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ABSTRACT

This project deals with Lie algebra cohomology. We define it in terms of the Chevalley-Eilenberg
complex, but also consider the equivalent definition of the cohomology groups as certain Ext-
groups. We examine the Lie derivative as a historical motivation for the definition of the
Chevalley-Filenberg complex, and look at the relationship between De Rham cohomology and
Lie algebra cohomology; to this end we prove that we can calculate the De Rham cohomology
of a smooth manifold by considering the complex of differential forms which are invariant under
a smooth action of a compact connected Lie group on the manifold.

RESUME

Dette projekt omhandler Lie-algebra-kohomologi. Dette defineres ved hjxlp af Chevalley-FEilen-
berg-komplekset, men vi ser ogséd pa den akvivalente definition af kohomologigrupperne som
Ext-grupper. Vi ser pa Lie-derivatet som historisk motivation for definitionen af Chevalley-
Eilenberg-komplekset og pa forholdet mellem De Rham-kohomologi og Lie-algebra-kohomologi;
undervejs viser vi, at De Rham-kohomologien af en glat mangfoldighed kan bestemmes ved at
betragte komplekset af differentialformer, der er invariante under virkningen af en kompakt
sammenhaengende Lie-gruppe pa mangfoldigheden.
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PREFACE

INTRODUCTION

Lie algebra cohomology was invented by Claude Chevalley and Samuel Eilenberg in the middle
of the 20’th century in an attempt to compute the De Rhamn cohomology of compact connected
Lie groups; it is dealt with in detail in their paper [3] and heavily influenced by the work of Elie
Cartan. In this project, we define Lie algebra cohomology, consider the historical motivation
for the theory, and look at some examples. In Chapter 1, we go over the definitions of Lie
algebras, Lie algebra modules, and universal enveloping algebras. We go on to define Lie algebra
cohomology in terms of a chain complex and finally show that one can equivalently define
it in terms of derived functors. In Chapter 2, we define the Lie derivative with the aim of
proving the invariant formula for the exterior derivative of differential forms; we see that we can
view differential forms as alternating multilinear maps taking vector fields as variables, which
motivates the attempt to compute the De Rham cohomology of a Lie group in terms of its
Lie algebra (the left-invariant vector fields on the Lie group). In Chapter 3, we explore this
relationship further: We show that if a compact connected Lie group acts on a manifold, then to
compute the De Rham cohomology of the manifold it suffices to consider the differential forms
which are invariant under the Lie group action. As a corollary, we will see that the De Rham
cohomology of a compact connected Lie group is isomorphic to the cohomology of its Lie algebra.
Finally, in Chapter 4, we consider some simple examples.

PREREQUISITES AND NOTATION

This project assumes basic knowledge of the following differential geometry theory: Vector fields,
differential forms, De Rham cohomology, Lie groups, and Lie algebras. We refer to [11], 8] [12]
for definitions and the basic theory. To make sure we agree on definitions and notation and have
the relevant basics fresh in the memory, we will here briefly recap the main things needed to
understand this text:

Skm € Sk4m will denote the set of permutations o € Sk, satisfying o(1) < --- < o(k) and
ok+1)<---<o(k+m).

We will assume that all manifolds are smooth. Let M, N be manifolds. For a smooth map of
manifolds, f: M — N, we denote the derivative by Df: TM — TN. We may alter between
the notations D, f(v) and D, , f for the derivative of f at p € M in the direction v € T,M.
For f € C*°(M), we will sometimes write df instead of Df, where df € Q'(M), is the exterior
derivative of f, and df, = D, f.

In general, for a ring R and an R-module A, we denote the dual space as A* = Hompg(A, R).
Given a vector space V over a field K, the exterior algebra of V, A(V), is the quotient of
the tensor algebra, T'(V'), (see Definition Chapter |1y by the ideal Z = (v®@ v | v € V).
The exterior product is defined as v A w = [v ® w]z. The k’th exterior power of V, denoted
by AF(V), is the subspace of A(V) spanned by elements of the form vy A - Awg, v; € V.
The exterior product is then a bilinear map A: AF(V) x A™(V) — A*™(V). Given a map
f:' V. — W of vector spaces, we can define a map of K-algebras A(f): A(V) — A(W) by

A(f)(vr A Awvg) = for) Ao A fug).
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A k-linear map f: V* — K is said to be alternating, if f(vy,...,v;) = 0 whenever v; = v; for
some i # j. If we define the alternating algebra of V| Altk(V), as the set of alternating k-linear
maps V¥ — K, and the exterior product, A: Alt*(V) x Alt™(V) — Alt*™™(V), by

WA 77(1}17 <o 7Uk+m) = 2 w(vo(l)v s >U0(k))n(va(kz+l)v s >U0(k+m))a
O’EShm

then we have a natural isomorphism of vector spaces
@: Ak(V)* — Altk(V), O(F)(v1,...,0) = F(vp A=+ Avg).

If, in addition, V is finite dimensional, then A*(V)* and A*(V*) are naturally isomorphic via
the map 1: A*(V*) — AF(V)* given by

YN Af) o A Ao = D signo f1(ve) - FeUoge)-

€Sk

Let M be a manifold of dimension n. We opt for the definition of differential k-forms on M as
smooth sections

w: M — AM(M) = | AMT,M),
peEM

where A¥(M) is equipped with the natural smooth structure such that the projection onto M
is smooth — the charts are of the form

U x RG) = AR (M), (2,0) = AF((D,071)") 0 p(v) € AR(T,M*),

for a chart §: U — M, and an isomorphism ¢: R(:) — AF((R™)*). This definition is easily seen
to be equivalent to the one given in [§], namely that a differential k-form is a family, {wy}perr, of
alternating k-linear maps T, M* — R, such that the pullback 0*w: U — AF(U) = U x A*((R™)*)
is smooth for all charts §: U — M. The set of differential k-forms on M is denoted by QF(M).
Given a chart §: R® — U C M, the maps x; := pr; 0 #~': U — R are local coordinates on V/,
where pr;: R” — R is projection onto the i'th coordinate.

Consider the differentials dz;: U x R™ — R, which we shall consider as differential 1-forms on U
by evaluating in the first coordinate, dz;: U — (R™)* = AL((R")*). For p = 0(x), {D,0(e;)}*,
form a basis of T,M with dual basis {dz;(p)}}'_, of T,M*, where (e;) is the standard basis
of R™. Thus {dz,1)(p) A+ A dze)(p)}oes, ., form a basis of QF(T,M*). Hence any map
w: M — A¥(M) can be written locally on U as

w= Z fo dl’g(l) VANRERIVAN dm(,(k),

0ESk,n—k

for some functions f,: U — R, and w is smooth on U if and only if all the f, are smooth.
Moreover,

fo(p) = wP(Dﬂﬁe(ea(l))a s 7D339(e<7(k)))7 for p = 0(1’)

We will sometimes write dzy 1= drgq) A+ A dzgy ).

A smooth vector field on M is a smooth section of the tangent bundle, X: M — TM. As
we are only interested in smooth vector fields, we let the smoothness assumption be implicit
from now on in. We denote the set of vector fields on M by X(M). One can identify a vector
field with its action on C*°(M): for X € X(M) and f € C°(M), X(f): M — R given by
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X(f)(p) = Dy xp)f is smooth. X(M) is a Lie algebra when equipped with the commutator
bracket with respect to the composition in End(C*(M)).

We may, for the sake of clarity, alter between the notations f(p) and f, for evaluation at p.

As usual, a hat denotes that an element is omitted, for example

(gvl,...,nﬁi,...,mn):(xl,...,xi_l,xi+1,...,xn),
TIAN AN ANy =1 N  ANTim1 ATjr1 A+ A Ty

N denotes the natural numbers including 0. We will write N for N\ {0}.
We denote De Rham cohomology by Hj,(—).
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1 LIE ALGEBRAS,
UNIVERSAL ENVELOPING ALGEBRAS,
AND LIE ALGEBRA COHOMOLOGY

In this chapter we briefly recall the definitions of Lie algebras and their universal enveloping
algebras. We go on to define Lie algebra cohomology using the Chevalley-Filenberg complex,
and finally show that we can equivalently define it as the right derived functor of the invariants
functor.

1.1 DBASICS

Let K be a field.

DEFINITION 1.1.1. A Lie algebra over K is a K-vector space g equipped with a bilinear map
[—,—]: g x g — g, called the Lie bracket, satisfying

1. [X,Y]=—[Y,X] for all X,Y € g (anti-symmetry).
2. [X,Y],Z] = [X,[Y, Z]] - [Y,[X, Z]] for all X,Y,Z € g (Jacobi identity).

A Lie algebra homomorphism is a linear map between Lie algebras, ¢: g — b, which respects
the Lie bracket, i.e. ¢([z,ylg) = [¢(z), ¢(y)]y, for all z,y € g.

DEFINITION 1.1.2. Let R be a commutative ring. An associative R-algebra is an R-module, A,
equipped with an associative multiplication operation with identity which respects the R-module
structure, that is the multiplication map, A x A — A, is R-bilinear.

Remark 1.1.3. Given an associative algebra A over a field K, A may be turned into a Lie
algebra by taking the commutator with respect to the associative product as the Lie bracket.
For example, for any vector space V', the space of endomorphisms of V', End(V'), becomes a Lie
algebra with the commutator bracket.

Remark 1.1.4. If G is a Lie group, then the tangent space at 1 € GG, T1G, is a Lie algebra with
the Lie bracket defined as follows: Define Ad: G — GL(T1G), g — D11y, where ¢g: G — G is
conjugation by g; next, define ad := D1Ad: T1G — End(T1G). Finally, set [z,y] := ad(x)y for
x,y € T1G. With this g := T1G becomes a Lie algebra — the Lie algebra of G. One can also
identify g with the set of left-invariant vector fields on G, with Lie bracket the usual commutator.

DEFINITION 1.1.5. Let g be a Lie algebra. A g-module is a K-vector space V together with
a representation p: g — End(V) of g, i.e. pis a Lie algebra homomorphism. In other words,

a g-module is a K-vector space V and a linear action of gon V, —.—: g x V — V satisfying
[X,Y]v=X(Yv)-Y.(Xwv) foral X, Y € g,veV.

ExamMpLE 1.1.6. Examples of g-modules are
1. K with the trivial action, g — End(K) the zero map.

2. g itself with the adjoint action; ad: g — End(g), ad(z)(y) = [z, y].

4
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3. If g is the Lie algebra of a Lie group G then C*°(G) is a g-module: We identify g with the
set of left-invariant vector fields on G, and these in turn with their action on C*°(G).

DEFINITION 1.1.7. Let g be a Lie algebra over K. The universal enveloping algebra of g is
an associative K-algebra U(g) and a Lie algebra homomorphism ¢: g — U(g) satisfying the
universal property pictured in the diagram below, where A is an associative K-algebra, ¢ is a
Lie algebra homomorphism and % is a homomorphism of associative K-algebras:

ProPOSITION 1.1.8. Any Lie algebra has a universal enveloping algebra.

To prove this, we construct the universal enveloping algebra directly. This will be done in a few
steps with some intermediary results.

DEFINITION 1.1.9. Let V be any K-vector space. For n € N.g, set T"(V) = V®" and set
T°(V) := K. The tensor algebra of V is T(V) := @,y T"(V), with multiplication deter-
mined by the canonical isomorphisms T"(V) ® T™(V) — T™"™(V). There is a canonical
linear map V' — T(V) mapping into the second term of the direct sum, T'(V) = V. For
any linear map, f: V — V' there is an induced map T(f): T(V) — T(V’) determined by
T(fHv1 @ @uy) = f(v1) @ - @ f(ug).

PrOPOSITION 1.1.10. The tensor algebra satisfies the following universal property, where A is
an agsociative algebra, ¢ is linear and v is a homomorphism of associative K-algebras:

v 4

PrROOF. Clearly, T(V) is an associative algebra. Given ¢: V — A, define ¢: T(V) — A by
V] ® - Qup = p(v1) - o(vp). O

Remark 1.1.11. T is a functor from the category of K-vector spaces to the category of associative
K-algebras. It is left adjoint to the forgetful functor mapping an algebra to its underlying vector
space.

Now, let g be a Lie algebra over K, and consider the ideal
I=(@oy-y@z—[ry]|z,yecg)<T(g)
ProposITION 1.1.12. U(g) := T(g)/Z is the universal enveloping algebra of g.

PROOF. There is a canonical map ¢: g — U(g), namely the composition g — T'(g) — U(g).
This is a Lie algebra homomorphism by construction. Now, given an associative K-algebra A
and a Lie algebra homomorphism g — A, consider the diagram
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T(g)
e
g — Ul |O
\

2
o l()
A

The map (1) exists and is unique by the universal property of the tensor algebra, and (2) exists
and is unique by the universal property of the quotient, as ¢ is a Lie algebra homomorphism,
so it is trivial on the generators of 7. (]

Remark 1.1.13. The Birkhoff-Witt theorem (see [7]) implies that the map ¢: g — U(g) is injec-
tive, so g can be seen as a subspace of U(g).

Remark 1.1.14. U is a functor from the category of Lie algebras over K to the category of
associative K-algebras. It is left adjoint to the forgetful functor mapping an associative algebra
to its underlying vector space equipped with the commutator bracket.

ExamMPLE 1.1.15.

1. If g is abelian, then the universal enveloping algebra of g is the symmetric algebra, Sym(g)
— the free commutative algebra over g.

2. If g is the Lie algebra of a Lie group G, then one can identify g with the left-invariant first
order differential operators on G (the vector fields on G), and the universal enveloping
algebra can be identified with the set of left-invariant differential operators on G of all or-
ders. This was how the universal enveloping algebra was originally introduced by Poincaré
in 1899 (See [4] for details on this example).

Remark 1.1.16. The universal property of the universal enveloping algebra implies that a K-
vector space I' is a g-module, if and only if it is a U(g)-module in the usual sense, when viewing
U(g) as aring. If p: g — End(I") is a Lie algebra homomorphism, then the ring homomorphism
U(g) — End(I') is determined by [z1 ® - -+ ® ] = p(x1) 0 - - 0 p(xy,).

1.2 LIE ALGEBRA COHOMOLOGY

In this section, we define Lie algebra cohomology. To this end, we define the Chevalley-Eilenberg
chain complex. Let K be a field, g a Lie algebra over K, and I" a g-module. Set

C"(g,T) := Homg (A"g,T), n > 0, C%g,T) :=T.

That is, C™(g,T") is the set of alternating n-linear maps g — I'. These are the n-cochains of the
Chevalley-Eilenberg complex. We define the differential d: C"(g,T') — C"*1(g,T) as follows:
Given ¢ € C"(g,T), let de € C""1(g,T) be given by

n+1

de(z1, ..., Tny1) ZZ(—l)Hlxi-C(ﬂ?l, coy @iy, Tng1)
=1

+ Z (—1)i+jc([xi,xj],x1,...,.ﬁi,...,ﬁcj,...,xn_ﬂ),
1<i<j<n+1
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for all z1,...,2p41 € @, where x;.c(z1,...,%i,...,2ny1) denotes the action of x; € g on
c(x1,...,Tiy ..., Tnt1) € I according to the g-module structure of I'. A long and tedious calcu-
lation shows that d = 0 (see Proposition [A.1.1]).

DEFINITION 1.2.1. (C*(g,T),d) is called the Chevalley-FEilenberg complex of g with coeflicients
I, and the cohomology of g with coefficients in I';, H*(g,T"), is defined as the homology of the
Chevalley-FEilenberg complex.

We will give examples of Lie algebras and their cohomology in Chapter [l

1.3 DERIVED FUNCTOR APPROACH

We will now look into a more categorical approach to Lie algebra cohomology. Let K be a field,
g a Lie algebra over K. We will show that the Lie algebra cohomology is the right derived
functor of the invariants functor from the category of g-modules to itself:

I'T—TI%={yel|zy=0foralzeg}

Note that for any two g-modules, V and W, with representations p: g — End(V), 7: g — End(W),
we have

Homyy ) (V, W) = {T € Homg (V,W) | T o p(x) = n(x) o T for all z € g}.
This follows directly from the U(g)-module structure on V' and W:

T([z1® - @an]v) =T(p(z1) 0+ 0 p(xn)(v)),
[1® - @ 2] T(v) = 7(x1) 0+ om(ay,)(T(v)),

for any element of the form [21 ® - - ®x,] € U(g), v € V. Hence, if I is a g-module, then, since
Homp (K,I') = T, T+ T(1), we have that I'" = Homy (4 (K,I"), where g acts trivially on K.
This isomorphism is natural, so the two functors, I and Homg (g (K, —), are isomorphic.

THEOREM 1.3.1. The Lie algebra cohomology of g with coefficients in I is the right derived
functor of I and can also be described as an Ext-functor:

H*(g,T) = Bxt}y (K,T) = R'I(T).

PRrROOF. By the above observations, I(—) = Homyg) (K, —), and thus Exty, (K, T) = R*I(T).
Now, we calculate Exty(g) (K, ') by finding a projective resolution of K. Consider the sequence

— NgeU(g) — A’geU(g) — g@U(g) — U(g) — K
where we tensor over K, and A"g® U(g) — A" lg® U(g) is given by

(1 A Axp) ®u»—>z UL Ao NB A ATy @ T
+ > D (e Am A AEA NG A AN a,) @,
1<i<j<n

here we identify A%(g) ® U(g) = K ® U(g) = U(g) and Alg = g, and U(g) — K is the
augmentation map induced by the zero map g — K.
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This is a free and thus projective resolution of the trivial U(g)-module K: Indeed, A™(g) is a
free K-module, being a vector space over K, and therefore A"(g) ® U(g) is a free U(g)-module.
Now, for exactness of the sequence: This is a long and technical proof, so we have opted for
a sketch of proof instead. For the fun of it, we prove exactness at the first two terms of the
sequence: g® U(g) — U(g) — k — 0. The augmentation map is surjective, as it restricts to the
identity on K = g®° C U(g), and its kernel is the image of the subspace Drene, g®" C T(g) in
U(g); this is equal to ¢(g)U(g) C U(g), which is exactly the image of the map g U(g) — U(g),
T ® u — xu, given above. So the first part of the sequence is exact.

Now, to prove exactness of the complete sequence, first note that the composite of two succesive
maps is zero by calculations similar to those used for proving that d?> = 0 in the Chevalley-
Eilenberg complex. Hence, it is a chain complex, and we can prove exactness by proving that
its homology is trivial. To do this, one takes a filtration of the complex, Fp C F; C --- C C,
where C' denotes the complex defined above — the Birkhoff-Witt theorem ([7]) is used to define
this filtration. Then one defines complexes Wy, := F}/Fj_1 and shows that these have trivial
homology by constructing a contracting chain homotopy. The short exact sequence of complexes
0 — Fyr_1 — Fr — Wi — 0 induces a long exact sequence in homology, which yields isomor-
phisms H*(Fy) = H*(Fj—_1). By definition of the filtration, Fp is the complex 0 - K — K — 0,
which has trivial homology, implying that all the F}, have trivial homology. Now, as homology
respects direct limits in (g Mod, it follows that C' = \J Fi has trivial homology, as desired. We
refer to [6] for the complete proof. This complex is called the Koszul complex.

Finally, we apply Hom(g)(—,T') to the resolution and note that the map

Homy ) (A"g ® U(g),I') — Homg (A"g,T') = C"(g,T),
givenby T T, withT(ziA--Axy)=T(x1 A Azy)@1)

is an isomorphism of chain complexes, which implies the desired result, namely that



2 HISTORICAL MOTIVATION I:
THE LIE DERIVATIVE

In this chapter we define the Lie derivative. It will not be used directly when dealing with Lie
algebra cohomology, but it provides an important motivation for the definition of Lie algebra
cohomology given in Chapter 1. More specifically, we will prove the invariant formula for the
exterior derivative of differential forms, which is entirely dependent on the vector fields on
the manifold in question (Proposition . Here we will see what originally motivated the
definition of the Chevalley-FEilenberg complex.

2.1 TENSOR FIELDS

Let M be a manifold of dimension n.

DEFINITION 2.1.1. Set T"*(M) := Upep (TpM)"*, where V" = (VEKT) @ (V*®K3) for any
K-vector space V, and by convention V&0 = K. We give T"*(M) the natural smooth struc-
ture such that the projection T™*(M) — M is smooth — this is a smooth vector bundle. A
tensor field on M of type (r,s) is a smooth section S: M — T™*(M). We shall denote the
set of tensor fields of type (r,s) on M by T™*(M), and the set of all tensor fields on M by
T(M) = D, enyT"*(M). This is a C°°(M)-module with the obvious operations; moreover,
it has a multiplication operation, namely the tensor product: If S,T € T (M) of type (r,s)
respectively (r/, '), then S® T, given by p — S(p) ® T'(p) is a tensor field of type (r+1/,s+5'),
where we use the canonical isomorphism A® B = B ® A.

PROPOSITION 2.1.2. The set of differential k-forms on M, QF(M), is isomorphic as a C™°(M)-
module to the set of alternating C°°(M)-multilinear maps X(M)* — C°°(M), where the scalar
multiplication in both cases is given by pointwise multiplication. In particular, Q!(M) = X(M)*.

PROOF. Given w € QF(M), define @: X(M)* — C>(M) by
(X1, ..., Xk)(p) = wp(Xa(p), ..., Xk(p)), for X; € X(M), pe M. (2.1)

w is alternating and C°°(M)-multilinear, as w, is alternating and R-multilinear for all p € M.
The map w(X1,...,Xg): M — R is equal to the composite

M XN ARV 0y TM Xy -+ xag TM S5 R,

where the second map is the evaluation map. Locally the evaluation map is a (k + 1)-linear
map of finite-dimensional vector spaces, Alt*(R™) x (R")* — R, and as such it is smooth. Then,
since w: M — A¥(M) is smooth, and all the X;: M — TM are smooth, we conclude that
w(X1,...,Xk) € C®(M).

Conversely, given n: X(M)* — C*°(M) alternating and C>° (M )-multilinear, define

fi: M — A*(M) by (v, .. o) = (X1, ..., Xp)(D),

for some choice of X; € X(M) with X;(p) = v;. Such vector fields always exist, but we must show
that the definition is independent of the choice of vector fields: n(X1, ..., X%)(p) depends only on

9
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the values of the X; at p. By multilinearity of 7, it is enough to prove the case k = 1, and it suf-
fices to prove that if X (p) = 0, then n(X)(p) = 0. To see this, let : R™ — U be a chart around p,

-1
and define vector fields on U, X;: U — T'M, as the composites U LR s R x {ei} N TM,
fori=1,...,n. As {D0(e;)};-; is a basis of Ty M, we can uniquely write

n n
X(q) = Zangq(y)H(ei) = ZagXi(q), for all ¢ € U, and some a! € R.
i=1 i=1

Defining f;: U — R by fi(q) = al, we see that f; € C°(U), as X and the X; are smooth.
Assume now that X (p) = 0; then fi(p) =0 for all i = 1,...,n. Hence,

n(X)(p) = _ filp)n(Xi)(p) = 0.
=1

We conclude that 7 is well-defined. Moreover, 7, is R-linear and alternating for all p € M. To
see that it is smooth and thus a differential k-form, let #: R™ — U be a chart on M with local

—1
coordinates 1, ..., T,, and define vector fields, X;: U LR R x {e;} e, TM, as above.
Then we can write 7 locally as

v = Z JodToy N+ N dTo(p), for fo =n(Xoay, - Xow)) -

UESk,nfk

(Here we skip some technicalities: We can extend the X; to vector fields on M by multiplying
with a suitable bump function; to do this, we may have to shrink U a little.) Then f, € C*(U),
so 7 is smooth.

It is clear that the maps w +— @ and n +— 7 are each other’s inverses. U

Remark 2.1.3. In view of the above proposition, we will from now on in many cases simply
interpret w € QF(M) as an alternating k-linear map of C°°(M)-modules X(M)* — C°(M).

We also need the following application of a version of the Serre-Swan Theorem:
LEMMA 2.1.4. QY (M) and X(M) are finitely generated projective C°°(M)-modules.

Proor. We refer to Theorem 11.32 of [2]. O

COROLLARY 2.1.5. The set of smooth vector fields on M, X(M), is isomorphic as a C*°(M)-
module to the set of C°°(M)-linear maps Q!(M) — C*°(M).

PrOOF. By Proposition , QY (M) = X(M)*. Being finitely generated projective, X(M) is
canonically isomorphic to its double dual (cf. Proposition [A.2.1)). Hence, X(M) = Q'(M)*, as
desired. Tracing out the isomorphisms involved, we see that the isomorphism X(M) — Q(M)*
is explicitly given by X X, with )?(w) = w(X) = wy(X(—)), where & is defined in in
the proof of Proposition 2.1.2]

PROPOSITION 2.1.6. The set of type (r,s) tensor fields on M, T"™*(M), is isomorphic as a
C®(M)-module to the set of C°°(M)-multilinear maps Q' (M)" x X(M)* — C>(M).
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PROOF. In general, we have T"%(M) ®ceo(rr) T (M) = T7+"5+5' (M), by definition of the
product in T (M). In particular, T"*(M) = TLO(M)®" @ TOL(M)®* = X(M)®" @ Q1 (M)®*,
where we tensor over C°°(M) (this will be implicit for the remainder of this proof). Hence, by

Proposition and corollary
TH (M) = X(M)®" @ Q1 (M)®* = (Q1(M)*)™" @ (X(M)*)®.

As X(M) and QY(M) are finitely generated projective, we have

(QN(M)®" @ X(M)®%)" (cf. Proposition
{QY (M) x X(M)* — C®(M), C(M)-multilinear},

12

(M) @ (X(M)*)®*

1

where the last isomorphism comes from the universal property of the tensor product. For
r = s = 0, the first two tensor products are just C°°(M) which is canonically isomorphic to
{x = C>*(M)}. g

Remark 2.1.7. We will henceforth readily switch between the identifications below and use the
one most suitable to the given situation:

TH (M) = (X(M)®") @ (Q1(M)®%) = (Q'(M)*™") @ (X(M)"®*)
= [QYM)" x X(M)* — C=(M), C°°(M)-multilinear}.
The explicit isomorphism
(X(M)®) @ (L (M)®%) = {QH(M)" x X(M)* — C>®(M), C>(M)-multilinear}
isgiven by X1 ® - X, @1 @ - ®Q@ws — Wy, ., where

\IlXiywi (7717 cees Ny Yla cee 7Y;) = 771(X1) e nT(XT)wl(Yl) o 'WS(YYS)'

Remark 2.1.8. It follows almost directly from the definition, that we can view QF(M) as a
submodule of T%*(M) — this can also be seen by Propositions and . From this we
deduce that Q*(M) is spanned as a C°°(M)-algebra by Q(M): To see this, note first that
the symmetric group on k symbols, Sy, acts on the set of type (0,%) tensor fields, TF(M),
by 0.8(X1,..., Xk) = S(Xo01)s -+, Xo)), for o € Sy, S € TOk(M); on QF(M) this is simply
acting by sign. Now, given w € QF(M) C TO*(M), we can write w as a linear combination of
tensors w1 @ -+ @ wg, w; € QH(M). fw =31, flwl @ @w, wj- e QY(M), fi e C™(M),
then for any o € Sj.

w(Xy, ..., Xp) = sign (0) w(Xoq1), -5 Xo()

= sign (o) f'wi(Xoa)) - wi(Xow)

i=1
n . . .
=1
Hence,
n n
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Interpreting QF(M) as a submodule of 7%#(M) does not, however, relate the multiplication
operations in the two modules, A respectively ®. We shall instead interpret QF(M) as a quotient
of TOR(M). We claim that QF(M) is the largest quotient of 7% (M) on which S, acts by sign,
i.e. it satisfies the universal property pictured in the diagram below, where A is a C*°(M)-
module on which Sy acts by sign and all maps are equivariant:

TOK(M) —» Q)

-

pl T
=
A

w

The map q: TO¥(M) — QF(M) is given by w1 @ - - @ wy, = w1 A -+ Awg, w; € QY(M). This is
surjective, as we observed above that QF(M) is spanned by elements of the form wy A - - - A wy,
w; € Q(M). Note that ¢ has a section, namely the map

s: QF(M) — 7O (M),  given by s(wi A -+ Awg) i Z Sign (0) Wy (1) @« + + ® We(k)-
’ oESK

Now, given p as in the diagram above, set ¢ := ps. Clearly, this is the unique map which makes
the diagram commute, so all we need to show, is that it is surjective. By linearity, it suffices to
show that ¢ hits p(w; ®- - -@wy) for any w1 ®- - -@wg € TOF(M). Given w1 ®---@uwy € TOK(M),
we see that

o(wr A Awg) i Z sign (0) p(wo(1) @ -+ @ Wo(k)) ] Z sign (o) o.p(w @ -+ @ w)
! €Sk . oS,
1 .
=5 D (sign (0))*p(w1 ® -+ @ wi) = plwr @ -+ @ wy).
) o€Sk

As ¢ respects the multiplication operations, we get the desired relationship between them. In
view of this observation, we will often interpret a differential k-form as a vector field of type
(0, k), even though we are in fact looking at an equivalence class of vector fields.

2.2 'THE LIE DERIVATIVE

Let M be a manifold.

DEFINITION 2.2.1. Let X € X(M). The Lie derivative with respect to X is the type-preserving
map Lx: T(M) — T (M) satisfying the following axioms:

1. Lx is R-linear.
2. Lx(f) = X(f) for any f € C®(M) = T%(M).
3. Lx(S®T)=(LxS)®@T+ S® (LxT) for any S,T € T(M). (Leibniz’ rule)

4. Lx(n(Y)) = (Lxn)(Y) + n(LxY) for any n € Q'(M), Y € X(M).
(Leibniz’ rule with respect to contractions)

5. Lx commutes with the exterior derivative on C®°(M) = Q°(M).

Before proving existence of such a map, we will show that given it exists, it must be unique.
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ProPOSITION 2.2.2. If the Lie derivative exists, it is unique.

ProoF. Let X € X(M). Assume that Lx: T (M) — T (M) is type-preserving and satisfies
axioms 1-5 of Definition Being type-preserving and R-linear, it suffices to show that it is
unique on 7"*(M) for any choice of r, s. Now, the fact that 775(M) = (X(M)®") @ (Q(M)®*)
and axiom 3 reduces the problem to showing that Lx is unique on X(M) and QY(M). If Ly is
unique on X(M), then axioms 2 and 4 imply uniqueness on Q'(M). So we just need to show that
Lx:X(M)— X(M) is unique. We shall identify X(M) with its action on C*(M): Z € X(M)
defines a map C*°(M) — C*°(M), g +— Z(g) given by Z(g): p + Dy, z(,y 9. Note that for any
g € C®(M) and Z € X(M), we have Z(g) = dg(Z), where dg € Q' (M) = X(M)*. Using this
and axioms 1, 4 and 5, we see that for Y € X(M) and f € C*(M),

XY(f) = X(Y(f)) = Lx(Y(f) = Lx(df (YV)) = (Lxdf)(Y) + df (LxY)
= (d(Lx [))Y) + (LxY)(f) = d(X(/)(Y) + (LxY)(f)
=Y (X(f) + (LxY)(f) = YX(f) + (LxY)(f)-

Hence, LxY = [X,Y]. In particular, Lx is uniquely given on X(M). O
We will need the following definition in the existence proof:

DEFINITION 2.2.3. Given a vector field X € X(M) and a diffeomorphism f: M — N, the
pushforward of X along f is the vector field f, X :=df o X o f~1 € X(N).

DEFINITION 2.2.4. Given a diffeomorphism f: N — M, define a map f*: 7(M) — T(N), such
that f* is R-linear andf*(S® T) = f*S ® f*T for any S,T € T(M), and such that f* agrees
with the usual pullback on C*°(M) and Q' (M), and f*X = f,1X for X € X(M). This uniquely
determines f*, and we define the pullback of a tensor field S € T(M) along f as f*S € T(N).

PROPOSITION 2.2.5. Given X € X(M), there exists a type-preserving map Lx: T (M) — T (M)
satisfying the axioms of Definition 2.2.1]

ProOOF. Let S € T™¥(M). We will define LxS locally. Let ¢ € M, and let U C M be a
chart with ¢ € U. Consider a bump function A\: M — R such that suppA C U is compact
and there is an open V' C U such that ¢ € V and A|y = 1; then AX is a compactly supported
vector field on U, and therefore complete. Let ®: U x R — U denote the flow of AX, and define
o1 = Plyyqy: U — U for all t € R; {p1}ier is a one-parameter group of diffeomorphisms on
U, and ¢ = idy. The map (t,p) — (¢;5), defines a smooth map R x U — T"%(M).

Define LxS € T™*(M) by

d, .
(LxS)p:= %(‘Pts)pt o’ forpe V.

Uniqueness of flows implies that ®|y g coincides with the flow of X on V| which in turn implies
that LxS is well-defined.

It is enough to show the that the axioms hold locally, so we fix a U,V and {p;}icr as above.
Clearly, Lx is type-preserving and R-linear, as the pullback is R-linear. Note that

d d
(Lxflp= (@i flp|,_ = 5 Foe0)],_ = Dpxpf = X()p),

t=0 dt t=0

for all p € V. Hence, Lx f = X(f), so axiom 2 holds.
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Let S,T € T (M) of type (r, s) respectively (1/,s"). Then, using the chain rule and the fact that
— @ —: TP (T, M) x T"*(T,M) — T"+""5+5'(T,,M) is R-bilinear, we have that

d, . d, . «
Lx(S®T),= @(got (S@T))p‘ = &(%S)p ® (SDtT)p‘

= t=0
d d
— L(pt8 ) A ( rg LT ’
dt((pt )p 0 ® (‘Pt )p o + (‘Pt )p 0 ® dt((pt )p o

=(LxS)p, ®@T,+ Sp ® (LxT)y, forall pe V.

So axiom 3, Leibniz’ rule, holds.

Let c: THY(M) = X(M) ® QY(M) — T%9(M) = C>°(M) denote the contraction given by
(Y ®w) = w(Y). We claim that ¢ and Lx commute: Indeed, ¢ commutes with the pullback
(this is easily checked), and thus, as c is linear

LyeY 90) = Sgi(ely 0w))|_ = Selei(¥ ow))|_ =ebui(v ow)|_ = cLy(¥ @w)

Using that we have already proved axiom 3, it follows that
Lx(w))=clx(Y®w)=c(Y ® Lyw+ LxY ®w) = (Lxw)(Y) +w(LxY),

and thus axiom 4 holds.
To prove axiom 5, we need an intermediary result, namely that LxY = [X, Y] forany Y € X(M).
Recall that Y(f) = df(Y) for f € C®(M), Y € X(M). Given Y € X(M), note that
dpi o (p—t)Y =Y oy, as 4,0;1 = ¢_¢, and thus for any f € C°(M)

((p=t)Y)(f o) =df odpro(p—t)Y =df oY oo =Y (f) 0 1.

Given p € V, note that the map e: T,M x C®°(M) — C>®(M), (v,f) = Dpof = Y(f)p,
Y € X(M) with Y(p) = v, is an R-bilinear map of finite dimensional vector spaces. Differenti-
ating both sides of the equation (Y'(f) o vr)p = (((0—t)+Y)(f © ¢1))p, we get

-2 = L (e ¥ o ply
= G0y foe)|_ =e(Ger o) f) e (Y growl )
= (XY ), ) + €Y (0), X()) = (LY )y + V(X))

This holds for all p € V;; thus LxY = [X, Y], as desired. Using this and axioms 1 and 4, we see
that for f € C*°(M),

Lx(df)(Y) = Lx(df(Y)) — df (LxY)
= XY (f) - [X,Y](f) =Y(X(f) =Y(Lxf) = (dLx f)(Y).

Thus, as desired, Lx commutes with d on C*°(M), axiom 5. O

X (D)= G () op0y)

t=0 ‘t:O

DEFINITION 2.2.6. Given X € X(M), Lx: Q*(M) — Q*(M) is given by
Lx(wi A ANwg) :=q(Lx(w1 ® -+ @ wg)).
This is well-defined, as we have a section of ¢, and it is the unique type-preserving map satisfying:

1. Lx is R-linear.



Chapter 2. Historical Motivation I: The Lie Derivative 15

2. Lx(f) = X(f) for any f € Q°(M) = C>(M).

3. Lx(wAn) =(Lxw)An+wA (Lxn) for any w,n € Q*(M).

1 Ly((Y)) = (Lxn)(Y) + (X, Y]) for any n € QL(M), ¥ € X(M).

5. Lx commutes with the exterior derivative on Q°(M) = C>(M).
It is this Lie derivative, which we will need.

Remark 2.2.7. The definition given in the above existence proof could also be used to directly
define the Lie derivative and is important in understanding the geometric interpretation: It
measures the change of a tensor field along the flow of the given vector field X. Another
interpretation is the following: In general, an action of a Lie algebra g on a manifold M is a Lie
algebra homomorphism g — X(M) such that the corresponding map g x M — M is smooth.
Such an action induces an action on QF(M): Let X € g, w € Q*(M), and let Vx with flow {¢;}
denote the vector field corresponding to X under the given action. Then t — (pjw), is a smooth
curve in A(T,M*), and we define (X.w), = %(cpfw)ph:o. There are of course some details left
to prove to see that X.w € Q*(M), but we will not go into this here. The point is that the Lie
derivative is simply the action of X(M) on 2*(M) induced by the trivial action of X(M) on M,
id: X(M) — X(M), Lx(w) = X.w. We have opted for the algebraic definition for the sake of
clarity and less technicalities.

We go on to prove some properties of the Lie derivative.

DEFINITION 2.2.8. Given X € X(M), define a map ix: Q*(M) — Q*~1(M), called the interior
product (with respect to X) by ixw(X1,...,Xx) = w(X, X1,...,Xy), for any w € QF1(M),
X; € X(M), k> 1, and ixf =0, f € QM) = C=(M).

LEMMA 2.2.9. For X € X(M), w € Q¥(M), n € Q™(M), we have
x(wAn) = (ixw) An+ (=1)"w A (ixn).
ProOOF. For Xy,..., Xpim_1 € X(M), we have

X(w A "7)(X17 v an+m71) = (w A n)(X7 le v 7Xk+m71)
= > sign(0)w(X, Xoy - Xoo ) Ko@) - Xo(erm—1))

Jesk 1,m
+ Y (=DFsign (0) w(Xoqys - - Xo)N(X Xo(er1ys - - Xohrm—1))
O'ESk m—1

= ((zxw) A n)(Xl, “. 7Xk+m71) + (—l)k(w AN (ZX"?))(XL N 7Xk+mfl)~

O

PROPOSITION 2.2.10 (Cartan’s magic formula). We have the following identity for all X € X(M),
we (M)

Lxw=1ixdw + dixw.

PrOOF. To prove the claim, we shall prove that ixd + dix: Q*(M) — Q*(M) satisfies axioms
1-5 of Definition 22,61

1. That ixd + dix is R-linear is clear.
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2. Let f € C®°(M). As ix f =0, we have
(ixd+dix)(f) = ixdf = df(X) = X(f).

3. Let w € QF(M), n € Q™(M). Then using Lemma and the fact that the exterior
derivative also has this relationship with the exterior product, we get:

(ixd+dix)(wAn) =ix(dwAn+ (=1)*w Adn) +d(ixw An+ (=1)Fw Aixn)
=ixdw An+ (=D dw Aixn + (=1)Fixw Ady+ (=1)%w Adixdny
+dixwAn+ (=) Lixw Ady+ (=1)Fdw Aixn + (—1)**w A dixn
= (ixdw + dixw) An+w A (ixdn+ dixn).

4. Now it suffices to prove the identity locally, and as we have already proved R-linearity, we
can consider n € QY(M), which satisfies n = fdr on some chart U of M and some local
coordinate z on U. Let Y € X(M). Then dn = df A dx, and

(ixd + dix)(n)(Y) + (X, Y]) = dn(X, Y) + d(n(X))(Y) + n([X,Y])
— (df A da)(X,Y) + Y (fda(X)) + fda([X,Y])

= df (X)dz(Y) — df (Y)de(X) + Y (fX(2)) + f([X, Y](2))
= X(N)Y(z) =Y ()X (2) +Y(fX(2)) + FX Y (2)) - fY(X(2)),

which at p € U gives

X(p)f Dp,y (p)® — o) f Dp.x(p)® + Dpy ) (fX(2))
+ f( ) p,X(p)Y(m) - f(p)Dp,Y(p)X(x)
0. X(0) Dpy ()@ + F(0) Dp,x ()Y (2) = Dy x () (fY (),

which is the value at p of X(fY(z)) = X(n(Y)) = (ixd + dix)(n(Y)) by axiom 2.
5. For any w € Q*(M),

(ixd+ dix)(dw) = ixd*w + dixdw = dixdw + d*ixw = d(ixd + dix)(w).

O

Remark 2.2.11. Cartan’s magic fomula implies that Ly : Q*(M) — Q*(M) is a chain map, and
that it is null-homotopic.

LEMMA 2.2.12. For any X,Y € .’f(M), ixily = —iyix and i_x = —ix.

ProOF. This is obvious. O

LEMMA 2.2.13. Given X,Y € X(M), we have the identity Lxiy — iy Lx = i[ny].

ProOF. Direct calculations using Lemma [2.2.9] and axiom 3 of Definition | show that for
w € QF(M), n € Q™ (M), we have

(iny — iny)(w A 77) = ((iny — iny)w) AN+ (—l)kw A ((iny — iny)U).
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We prove the claim by induction on the degree of the differential form. On Q°(M) the left- and
right-hand side are both zero. For w € Q' (M), axiom 4 of Definition gives us

Lyiyw —iyLxw = Lx(w(Y)) — (Lxw)(Y) =w([X,Y]) = ix,y)w-

Now, assume the equality holds on Q¥~1(M) for some k > 1. To show equality on QF(M), it
suffices to show it on an element of the form w A7 € QF(M), for w € QY(M), n € Q¥ 1(M):

(iny — iny)(w A 77) = ((LXiy — iny)w) AN+ (—1)kw A ((iny — iny)n)
= (ipx,yjw) An+ (—1)Fw A (ixym) = ix,y)(w An).

O
PROPOSITION 2.2.14 (Invariant formula). For any w € Q¥(M), Xo,..., X € X(M), we have
k . ~
d(.U(Xo, cee Xk’) = Z(_l)ZXi(w(XOa ceey Xy 7Xk))
=0
+ Y (D) Mw([X, X, Xo, - Xy X XR).
i<j
ProoOF. First we prove that
k
Lxyw(X1,..., Xi) = Xo(X1,..., Xp)) = > w(X1, ..., Xio1, [Xo, Xi|, Xig1, ..., Xp). (22)
i=1

We do this by induction on k. For k = 0 and k& = 1, this is axiom 2, respectively, axiom 4 of
Definition [2.2.6, Now, assume that it holds for k — 1 for some k > 1, and let w € QF(M). The
induction hypothesis implies that

Xo(w(Xl, . ,Xk)) = Xo((inw)(XQ, ceey Xk)>

k
= (Lxyix,w)( X2, ..., Xp) + Z(ixlw)(Xz, s X, [Xo, X) Xagr, o, X)),
i—2

Now, by Cartan’s magic formula and Lemmas 2.2.72] and 2.2.13]

LXOiX1 = iXOdixl —i—dixoixl = iXOdixl — dinng = iXoLXl —iXUixld— LXliXo +iX1diX0

= _(LX1Z.X0 - iXOLX1) +ix, (iXod + diXo) - _i[XLXo] + ZAX1LX0 = ZA[Xo,Xﬂ + inLXO'
Hence, as desired

X()(w(Xl, ce Xk)) = i[Xo,Xl]w(Xlu c ,Xk) + (inonw)(Xg, ce ,Xk)
k
+Z(iX1W)(X27--~aXifla[XOaXi]aXiJrla---,Xk)
i=2
k
= Lxow(X1,.. ., Xi) + Y _w(X1,.., X1, [Xo, Xi], Xiga, .o, Xa).

=1
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Finally, we prove the invariant formula, also by induction on k. For k = 0, the equation reads
df (X) = X(f), which is true. Now assume that it holds for k& — 1 for some k > 1, and let
w € QF(M). Then Cartan’s magic formula, the induction hypothesis and equation yield

dw(Xo, ce ,Xk) = iXOdw(Xl, ce ,Xk) = LXOOJ(Xl, ce ,Xk) - diXOW(Xl, ce ,Xk)

k
= Xo(@(X1,. 0, X)) = D (=) w([Xo, Xi], X1, Xiy o, X3)
=1
k . A~ . . A~ A~
- Z(_l)Z—FlXZ'(Z.XOw(Xla 0y Xl'a S X]C)) - Z(_l)z+]iX0w([Xia X]]? Xla ey Xia o0 Xj? sty Xk’)
=1 1<j

k
=) (1) Xi(w(Xo, - Xy oo X)) + > (D) (X, X, Xo, -, Xiy o, X, X,

i=0 i<j

O

We immediately see the motivation for the differential in the Chevalley-Eilenberg complex in
this formula. In the case of a Lie group G, its Lie algebra g can be interpreted as the set
of left-invariant vector fields on G. Then C*°(G) is a g-module, and a differential k-form,
w € OF(Q), restricts to an alternating k-linear map c¢ := Wg: g — C>®(Q), i.e. an element
of C*(g,C>®(@)). The derivative of ¢ in the Chevalley-Eilenberg complex is, in view of the
invariant formula, exactly the exterior derivative of w restricted to g*. This suggests an intricate
relationship between the Lie algebra cohomology of g and the de Rham cohomology of G, which
we will see more explicitly in the following chapter.



3 HISTORICAL MOTIVATION II:
DE RHAM COHOMOLOGY

In this chapter, we consider the relationship between Lie algebra cohomology and De Rham
cohomology. As mentioned in the preface, the theory of Lie algebra cohomology was developed
in an attempt to calculate the De Rham Cohomology of a compact Lie group. Corollary
below shows that the De Rham Cohomology of a compact connected Lie group can be computed
purely in terms of its Lie algebra. To this end, we will prove an in itself important theorem about
De Rham cohomology: If a compact connected Lie group acts on a manifold, then any element
of the De Rham Cohomology of the manifold can be represented by an invariant differential
form.

3.1 LIE GROUP ACTION

Let G be a Lie group acting smoothly on M, G x M — M, where we will also denote by g the
smooth map M — M corresponding to g € G by the above action.

DEFINITION 3.1.1. Let Q¥(M)Y denote the set of invariant forms on M, i.e. the formsw € QF(M)
satisfying g*w = w. Note that dw is invariant, if w is invariant; hence, Q*(M)® is a chain complex
with differential the restriction of the exterior derivative.

LEmMMA 3.1.2. Let G be a compact Lie group with some fixed volume form wy,, and associated
measure i, let M be a manifold and f: G x M — R be a smooth map. Then the map
F: M — R defined as F fG (g,p) dp is smooth and D, F(v fG (foig)(v)dp, where
ig: M — G x M is the 1nc1u51on p— (g,p).

PROOF. Let o: R™ — U be an arbitrary chart on M, and let {o4: R"™ — V,} be a finite open
cover of G by charts such that o)wye = dx1 A--- Adxy, is the standard Euclidean volume form,
and let {4} a smooth partition of unity subordinate to {V,}. Then

Foo(m)—/Gf(g,U(ﬂf))dﬂ_Z/v ¢al(9)f(g,0(x))dp
=Y [ a0 0aw)(Galw). o() i

:Z/ a0 0a(y)floaly),o(x))dA,
SUPPPa Ol

67

where A denotes the usual Lebesgue measure on R™. Now, (z,y) — ¢ 0 04(y)f(0a(y),o(x))
is a smooth map R” x R™ — R and suppy, © 0, is compact. An application of Lebesgue’s
Dominated Convergence Theorem (see Corollary |A.3.2) implies that F o ¢ is smooth with

0
8% (Foo)( / x))dp.

It follows that F' is smooth with D,F(v) = [, Dp(f 0ig)(v) dp. O

19
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ProOPOSITION 3.1.3. If M is a manifold and G is a connected compact Lie group acting on M
by a: G x M — M, then the inclusion ¢: Q*(M)% < Q*(M) is a quasi-isomorphism.

ProoOF.  Clearly, ¢ is a chain map. Suppose G is of dimension m, and let wyo € Q™(G)
be a right-invariant volume form on G satisfying fG wyol = 1 with associated Haar measure p.
Let 7: G x M — G denote the projection onto the first coordinate, and 7: G x M — M the
projection onto the second coordinate. We will for notational reasons denote tangent vectors
on G X M by vxw € Ty (Gx M) ="T,GxT,M forv € T,G, w € TM. Define a map
e (G x M) — Q*~™(M) as follows: On QF(G x M), k < m, 7, is identically zero. For
k>m,let we QG x M), pe M, vi,...,06_m € T,M and define

(Tr*w)p(vl, P ,Uk_m) = / &p’(’ui) ,
G

where &P (%) € Q™(QG) is given by
&g’(“i)(wl, oy W) = W(gp) (0 X 01,0, 0 X Vg, w1 X0, W X 0).

To see that p — (m.w), is smooth requires some technical work: Let U be a chart on M with local
coordinates x;, {V,} a finite open cover of G' by charts with local coordinates y¢, and let {¢q}
be a smooth partition of unity subordinate to this cover. We can extend z1,...,z,, 9y, ..., yp,
to U x V, in an obvious way such that they become local coordinates on U x V,,, and therefore
write

w= Z Z fordre Ndyy, on U xV,, for f € C®(U x V).

r+s=k c€Srn_r
TGSs,mfs

Given p € U, v1,...,V—m € Tp(M), g € V, and w1, ..., wy, € T4G, we have

wp’(”’) (wi,..,w Z ng‘T 9,p) dxe(p) A dyZ(g)(0 X v1,..,0 X Vg, w1 X 0,.., Wy, X 0)
r+s=k 0€Sr n_r
TESS,"L*S

= > [ffalep)dee(p)(vrs - vk dyfi(9) (wis W)

Jesk—m,7z+m—k

Then

(ralp (v ) = [ e =5 ([ oo ato) ) doo)on, ).

a,0 @

Now, for all choices of o and «, (g,p) — @a(9)fsiq(g: ) extends smoothly to G x U — R by
setting it to be zero outside of V,,. Then Lemma implies that

=3 [ valo) i3l ) do

is a smooth map on U, using that dy;) is a volume form on GG. We conclude that m,w is smooth.
In addition, Lemma tells us that

PfU Z/ (PCY p O'ld(g p)( )dyld
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Using this, we see that 7, commutes with d, as

(dmew)p(v1, ..oy Vk—m1) Z dfs(p) Ndzs(p)(vi, ..., Vk—me1)

k—m-+1

—Z Z YDy for (03)dz o (D) (V1 -, iy -+ Ukt 1)

on U, and

—~p,(vi)

(dw )g(Wi,.., W) = deﬁT(g,p) A dxs(p) Adyf(g)(0 X v1,..,0 X Vg_pi1, w1 X 0,.., Wy, x 0)

k—m—+1

=> Z ) D, f214(07) Ao (p) (U1, - B+ V1) Ay (9) (w1, - ., Wiy

on V,, and thus

(W*dw)p(vlv“v Uk—m-‘rl) = Z(_l)i—1<2/vsoa(g)Dp g,id(ga p) (Uﬁdy%) de(p) (Ulv"v 61'7"7 Uk‘—m-‘rl)'

o,

Now, we define a map I: QF(G x M) — QF(M) by I(w) = s (w A T*wye1). This is a chain map,
as Wye) 18 a top form on G, 80 dwye = 0, and thus
I(dw) = my(dw A T wye1) = T (d(w A T*wro1) — (—1)Fw A dT*wyo)

= o (d(w A T wyo1) — (—1)Fw A T dwnel) = Te(d(w A T wyo1)) = dmy(w A T wyo1) = dI(w).

To ease the calculations to come, let p € M, vi,...,v, € T,M, g € G, wr,...,wy € TG,
and set 1= (w A T wyol) ~p(vi) ¢ Q™(G), t; :=0xwv; fori=1,...k, and t; :== w;_x x 0 for
i =k+1,...,k+m. Note that D, 7: TyG x T, M — T,G is the projection onto the first
coordinate. Then

By(wi, ... wm) = (WA T Wyol) (g,p) (15 - - - tham)
= Z sign o Wigp) (Lo(1)s - - - s ta(k)) T Wvol (to(k41)s - - - s La(ktm))
o€Shm
= Wgp) (0 X V1,0, 0 X v ) (Wyot)g (W1, - - -, W)
80 g = wgp)(0 X v1,...,0 X vg)(Wyol)g, and thus

I(w)p(vi, ..., v5) = / Wy p(0 X v1,...,0 X vg)du.
G

Aside:  We have not defined I like this directly, as we will use the actual definition in some
of the calculations below. Moreover, the construction above can be generalised: the map m,
is a fibre integral, which can be defined for any smooth vector bundle £ — M with compact
oriented fibres. However, as we are only interested in the trivial bundle 7: G x M — M, it
seems unnecessary to spend much time on it.

Define a chain map p: Q*(M) — Q*(M)% as p := I o o*. Note that p is explicitly given as
"averaging the differential forms over G": For w € Q*(M), p € M, vi,...,v, € T,M,

(W) (g,p) (0 X 01,00, 0 X Vg) = wWy(py (Dpg(v1), - -, Dpg(v)) = (g"w)p(v1, ..., vp),



22 Mikala Orsnes Jansen

where we use that D, yo: T,GxT,M — TyM is given by Dy (v X w) = Dgevy(v)+Dpg(w),
with ev,: G — M evaluation at p. Hence,

p(w)p(vr,...,v5) = I(a*w)p(v1,. .., vk)

= /G(a*w)g#,(() X U1,...,0 X vg)dpu = /G(g*w)p(vl, ceo, Uk) dp.

We also write p(w) = fG g*wdu. To show that p is well-defined, we must show that p(w) is
G-invariant for any w € Q*(M): For any h € G, the above explicit expression of p and right-
invariance of u gives

h*p(w) = h* (/G g*wdu> = /Gh*g*wdu = /G(gh)*w dp = /Gg*w dp = p(w).

We will show that on cohomology, H(p) = H(1)~!. Tt is seen directly that po: = id. To show
that H(t) o H(p) = id requires some more work.

We claim that in our definition of m,, we may change the domain of integration to a neighbour-
hood U of 1 € G and obtain a map Iy, which is homotopic to I. To see this, let U C G be a
neighbourhood of 1 and let A: G — R be a bump function with support contained in U such that
fG Myl = 1. Let Ip: QF(G x M) — M denote the map arising from the above construction,
replacing wyol by Awyol. A8 wyel and Awyel integrate to the same, they differ by an exact form:
Indeed, [,: H™(G) — R is an isomorphism as G is compact and connected (cf. Theorem 10.13
[B]). Let n € Q™ Y(G) such that wye — Awyol = dn, and consider the map

h: (G x M) = QY M),  hw)= (=) r.(w A7), forwe QG x M).
h is a chain homotopy from I to Iy: For any w € QF(G x M),
h(dw) + dh(w) = (=D m, (dw A7) + (=1)Fdm, (w A T5n)
= (=) (muld(w A7) = (<1)w A Tdn) ) + (<1)Fdr(w A7)
= me(w A Tdn) = T (w A T (Wyol — Awyol)) = T(w) — Iy (w).

The advantage of this is that we can restrict Iy to QF(U x M), so to speak: Leti: UxM — GxM
denote the inclusion, and define

Iy QXU x M) = QF(M)  as Ty (w)p(v1, ..., vp) = / Awig.p) (0 x v1,...,0 x v) dp,
G

where A is the bump function from above, and we extend w (not necessarily continuously) to
G x M by defining it to be zero outside of U x M. Then Iy = TU o4*. Moreover, TU om|; =id,
where 7|U: U x M — M is the restriction of 7: Indeed, for any w € QF(U x M), p € M,
Vi1y...,Vf € TpM,

I~U o 77|*U(w)p(v1, .. .,Uk) = /GA(w\z}w)(g,p)(O X Viy... ,O X ’Uk) du

:/)\wp(vl,...,vk)d,u:wp(vl,...,vk)/)\du:wp(vl,...,vk).
G G

If we take U to be a contractible neighbourhood of 1, and let j: M — U x M denote the inclusion
p +— (1,p), then the composite j o 7|y is homotopic to the identity on U x M. Combining the
above results, we see that

H()oH(p)=H(I)o H(a*) = H(Iy) o H(c*) = H(Iy) o H(i*) o H(a*)
= H(Iy) o H(x|}y) o H(j*) 0o H(i*) 0o H(a*) = H((a0i 0 7)) = H(id) = id.
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Thus, we finally conclude that H(p) = H(:)"'. In other words, ¢: Q*(M)% — Q*(M) is a
quasi-isomorphism. O

3.2 LIE GROUPS AND LIE ALGEBRAS

Let G be a connected Lie group with Lie algebra g. Let V be a vector space, and 7: G — Aut(V)

a representation of G with derivative p = Di7: g — End(V). Recall that x = % . exp(tx) for
t=

all x € g, where exp: g = T1G — G is the exponential map, defined as z — ~;(1), where 7, is

the maximal integral curve of the left-invariant vector field defined by = with 7,(0) = 1. Then
by the chain law,

d

p(r) = dtli—o

DEFINITION 3.2.1. A vector v € V is G-invariant, if 7(g)(v) = v for all g € G, and we denote
by V& the subspace of G-invariant elements. Likewise, v € V is g-invariant, if p(x)(v) = 0 for
all x € g, and we denote by V9 the subspace of g-invariant elements.

7(exp(tx)).

PrOPOSITION 3.2.2. In the above situation, VG =ve.

PROOF. Suppose v € V. Then for any z € g,

d

m(exp(tz))(v) = —| v =0,

pla)(v) = i

so v € V9. Assume conversely that v € V9. Then for all z € g,

dt li=o

D (evyom)(z) = evy 0 Dim(z) = p(z)(v) = 0.

As G is connected, this implies that ev, o7 is constant, and as ev, o 7(1) = v, we conclude that
m(g)(v) = v for all g € G. O

G acts on itself by left multiplication; let A, € Aut(G) denote left multiplication by g.

PROPOSITION 3.2.3. Evaluation at 1 € G, e: QF(G)¢ — C*(g,R), w + w; defines an isomor-
phism of chain complexes.

Remark 3.2.4. Here we identify g with the tangent space at 1, T1G, so
e(w) = w1 € Homg (A*(T1G),R) = Homg(A*g,R) = C*(g,R).

PrOOF. Given w € Qk(G)G, and vg,...,v; € T1G, let X; denote the left-invariant vector field
on G with X;(1) = v;. Then

(dw)1(voy ..., v) = dw(Xo, oo Xk (1)

_Z (W(Xo,.. s X4, X)) (1)
+Z ’ﬂw Xz;X]XO,---,)?i?---,)?j;---,kal)-
1<j

As w and all the X; are left-invariant, the function w(Xo, ..., Xk) is left-invariant, and therefore
constant. Hence, Efzo(—l)iXi(w(Xg, oy Xiyoo o, Xi))(1) = 0. As g acts trivially on R, we
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then directly see that edw = dew for all w € Q*(G)Y, so € is a chain map. We claim that
invariant forms are completely determined by their value at 1: Let w € QF(G)Y, g € G and
V1,...,0 € T4G. Then

wg(v1,. ., vk) = (Agm1w)g(vr, - vg) = wi(DgAg-1(v1), ..., DgAg—1(v)).

It follows that € is injective, and that ¢ € C*(g,R) defines a differential form w € QF(G)“ by
setting

Wy(v1,. .. 0) = c(DgAg-1(v1),...,DgAg-1(vy)), forall ge G, v; € TyG,
S0 € is also surjective. O

G also acts on itself by right-multiplication: let u, € Aut(G) denote multiplication by g~* on

the right. Then G x G acts on G by left and right multiplication: (g, h).x = gzh™! = ppAgx. If
g = h, this is conjugation by g, and we write ¢, = pgAg. G acts on g by the adjoint action:

Ad: G — Aut(g), Ad(g)(z) = Ticy(x).
This can be extended to an action on AFg, which we also denote by Ad: G — Aut(AFyg),
Ad(g)(z1 A--- Aag) i= Ad(g) (1) A--- A Ad(g) (1),
which in turn dualises to an action on C*(g,R), 7: G — Aut(C*(g,R)),
g Ad(g)",  Ad(g)*c(ar,-- ,zx) = c(Ad(g™ ) (21), ... Ad(g ™) (an))-
Note that if ¢ is G-invariant with respect to the representation 7, then so is de:

de(Ad(g)(21), - -, Ad(9)(zx)) = D (=1)e([Ad(g) (), Ad(g) (z7)], Ad(g) (o), - - -, Ad(9) (xx))

= Z( 1) e(Ad(g)[xi, z;], Ad(g) (z0), - . . , Ad(g) (z1))
— Z(—l)”jc([mi, zjl, zo, ..., Ad(g)(zy)) = dc(zq, ..., k).

We denote by (C*(g,R)“,d) the chain complex of G-invariant elements.

We also have the adjoint action of g on itself, ad: g — End(g), which we can extend to an action
of g on A¥(g) by ad(z)(x1 A~ Axy) = Zle Ty Ao Az, x) A+ A xg. Again this dualises to
an action on C*(g,R),

E

k
ad(z)*c(xq, . Zc Tlyeoo, =X, 2],y Zc Tlyeooy |Tiy ]y, Tk).
1=1

=1

This is a representation p: g — End(C*(g,R)). Note that if ¢ is g-invariant with respect to p,
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then so is dc (the omitted elements in the sums will be implicit in the following calculation):

ch T1,..., [T,z :Z(Z Vi e([ai, x], 21, - (2, 30), - -0, o)

=1 1<j
1,7#1
+Z H_l xla x LL’[H xl?"'axk‘)
i<l
D el ail @) @,
I<j
k . .
=3 (S D e o) + 3 (-D el )
=1 1<j 1<j
1,571
= (—1)i+jad($)*c([azi,:cj},:cl, o) =0.

7\.

J

We denote by (C*(g,R)?, d) the chain complex of g-invariant elements. We see that p = Dy,
as

d d

dt tZOW(eXP(tfﬂ))(C)(fﬁb e T) = i C(Ad(exp( z))(z1), ..., Ad(exp(—tz))(z1))
k
:Zc(xl,...,%L:OAd(exp(—m))( Zc (X1, [—2, ], . k)
=1 =1

for all ¢ € C*(g,R), z,x1,..., 7} € g, using multilinearity of ¢. A direct consequence of Propo-

sition [3.2.2]is then that (C*(g,R)“, d) = (C*(g,R), d).

PROPOSITION 3.2.5. Evaluation at 1 € G, rx: QF(G)%*¢ — C*(g,R)%, w + w defines an
isomorphism of chain complexes.

Proor. Let w € QF(G)9*Y; we must show that w; is G-invariant. Since ¢
have

ow = w for all g, we

wi(Ad(g™ N (z1), ..., Ad(g Y () = (cg-1w)i(z1,. .., 2p) = wi(21, ..., k)

forall g € G, x1,..., 2 € g, where we use that Ad(g) = Dic,.
It follows by the same arguments as in the proof of Proposition that k£ commutes with the
exterior derivative. From that same proof we also deduce that s is injective, as a G x G-invariant

differential form will in particular be left-invariant. So it only remains to show surjectivity of «:
Given ¢ € C*(g,R)%, define w € QF(G)% as in the proof of Proposition that is,

Wy(v1, ... k) = c(DgAg-1(v1),...,DgAg-1(vg)), forall g€ G, v; € T,G.
Now, let x,y,g € G, and note that A\ ;-1,-1p1y Ay = cyAg—1. Then for all vy, ... v € TG,

((yAz) w)g(v1, .- - vk) = wygy=1(Dg(pyAa) (v1), - -, Dg(piyAa) (v1))
(Daygy-1Ayg-12-10 D (Ny)‘ )(v1), gy Ayg—1o-1 © Dg(pyAz) (Vr))

= c(Dy(cyA ) 1), - ng(Cy)\g* )(vk))

= c(Ad (y)( Ag=1(v1)), -+, Ad(y) (DgAg-1(vr)))

= c(DgAg-1(v1),. .., DgAg-1(vk)) = wy(v1, ..., v8).
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We conclude that w € QF(G)9*Y with k(w) = c. O

The following result exploits that G can act on itself in different ways, namely by left-multiplication
and by left- and right-multiplication.

COROLLARY 3.2.6. If G is a compact connected Lie group with Lie algebra g, then
H*(g,R) = Hgp(G) = ((A%9)")°,
where g acts trivially on R, and ((A®g)*)? = @n((A¥g)*)9

PrOOF. The first isomorphism follows directly from Propositions and Now, using
Proposition again, but this time combining with Proposition [3.2.5, we get that Hj,(G) is
isomorphic to the homology of the chain complex

(C*(g,R)%,d) = (C*(g,R)%,d) = ((A*9)")", d).

For any ¢ € C*(g,R)?, and z1,...,2541 € g, we see that since g acts trivially on R and c is
g-invariant, we have

k+1
1 A~
2de(x1, ..oy Tpt1) —25 D ai(e(zy, .oy 2y xp)

z+ A, 2,
—|—2E Je ([zi,zj], 21, o Ty By, )

1<J
—Z Z+] xz,xj],xl,...,g%i,...,g%j,...,a:k)
1<J
+Z H_] 1 .%'],in],l'l,...,i’i,...,i'j,...,l'k)
1<J
= (—1)jc(x1,...,[mi,xﬂ,...,:ﬁj,...,xk)
1<j
+Z(_1)jc(xla y Ly [-rux]] ,.I‘k)
Jj<i
k+1
= (—DYad(zj)*c(z1,...,Z5,...,25) =0
7=1

Hence, the differentials in the complex (C*(g,R)?, d) are identically zero, and the homology is
equal to the chain complex itself. O

Remark 3.2.7. The above corollary reduces the computation of the De Rham cohomology of a
compact connected Lie group to pure linear algebra.



4 EXAMPLES

In this chapter, we shall look at some examples. As we have not developed many calculational
tools in this text, we are restricted to considering quite simple examples. One can exploit the
structures on Lie algebras such as root systems, gradings and the like to compute the Lie algebra
cohomology, but this is unfortunately outside the scope of this text.

EXAMPLE 4.1.8. We begin with a very easy example: If g is an abelian Lie algebra over a field
K, then H*(g, K) = (Ag)*, where K is the trivial module. Indeed, as g acts trivially on K, and
the Lie bracket is trivial, the derivative in the Chevalley-Eilenberg complex is always zero, so
the k’th cohomology group is just the k’th term of the complex. In particular, H*(g, K) is a
K-vector space of dimension (Z), where n is the dimension of g.

ExaMPLE 4.1.9. We will use Proposition to compute the de Rham cohomology of S2. This
example may not give us a lot of new knowledge, but it illustrates very well how using invariant
differential forms can simplify our lives immensely. Consider S? embedded in R®. Then

SO(3) = {A € M3(R) | A"A =id,det A = 1}

acts on S? by rotations. SO(3) is a compact connected Lie group, so Q*(S2)50G) — Q*(5?)
is a quasi-isomorphism. As S? is of dimension 2, H75(S?) = 0 for all n > 2. We compute
Q"(S?)59G) for n = 0,1,2. An f € C°°(S?) is invariant under rotations, if and only if it is
constant; thus Q0(5%)50G) = {M — R constant} = R. Now, take w € Q1(5%)%00G) As w is
invariant under rotation, we must have w = 0, as w,(v) = we(—v) for all @ € S?, v € T,8% —
this can be seen by letting L denote the "equator" with respect to which a is the north pole,
and then rotating S? by 7 along L. We conclude that Q(5?) = 0.

Now, let w € Q2(52)%9) Again, as w is alternating, bilinear and invariant under rotation, we
see that w is completely determined by its value on orthonormal bases of the tangent spaces;
that is, we (v, v") = wy(w, w’) for any a,b € S%, and v,v’' € T,5%, w,w' € TyS? orthonormal bases
of their respective tangent spaces. It is clear that setting wq(v,v’) = r for some fixed r € R,
a € S? and v,v" € T,5% an orthonormal basis, defines an SO(3)-invariant differential form on
S2. Hence, Q2(52)%00) = R,

Thus the De Rham complex looks like

R-0—-R—=-0—=0—---,

with zero differentials. We recover the well-known fact that

R %x=0,2

0 else

Hjp(S?) = {

However, we also see that the rotation invariant differential forms uniquely represent the coho-
mology classes.

EXAMPLE 4.1.10. We will now compute the De Rham cohomology of SO(3) and the Lie algebra
cohomology of its Lie algebra so(3) = {X € M3(R) | X* = —X}. Corollary states that

H3p(SO(3)) = ((As0(3))")®.

27
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Note that so(3) is spanned as an R-vector space by the matrices

0 10
A=|-1 0 0|, B=
0 0 0

0 01 0

0o 0o0|,c=1o0

-1 0 0 0

and note that A = [C, B], B = [A,C] and C = [B, A]. This implies that
H'(50(3)) = (s0(3)")*® =0,

as any s0(3)-invariant linear map c: s0(3) — R must satisfy

c¢(A) = ¢([C,B]) = ad(B)*c¢(C) =0, and similarly ¢(B) = ¢(C) = 0.

We also get that H2(SO(3)) = ((A%s0(3))*)*®) = 0: Indeed, let c: 50(3)2> — R be a bilinear,
alternating, so(3)-invariant map. Then

c(A, B) = ¢([C, B, B) = ad(B)*e(C, B) — ¢(C, [B, B]) = 0,

and analogously ¢(A,C) = ¢(B,C) = 0. Thus, ¢ = 0.
Any 3-linear, alternating map c: 50(3)® — R is completely determined by its value on (A, B, C).
Moreover, we see that for any X = r1 A+ reB +r3C € s50(3), r; € R,

[Aa X] = —120 + 138, [B¢X] =rC —r34, [CvX] = —r1B +mA,
and thus
ad(X)*e(A, B, C) = (|4, X], B,C) + ¢(A, [B,X],C) + (A, B, [C, X]) = 0.

Hence, Hip(SO(3)) = ((A%s0(3))") = ((Aso(3))") = R.
We have shown the following

R %=0,3

Hir(50(3)) = H*(s0(3)) =

0 else
EXAMPLE 4.1.11. We can show that H'(SO(n)) = 0 for all n in that same way that we proved
H'(SO(3)) = 0 above. Indeed, so(n) has R-basis {E;;}1<i<j<n, where E;; = (e;) is the matrix
with entries

1 l=i,k=3j
ele=1—-1 l=4k=1.
0 else

For any 1 <i < j < n, we can write

[Elj, Eh‘] ifl<i
Eij = [Ejn; Ezn] lf] <n
[Br2, Bon] ifi=1j=n

It follows that any so(n)-invariant linear map so(n) — R is identically zero, and thus

Hip(SO(n)) = H'(s0(n)) = (s0(n)*)*™ = 0.
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EXAMPLE 4.1.12 (Homogeneous Spaces). Let G be a compact connected Lie group and H C G
a closed subgroup. Let g and h C g denote the Lie algebras of GG, respectively H. G acts by
multiplication on the quotient G/H, and g acts on g/b, the Lie algebra of G/H, by the adjoint
action. This gives rise to action of G and g on C*(g/h,R) as discussed in Chapter 3. One can
show results analogous to Propositions and yielding chain complex isomorphisms

O(G/H)% = C*(g/h,R),  Q(G/H)*C = C*(g(h,R)?,
and thus

Hir(G/H) = H*(g/b) = ((A%g/b)")°.



A APPENDIX

A.1 CHEVALLEY-EILENBERG DERIVATIVE

Let K be a field, g a Lie algebra over K, and I a g-module. Consider the Chevalley-Eilenberg
complex (C*(g,I'),d) as defined in Chapter [1]

PROPOSITION A.1.1. d2=0

ProOF. Let ¢ € C*(g,T), x1,...,2; € g. For simplicity and space considerations, we write
(1,25, x) == (x1,...,&j,...,2). Then in the calculations on the following page, we see that

— Lines (2) and (3) cancel out line (7), as [z;, z,| = z;z, — zyz; in End(T).

— Lines (4) and (10) cancel out.

nd
and (9) cancel out.

(2) (

(4) (

~ Lines (5) and (
Lines (6) and (8) cancel out.
~ Lines (11) and (13) cancel out line (12), as

(i, s 5] = [[wi, w5l wj] = [, s ] = ([, 5], 5] + [[s, 5], i

— Lines (14) and (19) cancel out.

Lines (15) and (18) cancel out.
— Lines (16) and (17) cancel out.

from which we conclude that d?c(z1,...,z,) = 0, as desired.
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d?c(x1,... x2n) = Z(—l)iﬂxi.dc(xl, Zi, Tk) + Z(—l)”jdc([mi, xj], 21, T4, T4, ... xx)  (ALL)

1<j

= Z(—l)“‘r(xwr) (21, &y, i, 21) (A.2)

+ Z H_H_l ).c(acl, ZTi, T, .Z'k) (A3)
<r

+ Z (*1)Z’+T+S+1Ii-c([m7ﬁxs]xlviTa'iS)j:ivxk‘) (A4)
r<s<i

+ Z (=)0 (@, Ts] 21, Ty Tiy Tsy Th) (A.5)
r<i<s

+ Z (*1)Z’+T+S+lxi-c([mraxs]xlvi’iaii'r‘a:isvxk‘) (A6)
1<r<s

+ Z Z+]+l 1‘Z, xj].c(ajl,ici, gf:j,xk) (A?)
1<J

+ Z (—1)i+j+rxr.c([xi,xj],:nl,jcr,:%i,:%j,:L‘k) (A8)
r<i<j

+ Z (_1)i+j+r+1xr'c([xi>'rj]’xla-iiai‘rvj}]ﬁl'k) (Ag)
1<r<g

+ Z (_1)i+j+r$7“'c([xiaxj]vxlyjivija:ir7xk) (AlO)
1<j<r

+ > () TI([[wg, @], w8 w1, B, i, 5, ) (A.11)
§<i<g

+ > ()T ([, @), @), 20, 4, s, B, T8) (A.12)
1<s<g

+ Z l+]+s [xi,a:j],xs],xl,ﬁzi,ij,js,xk) (A13)
1<j<s

+ Z (—1)i+j+r+80([xr,x5]7[.Z'i,l'j],l'l,i'y-7i's,.fi,i'j,(l}k) (A14)
r<s<i<j

+ > (0 ([, @], [, 3], 0, e, 2, B, By, w) (ALDD)
r<i<s<j

+ > (O (g, @], [, @), @0, B B, B, ) (A.16)
r<i<j<s

+ Y (DI (g, @], [, @), w0, s B s B, T8) (A.17)
1<r<s<j

+ Y () ([ ), [, @), w0, B, s B, B 2) (ALLS)
1<r<j<s

+ Y ()T, @), [0, w5), w1, 24, B, e, s, ). (A.19)
I<j<r<s
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A.2 HOMOLOGICAL ALGEBRA RESULTS

Let R be a commutative ring.

ProposiTION A.2.1. If P is a finitely generated projective R-module, then P is canonically
isomorphic to its double dual, by the map p — ¢, where ¢,(f) = f(p), f € P*.

PrOOF. The claim obviously holds for finitely generated free R-modules. Let @ be an R-module
such that P ® @ = R™. Then

POQ=R"S5 (R = (PoQ" =P Q" peq- oo,

As the map respects the summands, we get the desired isomorphism P & P**. O

PrOPOSITION A.2.2. If P and A are R-modules and P is finitely generated projective, then the
map P*®@r A* - (P®RrA)*, f®g > fXxg, where f x g(p®a) = f(p)g(a), is an isomorphism.

Proor.  The claim is easily shown for P finitely generated free. For P finitely generated
projective, take @) such that P & @ = R"™. Then

(PorA) @ (QerA) = ((PeQ) orA) = (R"0r A)* = (R") @ A°
=(PeQ) @rA" = (P"OrA") & (Q"®r A7),
(fege(fegd)—(fxgalf xd).
This map respects the summands, so we get the desired isomorphism (P®p A)* = P*®@p A*. O

A.3 INTEGRATION PRESERVES SMOOTHNESS

ProrosiTiON A.3.1. Let f R* x R” — R be C! map. Let K C R" be compact. Then
F: RF — R defined as F =[x f i f(x,y) d\(y) has all partial derivatives, and

OF
oz, (@) = /K 92, /W) W),

where A denotes the Lebesgue measure on R".
PrOOF. Given z = (z1,...,2;) € R¥ and j € {1,...,k}, let
v: R — RF, t—= (T1,. ., 21,5 + 6, T4, .., Tp)-
Now, fo(yxid): R x R" — R satisfies:
o y— f(y(t),y) is Lebesgue integrable on K for all fixed t € R.
o t— f(~v(t),y) is differentiable for all fixed y € R™.
o (t,y) — %f(’y(t), y) is continuous and therefore uniformly bounded on [—1,1] x K.

Lebesgue s Dominated Convergence Theorem implies that F' o+ is differentiable on (—1,1) with

(F o) fK atf ,y) d\(y) (cf. Theorem 11.5 [10]). Thus,
gfﬁ 0= (Fon) (0= [ 500, <>=/K(;;f<x,y>wy>.

An immediate corollary of this proposition is:
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COROLLARY A.3.2. Let f: R¥ x R — R be a smooth map. Let K C R™ be compact.

F:RF — R defined as F(z) = [} f(z,y) d\(y) is smooth with

T = | g ) ).

Oy - - - Oy, - Oy,

Then
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