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1 INTRODUCTION

1 Introduction

1.1 Introduction to TQFTs

The purpose of this paper is to achieve the knowledge and mathematical tools needed to
define and classify 2-dimensional topological quantum field theory (2D TQFTs). The ax-
iomatic formulation of an n-dimensional TQFT (proposed by Atiyah [Ati86]) is that of a
rule which assigns finite-dimensional vector spaces to closed oriented (n − 1)-manifolds Σ
and linear maps between vector spaces to n-dimensional oriented cobordisms (up to bound-
ary preserving diffeomorphism) with boundary Σ. However, using category theory, a clearer
formulation of TQFTs can be given. We will speak of a 2-dimensional TQFT as a functor
Z from the category of oriented cobordisms BordOR

12 to the category of finite vector spaces
Vectk. This functor will precisely provide the mentioned assignments.

It turns out that 2D TQFTs has a close connection to commutative Frobenius algebras.
A Frobenius algebra can be characterized as an algebra equipped with the special stucture of
a co-algebra. In fact our main goal is to establish a one-to-one correspondence between 2D
TQFTs and commutative Frobenius algebras. The main source of this paper is the excellent
book by Joachim Kock [Koc03]. John M. Lee’s book on smooth manifolds [Lee02] has been
used to gain an understanding of the differential geometry involved in defining a smooth
structure and orientation of manifolds. A thesis by Arik Wilbert [Wil11] has furthermore
been used as a helping hand getting an overview of the most important results in [Koc03]
relevant to this paper.

Finally a big thank you to Thomas Anton Wasserman for his help and advice during his
supervision of this paper.

1.2 Analogy to D6

We will here present an analogy of how we will use relations between generators in BordOR12

to examine structures of linear maps in Vectk.
Recall the dihedral group D6, the group of symmetries of an equilateral triangle. The group
is generated by a counterclockwise rotation of 120◦ = 2π

3
and reflection in a line through a

vertex and the midpoint of the opposite edge. An equivalence relation applies to these two
operations: rotating the triangle three times is equivalent to doing nothing to the triangle.
This is also the case if we reflect the triangle two times in the same line. Also if we rotate,
reflect and rotate once more, it’s the same as if we only reflect once. These three relations
are sufficient in the sense that, any other relation can be built from these three relations. If
r denotes rotation and s denotes reflection, the representation of the group is then

D6 =< r, s | r3 = e, s2 = e, rs = sr−1 >,

where e is the identity element of the group.
Words i.e. elements in D6 can be written as combinations of the operations r and s, and the
relations give us a way of comparing words: any two words in D6 are equal if both can be
reduced to the same word by using the equivalence relations from the representation. For
example, the two words sssr and ssr−1s are equal since they both reduce down to sr by the
use of s2 = e and rs = sr−1.

1



1 INTRODUCTION

Now let O(2) be the group of all real invertible 2× 2 matrices, whose transpose equals their
inverse, O(2) = {M ∈ GL2(R) | MT = M−1}.

We then define a map
φ : D6 → O(2),

to take the generators of D6 to the following rotation and reflection matrices:

r 7→
(

cos(2π
3

) sin(2π
3

)
− sin(2π

3
) cos(2π

3
)

)
=

(
−1

2

√
3

2

−
√

3
2
−1

2

)

s 7→
(
−1 0
0 1

)
.

We would like to see whether the relations between the generators in D6 also hold for these
matrices in O(2), i.e. whether φ is a homeomorphism.
Any word x in D6 can be written as a combination of the generators by the use of rs = sr−1,
i.e. x = rasb for any a, b ∈ Z. We define the value of φ on x by:

φ(x) := φ(r)aφ(s)b =

(
−1

2

√
3

2

−
√

3
2
−1

2

)a(
−1 0
0 1

)b
.

This definition is well-defined, as we can see by showing that φ(r) and φ(s) satisfy the same
relations as r and s:

φ(r)3 =

(
−1

2
−
√

3
2√

3
2
−1

2

)3

=

(
−1

2
−
√

3
2

−
√

3
2
−1

2

)(
−1

2

√
3

2√
3

2
−1

2

)
= I2 , φ(s)2 =

(
−1 0
0 1

)2

= I2,

where I2 is the 2× 2 identity matrix, and

φ(r)φ(s)φ(r) =

(
−1

2

√
3

2

−
√

3
2
−1

2

)(
−1 0
0 1

)(
−1

2

√
3

2

−
√

3
2
−1

2

)
=

(
−1 0
0 1

)
= φ(s).

Thus we see that φ is a homomorphism, when the image of r of s are defined to be these
specific matrices. Hence the image of φ obeys the same structure as r and s.

Now define the following set

R := {(M,N) ∈ O(2)×O(2) | M3 = I2, N
2 = I2,MNM = N}.

We would now like to see whether if we take two matrices M and N in O(2) that obey the
same relations as the generators in D6, then we can construct a homeomorphism from D6 to
O(2). We see that R is isomorphic to Hom(D6,O(2)), the set of all homeomorphism from D6

to O(2): Take the following map f , that sends any tuple (M,N) ∈ R to the homeomorphism
taking the generators of D6 to M and N in the following way:

f : R→ Hom(D6,O(2))

(M,N) 7→

ψ : D6 → O(2)
r 7→M
s 7→ N

 .

2



2 BASIC CATEGORY THEORY

We now show that the following map g is the inverse to f ,

g : Hom(D6,O(2))→ R

(φ : D6 → O(2)) 7→ (φ(r), φ(s)).

Take (M,N) ∈ R under the composition g ◦ f :

(M,N)
f7−→

ψ : D6 → O(2)
r 7→M
s 7→ N

 g7−→ (ψ(r), ψ(s)) = (M,N).

Now take φ ∈ Hom(D6,O(2)) and note that (φ(r), φ(s)) ∈ R since φ is a homeomorphism.
Take φ under the composition f ◦ g:

(φ : D6 → O(2))
g7−→ (φ(r), φ(s))

f7−→

ψ : D6 → O(2)
r 7→ φ(r)
s 7→ φ(s)

 = (φ : D6 → O(2)).

Thus R ∼= Hom(D6,O(2)). By describing R we would then be able to find the homeomor-
phisms ψ : D6 → O(2) determined by

{(ψ(r), ψ(s)) ∈ O(2)×O(2) | ψ(r)3 = I2, ψ(s)2 = I2, ψ(r)ψ(s)ψ(r) = ψ(s)}.

In the same spirit, given a relation preserving functor Z : BordOR
12 → Vectk, we will

from the relations between generators of BordOR
12 examine what the vector space Z(Σ), Σ

being a circle, carries in structure: by defining the image of the generators under Z to be
certain linear maps between tensor products of a vector space A, the functor Z allows us to
translate the relations between cobordisms in BordOR

12 to relations between linear maps in
Vectk. It turns out that when the relations in BordOR

12 are translated to the linear maps,
the vector space A gets equipped with a certain structure, turning it into a commutative
Frobenius algebra. To prove our main result, namely functors like Z having a one-to-one
correspondance to Frobenius algebras, we need to acquire knowledge about categories, vector
spaces, algebraic structures and topological spaces.

2 Basic category theory

In this chapter we will go over definitions of categories, maps between categories and sym-
metric monoidal structures.

Definition 2.1. A category C consists of

• a collection of objects denoted C0;

• for every pair of objects X, Y , a set of morphisms from X to Y denoted C(X, Y );

• for every triple of objects X, Y, Z, an associative composition, ◦ : C(X, Y )×C(Y, Z)→
C(X,Z);

3



2 BASIC CATEGORY THEORY

• for every object X, an identity morphism idX ∈ C(X,X), that maps an object X to
itself. The identity morphism acts as neutral element for the composition.

An element in C(X, Y ) is written f : X → Y , and the composition X → Y → Z of two
morphisms f ∈ C(X, Y ) and g ∈ C(Y, Z) is written gf . The associativity of composition
gives that for three morphisms e : W → X, f : X → Y, g : Y → Z, we have (fg)e = f(ge).
That the identity morphism acts as a neutral element for the composition means that for ev-
ery morphism f : X → Y and every morphism e : W → X, we have f idX = f and idX e = e.

Some simple examples of categories include Set, the category where objects are sets and
morphisms are functions between the sets, and Top where objects are topological spaces
and morphisms are continuous maps between these topological spaces. Another important
example which this project will rely on is the category Vectk, where the objects are vector
spaces over the field k and the morphisms are k-linear maps. We will return to this category
later.

A study of maps between categories seems useful: a functor between two categories maps
objects to objects and morphisms to morphisms. A more formal definition:

Definition 2.2. A functor F between two categories C and D consists of

• a map F : C0 → D0 assigning to every object X in C an object F (X) in D;

• for each pair of objects X, Y in C a map FX,Y : C(X, Y )→ D(F (X), F (Y )) assigning
to every morphism f in C a morphism FX,Y (f) in D such that

– FX,Z(gf) = FY,Z(g)FX,Y (f) for any morphisms f ∈ C(X, Y ), g ∈ C(Y, Z);

– for each object X in C, we have FX,X(idX) = idF (X).

id denotes the identity map.

Definition 2.3. Let F,G be two functors between categories C and D. Then a natural
transformation η is a collection of morphisms ηX where

• ηX : F (X)→ G(X) is a morphism assigned to every object X in C;

• the following diagram commute for all morphisms f : X → Y in C:

F (X) F (Y )

G(X) G(Y ).

ηX

FX,Y (f)

ηY

GX,Y (f)

If ηX is an isomorphism in D for every X, then η is called a natural isomorphism.

We are now ready to define a specific structure on a category:

Definition 2.4. A monoidal structure on a category C consists of the following:

4
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• A functor ⊗ : C×C→ C;

• An object 1 in C called the unit;

• A natural isomorphism

α : ((−)⊗ (−))⊗ (−)
∼=⇒ (−)⊗ ((−)⊗ (−))

called the associator with components

αX,Y,Z : (X ⊗ Y )⊗ Z
∼=→ X ⊗ (Y ⊗ Z);

• Two natural isomorphisms

l : (1⊗ (−))
∼=⇒ (−)

r : ((−)⊗ 1)
∼=⇒ (−)

called the left and right unitors respectively with components

lX : 1⊗X
∼=→ X

rX : X ⊗ 1
∼=→ X,

such that the following diagrams commute for all objects involved:

X ⊗ Y

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

rX⊗idY

αX,1,Y

idX⊗lY ,

(W ⊗X)⊗ (Y ⊗ Z)

((W ⊗X)⊗ Y )⊗ Z W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y ))⊗ Z W ⊗ ((X ⊗ Y )⊗ Z)

αW,X,Y⊗ZαW⊗X,Y,Z

αW,X,Y ⊗idZ

αW,X⊗Y,Z

idW⊗αX,Y,Z

.

The first is called the triangle identity and the second the pentagon identity.

When defining structures, we will denote them by n-tuples consisting of the objects and
the structures associated with them. For example we denote a monoidal category by the
triple (C,⊗,1).

A monoidal category is strict if its associator, left unitor and right unitor are identity
maps, which implies the equalities (X ⊗ Y )⊗ Z = X ⊗ (Y ⊗ Z) and 1⊗X = X = X ⊗ 1.
In fact Mac Lane’s Coherence Theorem [Lan98] is a result, which states that every monoidal
category is in fact equivalent to a strict monoidal category. We will throughout this paper
only encounter monoidal categories, that are strict.

5



2 BASIC CATEGORY THEORY

Definition 2.5. A symmetric monoidal category is a monoidal category equipped with an
additional natural isomorphism

BX,Y : X ⊗ Y
∼=→ Y ⊗X

called the braiding, such that
BY,XBX,Y = idX⊗Y ,

and the associator and braiding make the following diagram commute:

(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z) Y ⊗ (Z ⊗X) .

αX,Y,Z

BX,Y ⊗idZ

BX,Y⊗Z

αY,Z,X

αY,X,Z idY ⊗BX,Z

This is called the hexagon identity. The braiding also has compatibility with the unit:

X ⊗ 1 1⊗X

X

BX,1

lX

rX
.

We will denote a symmetric monoidal category by the quadruple (C,⊗,1, BX,Y )

2.1 Vectk as a symmetric monoidal category

Vectk can be equipped with a symmetric monoidal structure of great importance throughout
this paper. In order to describe this structure it is assumed that the reader is familiar with
the notion of a vector space. Now the functor of the monoidal structure will be the usual
tensor product between vector spaces, so first a definition of the tensor product:

Definition 2.6. If V and W are two vector spaces with common ground field k, then the
tensor product ⊗ is defined as

V ⊗W := F (V ×W )/ ∼,

where F (V ×W ) is the vector space generated by V ×W , and ∼ denotes the equivalence
relation generated by the relation that for all v, v′ ∈ V,w,w′ ∈ W and c ∈ k:

(v + v′, w) ∼ (v, w) + (v′, w),

(v, w + w′) ∼ (v, w) + (v, w′),

c(v, w) ∼ (cv, w),

c(v, w) ∼ (v, cw).

We will denote the equivalence class of (v, w) ∈ V × W by v ⊗ w. If f : V → W and
g : S → T are two linear maps with V,W, S, T ∈ Vectk, we denote the tensor product of the
maps by:

f ⊗ g : V ⊗ S → W ⊗ T
v ⊗ s 7→ f(v)⊗ g(s).

6



2 BASIC CATEGORY THEORY

Note that the tensor product of two vector spaces is itself a vector space.
By looking at the maps k ⊗ V → V and V ⊗ k → V it should be clear that they are

isomorphisms with inverse maps taking v 7→ 1⊗v and v 7→ v⊗1, where 1 is the multiplicative
identity of k. We then have k⊗ V ∼= V ∼= V ⊗ k.
Taking the ground field k (which is also a vector space, hence an object in Vectk) as the
unit object, the structure of the tensor product gives the unitors

lV : k⊗ V
∼=→ V

c⊗ v 7→ cv ,

and

rV : V ⊗ k
∼=→ V

v ⊗ c 7→ cv.

The tensor product is also symmetric, so it has a braiding

σ : V ⊗W
∼=→ W ⊗ V

v ⊗ w 7→ w ⊗ v .

The tensor product is also associative:

(V ⊗W )⊗ Z
∼=→ V ⊗ (W ⊗ Z)

(v ⊗ w)⊗ z 7→ v ⊗ (w ⊗ z),

which is a result of the definition

V ⊗W ⊗ Z := F (V ×W × Z)/ ∼,

where ∼ denotes the equivalence relation described above but with three coordinates in the
cartesian product instead of two. Because of this, we will omit the parentheses and just
write V ⊗W ⊗ Z.

Thus (Vectk,⊗,k, σ) is a symmetric monoidal category.

2.2 Short introduction to string diagrams

At this point and from now on it would be beneficial to have axioms and proofs visualised
in some way other than commuting diagrams, in order to get intuition of what is going on.
Hence we introduce string diagrams, which is a graphical way of expressing morphisms in a
monoidal category.
The overall idea is to think of objects in categories as strings and morphisms between the
categories as nodes, where the source strings enter and target strings exit. We will in the
following couple of sections work with (Vectk,⊗,k.σ), so the strings represent vector spaces
and nodes represent linear maps. The diagrams will be read from bottom to top with respect
to composition, and tensor products between vector spaces are represented by strings beside
each other. We will start off with some simple examples. Let V,W,Z ∈ Vectk. The identity
map idV : V → V is represented by a single string, and a morphism f : V ⊗W → Z is
represented by two strings merging into a single string:

7



3 ALGEBRAS IN VECTK

V

V

and V W

f

Z

.

The identity map can be added or taken out of a string diagram, leaving the diagram
unchanged, just as it would leave any composition unchanged.

There are equivalences between string diagrams, the most important one involving com-

position: f

g

=
gf .

We will from now on omit the labels when the maps and vector spaces are clear from
context.

We now move on to new structures, that will hopefully be more intuitive with the help
from string diagrams. It will indeed be helpful when we arrive at our main result, where we
need to realise similarities between cobordisms and linear maps.

3 Algebras in Vectk

We will now move on to algebras and their dual structure, which leads us to Frobenius
algebras. We start with defining the notion of an algebra in the category of vector spaces
over a field k:

Definition 3.1. An algebra is an object A in Vectk together with a multiplication map
µ : A⊗A→ A and a unit map u : k→ A, such that associativity and unitality hold i.e. the
following diagrams commute:

A⊗ A⊗ A A⊗ A

A⊗ A A

µ⊗idA

idA⊗µ

µ

µ

and

k⊗ A A⊗ A A⊗ k

A

u⊗idA

lA µ

idA⊗u

rA
.

We will denote an algebra A by a triple (A, µ, u).

In terms of string diagrams, the unit object k is represented as a dot, so for example the

unit map u : k → V is represented as , and the right unitor k⊗ V → V is represented as

. The multiplication map µ : A⊗A→ A is represented as . The diagrams from the
definition above can be expressed as

= and =

,

= .

8



3 ALGEBRAS IN VECTK

Since Vectk possesses a braiding, we get the notion of commutativity of an algebra:

A⊗ A A⊗ A

A

BA,A

µ
µ

,

This is expressed with string diagrams as
=

.

If we write the multiplication by juxtaposition

X ⊗ Y 7→ XY,

and let 1A be the image of 1 under u, then we can write the associativity and unitality
axioms as such:

(XY )Z = X(Y Z) , 1AX = X = X1A.

Example: C as an R-algebra. The complex numbers C as a vector space over the ring
R has an algebraic structure with the following multiplication and unit map:

µ : C⊗
R
C→ C

(x+ iy)⊗ (x′ + iy′) 7→ (xx′ − yy′ + i(xy′ + x′y)),

where the unit map is given by

u : R→ C
x 7→ x.

We need to check that = . We start with the composition on left hand side. For
(x+ iy), (x′ + iy′), (x′′ + iy′′) ∈ C we get:

(x+ iy)⊗ (x′ + iy′)⊗ (x′′ + iy′′)
µ⊗id7−−−→ (xx′ − yy′ + i(xy′ + x′y))⊗ (x′′ + iy′′)

µ7−→ ((xx′ − yy′)x′′ − (xy′ + x′y)y′′ + i((xx′ − yy′)y′′ + x′′(xy′ + x′y)) =: z,

and on the right hand side we get:

(x+ iy)⊗ (x′ + iy′)⊗ (x′′ + iy′′)
id⊗µ7−−−→ (x+ iy)⊗ (x′x′′ − y′y′′ + i(x′y′′ + x′′y′))

µ7−→ (x(x′x′′ − y′y′′)− y(x′y′′ + x′′y′) + i(x(x′y′′ + x′′y′) + (x′x′′ − y′y′′)y)) = z.

So the associativity axiom holds. Next we check
=

and
=

. For r ∈ R and
(x+ iy) ∈ C we look at the two mappings,

r ⊗ (x+ iy)
u⊗id7−−−→ r ⊗ (x+ iy)

µ7−→ rx+ iry = r(x+ iy)

9



3 ALGEBRAS IN VECTK

and

(x+ iy)⊗ r id⊗u7−−−→ (x+ iy)⊗ r µ7−→ xr + iry = r(x+ iy).

In each case end up with scalar multiplication, so the unitality axiom holds.

A structure that is dual to the associative unital algebra, is that of a coalgebra, which
also has a form of multiplication and unit maps but with the arrows reversed:

Definition 3.2. A co-algebra is an object A ∈ Vectk together with co-multiplication
δ : A → A⊗ A and co-unit e : A → k, such that co-associativity and co-unitality holds i.e.
the following diagrams commute:

A A⊗ A

A⊗ A A⊗ A⊗ A

δ

δ δ⊗idA
idA⊗δ

and
k⊗ A A⊗ A A⊗ k

A

e⊗idA idA⊗e

l−1
A

r−1
Aδ

.

We will denote a co-algebra A by a triple (A, δ, e). The diagrams are represented with
string diagrams as such:

=
and

=
,

=
.

3.1 Frobenius Algebras

A Frobenius algebra is a vector space that is both an algebra and co-algebra with a relation
involving the two.

Definition 3.3. A Frobenius algebra is a quintuple (A, µ, δ, u, e) such that

• (A, µ, u) is an algebra with multiplication µ : A⊗ A→ A and unit u : k→ A;

• (A, δ, e) is a co-algebra with co-multiplication δ : A→ A⊗ A and co-unit e : A→ k;

• (µ⊗ idA)(idA ⊗ δ) = δµ = (idA ⊗ µ)(δ ⊗ idA).

The last condition is called the Frobenius axiom and is expressed through string diagrams
as such:

= = .

There exist multiple equivalent definitions of Frobenius algebras, and while we will pri-
marily be working with the one above, other definitions could be more handy in other cases.
For example the following alternative definition below avoids explicit construction of coeval-
uation and evaluation. However we will not be proving the equivalence nor work with this
definition henceforth.

10



3 ALGEBRAS IN VECTK

Definition 3.4. Let V,W ∈ Vectk. A pairing of V and W is a linear map

β : V ⊗W → k

v ⊗ w 7→ < v | w >,

where < v | w > is notation the pairing acting on an element. A pairing is nondegenerate if
there exists a linear map γ : k→ W ⊗ V such that

V k

k V

=

V

V

and

k

W

W

k

=

W

W

.

Definition 3.5 (Alternative definition of Frobenius algebra). A Frobenius algebra is an
algebra (A, µ, u) of finite dimension, equipped with an nondegenerate pairing β : A⊗A→ k,
which is associative with µ:

A A A

k

=

AAA

k

.

The pairing is called the Frobenius pairing.

Example: (Matn(R) as a Frobenius algebra with nondegenerate pairing) . In the case of
Matn(R), it is more convenient to use the alternative definition. Matn(R) is the ring of
n × n matrices over R. It is especially a finite vector space with standard unit basis Eij of
matrices with 1 in entry ij and 0 in any other entry. We have dimEij = n2. Matn(R) is
then an algebra (Matn(R), µ, u) with the usual matrix multiplication as µ and unit

u : R→Mn(R)

r 7→ rIn,

where In denotes the n×n identity matrix. The associativity of µ comes from the associativity
of matrix multiplication. It would be tricky to find the coevaluation, so instead we induce a
pairing from a well known map, namely the trace of a matrix. The pairing is the map taking
two matrices from Matn(R) to the trace of their matrix multiplication:

β : Matn(R)×Matn(R)→ R
M ⊗N 7→ Tr(MN),

where

Tr : Matn(R)→ R

(aij) 7→
n∑
i=1

aii.

11



4 DUALITY

Note that Tr(EijEkl) is nonzero only when kl = ji: TrEijEkl = 1. Define the linear map,

γ : R→Mn(R)⊗Mn(R)

1 7→
n∑

i,j=1

Eij ⊗ Eji.

A matrix M ∈Matn(R) can be written as a linear combination of the Eij: M =
∑n

i,j=1 cijEij.
We send M through the composition (β ⊗ idMn(R))(idMn(R) ⊗ γ):∑
k,l

cklEkl 7→
∑
i,j,k,l

Ekl ⊗ Eij ⊗ cklEji 7→
∑
i,j,k,l

Tr(EklEij)⊗ cklEji =
∑
i,j

1⊗ cjiEji =
∑
i,j

cjiEji.

The other composition from Definition 3.4 is checked in the same way. Hence β is nonde-
generate, and Matn(R) is a Frobenius algebra.

4 Duality

Definition 4.1. Let (C,⊗,1) be a monoidal category, and let A be an object in C. A right
dual for A is an object A∗ ∈ C together with:

• a morphism evA : A∗ ⊗ A→ 1 called the evaluation map represented by ;

• a morphism coevA : 1→ A⊗ A∗ called the coevaluation map represented by ;

such that the following diagrams commute:

1⊗ A A⊗ 1

A⊗ A∗ ⊗ A
coevA⊗idA

r−1
A lA

idA⊗evA ,

A∗ ⊗ 1 1⊗ A∗

A∗ ⊗ A⊗ A∗
idA∗⊗coevA

l−1
A∗rA∗

evA⊗idA∗
.

A is called the left dual of A∗. string diagrammer.

In string diagrams the two diagrams above are represented by

=

,

=

,

giving them the name snake relations.
When right duals exist, all of them are canonically isomorphic to each other and so are

left duals: Let (B, ev, coev) be a right dual of A and suppose (B′, ev′, coev′) is another right
dual of A. Then

(ev ⊗ idB′)(idB ⊗ coev′) : B → B′

is the map taking B to B′ as follows:

B = B ⊗ 1
idB⊗coev′
−−−−−→ B ⊗ A⊗B′

ev⊗idB′
−−−−−→ 1⊗B′ = B′.

12



4 DUALITY

Likewise the following map takes B′ to B:

(ev′ ⊗ idB)(idB′ ⊗ coev) : B′ → B.

It is obvious that they are each others inverse, hence B and B′ are isomorphic to each other.

Note that when C is a symmetric monoidal category, every right dual is also a left dual
and the other way around, since A∗ ⊗ A ∼= A ⊗ A∗. In this case we will simply call them
duals.

Theorem 4.2. A Frobenius algebra F in a monoidal category is dual to itself.

Proof. Let (F, µ, δ, u, e) be a Frobenius algebra in a monoidal category, and let 1 be the
monoidal unit. If F is a dual to itself, there must exist two morphisms ev : F ⊗ F → 1 and
coev : 1→ F ⊗ F such that the diagrams from Definition 4.1 commute. Let these maps be
defined as:

ev : F ⊗ F µ→ F
e→ 1,

coev : 1
u→ F

δ→ F ⊗ F,

i.e we define := and := . With these we compose . We then use
the Frobenius axiom, and afterwards the unit and counit axioms:

= = =
.

In the same way we compose , and use the Frobenius axiom together with the
unitality and co-unitality axiom:

= = =

.

Thus we have that the evaluation and coevalution satisfies the snake relations.

Remark: Theorem 4.2 implies that Definition 3.3 leads to Definition 3.5.

13



4 DUALITY

Example: C as a dual to itself. We have previously shown that C is an algebra, and
we actually also know that C is in fact a Frobenius algebra. Now we are curious to find the
co-multiplication and counit maps, an obvious counit being

e : C→ R
z 7→ <z.

We will now put the previous theorem to use and use the fact that C is a Frobenius algebra
in order to construct the corresponding co-multiplication.
The theorem and proof gives us that C is its own dual with the following evaluation and
coevaluation maps for (x+ iy), (x′ + iy′) ∈ C and r ∈ R:

ev : (x+ iy)⊗ (x′ + iy′)
µ7−→ (xx′ − yy′ + i(xy′ + x′y))

e7−→ xx′ − yy′,

coev : r
u7−→ r

δ7−→ δ(r).

Now the trick is to use and from the duality and construct . We define the
co-multiplication in the following way:

=

The right hand side is a composition of the evaluation, coevaluation and multiplication maps,
with the same number of input and output strings as the co-multiplication. It’s not very
giving to explicitly go through every mapping of the composition, but since it is our first
complicated string diagram, here’s an overview of the composition from the bottom and up:

C⊗ C

R⊗ C⊗ C

C⊗ C⊗ C⊗ C

C⊗ C⊗ C⊗ C⊗ C

C⊗ C⊗ R⊗ C

C⊗ C⊗ C

C⊗ R

C

r⊗id

ev⊗id⊗id

id⊗µ⊗id⊗id

id⊗id⊗coev⊗id

id⊗r−1⊗id

id⊗coev

r−1

.

With this we end up getting any z ∈ C mapped to (<z + i=z)⊗ 1 + (=z − i<z)⊗ i, so we
now define the co-multiplication to be the map

δ : z 7→ (<z + i=z)⊗ 1 + (=z − i<z)⊗ i.

14



4 DUALITY

It is now fairly straightforward to check
=

and
= =

, concluding our
search for a co-multiplication.

4.1 Dual vector spaces

We now move on to describe a specific dual-admitting category, namely Vectk. In (Vectk,⊗,k, σ)
a dual object V ∗ to a vector space V is the linear dual.
A linear functional ψ is a k-linear map from a vector space V to it’s ground field k, and the
space of linear functionals of a vector space V is denoted Homk(V,k). We will from now on
take k = C.

Definition 4.3 (Dual vector spaces). Let V be a vector space over C. The space of linear
functionals on V is called the dual of V and is denoted

V ∗ := HomC(V,C).

If {e1, ..., en} is a basis in V, then one can construct a dual basis {e1, ..., en} of linear
functionals defined by ei(c1e1 + ... + cnen) = ci, i = 1, ..., n for any coefficients ci ∈ C.
Letting in turn each of the cis be one and the others zero, we get the following

ei(ej) = δij =
{1 if i = j

0, if i 6= j .

An element x ∈ V can be written as a linear combination for fitting ci ∈ C, x =
∑n

i=1 c
iei.

We can then write any element x ∈ V as
∑n

i=1 e
i(x)ei since

ei(x) = ei
( n∑
k=1

ckek
)

=
n∑
k=1

ckei(ek) =
n∑
k=1

ckδik = ci,

hence
n∑
i=1

ei(x)ei =
n∑
i=1

ciei = x.

Knowing this, we can define and prove the evaluation and co-evaluation maps for the dual:

Theorem 4.4. The following two morphisms are evaluation and coevaluation maps that
exhibit V ∗ as the dual for a vector space, V ∈ (VectC,⊗,C):

ev : V ∗ ⊗ V → C

ψ ⊗ v 7→ ψ(v),

coev : C→ V ⊗ V ∗

c 7→
n∑
i=1

cei ⊗ ei.

15
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Proof. We need to check if the two maps satisfy the snake relations, and we will in the
following write

∑
i instead of

∑n
i=1 to ease notation. We will start with the left snake

relation from Definition 4.1.
Let {e1, ..., en} be a basis for V and {e1, ..., en} a basis for the dual space V ∗. Let v =∑

k c
kek ∈ V , for ck ∈ C. Then for any c ∈ C we see that the map

c⊗ v coev⊗idV7−−−−−→
∑
i

cei ⊗ ei ⊗ v
idV ⊗ev7−−−−→

∑
i

cei ⊗ ei(v)

is equivalent to

c⊗ v lv7−→ cv
r−1
v7−−→ v ⊗ c

by using linearity of the functional and the scalar multiplication of the tensor product:∑
i

cei⊗ei(v) =
∑
i

cei⊗
∑
k

ckei(ek) =
∑
i

cei⊗
∑
k

ckδik =
∑
i

cei⊗ci =
∑
i

ciei⊗c = v⊗c.

Likewise to check the right snake relation, let ψ =
∑

k c
kek ∈ V ∗ and c ∈ C. Then for

ψ ⊗ c ∈ V ∗ ⊗C we get

ψ ⊗ c
idψ⊗coev7−−−−−→ ψ ⊗

∑
i

cei ⊗ ei
ev⊗idei7−−−−→ ψ

(∑
i

cei
)
⊗ ei

is equivalent to the mapping

ψ ⊗ c
l−1
ψ rψ
7−−−→ c⊗ ψ

by the following:

ψ
(∑

i

cei
)
⊗ ei = c

∑
i

ψ(ei)⊗ ei = c
∑
i

∑
k

ckδki ⊗ ei = c
∑
i

ci ⊗ ei = c⊗
∑
i

ciei = c⊗ ψ.

Thus the two maps satisfy the snake relations.

We note that the sum in the co-evaluation only makes sense when the basis is finite and
it turns out that V can only admit a dual if it is finite dimensional. Assume V has basis
{ei}, i ∈ I, and admits a dual V ∗ with basis {ej}, j ∈ I. Then {ei ⊗ ej}, i, j ∈ I, is a basis
for V ⊗ V ∗. The co-evaluation is determined by it’s value of 1, coev(1) ∈ V ⊗ V ∗, and the
most general form of coev(1) is a linear combination of basis elements. Hence we get:

coev : 1 7→
∑

i∈I,j∈J

cijei ⊗ ej.

This linear combination is necessarily finite, which means there exist finitely many cij 6= 0,
which in turn means that there is finitely many indices i ∈ I such that cij 6= 0. Now take an
index, say k ∈ I, that satisfies ckj = 0 for all j ∈ J . Then consider the composition

V
l−1
V−−→ k⊗ V coevV ⊗idV−−−−−−→ V ⊗ V ∗ ⊗ V idV ⊗evA−−−−−→ V ⊗ k rV−→ V,
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which is supposed to be the identity. If we send ek through the above map we get:

ek 7→ 1⊗ ek 7→
∑
i,j

cijei ⊗ ej ⊗ ek 7→
∑
i,j

cijei ⊗ ev(ej ⊗ ek) 7→
∑
i,j

cijev(ej ⊗ ek)ei.

Then the coefficient of ei when i = k in the last sum above is ckjev(ej ⊗ ek) = 0 and not 1,
which it should be in order for the map to be the identity. Hence we achieve contradiction
for an infinite basis.

17



5 MANIFOLDS

5 Manifolds

We will now work our way up to the definition of the category of n-dimensional oriented
cobordisms.

A manifold is a topological space, that locally resembles Euclidian space - in this case the
real coordinate space of n dimensions, Rn. A manifold of dimension one, written 1-manifold,
is a topological space such that when you zoom in close enough, it looks like R1. So a circle,
that you would usually see as an object embedded in R2, actually looks like a line when
you look at a very small part of it, hence a circle is a 1-manifold. A sphere as we would
normally imagine it, as the surface of a three dimensional ball, is a 2-manifold, since when
you take a small enough part of it, it looks like a surface in R2. Another obvious example of
an n-manifold is Rn.

Definition 5.1. A topological n-manifold is a paracompact, second countable, Hausdorff
space M , where every point has a neighbourhood homeomorphic to an open subset in Rn.
That is, for any point p ∈ M there exists an open subset U of M containing p and a
homeomorphism φ : U → V , where V is an open subset of Rn.

The above mentioned homeomorphic map is called a chart or a coordinate map and is
denoted by the pair, (U, φ). A collection of charts A , whose domain covers M is called an
atlas, i.e. A = {(Ua, φa) | ∪a∈A Ua = M} for some index set A.

φ

U

V

Figure 1: Chart from a 2-manifold to R2.

In order to have a sense of smoothness of manifolds, we need an additional structure,
namely transition maps. Suppose φ : U → V and ψ : Ũ → Ṽ are two charts of a point x,
such that U ∩ Ũ 6= ∅. We then have a transition map between subsets of Rn:

ψ ◦ φ−1 : φ(U ∩ Ũ)→ ψ(V ∩ Ṽ ),

See figure 2. Since φ and ψ are both homeomorphic, ψ ◦φ−1 is also homeomorphic. We now
say, that an atlas A is smooth if for any two charts (U, φ) and (Ũ , ψ), either U ∩ Ũ = ∅ or
the transition map ψ ◦ φ−1 is smooth. Since the transition map is between subsets of Rn,
the smoothness we require should be understood as the smoothness of maps we are used to:
ψ ◦ φ−1 is smooth if every component function of ψ ◦ φ−1 has continuous partial derivatives
of all orders.
A smooth atlas is maximal, if it is not contained in any strictly larger smooth atlas. A
smooth structure on a topological manifold is a smooth maximal atlas, and if a topological
manifold is equipped with a smooth structure, we call the manifold smooth.
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U
Ũ

V
Ṽ

φ ψ

φ−1 ◦ ψ

Figure 2: Transition map.

Manifolds will throughout this paper be smooth and compact, but not necessarily con-
nected - from now on an n-manifold means a smooth n-manifold.

Charts define a notion of derivatives on an n-manifold M , and we will later use how
differentiability of a curve on M is defined through charts:

Definition 5.2. Let M be an n-dimensional manifold. A curve on M

γ : I ⊂ R→M

is differentiable, if for any chart (U, φ) of x the composition φ◦γ : I → φ(U) is a differentiable
curve in Rn.

Note that the derivative of a curve φ◦γ lies in the affine subspace of Rn placed tangentally
on φ(U) at φ(x).

We will now go in depth with a simple example to get more comfortable with the technical
definition of a manifold.

Example 5.3 (The unit circle). A typical example of a 1-manifold is a circle. Every point
of the circle has a neighbourhood homeomorphic to an open interval on the real line, and
the entire circle can be covered by an atlas of four charts:
Consider the unit circle, and divide it by the x-axis into an upper arc and a lower arc, both
open subsets of the circle, leaving behind the points (1, 0) and (−1, 0) of the circle in doing
so. The points on the upper arc is uniquely determined by its x-coordinate, so we can take
φupper : (x, y) 7→ x to be a chart mapping the top arc to the open interval (−1, 1) ⊂ R1. The
bottom arc can in the same way be mapped to the same interval by φlower = φtop. But we
haven’t covered the entire manifold yet, we are missing the two points. Splitting the unit
circle down the y-axis into left and right arcs also being open sets of the circle, we include
the points (1, 0) and (−1, 0). We can now take the chart φright = φleft : (x, y) 7→ y so the
left and right arc both get mapped to (−1, 1) ⊂ R1. This way all points of the circle are
covered by the four charts, making the four of them an atlas. To include transition maps
into this example, notice that there are four overlaps in the charts. One of them is the piece
of the circle from (1, 0) to (0, 1) (going anti-clockwise), where φtop and φright overlaps in the
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Figure 3: The unit circle and the four charts.

interval (0, 1) ∈ R1. We can then construct a transition map for any element a ∈ (0, 1):

a 7→ φupperφ
−1
right(a) = φupper(

√
1− a2, a) =

√
1− a2.

The atlas we have constructed is not unique. You could make other partitions of the
circle and charts of an atlas do not need to be projections. You can for example cover the
entire circle with the union of two arcs: the arc going from (0, 0) to (−1, 0) and the arc from
(−1, 0) to (0, 1). In this case you can consider the unit circle to be embedded in C and chart
in this case can be Arg : z = x+ iy 7→ Arg(z).
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5.1 Manifolds with boundary

In the way we have defined manifolds, every point x has a neighbourhood homeomor-
phic to Rn. But there also exist manifolds with boundary, for example the closed disc
{(x, y) ∈ R2 | x2 + y2 ≤ 1}, where the point (1, 1) does not have a neighbourhood homeo-
morphic to an open subset of R2.
We then define an n-manifold with boundary to be a topological space, where the neighbour-
hood is homeomorphic to an open subset in the half-space Hn instead of Rn. The half-space
is defined as

Hn = {(x1, ..., xn) ∈ Rn | x1 ≥ 0}.

An example is H2 = {(x, y) ∈ R2 | x ≥ 0,−∞ < y < ∞}. From the definition it is clear,
that the Hn inherits the subspace topology from Rn. The interior is defined as IntHn = {x ∈
Rn | x1 > 0} ⊂ Rn, and the boundary is defined as ∂Hn = {x ∈ Rn | x1 = 0}. The boundary
∂Hn is isomorphic to Rn−1 - for example ∂H2 = {(x, y) ∈ R2 | x = 0} = {(0, y) ∈ R2} ∼= R.

We say that a point x ∈M is a boundary point, if it for some chart corresponds to a point
on ∂Hn. The boundary points do not have any neighbourhood homeomorphic to an open
set in Rn, but the set of all the boundary points on M is covered by open sets isomorphic
to Rn−1 ∼= ∂Hn. In this way the boundary points become an (n− 1)-manifold.

Example 5.4. Taking the unit disc as a manifold, the interior of the disc is the 2-manifold
{(x, y) ∈ R2 | x2 + y2 < 1} and the boundary of the disc is the unit circle {(x, y) ∈
R2 | x2 + y2 = 1} - a 1-manifold.

φ

x
φ(x)

y
φ(y)

Figure 4: A boundary point x and interior point y in open subsets of a manifold being mapped to
points φ(x) ∈ ∂H2 and φ(y) ∈ Int(H2) in open subsets of the half-space H2.

We note that the boundary of a manifold can also be empty, and in this way any manifold
can be considered a manifold with boundary. We will however be explicit whether we consider
a manifold to have boundary or not.

Example 5.5. Let Σ be an (n − 1)-manifold without boundary and let I be an (n − 1)-
manifold with boundary. Then the product matrix Σ× I has boundary Σ× ∂I. In general
we call these product manifolds cylinders if I = [0, 1]. For example let Σ = S1 and I = [0, 1].
Then the product manifold S1×I is a hollow cylinder with boundary S1×{0} and S1×{1}.
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S1 × {0} S1 × {1}S1 × [0, 1]

0 1

Figure 5: The product manifold S1 × [0, 1].

5.2 Orientation

In a coordinate system like R2 we are used to the notion of a positive and negative orienta-
tion. When moving anti-clockwise, we are going in the positive direction, and when moving
clockwise, we are going in the negative direction. This is because

[(
1
0

)
,
(
0
1

)]
is the ordered

basis that determines the standard orientation of R2: The positive orientation is defined to
be the direction of rotation from

(
1
0

)
to
(
0
1

)
through an angle less than π. Likewise when

going “to the right” on the real line, we go in a positive direction, since
[(

1
0

)]
is the basis

determining the standard orientation of R. Also in R3 we are used to a positive and negative
orientation, also known as the right-hand and left-hand orientation, but when we get up in
higher dimensions, it gets harder to have the same notion of orientation. Instead we find a
way to compare bases, determining whether two bases have the same orientation. We will
from now on use square brackets to denote an ordered basis.

5.2.1 Orientation of vector spaces

Assume we have a vector space V of dimension n ≥ 1, and let B = [b1, ..., bn] and B̃ =
[b̃1, ..., b̃n] be two ordered bases for V . Then a result in linear algebra says that there exist a
unique linear transformation matrix TB,B̃ from B to B̃. We say that the two bases represent
the same orientation, if det(TB,B̃) > 0. This gives an equivalence relation ∼ on the set of all
ordered bases of V .

Definition 5.6. An orientation of V is a choice of an equivalence class of ∼, and is referred
to as the positive orientation.

Definition 5.7. Let B be an ordered basis of the chosen equivalence class. Then for any
other ordered basis B̃, we say B̃ is a positive basis if det(TB,B̃) > 0, and B̃ is a negative basis
if det(TB,B̃) < 0.

5.2.2 Orientation of manifolds

It would be nice to be able to use this theory of orientation of vector spaces on manifolds.
For this we introduce tangent spaces of manifolds with the help from charts as a form of
translation between the rather abstract n-manifold and the more intuitive Rn, which we are
used to working in.

We can for any point x on an n-manifold M talk about the tangent space of M at x,
denoted TxM . The most intuitive way to define these tangent spaces is through the use of
curves. Let γ : (−1, 1) ⊂ R → M be a curve on M through x i.e. γ(0) = x. We define the
derivative γ′(0) in terms of charts as in Definition 5.2, which allows us to give the following
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definition of tangent spaces of M . C1(M) will denote the set of all differentiable real valued
curves on M in the sense of Definition 5.2.

Definition 5.8. The tangent space of a point x of an n-manifold M is defined as

TxM = {γ : (−1, 1)→M, γ ∈ C1(M), γ(0) = x}/ ∼,

where ∼ denotes the following equivalence relation: Two curves γ1, γ2 : (−1, 1) → M ,
γ1, γ2 ∈ C1(M), are equivalent if for all charts (U, φ) of x: (φ ◦ γ1)′(0) = (φ ◦ γ2)′(0).

An equivalence class in the above relation is called a tangent vector to M at x, so the
tangent space at x is the set of all tangent vectors to M at x. What we do is look at the
derivatives of {φ ◦ γ} equal at the point φ(x). We then track this collection of derivatives
back to the corresponding curves {γ} on M , which we then define as the corresponding
tangent vector on M .

In this way we transfer vector space operations from Rn to the tangent space of M . For
any x ∈M we now make the identification that TxM ∼= Tψ(x)ψ(U) for any chart (U, ψ) of x.

Remark. We quickly note two things about tangent spaces in Rn. The tangent space TxRn

for any x ∈ Rn is isomorphic to Rn: Attaching a copy of Rn tangentially to x is the same
as shifting the origin of Rn from 0 to x. Also, if x lies in an open subset V ⊂ Rn, then
TxV = TxRn ∼= Rn. So TxV ∼= Rn.

This remark allows us to think of TxM as a copy of Rn attached tangentially to M at x.
Now, if we want orientation of a manifold, we can choose orientations for all tangent spaces
of the manifold (note that when we choose orientation for a tangent space TxM , we actually
choose an orientation for the tangent space Tψ(x)ψ(U) for any (U, ψ) of x). But we do need
to make sure that these orientations are related to each other in some smooth way, to avoid
the orientations of tangent spaces of points close to each other switching randomly. We do
this by making sure that the differentials of the transition maps are orientation preserving.

Definition 5.9. Let ψ ◦ φ−1 be a transition map. The differentials of ψ ◦ φ−1 is represented
in the matrix of derivatives, Dx(ψ ◦φ−1), which is a linear map between two tangent spaces:

Dx(ψ ◦ φ−1) : Tψ(x)Rn → Tφ(x)Rn = T(ψ◦φ−1)(x)Rn.

See Figure 6. Dx(ψ ◦ φ−1) is orientation preserving, if det(Dx(ψ ◦ φ−1)) > 0.

We are now ready for the final definition of what this section is about:

Definition 5.10. An orientation of a manifold is a choice of orientation of each of its tangent
spaces, such that the differentials of the transition maps preserve orientation. A manifold is
called oriented if there has been chosen an orientation of it.

Example 5.11. An orientation of a point, which is a 0-manifold, is given by assigning the
sign + or − to it. Here the orientation is not as much of a visual orientation as in higher
dimensions, but is more of a technicality. The tangent space at a point is the trivial vector
space {0}, which has the empty set as a unique basis. We have to choose a sign for this
basis.
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U Ũ

x

ψ(x) φ(x)

Tψ(x)ψ(U) ∼= R2

Tφ(x)φ
(
Ũ
)
∼= R2

ψ−1 ◦ φ
ψ φ

Dx (ψ−1 ◦ φ)

Figure 6: Differentials of a transition map. The tangent space of the manifold is drawn in the way
we think of it: as a tangentially attached real vector space.

Example 5.12. Let X and Y be two oriented manifolds, X without boundary. Let (x, y)
be a point on the product manifold X × Y . If [v1, ..., vn] is a positive basis for TxX and
[u1, ..., un] is a positive basis for TyY , then we choose [v1, ..., vn, u1, .., un] as a positive basis
for T(x,y)X × Y . In this way the product manifold obtains orientation.

Example 5.13. Let Σ be an oriented manifold without boundary. Let the unit interval
I = [0, 1] have standard orientation induced from R with positive basis [e1]. If at a point
x ∈ Σ TxΣ has positive basis [v1, ..., vn−1], then the product orientation of Σ×I has positive
basis [v1, ..., vn−1, e1].

5.3 In- and out-boundaries

Definition 5.14. Let Σ be an (n − 1)-manifold embedded in an n-manifold M . Assume
they are both oriented. For an x ∈ Σ let [v1, ..., vn−1] be a positive basis for TxΣ. A positive
normal is a vector w ∈ TxM such that [v1, ..., vn−1, w] is a positive basis for TxM .

If Σ is the boundary of M , M could be a product manifold M = Σ × I, where I is a
manifold with boundary. Then w in the above definition corresponds to a vector on the real
tangent space of Hn at φ(x) for some chart (U, φ). Then this vector will either point in
towards Hn or out from Hn, which can be interpreted as w pointing in to M or out from M .

Definition 5.15. If a positive normal points in towards M , we call Σ an in-boundary, and
if it points out from M , we call Σ an out-boundary.

If some positive normal points inward, then any other positive normal at z ∈ Σ points
inward as well. This is true for positive normals that point outward as well.
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Example 5.16. Consider the unit interval I = [0, 1] with orientation induced from the
standard orientation of R. Assign to {0} and {1} the orientation +. Then {0} is an in-
boundary of I and {1} is an out-boundary of I. Consider now the product manifold Σ× I =
[0, 1], where Σ is a compact, oriented 1-manifold without boundary, and let Σ× I = [0, 1] be
equipped with the product orientation from Example 5.12. Then Σ×{0} is an in-boundary
and Σ× {1} is an out-boundary.

6 Cobordisms

By definition a closed manifold is a compact manifold without boundary. This definition
can seem quite counterintuitive, since the unit interval I = [0, 1] consequently is not a closed
1-manifold. But a circle which has no boundary is indeed a closed 1-manifold.

Definition 6.1. A cobordism between two closed (n − 1)-manifolds Σ0 and Σ1 is an n-
manifold M with boundary diffeomorphic to the disjoint union Σ0 t Σ1.

More loosely, a cobordism connects two manifolds, which in turn becomes the boundary
of the cobordism.

Example 6.2. A very simple example of a cobordism is the closed interval, for example [0, 1],
where ∂[0, 1] = {0} t {1}. We have also already looked at cylinders, specifically S1 × [0, 1],
which is a cobordism between S1 × {0} and S1 × {1}. Below are two other examples of
2-dimensional cobordisms:

MΣ0 Σ1 , MΣ0 Σ1 .

Notice that the right cobordism has boundary Σ0 t Σ1, where Σ1 is disconnected: it
consists of two disjoint manifolds. A cobordism need not be connected either. A cobordism
between a circle and the empty 1-manifold could be

Σ0 Σ1 = ∅1M .

Then below is a disconnected cobordism from two circles to two circles:

Σ0 Σ1

M .
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6 COBORDISMS

We think of cobordisms as a form of evolution in time, for example the right cobordism
in the first example above is a circle splitting in to two circles. The cobordism between a
circle and the empty 1-manifold is called the death of a circle since the circle can be seen
as collapsing into a single point. This way of thinking of cobordisms gives rise to a sense
of direction or an arrow describing time. Orientation of cobordisms is therefore natural to
define.

6.1 Oriented cobordisms

If we take a look at Definition 6.1 and now let M , Σ0 and Σ1 be oriented manifolds and
Σ0 and Σ1 be the in- and out-boundary of M respectively, then M becomes an oriented
cobordism. This is a nice intuitive definition, but it is not enough in our case. We want
a cobordism from a given manifold Σ to itself, and this is not possible in the sense of this
intuitive definition, since a manifold cannot be both the in- and out-boundary of a manifold
M .

Definition 6.3. Let Σ0 and Σ1 be two closed, oriented (n − 1)-manifolds. Then an ori-
ented cobordism from Σ0 to Σ1 is an oriented n-manifold M together with two smooth,
diffeomorphic orientation preserving embeddings:

Σ0 →M,

Σ1 →M,

such that Σ0 is mapped onto the in-boundary of M and Σ1 is mapped onto the out-boundary
of M .

We will draw oriented coborisms with the in-boundary on the left and the out-boundary
on the right, and denote a cobordism M from Σ0 to Σ1 as M : Σ0 ⇒ Σ1.

We can now, provided with two diffeomorphisms, embed two copies of a given manifold
Σ in an oriented manifold M , ending up with a cobordism from Σ to Σ.

Provided we find the right diffeomorphisms, we can view a single manifold as a cobordism
between various distinct objects.

Example 6.4. Let I = [0, 1] have orientation induced from the standard orientation of R.
We’ve established through Example 5.16, that with orientation + assigned to boundaries
{0} and {1}, {0} is an in-boundary and {1} is an out-boundary. Thus I defines an oriented
cobordism from 0 to 1. We can generalize this example. Take two arbitrary one-point mani-
folds p0 and p1 with positive orientation +. Then two orientation preserving diffeomorphisms
taking p0 and p1 to {0} and {1} respectively:

p0 → I ← p1,

allow us to use I as a cobordism between p0 and p1.
We can also replace the unit interval with any oriented injective, continuous path M in a
topological space, by taking an orientation preserving diffeomorphism from I to M . By
composing this diffeomorphism with the one before, we get a new cobordism, see figure 7.
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6 COBORDISMS

Figure 7: Construction of new cobordism from the unit interval[Koc03].

Example 6.5. For any two diffeomorphic manifolds Σ0 and Σ1 there exists a cobordism
from Σ0 to Σ1:
Take Σ0 and cross it with the unit interval I with standard orientation and standard ori-
entation of the boundary points. As we have established in Example 5.16, the boundary of
Σ0 × I then consists of Σ0 × {0} as an in-boundary and Σ0 × {1} as an out-boundary. A
cobordism from Σ0 to Σ0 is then constructed by taking the maps

Σ0
∼−→ Σ0 × {0} ⊂ Σ0 × I,

Σ0
∼−→ Σ0 × {1} ⊂ Σ0 × I,

and taking the diffeomorphism between Σ0 and Σ1 we embed Σ1 in the out-boundary of
Σ0 × I:

Σ1
∼−→ Σ0

∼−→ Σ0 × {1} ⊂ Σ0 × I.

Thus via the cylinder construction, we now have a cobordism Σ0 × I : Σ0 ⇒ Σ1. Any
orientation-preserving diffeomorphism Σ0 × I

∼−→ M with M being another n-dimensional
manifold with boundary, will also define a cobordism M : Σ0 ⇒ Σ1.
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7 Category of cobordisms

We have thought about oriented cobordisms as manifolds going from one manifold to another,
so a natural way of defining the category of n-cobordisms would be with oriented (n − 1)-
manifolds as objects and oriented n-cobordisms as morphisms between the objects. We then
need an associative composition and an identity morphism.

An obvious choice of composition would be “gluing”. Take for example closed, oriented
1-manifolds Σ0, Σ1 and Σ2 and 2-cobordisms M0 : Σ0 ⇒ Σ1 and M1 : Σ1 ⇒ Σ2. Then the
composition of M0 and M1 would be gluing the two cobordisms together along Σ1, such that
Σ1 is a manifold inside of the composed corbodism M0M1. The composed corbodism M0M1

is denoted the disjoint union along Σ1 M0 tΣ1 M1 : Σ0 ⇒ Σ2. This potential composition is
obviously associative, as you can imagine gluing to be associative. The problem is whether
the gluing can be equipped with a smooth structure.

It can be shown that M0 tΣ1 M1 in fact can be equipped with a smooth structure unique
up to diffeomorphism (for in depth explanation see [Koc03], chapter 1.3.). We introduce
corbordism classes:

Definition 7.1. Let M and M ′ be two cobordisms from Σ0 to Σ1:

M

Σ0 Σ1 .

M ′

M and M ′ are equivalent if there exists an orientation preserving diffeomorphism ψ : M
∼−→

M ′, such that the following diagram commutes:

M

Σ0 Σ1 .

M ′

ψ'

An equivalence class of this relation is called a cobordism class.

Note that if M and M ′ are equivalent, ψ induces the identity on the boundaries Σ0

and Σ1. The idea is now to compose cobordism classes instead of cobordisms. This notion
of composition turns out to be well-defined and also associative since gluing cobordisms is
associative.

We will from now on only work with the category of 2-cobordisms, but all is true for the
category of n-cobordisms.

Definition 7.2. BordOR
12 denotes the category consisting of closed oriented 1-manifolds as

objects and oriented 2-cobordism classes in the sense of Definition 7.1 as morphisms.

We will denote the objects of BordOR
12 as {0,1,2, ..., n}, where 0 denotes the empty

1-manifold, 1 denotes a circle Σ, and n denotes the disjoint union of n copies of Σ.
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7 CATEGORY OF COBORDISMS

7.1 The monoidal structure of BordOR
12

We can equip BordOR
12 with a monoidal structure: The disjoint union acts as the functor in

the following way. Given two objects, i.e. closed oriented 1-manifolds, their tensor product
is defined to be the disjoint union, which is again a closed oriented 1-manifold. Given
two cobordism classes their tensor product is given by the class of the oriented cobordism
obtained from taking the disjoint union of a representing cobordism from each class. The
unit object is given by the empty 1-manifold ∅.

Given two oriented closed 1-manifolds Σ0 and Σ1 there exist a twist-cobordism,
Σ0 t Σ1 ⇒ Σ1 t Σ0:

Σ0

Σ1 Σ1

Σ0

.

This gives the monoidal category (BordOR
12 ,t, ∅) a symmetric structure.

7.2 Generators of BordOR
12

In group theory we are used to the notion of generators and relations between the generators.
In category theory there is a corresponding notion.

Generators of a symmetric monoidal category is a set of morphisms, such that any other
morphism can be obtained by composing arrows from this set. Relations are equalities
between two ways of writing a given morphism obtained from generators.

Proposition 7.3. The symmetric monoidal category BordOR
12 is generated under composi-

tion and disjoint union by the following six cobordisms:

and .

In the visual sense, by composition we mean gluing cobordisms in series, and by disjoint
union we mean stacking cobordisms on top of each other.

We will not provide direct proof of the proposition above, but we will go over important
results underlying the proof. The proof relies directly on the classification of surfaces, for
which we will quickly remind ourselves of the following: The genus of a compact, connected,
oriented surface is intuitively the number of holes. For a surface with boundary (the reader
can for this imagine the cylinder) the genus is defined as the genus of the closed surface
obtained by sewing discs to the boundaries. For example sewing discs to the in- and out-
boundary of the cylinder gives a closed sausage, which has no holes. Thus a cylinder has
genus 0.

Theorem 7.4 (Topological classification of surfaces, (Kock [Koc03], 1.4.15)). Two con-
nected, compact, oriented surfaces with oriented boundaries are diffeomorphic relative to the
boundary if and only if they have same genus, same number of in-boundaries and same
number of out-boundaries.
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7 CATEGORY OF COBORDISMS

This theorem gives us that the number of in-boundaries, out-boundaries and genus de-
termines the topological type of 2-cobordisms.

Lemma 7.5. Every connected 2-cobordism can be obtained by composition and disjoint union
of the generators , , , , .

This lemma is a consequence of the normal form of a connected surface, which is both
a way of decomposing a connected surface into a number of basic cobordisms and a way to
construct any connected cobordism from the generators listed in Lemma 7.5.

Normal form. Assume we want to construct a connected cobordism with m in-boundaries,
n out-boundaries and genus g. The normal form consists of three parts, the first part which is
a cobordism with m in-boundaries and 1 out-boundary, the middle part which is a cobordism
with 1 in-boundary and 1 out-boundary, and the last part which is a cobordisms with 1 in-
boundary and n out-boundaries. The first part is a composition of m−1 copies of and an
appropriate number of cylinders, such that the output of the first should be connected
with the lower input of the following . The middle part is then a serial connection of
g times , which has genus 1 each. The last part is similar to the first part, it is a
composition of n − 1 copies of and an appropriate number of cylinders, such that the
lower output of the first is connected to the input of the following. Here is an example
with m = 4, n = 3, g = 2:

.

We need that also 2-cobordisms which are not connected can be obtained from the
generators in Proposition 7.3. There is a distinction between a cobordism (seen as a manifold)
being a disjoint union of manifolds and then a cobordism being a disjoint union of cobordisms.
For example the twist cobordism from the symmetric structure in BordOR12 : as a manifold
it is the disjoint union of two cylinders, but it is not the disjoint union of two identity
cobordisms.

For the next result, we introduce permutation cobordisms which are disjoint unions of
compositions of twist cobordisms and cylinders.

Lemma 7.6. Every 2-cobordism factors as a permutation cobordism, followed by a disjoint
union of connected corbordisms, followed by a permutation of cobordisms.

We will quickly go through this lemma with an example. Take a cobordism M which has
two connected components M0 and M1.

M0

M1

M
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7 CATEGORY OF COBORDISMS

We can permute the boundaries by composing with two permutation cobordisms I and O
to the in- and out-boundary respectively:

M0

M1

MI O

We then end up with a cobordism which is a disjoint union of its connected components:

IMO .

The permutations of the in-boundary m is a diffeomorphisms m
∼−→m, which orders the

components of the in-boundary. The diffeomorphisms induces the cobordism I : m ⇒ m.
Likewise the permutation of the out-boundary n is a diffeomorphisms n

∼−→ n, which orders
the components of the out-boundary and induces the cobordism O : n ⇒ n, such that the
cobordism IMO : m⇒ n is a disjoint union of cobordisms.

7.3 Sketch of proof of Proposition 7.3

We want to show that every 2-cobordism can be obtained by composing and taking the
disjoint union of the generators in 7.3. By Lemma 7.6 any 2-cobordism factors into permu-
tation cobordisms and a disjoint union of connected cobordisms. By Lemma 7.5 the latter
connected cobordisms are generated by , , , , .

We still need the permutation cobordisms to be written in terms of the listed generators.
For this we recall the symmetric group Sn on a finite set X of n symbols {x1, ..., xn}, where
the elements are bijections from X to itself, i.e. the elements are permutations of the n
symbols. The symmetric group is generated by transpositions τi : (xi, xi+1), i = 1, ..., n,
that interchange two adjacent letters. Denote the set of permutation cobordisms with n in-
and out-boundaries by PermCob(n). A permutation cobordism is a composition of the twist
cobordism and the cylinder determined by its permutation of the circles. Hence there exists
an isomorphism between PermCob(n) and Sn. Under this isomorphism the transposition
corresponds to the twist cobordism:

...

...
..
.

..
.

i− 1

i

i+ 1

i+ 2

1

n

..
.

..
.

.

Hence the permutation cobordisms can be obtained by composition and disjoint union of
the twist cobordism and cylinders. The classification theorem gives that the factorization of
a 2-cobordism is diffeomorphic to the disjoint union of cobordisms from the factorization,
since it has the same genus and number of in- and out-boundaries.
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7.4 Relations of BordOR
12

We first list a set of relations between the generators, and afterwards use the classification
theorem to prove that they hold. Lastly we will sketch a proof of sufficiency of the relations.

The most obvious relations are the identity relations, using that the cylinder is an identity,
which we will not picture.

We have the following relations from sewing a disc in one of the holes of the pair-of-pants

and and composing with a cylinder:

= = ==,

We have the relations, ’associativity’ and ’co-associativity’:

= =

,

We have the relations, ’commutativity’ and ’co-commuativity’:

= =,

And lastly the ’Frobenius relation’:

==

To prove that the above relations hold, note that they are all of same topological type.
Then the Classification Theorem 7.4 gives that such two cobordisms are diffeomorphic, be-
longing to the same cobordism class.

We have before noted that the twist cobordism turns BordOR
12 into a symmetric monoidal

category together with t as composition and the empty manifold as unit object. This fact
gives rise to a set of relations, the basic relation being the fact that the twist cobordism is
its own inverse:

= .

A bunch of other relations involving the twist cobordism express the hexagon identity (See
Definition 2.5). The hexagon identity states that for any two cobordisms, it does not make
any difference whether we apply the twist cobordism before their disjoint union or after.
Since we will not need these relations, we will just note that they exist and refer to [Koc03]
1.4.35, where the relations are described.
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7.5 Sufficiency of the relations

We have come up with a bunch of relations above, and the question is now whether there are
other relations that we have not found yet. We would like to end up with a set of relations
that are sufficient, in the sense that given any other relation it can be built from our set of
relations. Having a set of relations sufficient to describe all relations in BordOR

12 allows us
to to handle any kind of relation that we encounter, having full control of what generators
and relations that span BordOR

12 .
Having sufficiency of the relations corresponds to being able to transform any given

decomposition of a cobordism to normal form. We can encounter two kinds of cobordisms,
connected and nonconnected surfaces.

The case of connected cobordisms is fairly straightforward. Assuming we have an arbi-

trary decomposition of a connected surface, we can use the listed relations to move the
pieces way to the left. Doing this the pair-of-pants can encounter and vanish due to the
relations of sewing in discs onto the pair-of-pants. Some of the pair-of-pants will get stuck

together and form handles , but can still pass through this handle to the left with

the use of associativity and the Frobenius relations. We can do the same thing moving
to the right.

It turns out, that if twist maps are a part of the decomposition, they can be elimi-
nated using the listed relations and some additional relations stemming from relations of the
symmetric group.

Moving pieces and eliminating twist maps, we end up with a surface on normal form.
The case of nonconnected surfaces are a bit trickier. We need to define a normal form for

nonconnected surfaces, since the one mentioned above is for connected surfaces. It could be
something factorised in three parts: a permutation cobordism, a disjoint union of connected
surfaces in normal form, and a permutation cobordism again. We already know from Lemma
7.6 that there exists permutation cobordisms I and O such that IMO is a disjoint union of
connected cobordisms. From the discussion of the normal form of a connected surface, we
then know that each of the connected components of IMO can be brought on normal form.

The four permutation cobordisms I, I−1 1, O andO−1 can be built of the twist cobordisms
and cylinders, and from using the relations of the symmetric group = and

= (see Kock [Koc03], 1.4.2 and 1.4.40), it can be shown that I−1I =
id and OO−1 = id. We can then write M = I−1IMOO−1, and the components of the middle
part IMO are on normal form generated by , , , and . Then M has been
brought in ’normal form’, where every of the three part can be built from the six generators.
For more details consult [[Koc03], p.73-77].

8 Classification of 2-dimensional TQFTs

A strict monoidal functor between two (strict) monoidal categories is one that preserves all
monoidal structure i.e. the associator and the left and right unitor. A symmetric monoidal

1An inverse M−1 to an oriented cobordism M is an oriented cobordism obtained by changing the orien-
tation of both M and the in- and out-boundaries.
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functor is one that takes the braiding (Definition 2.5) of one monoidal category to the
braiding of the other. The symmetric monoidal functors we use are always considered strict.

Definition 8.1. An n-dimensional topological quantum field theory is a symmetric monoidal
functor Z : (BordOR

(n−1)n,
⊔
, ∅, T ) → (Vectk,⊗,k, σ), where T denotes the twist cobordism

from Section 7.1 and σ denotes the braiding from Section 2.1.

What we get from the definition is that for any two cobordisms M : Σ ⇒ Σ′ and
M ′ : Σ′ ⇒ Σ′′ in BordOR

12 , we get

Z(Σ t Σ′) = Z(Σ)⊗ Z(Σ′) , Z(M tM ′) = Z(Σ)⊗ Z(Σ′)

Z(M tΣ M
′) = Z(M ′) ◦ Z(M) and Z(∅) = k.

We will soon show our main result which establishes a bijectivity between 2-dimensional
TQFTs and commutative Frobenius algebras. Recall first that if (F, µ, u, η, e) is a com-
mutative Frobenius algebra, it must satisfy the following relations: unitality, co-unitality,
associativity, co-associativity axioms and the Frobenius axiom - represented below accord-
ingly:

= =

,

= =

,
=

,
=

,

= = .

All the maps of F are maps between tensor powers of F i.e. F n := F ⊗ · · · ⊗ F︸ ︷︷ ︸
n times

is n copies

of F . It is a convention that F 0 = k. Taking for example the unit map and rotating it
90 degrees, we can associate it with the graphical representation instead. We can do this
with all the maps of F such that are represented in the same graphical way as cobordisms.
One can then easily convince themselves that the relations of BordOR

12 described in Section
7.4 correspond precisely to the axioms for F being a commutative Frobenius algebra.

We have now come to our main theorem.

Theorem 8.2. There is a one-to-one correspondence between 2-dimensional TQFTs and
commutative Frobenius algebras.

Proof. Given a 2-dimensional TQFT Z, one can define A to be the finite vector space that
is the image of 1, i.e. A := Z(1). The idea is now to show that A is a Frobenius algebra.
The monoidality of Z implies that the image of n is An, and the symmetry of Z implies
that the image of the twist cobordism is the braiding σ of the tensor product. Hence the
following definition of the images of the objects of BordOR

12 , twist cobordism and identity
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cobordisms follows automatically from Z:

BordOR
12 → Vectk

1 7→ A

n 7→ An

7→ [idA : A→ A]

7→ [σ : A2 → A2].

Then define the images of the generators as following linear maps:

BordOR
12 → Vectk

7→ [u : k→ A]

7→ [µ : A2 → A]

7→ [µ : A→ A2]

7→ [e : A→ k].

Since Z preserves relations, the relations that hold among the cobordisms in BordOR
12 now

hold among the linear maps defined above. As we noted previously, these relations translate
precisely into the axioms for a commutative Frobenius algebra. Thus A is a commutative
Frobenius algebra.

Conversely let A be a commutative Frobenius algebra, (A, µ, u, η, e). We can then con-
struct a 2-dimensional TQFT Z, by defining the images of the generators under Z in accor-
dance with the above mappings of BordOR

12 → Vectk. We here need to check whether the
relations in BordOR

12 are respected by Z. We must for example check that for the cobordism

= it makes no difference whether we set image to µ(µ ⊗ idA) or (idA ⊗ µ)µ.

But since the relations in BordOR
12 corresponds to the axioms for a Frobenius algebra this

is automatically achieved. Then any relation in BordOR
12 is respected by Z, since this set

of relations is sufficient and we can relate every possible decomposition, turning Z into a
symmetrical monoidal functor. Hence Z is well-defined.

It is clear that the two constructions are each others inverse: Given a 2-dimensional
TQFT Z, we can construct a commutative Frobenius algebra A : Z(1). If we then construct
a 2-dimensional TQFT such that 1 7→ A, this TQFT is equal to Z. This concludes the proof
of our main theorem.
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