Proof. We just use the definition of our co-multiplication to write out what
it means in terms of co-paring and multiplication, then we apply the relation
in the definition twice and finally translate back via the ostensive part of
the definition to get the wanted.

Lemma 2.19 (ε is co-unit for δ). The frobenius form, ε, is in fact co-unit
for the co-multiplication, δ; meaning:

= =

Proof. First we note that this relation exactly express the co-unit condition
from definition (2.13). Then we show it holds:

=

= =

That is, first we use definition (2.15) of co-multiplication, then we use the
first relation of remark (2.14) and finally the snake relation. The other equal-
ity in the lemma is analogous.

Lemma 2.20. The co-multiplication, δ, satisfy the frobenius relation:

= =

Proof. This is again two equalities that are analogous; we show the first. We
use the definition of co-multiplication to get an expression in term of multi-
plication, then we apply associativity of multiplication and finally translate
back with the definition of co-multiplication:

= = =

Commutative frobenius algebra 11

Now we have constructed what we set out for, but we need a few more
lemmas before we get truly happy. First:

Lemma 2.21. The dual of remark 2.14 holds; that is:

= = =

Proof. First

= = =

Which follows from first using the definition of co-multiplication and then
the unit requirement for the multiplication.

Then

= = =

Which follows from first the above relation and then the co-unit requirement
as displayed in lemma (2.19).

And secondly, long overdue:

Lemma 2.22. The co-pairing, γ, is unique.

Proof. What this means is that when we talk about a pairing, β, to be non-
degenerate, then we mean that it is so in both variables - as mentioned. For
each variable it is non-degenerate, it induces a co-pairing. What we want
now, is to show, that this is actually the same co-pairing. And this is why
we sloppily allowed to use the same name in both cases previously.

Now assume that the two co-pairings are not the same and name them
γ and φ, then the relation in the non-degeneracy condition looks as:

γ
= =

φ

Then observe the following composition:

γ

φ

Commutative frobenius algebra 12

When we apply both sides of the snake relation (by adding need identity)
to the above we get:

φ = φ = γ = γ

We are now ready to harvest the fruits of our labour with this graphical
representing of structures in frobenius algebras. We will show the equiva-
lence, mentioned in the beginning of section 2.1. The statement and proof
is divided into the following two theorems.

Theorem 2.23. Given a frobenius algebra, (A, ε), then there exist a unique
co-associative co-multiplication, δ, to which the frobenius form, ε, is the co-
unit such that also the frobenius relation is satisfied.

Proof. By definition 2.15, lemma 2.17, 2.19, 2.18 we only need to ensure that
the constructed co-multiplication, δ, is unique. So assume there is another
co-associative co-multiplication, ψ, that has ε as co-unit and also satisfy the
frobenius relation. As in multiple other cases we only show one side of things
as the other is analogue.

Now we compose the ψ’ifyed frobenius relation with co-unit and unit
and get:

ψ
=

ψ

= ψ =

The first equality follows from applying lemma (2.21) and remark (2.14),
the second is the frobenius relation and the last is the unit and co-unit
condition. Then since the co-pairing, γ, is unique (lemma (2.22)) and by the
snake relation we get that ψ ◦ η = γ. Now we can rewrite ψ in the following
way, using the above to get the last equality:

ψ = ψ =
ψ

=

In other words; ψ is compatible with our definition of co-multiplication. In
fact ψ = δ.

Commutative frobenius algebra 13

The other way show the interest in the frobenius relation; how it char-
acterises the frobenius algebra.

Theorem 2.24. Given a vectors space, A, equipped with a multiplication,
µ, with unit, η, co-multiplication, δ, with co-unit, ε, such that it satisfies the
frobenius relation, then it forms a frobenius algebra, (A, ε), where ε is the
frobenius form.

Proof. First, from η and µ we construct a paring, β, by β := µ ◦ ε. We
then note that the unit condition on the multiplication µ then implies that
relation in remark (2.14) are satisfied. This means that the co-unit ε is a
candidate to be the frobenius form if we can show that β is a frobenius
pairing.

In particular we want to show that β is non-degenerate. This is equivalent
to show that the snake relation holds when we define the co-pairing to be
γ = δ ◦ η:

=

= =

Where we only apply the frobenius relation and the unit and co-unit condi-
tions. Then we note that non-degeneracy by lemma (2.10) implies that A is
finite, so we have that requirement of a frobenius algebra settled too.

Now we also want β to be associative for it to be a frobenius form.
We also want the multiplication be be associative and the co-multiplication
be co-associative. We will show that the multiplication is associative. From
that, as noted previously, associativity of the pairing follows directly (by con-
struction of the pairing). Co-associativity of the co-multiplication is shown
in an analogue manner hence we will omit it here. All in all we will then
have showed that (A, ε) is a frobenius algebra. So; associativity of µ:

= = =

The middle equality follows from the frobenius relation directly, while the to
others follow from relations we establish by composing the frobenius relation

Commutative frobenius algebra 14

with unit and co-unit:

= = =

And similarly:

=

2.2 Commutativity

Up until now we have looked at frobenius algebras while not discussing the
commutativity aspect present in cFAk. We will do that now. This involves
especially the introduction of a twist map which is the last thing we need
settled in this category for showing the main theorem.

Definition 2.25. For two vector spaces, V, V ′, the twist map, σV,V ′ : V ⊗
V ′ → V ′ ⊗ V , is the maps that interchanges factors such that σV ′,V σV,V ′ =
idV⊗V ′ . We represent this graphically as:

=

Definition 2.26. A frobenius algebra is commutative if the under laying
algebra is commutative. In graphical terms this means:

=

And similarly we have for a co-algebra:

Definition 2.27. A co-algebra is co-commutative if

=

Finally we state this relation between the two:

Proposition 2.28. The multiplication of a frobenius algebra is commutative
iff the co-algebra is co-commutative.

Proof. We leave out the proof as we do not really need this.

Two dimensional TQFT 15

2.3 Categorical perspective

The remaining part is to show cFAk is a category.
First we recall that the algebra A of a frobenius algebra (A, ε) is also a

co-algebra which is fact from theorem (2.23). Then we are ready to define a
frobenius algebra homomorphism:

Definition 2.29. Given two frobenius algebras then a homomorphisms
between them is an algebra homomorphism that is also a co-algebra ho-
momorphism. By diagrams this is the same as saying: f : (A,µ, η, δ, ε) →
(A′, µ′, η′, δ′, ε′) is a frobenius algebra homomorphism if the following dia-
grams

A⊗A A A⊗A

A′ ⊗A′ A′ A′ ⊗A′

µ δ

µ′ δ′

f ⊗ f f f ⊗ f

A

k k

A′

η

η′

ε

ε′

f

commutes. And such that the (co-)multiplication is (co-)commutative. Note
the left part of the two diagrams correspond to f being a algebra homomor-
phism, and the right to f being a co-algebra homomorphism.

Theorem 2.30. The category of commutative frobenius algebras, cFAk, as
given in definition 1.2 is valid.

Proof. We have a set of objects being frobenius algebras, and a set of mor-
phisms between. It follows directly from the looking at diagrams in definition
2.29 that the properties of being a category is satisfied.

3 Two dimensional TQFT

In this section I will go into detail about the category 2dTQFTk especially
we will discuss 2Cob.

3.1 Two dimensional cobordisms

Proposition 3.1. 2Cob is in fact a category.

Proof. We have stated in definition 1.4 that 2Cob is the category where
the objects are natural numbers representing disjoint union of circles and
the morphisms are two dimensional cobordisms between then. From now
on we will just call them cobordisms. And the objects will be denoted with
bold face, so the disjoint union of four circles will be denoted 4. The sets
of objects and morphisms form a category since: First, the set of objects is

Two dimensional TQFT 16

settled, and for any two objects a cobordisms between them is a well defined
morphism. Also for any three objects we can compose the morphisms in
an associative manner. We have an identity morphism (the tube) and the
morphisms completely determined the domain and co-domain (ie. the pair-
of-pants goes from 2 to 1).

It is relevant to note that this definition is not the standard definition,
but rather a slightly more abstract or generalised version of it. The complete
translation of this is beyond the scope of this presentation. It is interesting in
its own right, but here, while focusing on showing the main theorem, we need
to omit that differential topological aspect by making this generalisation.
Details about it is presented in the first part of [Kock]. In fact the definition
we work with here is a special kind of subcategory, called the skeleton, of the
standard category of cobordisms. We will now make it more precise what
that means.

Definition 3.2. A skeleton, S, of a category C is a sub-category of C that
is equivalent to C. The objects of S is a representative from each of the
isomorphism classes of the objects of C. The skeleton is the least sub-category
such that they are equivalent.

So to give a little more depth to our definition we note that for the
category of cobordisms, the objects are isomorphic if they are diffeomorphic.
This also lead us to define what we mean by equivalent cobordisms.

Definition 3.3. Two cobordisms M,M ′ : n → m are equivalent if there is
a diffeomorphism between them that respect the order of the boundaries.

In the next paragraph we exploit the following way of looking at a cate-
gory. The skeleton idea mentioned above will, as we mentioned then, allow
us to do so.

Definition 3.4. For a (small) category C we talk about generating the
category from a set of generators and a set of relations. The generators are
morphisms in the category and the relations are relations of morphisms such
that any morphism in C is a composition of generators.

This notion of generating a category we will extend further giving the
category is monoidal. For that we need the following definition.

Definition 3.5 (Monoidal category). A category C equipped with two func-

Two dimensional TQFT 17

tors µ : C× C→ C and η : 1→ C such that the diagrams

C× C× C

C× C C× C

C

µ× idC idC × µ

µ µ

1× C C× C C× 1

C

η × idC

µ

idC × η

commutes is called a (strict) monoidal category.

Remark 3.6. We will freely interchange between the notion (C, µ, η) of a
monoidal category and one noted as (C,�, I. The dictionary for doing so
is the following. On objects X,Y and f, g morphisms of C we define µ ab-
stractly by (X,Y) X−→ �Y and (f, g)

f−→ �g. And I is the object in calC
that η maps the object from the one-point category 1 to.

Then we can show that 2Cob can be viewed as such:

Proposition 3.7. (2Cob,t, ∅) is a monoidal category.

Proof. So we need to show that t : 2Cob× 2Cob→ 2Cob as a functor is
well defined and that the condition expressed in definition 3.5, above, holds.
So first the well-defindness part: For any two objects n,m in 2Cob we see
n tm is an object in 2Cob. Also for any two morphisms in 2Cob, that is
two cobordisms, M : n → m and M ′ : n′ → m′, then we get a cobordism
M tM ′ : n t n′ → m tm′. Also it respects compositions as for cobordism
n N−→ n′ N ′

−→ n′′ and m M−→ m′ M ′
−−→ m′′ we get (M ′ ◦ M) t (N ′ ◦ N) =

(N ′ tM ′) ◦ (N tM). And it deals with identity In : n→ n, Im : m→m as
it should: In t Im = Intm. Secondly, we look at the associativity condition;
(ntm)t k = nt (mt k). This equality holds in this version of 2Cob but
we have to note that in general category of cobordisms, ie. not the version
we work with, it is only an isomorphism. Clearly also the conditions on the
neutral object functor, ∅, is satisfied.

With that in mind we can refine the generating principle even further:

Two dimensional TQFT 18

Definition 3.8. A generating set of a monoidal category, C, is a set of mor-
phisms of C such that any morphism of C can be constructed by exploding
the monoidal operator and composition of morphisms.

Lemma 3.9. The twist is not a disjoint union of two identities.

Proof. The point is that even though the twist is diffeomorphic to the dis-
joint union of to tubes, this diffeomorphism does not respect the order of
the boundaries. And hence it is not equivalent as cobordisms.

3.1.1 Generators

Our 2Cob category is small and hence it makes sense to talk about a gener-
ating set and a set of relations. In this paragraph we will show that a specific
set of cobordisms are a generating set:

Theorem 3.10. The following generators describe 2Cob

Proof. The proof follows directly from lemma 3.11, remark 3.12 and lemma
3.13 below.

Lemma 3.11 (Connected cobordisms). Any connected cobordism can be
constructed from a composition of disjoint unions of the connected genera-
tors: The tube, cap, co-cap, pants and co-pants.

The proof is constructive in the sense that we describe an algorithm to
decompose any connected cobordisms to what is called the normal form. As
this is done in a unique way the normal form works as measure of equivalence
of connected cobordisms.

Proof. The basic observation origin from classification of topological sur-
faces, namely: Any connected cobordisms are unique up to diffeomorphism
provided it has the same genus, the same number of input boundaries and
the same number of output boundaries. So it is an element of this class we
bring to normal form. Consider the following example. Let M : 4 → 3 be a
cobordism of genus 2. Then the normal form of M looks as:

Two dimensional TQFT 19

With this picture in mind we now present the general algorithm. So let
M : n → m of genus g be a connected cobordism. We think of the normal
form as having three parts, one that takes care of the input, one for the
topological part with the genus and one for the output. Lets start with the
middle, topological, part. We can construct a cobordism with genus 1 by
composing a pair of pants with a pair of co-pants. Then we can compose
that composition by copies of itself g time to get one with genus g. If g = 0
we just do nothing, take the tube. The cobordism we then get is G : 1→ 1.
Then the input part; we want to construct a cobordism IN : n → 1 with
genus 0. Now if we compose n−1 pairs of pants in serial such that the output
of the first pair goes into the lower input of the second, and the output of
the second goes to the input of the third and so forth and the add tubes to
make it well defined, then we get the wanted. And since we always choose
to connect the output of one to the lower input of the next, this is unique.
If n = 0, IN is just a cap. Similarly for the output side, we construct a
cobordism OUT : 1 → m of genus 0. We do the same thing just with co-
pants instead of pants and we connect the lower output to the input of the
next. If m = 0, OUT is just a co-cap. And the composition OUT ◦G ◦ IN
is in the same class as M .

Remark 3.12. By the monoidal structure we can construct non-connected
cobordisms by disjoint union of connected cobordisms. This will cover all
non-connected cobordisms generated by the set of generators listed in lemma
3.11, but it will not cover all non-connected cobordisms. This is where the
last generator, the twist, enters the picture as expressed in the next lemma.

Lemma 3.13 (Non-connected cobordisms). Any morphism in 2Cob that
can not be expressed as a disjoint union of connected cobordisms can be
expressed composing a disjoint union of connected cobordisms with the twist
map.

Proof. The proof is constructive and not as general as possible but easy to
make general. So assume we are given a cobordism M : n→m that is non-
connected but not a disjoint union of connected cobordisms. Further, and for
making the method easy to display without loss of generality, assume there
is two connected components, M0 and M1. Then the input boundary of M0

is a disjoint union of p circles and the input boundary of M1 is a disjoint
union of q circles such that p+ q = n. Similarly for the output boundary for
M0 and M1 consists of a disjoint union of k and l circles respectively such
that k + l = m.

The point is then, that since M is non-connected but not a disjoint union
of M0 and M1, then not both the output and the input boundary of M0 and
M1 are ordered such that we first have the boundaries for, say, M0 and then
those for M1. Let us, for even further simplicity and still without loss of
generality, assume the output boundaries are nicely ordered such that the

Two dimensional TQFT 20

output boundary of M consist of a disjoint union of the output boundary of
M0 and that of M1. Then we can construct a diffeomorphism σ : n→ n that
reorders the input boundaries such that they become a disjoint union of the
input boundaries of M0 and M1. This is essentially just a permutation which
we can construct from transpositions, which is what the twist cobordisms
actually do. In other words σ will be a composition of cobordisms that consist
of a disjoint union of a twist and n−2 tubes. So now M ◦σ is diffeomorphic
to M and the input boundaries of M ◦ σ are ordered such that it is the
disjoint union of the input boundary of the two connected components of
M ◦σ. Hence we have transformed M diffeomorphicly into the desired form,
namely one where it is a disjoint union of its connected components, by only
using the twist cobordism.

3.1.2 Relations

In this paragraph we present a series of lemmas about relations that hold in
2Cob. These are needed to prove the main theorem and to describe 2Cob.

Lemma 3.14 (Identity relations).

= = =

= =

= =

= =

Lemma 3.15 ((co-)Unit realations).

= =

= =

Two dimensional TQFT 21

Lemma 3.16 ((co-)associativity relations).

= =

Lemma 3.17 ((co-)commutativity relations).

= =

Lemma 3.18 (Frobenius relation).

= =

Lemma 3.19 (Twist relations). A list of relations involving the twist.

(i) The twist is inverse to itself:

=

(ii) Twist and co-cap relations:

= =

(iii) Twist and cap relation:

= =

(iv) Twist and pants relations:

=

Two dimensional TQFT 22

=

(v) Twist and co-pants relations:

=

=

(vi) Twist and twist relation:

=

Proof. The proof of all these relations is really just to show, that the one
side (of the equality sign) is equivalent as cobordisms to the other side.
Since equivalence as cobordisms means (see definition 3.3) that they are
diffeomorphic respecting the boundaries. Clearly this is the case here.

Proposition 3.20 (Symmetry of 2Cob). The twist cobordism, τ , makes
the monoidal category (2Cob,t, ∅) into a symmetric monoidal category.

Before we give the proof we need the following definition.

Definition 3.21 (Symmetric monoidal category). A monoidal category
(C,�, I) equipped also with a twist map, τ that for X,Y ∈ Ob(C) maps
τX;y : X�Y → Y�X such that

Two dimensional TQFT 23

• for each pair (f, g) ∈ Mor(C)×Mor(C), say, f : X → X ′ and g : Y → Y ′

then

X�Y Y�X

X ′�Y ′ Y ′�X ′

τX,Y

g�ff�g

τX′,Y ′

commutes.

• for each X,Y, Z ∈ Ob(C) the following diagrams

X�Y�Z Y�Z�X

Y�X�Z

τX,Y �Z

τX,Y �IdZ IdY �τX,Y

X�Y�Z Z�X�Y

X�Z�Y

τX�Y,Z

IdX�τY,Z τX,Z�IdY

commutes.

• for each X,Y ∈ Ob(C) then τY,X ◦ τX,Y = IdX�Y

is called a (strict) symmetric monoidal category. We refer to all of the data
defining the symmetric monoidal category as (C,�, I, τ).

Proof. Fresh in memory from the above definition we have the condition
on the twist map. The relations (ii) to (vi) ensure that the naturality of
the twist is satisfied, meaning the the twist commute with taking disjoint
union. It obviously suffices to show that it holds for each of the generators2

in disjoint union with the identity cobordisms. We will just explain this in
one example to get a feel of it, the rest is done in the same manner. We take
the first of cases with the pants, (iv): We let M : 1→ 1 and M ′ : 2→ 1 be

2Note that the tube is not a proper generator and this case would anyway be trivial,
so it is omitted here.

Two dimensional TQFT 24

given, then we are to show that

1 t 2 2 t 1

1 t 1 1 t 1

τ1,2

M ′ tMM tM ′

τ1,1

commutes. The composition τ1,1 ◦M tM ′ correspond to the right hand side
directly. The other composition, M ′ tM ◦ τ1,2, correspond to the left hand
side, since the twist of 1 and 2, that is like a permutation, factors though
two twist as seen below.

Further we see that the relation (i) satisfies the last condition. The last
condition that the twist should satisfy can be represented as follows:

= =

The unfamiliar picture, or notion, on the left hand side is to symbolise the
twist of a circle, 1, with the disjoint union of two other circles, 2.

Remark 3.22. We note that an alternative route would be to first show that
the twist made (2Cob,t, ∅) into a symmetric monoidal category, then the
relations would follow directly. The proof is not hard, we just choose this
other route.

Lemma 3.23. The relations from lemma 3.14 to 3.19 spans 2Cob.

Proof. Our aim is to bring any cobordism to normal form. We will develop
the complexity and hope to have a relation that helps up when we run into
problems. If successful we have shown that the relations indeed span (though
they the set of them might not be minimal). First we assume that we do
not come across a twist when we bring it to normal form, then we explain
what to do even though. And both cases for connected cobordisms, which
is the only kind we have defined a normal form of. Then we treat the non-
connected case by defining a normal for on such cobordism – that form will
be only unique up to permutation though.

Assume M : n→m is a connected cobordism of genus g. Then the Euler
characteristic of M is χ(M) = 2−2g−n−m. We further assume M consists
of a pants, b co-pants, p caps and q co-caps. The Euler characteristic of each
of these are: χ() = 1, χ() = 1, χ() = −1 and χ() = −1, hence
χ(M) = q + p− a− b. Also we see that the equation a+ q +m = b+ p+ n
holds. So we can express a and b in terms of m,n, p and q: a = n− 1 + g+ p

Two dimensional TQFT 25

and b = m− 1 + g + q. We observe that is is expected for the normal form
of M .

Assuming there is no twist in our decomposition, we will bring it to
normal form in the following way. First we want to “move” n− 1 copies of
pants to the far left. We will think about what the input of a pair of pants can
meet. It can meet the tube, which is just the identity, so by identity relations
we can just remove that tube. Then we can meet a cap, which by the unit
relation gives us an identity, that we can just remove. In that case that pair
of pants is eliminated, so this will happen p times, but we have m − 1 + g
copies left. The co-cap we can not meet due to connectivity assumption of
the cobordisms. Should we meet a pair of pants we just continue moving
that pair leftwards instead. Left is to meet a pair of co-pants, which can
occur in the following ways:

The first case we don’t have a dedicated relation for, but we can construct
one:

=

=

where the first equality stems from the associativity of pants and the last
is applying the frobenius relation. The last case is treated by the frobenius
relation. So far so good. Now we can do similarly the right, moving m − 1
copies of the co-pants to the right. What we are left with is g copies of pants
and co-pants in the middle. Since both the left and right now are on normal
form, the middle part has one input and output. Clearly this is of genus g
and we can bring it to normal form by moving pants to the left applying the
relation above.

Now we will examine what will happen if we meet a twist, while keeping
the connectedness assumption of the cobordism. We will just meet one twist,
then induction over twists will show it holds in general. So assume we meet a
twist, then by the identity relations we can add tubes such there is only tubes
above and below the twist. Now due to the connectedness assumption there
is four possible situations that can occur around this twist: The left side can
connect the input boundaries, and similarly the right side can connect the

Two dimensional TQFT 26

output boundaries. Also the top input and outputs can be connected and
similarly for the bottom. We will just treat the left and top situation as the
other are similar. So if the left side cobordism is connected we can bring it
to normal form, and then we can permute the output side of it such that we
get a pair of co-pants with both outputs connected to our twist. Then by
the co-commutativity relation the twist will be eliminated. Now assume it
is the top input and output that is connected. With the left side on normal
form and a pair of co-pants permuted up such the lower outputs connected
to the top input of the twist. Doing similar for the cobordism on the right
side of the twist, we get the following situation:

Then by co-commutativity, twist relation (iv), the frobenius relation and
again the co-commutativity relation we get the following sequence of equal-
ities that removes the twist:

=

=

= =

Finally we are ready to deal with the situation where the given cobor-
dism is non-connected. As normal form in this case we will take the disjoint
union of the normal forms of each component up to permutation of the com-
ponents. The strategy of the proof is analogous to that of lemma 3.13, so we
will not repeat it here, but note that in the process we apply the relations
of the twist (i) and (vi) to construct the permutations.

3.2 Back to 2dTQFTk’s

First we note that (Vectk,⊗, k, σ) is a symmetric monoidal category. We
are not going to elaborate any further on that. The twist is induced by the
standard interchanging of factors of a tensor product.

Two dimensional TQFT 27

Now we will make precise and meaningful what 2dTQFTk is. We recall
from definition 1.3 the the set of objects are symmetric monoidal functors
from 2Cob to Vectk. In the previous we have shown that these two cate-
gories are symmetric monoidal, so as such it makes sense to have functors
between them with some extra structure. We want the symmetric monoidal
functors to preserve the symmetric monoidal structure. We do it in steps:

Definition 3.24 (Monoidal functor). A functor, F , between monoidal cate-
gories (C,�, I) and (C′,�′, I ′) is monoidal if it preserves the monoidal struc-
ture, that is, such that for n ≥ 0 the diagram

Cn C′n

C C′

Fn

µ′(n)µ(n)

τF

commutes for any n ≥ 0, where µ(0) : C0 → C is η : 1→ C.

And then the symmetric aspect:

Definition 3.25 (Symmetric monoidal functor). A functor, F , between
symmetric monoidal categories (C,�, I, τ) and (C′,�′, I ′, τ) is symmetric
monoidal if it is monoidal and preserves the symmetric structure, that is,
such that for X,Y ∈ Ob(C) then F (τX,Y) = τ ′F (X),F (Y).

So this makes sense to the object level of 2dTQFTk. For the morphisms
level we want to define what it means to be a monoidal natural transforma-
tion. The motivation is that it should preserve the monoidal structure. We
recall that

Definition 3.26. A natural transformation u between functors F,G : C →
D is a collection of morphisms uX : F (X)→ G(X) in D over objects, X, in
C such that for any morphism in C, f : X → Y , the following

F (X) G(X)

F (Y) G(Y)

uX

G(f)F (f)

uY

commutes.

But since we require further that F and G are monoidal between (C,�, I)
and (D,�′, I ′), then we have that F (X�Y) = (F (X)�′F (Y)), F (I) = I ′

and similar G(X�Y) = (G(X)�′G(Y)), G(I) = I ′. So for u to be called
monoidal the following seems natural:

Main theorem 28

Definition 3.27. A natural transformation u : F ⇒ G is called monoidal
if for any objects X,Y in C morphism uX�Y : F (X�Y) → G(X�Y) in D

satisfy uX�Y = uX�′uY and uI = idI′ . Equivalent:

F (X�Y) G(X�Y)

F (X)�′F (Y) G(X)�′G(Y)

uX�Y

uX�′uY

G(f)F (f)

commutes.

All in all we have established what we need to make sense of the definition
of 2dTQFTk and also from this it is clear, by constructing grids of diagrams,
that if actually forms a category.

4 Main theorem

In this section we will prove the main theorem 1.1. We will first go through
the general structure of such proof of equivalence, and then exhibit a proof
for this case. This proof is going to, as promised, rely heavily on the de-
scriptions we have given of the involved categories. Hence the motivation of
describing them has not been solely to elaborate on the object level, and not
only to show some needed results of the categories that we of cause needed
for the formulation of the theorem to make sense either, but also it allows
the proof to be quiet brief.

First the general – or categorical – setting. So let D,C and V be cate-
gories. Then, if we want to show that the functors, Φ: Fun(C,V) � D : Ψ,
exhibit an equivalence, then we must show that Φ ◦ Ψ ∼= 1D and Ψ ◦ Φ ∼=
1Fun (C,V). To at all do that, we must define Φ and Ψ on both objects and
morphisms of the involved categories. But to extend further to get closer
to our setting, assume that (C,�, I) and (V,�′, I ′) are symmetric monoidal
categories such that it makes sense to consider the functor category between
them as being symmetric monoidal, call it SymMonFun(−,−). And let us
also assume C is small. This implies that any object of C can be constructed
a generating object, call it 1, by composing it self with the monoidal oper-
ator, �. This means that when we want to define a functor from C, which
are objects in the functor category, then on object level, there we need only
define it on this generating object. On a similar note, if we assume further
that we have a generating set of morphism in C, then when we want to define
our functor from C on morphism level, we only need to define what it does
for each of the generating morphism.

While this makes things easier on object level of defining Φ (and Ψ),
it also does on morphism level. The morphisms in SymMonFun(C,V) are

Main theorem 29

monoidal natural transformations between symmetric monoidal functors;
call a given one u : F ⇒ G. Then it consists of a collection of morphism
uX : F (X)→ G(X) over objects, X, of C. But now any object in C is of the
form 1n := 1� · · ·�1 n-times, and hence the collection of morphisms in V

that constitutes the natural transformation is F (1n) → G(1n) over n ∈ N.
By the monoidality of F , then F (1n) = F (1)�′ · · ·�′F (1) n-times. Since
u is also a monoidal natural transformation it is clear from the diagram in
definition 3.27 that we only need to specify what it does for the morphism
u1 : F (1) → G(1). For example u2 = u1�′u1 by said definition. From the
definition of natural transformation to be fully satisfied, this u1 needs to
make the square in definition 3.26 commute for each morphism f : X → Y
in C. So this is of the shape f : 1n → 1m where possible n = m. But since
we a looking at a setting where we have a generating set of morphisms in C,
say, {f1 . . . fk}, then it suffices to require (or look at, depending on which of
Ψ and Φ we talk about) commutativity for each of these generators, since
commutativity of an arbitrary morphism will then be build up of commuting
squares of those that is induced by the generators.

We are now ready to add content.

Proof of main theorem: We want to show that Φ: 2dTQFTk → cFAk : Ψ
exhibit an equivalence of categories. We note that 2dTQFTk is a symmetric
monoidal functor category, so the setting from above holds. We want to
define what Φ and Ψ do on both objects and morphism, and start with
what it does on objects. An object in 2dTQFTk is a symmetric monoidal
functor, F , from 2Cob to Vectk. So to define such object, then according to
the discussion above, we have to consider a generating object in 2Cob. From
previous section we know, that 1 is that object. We let then F (1 := A be
a k-vector space, ie. an object in Vectk. And due to F being monoidal also
F (1n) := An. By functoriality of F we get that F () := idA. Since F is
symmetric monoidal it preserves the twist, by definition 3.25, so F () :=
σA : A2 → A2 where σ is the usual twist of factors on tensor product. This
already took care of defining F on some of the generators of the generating
set, that we have, from theorem 3.10. Here is how we defined on the rest.
F () := µA : A2 → A, F () := ηA : k → A, F () := δA : A → A2

and F () := εA : A→ k.
The next thing we observe is, that the relations of morphisms we have

in 2Cob translate into relations of morphisms in Vectk by the symmetric
monoidality of F . Hence the relations listed in lemma 3.14 to 3.19 that holds
in 2Cob will be send to corresponding relations in Vectk. Now from the
relation in lemma 3.15 we see that ηA is unit to multiplication µA, and εA is
co-unit to co-multiplication δA, and form lemma 3.18 the frobenius relations
are satisfied. Hence by theorem 2.24 it follows that (A,µA, ηA, δA, εA) is a
frobenius algebra. This is why we spend the time to show that final equiva-

Main theorem 30

lence of definitions of a frobenius algebras. By lemma 3.17 we see, it is also
commutative. Hence we define Φ on objects as: Φ(F) := (A,µA, ηA, δA, εA).

Ψ we define on object completely similar but in reverse. So we are to
send an object of cFAk to 2dTQFTk, meaning we have to construct a
symmetric monoidal functor 2Cob → Vectk from a given commutative
frobenius algebra. So let Ψ((A,µA, ηA, δA, εA)) := F . Clearly they satisfy
equivalence on object level; they are constructed to be inverse of each other.
We just have to check if F is well-defined, ie. that both sides of a relations in
2Cob is send by F to morphisms in Vectk that are equivalent. This follows
directly from our graphical representation of morphisms in cFAk and the
relations between them, that we have shown in the frobenius algebra section.

Now to the morphism level. So assume u is a monoidal natural transfor-
mation between symmetric monoidal functors F and G where F (1) = A and
G(1) = B. Then our list of generators of 2Cob from theorem 3.10 provide
us, due to naturality, with the following commutative diagrams, we exclude,
however, the diagram involving the identity morphism as it does not provide
any substantial information:

For f = :

A⊗A F (2) G(2) B ⊗B

A F (1) G(1) B

u2 = u1 ⊗ u1

u1

G(f)F (f) µBµA

For f = :

k F (0) G(0) k

A F (1) G(1) B

u0 = idk

u1

F (f) G(f)ηA ηB

For f = :

A F (1) G(1) B

A⊗A F (2) G(2) B ⊗B

u1

u1 ⊗ u1

G(f)F (f) δBδA

REFERENCES 31

For f = :

A F (1) G(1) B

k F (0) G(0) k

u1

idk

F (f) G(f)εA εB

For f = :

A⊗A F (2) G(2) B ⊗B

A⊗A F (2) G(2) B ⊗B

u1 ⊗ u1

u1 ⊗ u1

G(f)F (f) σBσA

We see, when we compare the first four diagrams above with those in defi-
nition 2.29, that they are exactly the same, meaning that u1 corresponds to
be a frobenius algebra homomorphism, and the last diagram involving the
twist ensure that the multiplication is commutative. We see this for example
when we fit the twist diagram into the multiplication diagram. Hence u1 is a
morphism in cFAk. And similar in reverse direction: Given a frobenius alge-
bra homomorphism (that preserves commutativity), then we get a monoidal
natural transformation back, since the natural transformation is determined
completely by this one morphism which in this case is a frobenius algebra
homomorphism. So in other words: We define Φ and Ψ on morphisms as
Φ(u) := u1 and Ψ(u1) := u. Clearly either way we compose, they are inverse
to each other.

References

[Kock] J. Kock: Frobenius algebras and 2D topological quantum field the-
ories, London Mathematical Society Student Texts (59), Cambridge
University Press (2004).

	Introduction
	Commutative frobenius algebra
	Graphical representation
	Commutativity
	Categorical perspective

	Two dimensional TQFT
	Two dimensional cobordisms
	Generators
	Relations

	Back to 2dTQFT's

	Main theorem

