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Foreword

The purpose of this project is to study prime knots. In chapter 1, we start out by a quick re-

view of the basic properties of knots, but as the main focus of the project lies on chapter 2, we will

not prove anything in chapter 1, as doing so would make the report exceed its required bounds.

In chapter 2, we show that for any given knot, it is possible to construct a compact, connected, and

orientable surface, whose boundary is that knot. We call such a surface a Seifert surface for the knot.

Seifert surfaces are important in that the minimal genus of a Seifert surface for a knot turns out to

be an invariant of that knot, and as such, we de�ne the genus of a knot to be this minimum. Using

knot genus, we prove that any knot can be factored as a sum of prime knots, which immediately

begs the question if this factorization is unique. The last part of the report consists mostly of a quite

long, but interesting proof, which answer this question in the a�rmative.

Forord

Formålet med dette projekt er at studere primknuder. I kapitel 1 starter vi med en hurtig gen-

nemgang af knuders elementære egenskaber, men da projektets fokus ligger i kapitel 2, vil vi ikke

føre beviser i kapitel 1, da dette ville sprænge rapportens påkrævede rammer.

I kapitel 2 viser vi, at det for enhver givet knude er muligt at konstruere en kompakt, sammenhæn-

gende og orienterbar �ade, hvis rand er den knude. Sådan en �ade kaldes en Seifert-�ade for knuden.

Seifert-�ader er vigtige i og med, at den mindste genus for en Seifert �ade for en knude viser sig at

være en invariant for knuden, og med grobund i dette de�nerer vi genus for en knude til at være

dette minimum. Ved brug af genus for knuder viser vi, at en knude kan faktoriseres som en sum

af primknuder, hvilket umiddelbart giver anledning til spørgsmålet, om denne faktorisering også er

entydig. Sidste del af rapporten består primært af et langt, men ganske interessant bevis, som giver

et bekræftende svar på dette spørgsmål.
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Chapter 1

The knot concept and equivalence of

knots

This chapter introduces the basic concepts of knot theory. As the main point of focus of this project

is factorization of knots into prime components (all of which will be de�ned later), the results of this

chapter are meant to be a survey of the results necessary for knot factorization, and as such, these

introductory results will be stated without proof. The interested reader may �nd missing proofs or

relevant references in [2, chapter 1] (unless otherwise mentioned).

1.1 The de�nition of knots

Informally, one can think of a knot as a piece of string that has been knotted somehow, and whose

ends have been welded together. As such, it seems natural to regard knots as simple closed curves in

the Euclidean space R3, but we choose instead to work with knots in the 3-sphere S3. The symmetry

of S3 gives us certain advantages, such as the Schön�ies theorems to be mentioned later, but as S3

is the one-point compacti�cation of R3, and as any knot in S3 misses at least one point of S3, most

facts about knots in S3 hold also in R3.

De�nition 1. A knot K in S3 is an embedding S1 → S3 of the 1-sphere into S3. More generally,

a link is an embedding of some �nite collection of disjoint 1-sphere into S3.

The class of knots is thus contained in the class of links. However, we will mostly occupy ourselves

with the notion of knots.

Certainly we need some notion of equivalence between knots, as to resemble our intuitive notion of

when one knot can be changed (without cutting it, or without the knot passing through itself) to

look like another. It turns out that we need something closely related to the following concept of

isotopy. Let I = [0, 1] denote the unit interval.
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1.1. THE DEFINITION OF KNOTS CHAPTER 1. KNOTS AND EQUIVALENCES

De�nition 2. Let X and Y be topological spaces. Two embeddings f0, f1 : X → Y are said to be

isotopic, if there exists an embedding

F : X × I → Y × I,

such that F (x, t) = (f(x, t), t) for some map f : X × I → Y with the property that f(x, 0) = f0(x)

and f(x, 1) = f1(x). The map F is called a (level-preserving) isotopy connecting f0 and f1.

Being isotopic is indeed an equivalence relation, as one may check in the usual way. We will also

use the simpler notation ft(x) = f(x, t), which, by a stroke of luck, is consistent with the boundary

conditions of the de�nition. This concept of isotopy is, however, not what we need to describe

equivalence of knots, as any part of the knot, where knotting takes place, may be shrunk continuously

to a point, thus removing whatever special trait the knot had, see �gure 1.1.

Figure 1.1: Any complications vanish at a point.

The failure of isotopies to serve as an appropriate notion of knot equivalence is of course due to the

importance of how the knots are embedded in the ambient space, in our case S3 . As such, we need

a notion of isotopy, which takes the ambient space into consideration. In particular, we adjust the

previous de�nition as follows.

De�nition 3. Let X and Y be topological spaces. Two embeddings f0, f1 : X → Y are said to be

ambient isotopic, if there is an isotopy (as in the previous de�nition)

H : Y × I → Y × I,

such that H(y, t) = (ht(y), t), with f1 = h1f0 and h0 = idY .

Notice that when the maps f0 and f1 are ambient isotopic, they are also isotopic via the isotopy

F (x, t) = (htf0(x), t). Notice also that while an isotopy is only required to move f0(X) to f1(X)

without regard for the ambient space, an ambient isotopy is required to move the surrounding space

along with f0(X).

De�nition 4. Two knots K1 and K2 are said to be equivalent, if they are ambient isotopic.

From now on, we are going to abuse terminology, so whenever we use the word �knot�, we refer either

to a single embedding of the 1-sphere into S3, to the equivalence class of a knot, to the image in S3
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1.1. THE DEFINITION OF KNOTS CHAPTER 1. KNOTS AND EQUIVALENCES

of a single embedding of the 1-sphere, or to an equivalence class of such images. Whichever one we

mean is either going to be clear from the context or irrelevant.

It is clear that if K1 and K2 are equivalent knots, say through an ambient isotopy H, then the

restriction h1 : Y \f0(X)→ Y \f1(X) of the homeomorphism h1 : Y → Y is itself a homeomorphism

(this is not the case for the more naive concept of isotopy). In other words, equivalent knots have

homeomorphic complements, whence we already have our �rst invariant of knots: Given two knots,

we can attempt to check if their complements are distinct, for example by using the fundamental

group, because if they are, the knots are also distinct. In fact, knot complements are an even better

invariant. As cited in [5, chapter 1], it is a result of Gordon and Luecke that if two knot complements

are homeomorphic, then the corresponding knots are equivalent.

De�nition 3 gives rise to unwanted pathology, at least when compared to the idea of a knot as a

knotted piece of string. The knot of �gure 1.2 is an example of this. It consists of an in�nite number

of similarly knotted sections that get smaller and smaller and ultimately converge to a point L. The

pathology of this is, the weird appearance aside, that any proper subarc of this knot, which contains

the limit point L, has a non-simply connected complement, in contrast to the intuitive idea of a knot.

Figure 1.2: A wild knot.

We wish to eliminate such pathology, and work only with knots that �t our intuitive understanding.

Regard S3 as the boundary of the standard 4-simplex, and give S3 the triangulation corresponding

to that of the boundary of this 4-simplex. This divides S3 into �ve 3-simplices, and in terms of

barycentric coordinates, this gives us a notion of piecewise linearity on S3, as we may use �ner

triangulations of S3 at will.1

De�nition 5. A tame knot is a knot that is equivalent to a simple closed polygon in S3. A knot,

which is not tame, is called wild.

Certainly any proper subarc of a tame knot has a simply-connected complement, as any such subarc

is a succession of straight line segments, so tame knots certainly do not give rise to pathology as

above. From now on, we work only with tame knots, and henceforth, whenever we use the word

`knot�, we automatically mean a tame knot. Also, as we work in the realm of the triangulated S3, we

may from now on assume that any submanifold of S3 is piecewise linear, i.e. that any submanifold is

a subsimplex of S3, see [4, chapter 1]. In the same spirit, we rede�ne our concept of knot equivalence,

and agree that two knots are equivalent, if the isotopy of de�nition 3 is piecewise linear � in fact,

1Alternatively, we may regard S3 as the one-point compacti�cation of R3, whence S3 inherits the a�ne structure

of R3, but our approach gives an immediate triangulation of S3, and opens the door to the world of piecewise linear

topology.
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from now on, any map is tacitly assumed to be piecewise linear. As this is important, we emphasize

it as a standing assumption.

Standing assumption. All submanifolds of S3 are assumed to be subsimplices of S3, and all maps

are assumed to be piecewise linear.

When we draw knots, we will for aesthetically reasons still draw them smoothly, and if anyone has

a problem with this, one can think of a knot as consisting of so many small line segments that it is

impossible to distinguish a drawing of the knot from a corresponding smooth drawing.

1.2 Other equivalences of knots

We have already de�ned two knots to be equivalent, if there is an ambient isotopy connecting them.

As it turns out, there are other useful equivalent notions of knot equivalence, among which we will

introduce two. One of the two requires the following preparatory de�nitions.

De�nition 6. Let K denote a knot, and let u be a straight line segment of K. Let ∆ denote a

triangle in S3 that has u as an edge, and let v and w denote the two other edges of ∆, so that

∂∆ = u∪ v ∪w. If ∆∩K = u, then the set de�ned by K ′ = (K \ u)∪ v ∪w is another knot, and we

say that K ′ is obtained from K by a ∆-move (which is to be read �a triangle move�), see �gure 1.3.

The reverse move is denoted by ∆−1.

Figure 1.3: Illustrating a triangle move (and its reverse).

De�nition 7. Two knots K and L are said to be combinatorially equivalent, if one can be obtained

from the other by a �nite sequence of ∆- and ∆−1-moves.

The main theorem of this section is the following.

Theorem 1. Let K and L be two knots in S3. Then the following are equivalent.

(1) There is an orientation-preserving homeomorphism f : S3 → S3, such that f(K) = L.

(2) K and L are equivalent (via an ambient isotopy).

(3) K and L are combinatorially equivalent.

We shall later make use of this theorem: In some cases the more down-to-earth notion of combinato-

rially equivalence of (3) is preferred over the more technical ambient isotopy, and in other cases, it is

convenient to use the homeomorphism of (1) because of its ability to preserve almost every interest-

ing property. In fact, the theorem holds also for links, which we will make use of when introducing

diagrams.
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1.3 Knot sum and prime knots

We de�ne now the most simple of all knots.

De�nition 8. The unknot is the knot that is the boundary of a disc in S3.

Two di�erent 2-simplices in S3 are ambient isotopic. Given a disc in S3, we may use triangle moves

along the boundary of the disc to collapse 2-simplices until only one is left. The boundary of this

2-simplex is thus equivalent to the boundary of the original disc. We see that the unknot is well-

de�ned.

We can now de�ne a binary sum operation on the set of knots, using the de�nition of [5]. We will

need the concept of a ball-arc pair, which is simply a 3-ball B containing an arc α that meets ∂B

only at its end-points. We say that the pair (B,α) is trivial, if it is pairwise homeomorphic to

(D × I, ? × I), where ? is a point in the interior of the disc D. Recall that the 3-sphere S3 can be

obtained by gluing together two 3-balls along their boundary spheres.

De�nition 9. Let K1 and K2 be two knots. We de�ne the knot K1 + K2 in the following fashion.

Consider K1 and K2 as being in two di�erent copies of S3. From each copy of S3, remove a 3-

ball B whose boundary intersects the knot transversely at two points, and such that the ball-arc pair

(B,B ∩ K) is trivial, and identify together the boundaries of the remaining balls such that their

intersections with the knots match up. See �gure 1.4.

Figure 1.4: The sum of two knots.

It is not hard to imagine that knot addition is well-de�ned, as we may shrink, for example, the second

knot, and drag this minuscule copy of the knot along the �rst knot until we �nd an appropriate place

to reenlarge it. A quite similar argument shows commutativity of the sum operation, and it is also

not hard to see that the operation is associative. To prove this rigorously, one would use the tools

of piecewise linear topology, but we will not do so here.

As a sort of reverse process to knot sum, we emphasize also how to check if a given knot is a sum

of two �lesser� knots, so let K be some knot. Suppose that Σ is some 2-sphere, which meets K

transversely at two points. Then (by the Schön�ies theorem, to appear in the very �rst part of

chapter 2) Σ separates S3 into two components B1 and B2, each of whose closure is a 3-ball. Each

of B1 and B2 contains part of the knot K, say the arcs α1 and α2 respectively. By removing the

pair (B2, α2) from S3, and by attaching a trivial ball-arc pair in its place, we complete the arc α1 to
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1.4. DIAGRAMS AND REIDEMEISTER CHAPTER 1. KNOTS AND EQUIVALENCES

obtain some knot K1, and by a similar process we complete α2 to obtain some knot K2. Now we have

that K1 and K2 live in two distinct copies of S3, and we have in fact that K = K1 +K2, as one can

easily see by applying de�nition 9: Remove from each of K1 and K2 the very same trivial ball-arc

pairs that we attached to α1 and α2 to obtain K1 and K2. We say that the sphere Σ separates K1

from K2.

Certainly the unknot is a neutral element with respect to knot addition. We de�ne prime knots in

the obvious way as follows.

De�nition 10. A prime knot is a knot that cannot be written as a sum of two non-trivial knots.

We will be a lot more concerned with prime knots in the next chapter.

1.4 Knot diagrams and Reidemeister moves

When drawing a picture of a knot, we will very often draw a picture of a so-called diagram for the

knot instead of drawing the knot itself. The knots of �gure 1.4 are examples of diagrams. Formally,

a diagram for a link L is a subset of S2 depicting the link in the following way. Let S2 be some

equatorial 2-sphere in S3, for example the one determined by the �rst three coordinates of R4 in

a standard embedding S3 → R4. Using ∆- and ∆−1-moves, we may change the link so that it is

in general position with respect to the standard projection p : S3 → S2, which means that each

line segment of L projects to a line segment of S2 (i.e. no line segment maps to a point), that the

projection of any two line segments of L have at most one point in common, which for disjoint line

segments of L is not an end point, and that any point of S2 belongs to at most two projected line

segments of L.

So far the image p(L) gives no information as to where the di�erent strands of the links are positioned

in space. De�ning a crossing point of p(L) to be a point, which is not an end-point, and which belongs

to two projected line segments, we assign a label to each crossing point P telling us, which of the

corresponding line segments of L is above the other. Letting L be the set of such labels, we call

(p(L),L) a diagram for the link. In a drawing, we illustrate at each crossing of p(L) which strand is

above the other, as in �gure 1.4.

Instead of trying to transform a knot into an equivalent knot using one of the three equivalent

methods of theorem 1, one can instead work with a diagram of a knot and try to transform this into

another equivalent diagram, for an appropriate notion of �equivalent�. Certainly one would like a

pair of knots to be equivalent, if and only if their corresponding diagrams are equivalent, but �rst of

all we de�ne equivalence of diagrams.

De�nition 11. Two link diagrams are said to be equivalent, if and only if they are related by a

�nite sequence of the following so-called Reidemeister moves or their reverses, and an orientation-

preserving homeomorphism of S2.
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1.5. LINKING NUMBERS CHAPTER 1. KNOTS AND EQUIVALENCES

Figure 1.5: The three types of Reidemeister moves.

Thus two diagrams, which are related by just one Reidemeister move, are the same except in the

one place where the change took place.

With this notion of equivalence of diagrams, we obtain our goal mentioned above, which for com-

pleteness is made explicit in the following proposition.

Theorem 2. Two links are equivalent, if and only if their diagrams are equivalent.

1.5 Linking numbers

As the �nal topic of this chapter, we introduce linking numbers, which will play a prominent role

in the upcoming main chapter. We follow [5, page 11]. The linking number is a measure of �how

linked� two components of a link are. In particular, suppose we are given a diagram D for a link L.

Give each component of the link some orientation. This induces an orientation on the diagram D.

We assign to each crossing of the diagram an integer in the set {+1,−1} as outlined in �gure 1.6. In

particular, if at a crossing, one strand passes above the other in the manner of a right-hand-screw, the

crossing attains the integer +1, and otherwise it attains the integer −1. Notice that when assigning

this integer, we use not only the orientation of the link, but also the orientation of S2.

Figure 1.6: Assigning either +1 or −1 to each crossing.

We de�ne the linking number as follows.

De�nition 12. Let L be an oriented link with a diagram D, and let L1 and L2 be two di�erent

component of L. Then the linking number lk(L1, L2) of L1 and L2 is half the sum of the integers

assigned to the crossings, for which one strand is from L1 and the other is from L2.
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1.5. LINKING NUMBERS CHAPTER 1. KNOTS AND EQUIVALENCES

It is not hard to see that this de�nition is independent of the diagram D. In particular, as equivalent

diagrams are related by a sequence of Reidemeister moves (and an orientation-preserving homeomor-

phism of S2), it su�ces to check that each Reidemeister move does not change the linking number,

which is immediate by inspection (we need not worry about moves of type 1, as such moves a�ect

only one component of L). Also, an orientation-preserving homeomorphism of S2 certainly preserves

all crossings of D. Notice that if we change the orientation of only one of the two component L1 or

L2, then the linking number changes sign. Hence the linking number remains the same, if we change

the orientation of both L1 and L2.
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Chapter 2

Factorizations of knots

Unless otherwise mentioned, this chapter follows the work [5, chapter 2], but compared to this

work, lots of details have been supplied. At some points in this chapter, we use the two-dimensional

Schön�ies theorem, which states that any embedding of S1 into S2 separates S2 into two components,

each of which has a disc D2 as its closure. Later on, we use the three-dimensional analogue of this

result, which we state here as a theorem.

Theorem 3 (Three-dimensional Schön�ies). Let ϕ : S2 → S3 be a piecewise linear embedding. Then

S3 \ ϕ(S2) has two components, each of whose closure is a piecewise linear ball B3.

The piecewise linear condition cannot be neglected. The infamous Alexander's horned sphere is an

example of an embedding of S2 into S3 with the property that the exterior of the sphere is not even

simply-connected, see e.g. [3, section 2.B].

2.1 Seifert's algorithm

As for the integers with the usual product, any knot can be written uniquely as a sum of prime knots,

ignoring, of course, the order of the summands. In the course of proving this, we shall move up in

dimension, and instead of studying knots themselves, we shall study surfaces that are intimately

connected to the knots. Essentially we are only going to use the following de�nition in the case of

knots, but as talking about the broader class of links only gives rise to a very minor change in the

proof of theorem 4, we are going to do so.

De�nition 13. A Seifert surface for a given link L is a connected, compact, and orientable surface,

whose boundary is the link L.

Certainly the unknot has a Seifert surface, namely a disc. It may be unclear what other links have

a Seifert surface, but we have in fact the following surprising theorem.
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2.1. SEIFERT'S ALGORITHM CHAPTER 2. FACTORIZATIONS OF KNOTS

Theorem 4. Any link L has a Seifert surface.

Proof. Let D be a diagram for the link L. Give each component of L an orientation, and let the

diagram D inherit these orientations. We consider each crossing of D, and change the diagram as

shown in �gure 2.1.

Figure 2.1: Eliminating all crossings of D.

Speci�cally, we eliminate each crossing of the diagram D in the only manner possible such that the

orientations remain consistent. The resulting diagram D̂ is then a disjoint union of oriented simple

closed curves, as illustrated in �gure 2.2, which shows the method applied to the so-called �gure-eight

knot.

Figure 2.2: A diagram D for the �gure-eight knot and the corresponding diagram D̂.

The disjoint circles of D̂ are called Seifert circles for the diagram D. Note that D̂ locally looks the

same as the diagram D, except at the �nite number of crossings of D.

Each Seifert circle bounds a disc. Should two or more circles happen to be nested, we consider the

corresponding discs to be at di�erent heights in S3, in order to maintain disjointness. The union

of these discs constitute a (most likely disconnected) surface Ŝ in S3, and we wish to alter this

surface to obtain another surface S, whose boundary is the link L. A crossing of the diagram D

corresponds to two discs in Ŝ, namely the pair of discs that arose from removing that particular

crossing (conversely, a pair of discs may correspond to more than one crossing). For such a pair of
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2.1. SEIFERT'S ALGORITHM CHAPTER 2. FACTORIZATIONS OF KNOTS

discs, join them together at their boundaries by a small strip with a half-twist, taking care of twisting

the strip such that the twist correctly mimics the corresponding crossing of the link, see �gure 2.3.

As shown in that �gure, we position the twisted strip at the position of the corresponding crossing.

Doing this for each crossing of D, we obtain a surface S, whose boundary is the link L, as illustrated

in �gure 2.4. By construction, the surface S is compact, and we argue now that it is also orientable.

Figure 2.3: Connecting discs in Ŝ by half-twisted strips.

Figure 2.4: Seifert surface for the �gure-eight knot. The nested discs are at di�erent heights.

We start out by giving each disc of the surface Ŝ an orientation, and then we argue that we can attach

the half-twisted strips in a consistent manner (orientation-wise), and hence obtain an orientation of

the entire surface S.
The surface Ŝ can be oriented in 2n di�erent ways, as we for each of the n disjoint discs can choose

among two di�erent orientations. Among these 2n orientations of Ŝ, we choose one orientation,

which will be seen to induce an orientation on S. Denote the two possible orientations for each disc

of Ŝ by a and b. Recall that each disc has a Seifert circle as its boundary, and that each Seifert

circle inherited an orientation from the diagram D. If the boundary of a disc has a counter-clockwise

orientation, then give this disc orientation a, and if the boundary has a clockwise orientation, give

this disc orientation b. We say that a pair of discs in Ŝ are neighboring discs, if in the surface S,
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2.1. SEIFERT'S ALGORITHM CHAPTER 2. FACTORIZATIONS OF KNOTS

there is a twisted band connecting the two discs. We shall argue that nested neighboring discs have

been given the same orientation, and that non-nested neighboring discs have been given di�erent

orientations. This is actually easy to see, because if we have a pair of nested discs as in �gure

2.5 (there may be more twisted bands between them, but this is unimportant here), and if, say, the

innermost disc has some orientation, say a, then as the twisted bands faithfully relays the orientation

on the boundary, the boundary circle of the outer disc will also have a counter-clockwise orientation,

whence the outer disc also has orientation a.

Figure 2.5: Nested neighboring discs are given the same orientation.

Notice that it does not matter which way the twisted band twists, and notice also that we could have

drawn the same conclusion, if we had known the orientation of the outer disc. In the exact same

manner, we can argue that non-nested neighboring discs have been given opposite orientations, but

we leave the argument, and let �gure 2.6 speak for itself.

Figure 2.6: Non-nested neighboring discs have been given opposite orientations.

It is now a simple matter to check that neighboring discs have, in this way, been given consistent

orientations. We argue pictorially as in �gure 2.7, where we slide the letter �S� from one disc, along

the twisted band, to a neighboring disc, and we see that giving nested discs the same orientation

is consistent, and that giving non-nested discs opposite orientations is also consistent, see �gure

2.7. As neighboring discs have been oriented consistently, we have exhibited an orientation of S,
so S is orientable. As we are working with links, the surface S may be disconnected. It this is so,

let c1, . . . , ck denote the k components of S. Connect component c1 to c2 by a long thin tube. If

the orientation of S remains consistent along this tube, we do nothing. Otherwise, we switch the

orientation of c2. Continue inductively by connecting ci to ci+1 by a long thin tube, switching the

orientation of ci+1 if necessary. Now the resulting surface is not only compact and orientable, but

also connected.

14



2.1. SEIFERT'S ALGORITHM CHAPTER 2. FACTORIZATIONS OF KNOTS

Figure 2.7: Neighboring discs have been given consistent orientations.

The process of constructing the surface S as described in this proof is known as Seifert's algorithm.

Notice that if we apply the algorithm to a diagram D for a knot K, then regardless of the chosen

orientation of D, the algorithm returns the same underlying surface S (i.e. neglecting the orientation

of S). This is because both strands of the crossings in �gure 2.1 will change directions, as we change

the orientation of the diagram D, and hence the way we alter the diagram to obtain D̂ is unchanged,

and we ultimately end up with the same underlying surface as for original orientation of the diagram.

For a link with at least two components, the resulting underlying surface is, however, dependent on

how we choose an orientation for the diagram. For example we have in �gure 2.8 chosen two di�erent

orientations for a given diagram of the so-called unlink, and we see that they give rise to di�erent

sets of Seifert circles.

Figure 2.8: Similar diagrams for the unlink gives rise to di�erent sets of Seifert circles.

From now on we concentrate mostly on knots. It will turn out to be pro�table to consider the possible

genera of Seifert surfaces for a given knot. Speci�cally we de�ne the genus of a knot in terms of the

possible genera of the corresponding Seifert surfaces as follows.
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De�nition 14. The genus g(K) of a knot K is de�ned by

g(K) = min{g(S)|S is a Seifert surface for K},

where g(S) is the genus of the surface S.

For example the unknot has genus 0. The genus is an invariant of knots, as we may see as follows. Let

K1 and K2 be equivalent knots, and let F1 be a minimal genus Seifert surface for K1. By theorem 1,

there is an orientation-preserving homeomorphism f : S3 → S3, such that f(K1) = K2. But f(F1)

is then a Seifert surface for K2 of the same genus as K1, which proves g(K2) ≤ g(K1). The other

inequality follows similarly.

The outcome of Seifert's algorithm applied to a knot depends, of course, very much on which diagram

we choose to represent the knot. The least we can hope for is thus that there exists some diagram for

the knot, such that Seifert's algorithm applied to this diagram gives a minimal genus Seifert surface.

As cited in [1, pp. 105�106], this turns out to be too much to hope for. In fact, letting gc(K)

denote the minimal genus of a Seifert surface of a knot K obtainable from Seifert's algorithm, an

Israeli mathematician named Yoav Moriah constructed in 1987 an in�nite family of knots {Ki}i∈N, for

which the di�erence gc(Ki)−g(Ki). We call gc(K) the canonical genus of the knot K. An even more

concrete result was obtained nine years later by M. Kobayashi and T. Kobayashi, who constructed

an in�nite family of knots with arbitrarily high genus, and with the property that gc(K) = 2g(K)

for every K in the family.

We �nish o� this section with a small remark, which is important enough to state as a proposition.

Proposition 1. If K is a knot with genus g(K) = 0, then K is the unknot.

Proof. Let S be a Seifert surface for K. As S is a compact, connected, and orientable surface with

one boundary circle, the classi�cation of surfaces dictates that S is a disc, see e.g. [6, chapter 11].

By de�nition 8, K is then the unknot.

2.2 Existence of knot factorizations

Using the concept of genus of a knot, we prove in this section that any knot can be written as a sum

of prime knots. This result will follow easily from the following all-important theorem.

Theorem 5. The genus of a knot is additive, so for any two knots K1 and K2, we have

g(K2 +K2) = g(K1) + g(K2).

Proof. We prove �rst that g(K1 +K2) ≤ g(K1)+g(K2). Let K1 and K2 be situated in the same copy

of S3, and let F1 and F2 be Seifert surfaces for K1 and K2, respectively. We may assume F1 and F2

to be disjoint (as we may assume that the knots K1 and K2 are so far apart in S3 to allow room for

disjoint Seifert surfaces). Assume also that the there is some 2-sphere Σ in S3, which separates K1
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from K2.

We argue �rst that each of the surfaces F1 and F2 does not separate S3, so let F ∈ {F1, F2}. As

F is connected, compact, and orientable with one boundary component, F is homeomorphic to a

standard surface F̃ of some genus g with a small open disc removed, see [6, theorem 11.1]. Giving

F̃ its standard CW-structure, it is well-known that F̃ is homotopy equivalent to its 1-skeleton, that

is, F̃ is homotopy equivalent to some graph G (for example, the torus minus a small open disc

is homotopy equivalent to its 1-skeleton, a wedge of two circles). Let H̃ denote reduced singular

(co)homology. Applying Alexander duality ([3, theorem 3.44]), we thus obtain

H̃0(S3 \ F ) ' H̃2(F ) ' H̃2(F̃ ) ' H̃2(G) = H2(G) = 0,

where the last equality H2(G) = 0 for instance follows from the fact that since G is a CW-complex

of dimension 1, then H2(G) = 0, and since �rst homology groups of graphs are always free groups

(being the abelianization of the fundamental group, which is a free product of k copies of Z, where k
is the number of edges of G not contained in a maximal tree in G), then H2(G) = Hom(H2(G),Z) =

Hom(0,Z) = 0. The relevant references for this last argument are [3, prop 1A.2, lemma 2.34, thm.

2A.1, thm. 3.2]. As H̃0(S3 \ F ) = 0, the set S3 \ F is path-connected.

We can then via the Mayer-Vietoris sequence applied to the pair (S3 \ F1, S
3 \ F2) argue that the

complement S3 \ (F1 ∪ F2) = (S3 \ F1) ∩ (S3 \ F2) is also path-connected. Indeed, we have the

following portion of the sequence:

· · · → H1(S3)→ H0

(
S3 \ (F1 ∪ F2)

)
→ H0(S3 \ F1)⊕H0(S3 \ F2)→ H0(S3)→ 0.

Certainly H1(S3) = 0, and H0(S3) ' Z, and we just argued that H0(S3 \F1)⊕H0(S3 \F2) ' Z⊕Z,
whence the above portion of the sequence reduces to

0→ H0

(
S3 \ (F1 ∪ F2)

)
→ Z⊕ Z→ Z→ 0.

This sequence is split, and so the complement S3 \ (F1 ∪ F1) is path-connected, as claimed.

We may thus �nd a path α from some boundary point P ∈ K1 = ∂F1 to some boundary point

Q ∈ K2 = ∂F2, such that except for its end-points, all of α is contained in S3 \ (F1 ∪ F2). The

setup is shown in �gure 2.9, where on the left-hand side, we see a Seifert surface for the so-called

trefoil knot, and on the right-hand side, we see a Seifert surface for the knot, which in the traditional

ordering of prime knots has come to be known as 52, see e.g. [5, table 1.1].
1

1Here the number �5� refers to the fact that the least number of crossings of a diagram for the knot is �ve, and we

say that the knot has crossing number 5. The subscripted number �2� refers to the knot being the second knot in the

traditional ordering with crossing number 5, where being second is an arbitrary choice. Apparently not widely spread

yet, the knot 52 is also sometimes referred to as the 3-twist knot.
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Figure 2.9: Connecting the boundaries of F1 and F2 by a path α.

We may also assume that the path α intersects once the 2-sphere Σ separating K1 from K2, because

if α intersects Σ more than once, as in the �rst picture of �gure 2.10, then we �rst replace the

unwanted part (the dotted line in the second picture) of α inside of Σ by an arc on Σ (for example

the shortest geodesic arc between the two intersection points, as shown by a thick curve in the second

picture), and then we shrink Σ slightly to obtain only one point of intersection between α and Σ, as

shown in the third picture of �gure 2.10.

Figure 2.10: The path α intersects once a 2-sphere Σ separating K1 from K2

Make a thin strip around α, thin enough to intersect Σ only where α intersects Σ, and if necessary,

give the strip a half-twist to match orientations of the two Seifert surfaces F1 and F2. The boundary

of F1∪F2 connected by this thin strip is now the knot K1 +K2, as Σ intersects the knot transversely

at two points, and as Σ is a 2-sphere separating K1 from K2. The surface F1 ∪ F2 connected by

the thin strip is then a Seifert surface for the sum K1 +K2, and its genus is clearly the sum of the

genera of F1 and F2. As F1 and F2 were chosen to be minimal genus Seifert surfaces, we have thus

g(K1 +K2) ≤ g(K1) + g(K2).

For the other inequality , suppose that F is a minimal genus Seifert surface for K1 +K2, and let Σ be

a 2-sphere exhibiting the knot K1 +K2 as the sum of K1 and K2, i.e. Σ meets the knot transversely
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at two points, and it separates K1 from K2. The 2-sphere Σ separates K1 +K2 into two arcs α1 and

α2, and for whichever arc β in Σ connecting the two points of intersection in Σ ∩ (K1 + K2), then

α1 ∪ β and α2 ∪ β are the knots K1 and K2, respectively, as illustrated in �gure 2.11.

Figure 2.11: The 2-sphere Σ separates K1 from K2.

As described in chapter 1, we may assume that the inclusion of the two surfaces Σ and F in S3 is

piecewise linear, for example by choosing a very �ne triangulation of S3 and by perturbing Σ and F

slightly, such that we may regard both as sub-complexes of S3. As such, we may assume that Σ is in

general position with respect to F , so that the intersection F ∩Σ is a 1-dimensional manifold, see [4,

chapter 1]. In fact, since F has the knot K1 +K2 as boundary, the sphere Σ intersects the boundary

of F only at the two places, where the knot leaves Σ, and by general position, the intersection F ∩Σ

thus consists of some �nite collection of simple closed curves together with one arc β joining the

two points, where the knot K1 +K2 punctures Σ. The immediate plan is to eliminate each of these

simple closed curves of intersection, and we do this by changing F .

Figure 2.12: The curves of intersection between the surfaces F and Σ shown on Σ.
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By the 2-dimensional Schön�ies theorem, each simple closed curve of F ∩ Σ separates Σ into two

disc components, only one of which contains the arc β, see �gure 2.12. We agree that the inside of a

simple closed curve C in F ∩ Σ is the component of the complement Σ \ C, which does not contain

the arc β.

Choose such a simple closed curve C, which is innermost on Σ, meaning that its inside contains

none of the other simple closed curve of F ∩ Σ. We may do this, as there are only �nitely many

curves in F ∩ Σ. We perform an elementary 1-surgery on the 2-manifold F by removing from F

a small annular neighborhood of the curve C, and by replacing it by two discs. I.e. we replace a

small cylinder S1 ×D1 around C by two discs D2 × S0 (see e.g. [5, chapter 12] for the basic rules

of surgery). We name the resulting surface F̂ , see �gure 2.13. Notice that by doing this �rst for an

Figure 2.13: Replacing a small cylinder on F around the curve C by two discs.

innermost circle on Σ, the surgery on F will not a�ect the other circles in F ∩ Σ: If necessary, we

choose the cylinder S1 ×D1 around C so small that it does not intersect the other curves of F ∩Σ,

whence its removal will not a�ect the other circles of F ∩ Σ. This is not necessarily possible, if we

had chosen some arbitrary circle to begin with.

The surface F̂ is disconnected, because otherwise the surgery would have had the e�ect of removing

a hollow handle, and thus reducing the genus of F . But F̂ also has the knot K1 +K2 as boundary,
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and as F̂ then also would have been connected, compact and orientable, it would have been a Seifert

surface for K1 + K2 of lower genus than F , contradicting the choice of F . So F̂ is disconnected,

and we throw away the part of F̂ that does not contain the knot K1 +K2, and we repeat the above

process of eliminating circles in F ∩ Σ, but this time with F̂ in place of F , and so on.

Ultimately we end up with a Seifert surface F ′ for K1 + K2 of the same genus as F , and with the

property that the intersection F ′ ∩ Σ consists only of the arc β. As α1 ∪ β ' K1 and α2 ∪ β ' K2,

this means that Σ separates F ′ into two pieces F ′1 and F ′2, which are Seifert surfaces for K1 and K2

respectively. As the sum of the genera of F ′1 and F ′2 equals the genus of F ′, and as F ′1 and F ′2 are

not necessarily minimal genus Seifert surfaces for K1 and K2, we obtain thus

g(K1) + g(K2) ≤ g(F ′1) + g(F ′2) = g(F ′) = g(K1 +K2),

as we set out to prove.

This theorem immediately yields a lot of interesting corollaries.

Corollary 1. The unknot is the only knot that has an additive inverse.

Proof. If U denotes the unknot, and U = K1 + K2 for some knots K1 and K2, then 0 = g(U) =

g(K1) + g(K2), whence g(K1) = g(K2) = 0. By proposition 1, this implies K1 = K2 = U .

The following two corollaries are clear.

Corollary 2. Let K be a non-trivial knot. Then whenever m 6= n are distinct integers, we have

m∑
j=1

K 6=
n∑

j=1

K.

In particular summing a non-trivial knot with itself gives rise to in�nitely many di�erent knots.

Corollary 3. Knots of genus 1 are prime.

As a �nally consequence, we prove that knots can indeed be factored into prime knots.

Theorem 6. Any knot can be expressed as a sum of prime knots.

Proof. We use strong induction on the genus. The unknot is the empty sum, by convention, and

knots of genus 1 are prime, so let K be a knot with g(K) > 1, and suppose that the theorem holds

true for knots of lesser genus. If K is prime, we are done. If not, factor K into a sum of two non-

trivial knots, which by additivity of genus have strictly smaller genera than that of K. By induction,

we can factor the two summands into prime knots, whence the theorem follows.
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2.3 Uniqueness of knot factorizations

We are now get ready to prove the key theorem of uniqueness, a theorem whose proof is rather long,

but one which will almost immediately yield uniqueness of prime factorizations of knots.

Theorem 7. Let K be a knot, and suppose that K can be expressed as the two di�erent knot sums

K = P + Q and K = K1 + K2, where P is a prime knot, and Q, K1, and K2 are some other (not

necessarily prime) knots. Then either

(i) K1 = P +K ′1 for some knot K ′1, and Q = K ′1 +K2, or

(ii) K2 = P +K ′2 for some knot K ′2, and Q = K1 +K ′2.

Proof. Let Σ be a 2-sphere meeting the knot K = K1 +K2 transversely at two points, and such that

the 2-sphere separates K1 from K2, as in the de�nition of knot sum. Furthermore, let B be a 3-ball,

whose boundary ∂B demonstrates K as the sum K = P +Q. Then B intersects K in an arc α, and

by replacing the complement of the pair (B,α) by a trivial ball-arc pair, the pair becomes (S3, P ).

We will furthermore assume that Σ and B are in general position with respect to each other, so that

the intersection Σ∩ ∂B consists of a �nite collection of disjoint simple closed curves, see �gure 2.14.

Figure 2.14: An example of how B and Σ can intersect.

Similar to what happened in the proof that genus is additive, theorem 5, the aim is to simplify the

intersection Σ ∩B, and in a moment, we start out by considering the curves in Σ ∩ ∂B.
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If the intersection Σ ∩ B is empty, then the theorem holds true, since we would then have that the

ball B is completely contained in one of the two components of the complement S3 \ Σ, say the

component containing K1. Replace the component of S3 \ Σ that does not contain K1 by a trivial

ball-arc pair. Then the knot has become K1, and ∂B partitions K1 as K1 = P +K ′1 for some knot

K ′1. Similarly, we may have replaced (B,α) by a trivial ball-arc pair to change the knot into Q, and

then Σ exhibits Q as the sum Q = K ′1 +K2, see �gure 2.15.

Figure 2.15: The case where B and Σ does not intersect.

From now on, we strive to simplify B ∩ Σ, and if at some point this intersection is empty, we are

done by the above argument.

Assume that Σ∩∂B is non-empty. Each simple closed curve on Σ is a copy of S1, and hence as Σ∩K
is just two points, each oriented simple closed curve in Σ \K has linking number 0, +1 or −1 with

K, see �gure 2.16. Consider �rst the components of Σ ∩ ∂B, whose linking number with K is zero.

As illustrated, each such simple closed curve C has both points of Σ ∩K on one side of it in Σ, and

we shall consider this side of C in Σ as being the outside. Choose among all simple closed curves of

linking number zero in Σ ∩ ∂B a curve C, which is innermost on Σ in the sense that in contains no

other such curves on its inside. The curve C thus bounds a disc D on Σ with D ∩ ∂B = ∂D, by the

choice of C. The curve C = ∂D also bounds a disc D′ on ∂B with the property that D′ ∩K = ∅,
because otherwise the two sides of C in ∂B would contain a point each of ∂B∩K, and then the knot

would not have linking number 0 with the curve C, see �gure 2.17 for an illustration.
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Figure 2.16: The possible cases showing how a simple closed curve on Σ can link with the knot K.

Figure 2.17: The disc D in Σ ∩ ∂B has linking number 0 with K, and thus so has D′.

The union of the two discs D ∪D′ bounds a ball in B by the three-dimensional Schön�ies theorem.

We wish to alter B by removing this ball, but without changing anything essential. Formally, we

remove a small regular neighborhood in B of the ball bounded by D ∪ D′, small enough not to

intersect the knot K (which we may do, as the knot does not intersect D or D′). The result is shown

in �gure 2.18, compare with 2.17. We have thus changed our setup in such a way that the intersection

Σ∩∂B now has one less component than before. Denoting the removed regular neighborhood around

the ball by V , we have a homeomorphism of pairs (B \ V, α) ' (B,α), and thus we could as well

have taken this new 3-ball B \ V as B to begin with. Continuing like this, we may assume that we

remove all the simple closed curves of Σ ∩ ∂B that have linking number zero with the knot K, and

thus only the simple closed curves of linking number +1 or −1 remain.

We leave now the intersection Σ∩∂B, and consider instead Σ∩B. If Σ∩B has a component, which

is a disc, then we choose such a disc D. As D is a component of Σ∩B, then the intersection D ∩K
consists of just one point. Otherwise the boundary ∂D of the disc would have been a simple closed

curve of Σ∩ ∂B with both points of Σ∩ ∂B on one side of it in Σ, contrary to the fact that we have
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Figure 2.18: The ball B has been isotoped to miss the disc D.

eliminated any such curve. As P is a prime knot, one of the two sides of D in B is a trivial ball-arc

pair, see �gure 2.19. Indeed, remove the complement of B in S3, and replace it by a trivial ball-arc

pair. The knot has thus become P , by de�nition of B. Then as both sides of D in B are ball-arc

pairs, one of those pairs must be trivial, as we would otherwise have a non-trivial decomposition of

P . Remove from B a small regular neighborhood of the ball-part of this trivial ball-arc pair, small

Figure 2.19: A disc D in Σ ∩B whose boundary circle is of non-zero linking number.

enough not to change the knotted part of the arc α. Then B with this neighborhood removed is

another 3-ball containing α, for which the homeomorphic type of (B,α) is unchanged, so we may

as well assume that we had chosen such a ball B to begin with. Note that by eliminating D from
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Σ ∩ B, we may have been lucky to remove more from Σ ∩ B than just D. In particular, we have

removed everything of Σ ∩ B on the trivial side of D. By repeated application of this process, we

may now assume that Σ ∩B has no disc components.

Now Σ∩B has been reduced to some �nite collection of disjoint annuli, because �rstly, we have just

removed any disc components of this intersection, and secondly, if there was a component of Σ ∩B
with strictly more than two boundary circles, then as the knot K intersects ∂B exactly twice, all

but two of these boundary circles would have linking number zero with K, contrary to the fact that

we have already removed such boundary circles from Σ ∩ ∂B.
Let A be an annulus component of Σ ∩ B. As we have removed all simple closed curves in Σ ∩ ∂B
of linking number 0 with the knot, K exits B at the ends of the annulus. Declaring the part of

B \ A containing the knot K to be the inside in B of the annulus, we may choose A to be an

outermost annulus on B. Then ∂A bounds an annulus A′ in ∂B, and by the choice of A, we have

that A′ ∩ Σ = ∂A′, see �gure 2.20. As the reader will see shortly, this annulus may also have a

di�erent appearance than that of �gure 2.20.

Figure 2.20: An example of how the two annuli A and A′ may look like.

The two annuli A and A′ have a common boundary, whereas the union A ∪ A′ is a torus in B. Let

M denote the part of B bounded by this torus, i.e. the component of the complement B \ (A ∪A′)
not containing the knot K. We will see in a little while what M may look like. Let ∆ denote the

closure of one of the two components of ∂B \A′, see �gure 2.21.
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Figure 2.21: The disc ∆ and its regular neighborhood N(∆).

Then ∆ is a disc, and as the knot exits ∂B through each end of the annulus A, and as ∆ and A

have the same boundary, the knot will intersect the disc ∆ exactly once. We thicken ∆ slightly into

the complement B \M , or in technical lingo, we choose some small regular neighborhood N(∆) of

∆ in the closure of B \M . We choose the neighborhood so small that it intersects the knot in an

unknotted arc, i.e. such that (N(∆), N(∆) ∩ α) is a trivial ball-arc pair, see again �gure 2.21. The

3-manifold M ∪N(∆) is a ball, since its boundary is a 2-sphere. We see in �gure 2.22 two cases, the

�rst in which the ball-arc pair (M ∪ N(∆), N(∆) ∩ α) is trivial, as we may push one end of N(∆)

through the cavity of M ∪N(∆) without knotting the small trivial arc N(∆)∩α, and the second in

which the pair is a copy of the pair (B,α), since in this case, we may also push N(∆) through the

cavity, but this time the small arc N(∆) ∩ α will be knotted like α on the way.

Figure 2.22: Two cases for how the annulus A may look like.
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In fact, as P is prime, these two cases for the ball-arc pair (M∪N(∆), N(∆)∩α) are the only possible

cases, for if the annulus A instead had the appearance as that of �gure 2.23 (in which case the torus

∂M is known as a swallow follow torus, because it starts out by swallowing the knot, and ends up

following it), then we could push N(∆) through the following part of the torus, but stop immediately

before the swallowing part. Produce P in the usual way by replacing the complement of B by a

trivial ball-arc pair. Then M , together with this new elongated neighborhood N(∆), comprise a

non-trivial ball-arc pair with the followed part of α. The complement of M ∪N(∆) clearly also gives

rise to a non-trivial ball-arc pair, contradicting the primeness of P .

Figure 2.23: The impossible case of Σ swallowing half the arc α.

In the �rst case, where the pair (M ∪N(∆), N(∆)∩α) is trivial, the set M is a solid torus, and as in

the previous cases, we may remove a small regular neighborhood of M to obtain another ball B that

exhibits the knot K as the sum P +Q in the same way as before, and such that the homeomorphic

type of (B,α) is unchanged.

As for the second case, if we isotope B to lie inside of the annulus A as to miss this part of Σ, we

change the homeomorphic type of the pair (B,α), thus changing with the initial setup, where B

separates P from Q. This case is thus very di�erent from all the other cases of removing discs and

annuli, and we need to think of something else.

The 2-sphere Σ separates K1 from K2, and the complement of Σ in S3 has two components. Suppose

without loss of generality that the component of S3 \ Σ which contains M also contains the arc of

K corresponding to K1. Reproduce K1 by removing the other side of Σ (the side containing the arc

α, possibly among other things), and by gluing on a trivial ball-arc pair in its place. As the part of

Σ that followed the arc α was trivial to begin with, the knot K1 will contain the arc α. The set B is

still a ball, and the pair (B,α) is unchanged, so we have now that ∂B separates P from some knot

K ′1 in K1, i.e. that K1 = P +K ′1.

To show that Q then consists of the part of K that is not P , i.e. that Q = K ′1 +K2, we go back to

the situation where K is the knot that Σ and ∂B separates, as in the second picture of �gure 2.22.

In this case, recall that the boundary of the set M is a torus, whence we may remove the interior of

M , and replace it by a solid torus S1 ×D2. We glue the boundary of this solid torus to ∂M in such
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a way that the boundary of each meridional disc of S1×D2 is glued onto a closed curve of ∂M that

intersects ∂∆ exactly once, i.e. a curve that travels through the knotted hole along its boundary,

and which at each end of the hole is connected by an arc following the boundary of B. This setup

is not likely to be embeddable in R3, and we will not attempt a drawing.

Now (S1 × D2) ∪ N(∆) is a ball: Since each S1 × S1 of S1 × D2 meets ∆, by construction, and

as N(∆) is a small regular neighborhood of ∆ in the complement of S1 × D2, the boundary of

(S1×D2)∪N(∆) is a sphere. Replacing M by S1×D2 like this thus changes B to another ball B′,

but contrary to before, (B′, α) is now a trivial ball-arc pair, as α is now a trivial arc going through

the hole of S1×D2. Changing B to B′, changes the complement of this ball from S3 \B to S3 \B′,
but the closure of the latter set is still a ball, so changing B to B′ changes S3 to a new copy of S3.

In conclusion, we may reproduce the knot Q by removing the side of ∂B′ not containing Q, and by

replacing it with a trivial ball-arc pair, but (B′, α) is already such a trivial ball-arc pair, and so the

knot has already become Q. Similarly, we may produce K1 by replacing the ball component of S3 \Σ

that contains the arc corresponding to K2 by a trivial ball-arc pair. As before, ∂B′ partitions K1

into a sum, but now one side of ∂B′ is already a trivial ball-arc pair, so K1 has been reduced to K ′1.

Thinking of Σ as decomposing the knot Q, the side of Σ that used to contain the arc corresponding

to K2 still corresponds to this arc, because as well as now as before, the part of Σ inside of B follows

the arc α: Indeed, note that Σ may pass through B′ more than one time, but as we have made sure

that the outermost annulus A of Σ ∩B is one which follows the knot, any other � `passing through�

annulus of Σ∩B must also follow the knot, so that all passing through annuli bound a trivial ball-arc

pair inside of B, whence these parts of Σ in B′ contribute nothing to K2. It may also happen that Σ

enters B′, starts following the arc α, but regrets it half-way and loops back on itself, exiting B′ the

same way it came in, but this is easily seen to contribute to K2 only trivially. We already argued

that the other side of Σ corresponds to K ′1, so in conclusion Q = K ′1 +K2, which we set out to prove.

The other option of the theorem occurs of course, if we exchange the roles of K1 and K2.

We use the theorem to prove the following cancelation property.

Corollary 4. Let P be a prime knot, and say P + Q = K1 + K2 for some knots Q, K1, and K2.

Assume that P = K1. Then also Q = K2.

Proof. Applying theorem 7, we know that one of two things can happen. The �rst is thatK1 = P+K ′1
for some knot K ′1, and that Q = K ′1 +K2. By assumption P = K1, whence K1 = K1 +K ′1, so that

the genus of K ′1 is zero, implying that K ′1 is the unknot. The result follows. The second possibility

is that K2 = P + K ′2 for some knot K ′2, and Q = K1 + K ′2. Using again P = K1, we obtain

Q = K1 +K ′2 = P +K ′2 = K2, as claimed.

Finally, we prove what we had really been aiming at all along.

Theorem 8. Any knot K can be factored uniquely as a sum of prime knots (up to a ordering of the

factors).
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2.3. UNIQUENESS CHAPTER 2. FACTORIZATIONS OF KNOTS

Proof. We have already proved existence, so suppose that we can write K as

K = P1 + · · ·+ Pm = Q1 + · · ·+Qn,

where all Pi and Qj are prime. We prove the result by induction on m. If m = 0, then as no

non-trivial knot has an additive inverse, we have also n = 0, so assume that m ≥ 1. By repeated

application of theorem 7, the knot P1 is a summand of either Q1, Q2, . . . , Qn−1 or Qn, say Qj . Then

certainly P1 = Qj , as Qj is prime. By corollary 4, P1 may be canceled from both sides of the

equation, whence the required result follows by the induction hypothesis.
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