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There are many texts that cover the topic of simplicial sets and homotopy
colimits and some of the motivation and intuition behind it. However, it is hard
to find a source for proofs of the easy statements without using more sophisti-
cated tools from category theory or homotopy theory. This text is an attempt
to, in a concise and clear way, give a summary with proofs of the theory from
simplicial objects to homotopy colimits and homotopy orbit spaces. This text
can be used as complementary notes to the first half of Dwyer’s paper Classify-
ing Spaces and Homology Decompositions [DH01], and is aimed to the reader
who has seen simplicial complexes and some algebraic topology and category
theory but not ventured much further.

1 Preliminary definitions
In this text we will assume some knowledge of category theory. For example,
every partially ordered set (poset) P can be viewed as a category with objects
being the elements of P and morphisms corresponding to the ordering. Thus
for a ≤ b ∈ P , we have an arrow a→ b in the corresponding category P.

Definition 1.1. We will denote categories with boldface notation. The category
of sets is denoted Sets, the category of small categories is denoted Cat and the
category of topological spaces is denoted Top. The category of abelian groups
is denoted AbGrp and the category of chain complexes of abelian groups is
denoted Comp(AbGrp).

If C is a small category, then a functor C → D will be called a diagram
(of type C) in D. When C is a small category, we can form the functor cat-
egory DC with objects being functors C → D and morphisms being natural
transformations.

For a category C we write the opposite category as Cop. It is important
to note that a functor Cop → D is the same thing as a contravariant functor
C→ D.

Definition 1.2. Let n denote the ordered set {0 < 1 < . . . < n} for non-
negative n. The category corresponding to this poset is denoted n and thus has
one object for every number 0, 1, . . . , n and exactly one morphism from i to j
for i ≤ j.

Definition 1.3. We define the category ∆ which has objects n and morphisms
being weakly order-preserving functions. This is equivalent to the category with
objects being the categories n and morphisms being functors.

As is shown in [ML98, pg. 178], any morphism η : n → m in ∆ can be
written in terms of morphisms δi and σi, called coface and codegeneracy maps,
respectively. These are defined by

δi(j) =

{
j, j < i,
j + 1, j ≥ i,

and
σi(j) =

{
j, j ≤ i,
j − 1, j > i .
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These morphisms satisfy a set of relations called the cosimplicial relations:
δjδi = δiδj−1, i < j,
σjσi = σiσj+1, i ≤ j,
σjδi = δiσj−1, i < j,
σjδi = Id, i = j, i = j + 1,
σjδi = δi−1σj , i > j + 1 .

Furthermore, η : n→ m can be written uniquely on the form

η = δi1 · · · δisσj1 · · ·σjt

where 0 ≤ is < . . . < i1 ≤ m, 0 ≤ j1 < . . . < jt ≤ n and n − t + s = m. Also
this is shown in [ML98].

Definition 1.4. Let D be a category. A simplicial object in D is a functor
X : ∆op → D. When D = Sets, we call X a simplicial set. Because of its close
connection with topological spaces, we will also call X a space.

The category ∆ is small, so we form the category with morphisms being
natural transformations and we denote this category with Sp := Sets∆op

. A
morphism in this category will be called a simplicial map.

In direct analogy, a functor X : ∆→ D is called a cosimplicial object in D.

By the characterization above, a simplicial object in D is a sequence of
objects Xn = X(n) together with morphisms di = X(δi) : Xn → Xn−1 and
si = X(σi) : Xn → Xn+1 satisfying the duals of the cosimplicial relations. The
dual relations are called the simplicial relations and are thus

didj = dj−1di, i < j,
sisj = sj+1si, i ≤ j,
disj = sj−1di, i < j,
disj = Id, i = j, i = j + 1,
disj = sjdi−1, i > j + 1 .

Likewise, a simplicial map ϕ : X → Y is a set of morphisms in D indexed by
N, ϕn : Xn → Yn, such that ϕ commutes with all morphisms in ∆op. But since
a morphism in ∆op is generated by face maps di and degeneracy maps si, it is
enough to say that ϕ commutes with all di, si in each dimension.

Definition 1.5. If X : ∆op → D is a simplicial object in D, where D is a
category with objects being sets, then we say that xn ∈ Xn is an n-simplex,
or just a simplex if we do not want to stress the dimension. It is degenerate if
xn = sixn−1 for some xn−1 ∈ Xn−1 and some degeneracy map si. A simplex
that is not degenerate is said to be non-degenerate.

Definition 1.6. We define the topological n-simplex

∆n = {(t0, . . . , tn) ⊆ Rn+1 ;
∑

ti = 1, 0 ≤ ti ≤ 1}

which has the subspace topology from Rn+1.

There is a functor T : ∆ → Top which on objects is T (n) = ∆n and for a
morphism η : n→ m, we define η∗ : ∆n → ∆m by

η∗ :

n∑
i=0

tiξi 7→
n∑
i=0

tiξη(i)
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where {ξi}0≤i≤n is the standard basis of Rn+1.
In particular, for the face and degeneracy maps we have δi∗(t0, . . . , tn) =

(t0, . . . , ti−1, 0, ti, . . . , tn) and σi∗(t0, . . . , tn) = (t0, . . . , ti + ti+1, . . . , tn) which
are the topological face and degeneracy maps.

Note that T is a cosimplicial set by definition.

Remark 1.7. We will often use the notation δi∗ := X(δi) and σi∗ := X(σi) for
the simplicial setX. The upper star does not indicate that it is a precomposition
(even though it is for many simplicial sets), but rather to indicate that it changes
the contravariation to covariation, so that we know that di = δi

∗ decreases the
dimension and not the opposite.

This notation is very handy because any combination of face and degeneracy
maps in X can then be written as η∗ := X(η) where η is a morphism in the
category ∆.

Remark 1.8. In what follows, all proofs can be done either by functorial argu-
ments using only category theory or, because of the characterization above, by
doing things "simplicially" with the face and degeneracy maps. It will almost
always be the case then that we need to check some kind of commutativity for
di, si in our proofs. Usually the proof for commutativity with si is exactly the
same as for di, mutatis mutandis, and so we only do the verification for di.

2 Simplicial sets and the geometric realization
Definition 2.1. For X ∈ Sp, give each Xn the discrete topology. We define
the geometrical realization

|X| =
∐
n≥0

Xn ×∆n/ ∼ .

where (dix, p) ∼ (x, δi∗p) and (six, p) ∼ (x, σi∗p). One can show that |X| is a
CW-complex with n-cells corresponding to the non-degenerate n-simplices of X
and that | · | is a functor | · | : Sp→ Top (see [May67, pg. 56]).

Proposition 2.2. Every diagram F : D→ Sp has a limit and a colimit. These
can be constructed dimensionwise.

Proof. See the construction in [ML98, pg. 111] for limits and the dual construc-
tion for colimits. It is important to note that D is small in our definition of a
diagram.

LetX,Y be two simplicial sets. From the previous proposition it follows that
(X × Y )n = Xn× Yn and di(xn, yn) = (dXi xn, d

Y
i yn), si(xn, yn) = (sXi xn, s

Y
i yn)

defines X × Y as the categorical product of X and Y .
Similarly, if we let (X

∐
Y )n = Xn

∐
Yn with di and si defined component-

wise, then X
∐
Y is the categorical coproduct of X and Y .

Proposition 2.3. For X,Y ∈ Sp, if |X| × |Y | is a CW-complex, then as
topological spaces

|X × Y | ∼= |X| × |Y | .

Proof. This is [May67, Thm. 14.3].
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Remark 2.4. We can think of Sets as being a subcategory of Sp in the fol-
lowing way. Let X ∈ Sets and define ι : Sets→ Sp by

ι(X) : ∆op → Sets

where ι(X) is the constant functor ι(X)n = X for every n. All morphisms are
mapped to the identity morphism by the constant functor, so all di and si are
equal to the identity function 1X : X → X.

Since all simplicises except the zeroth simplex ι(X)0 = X are degenerate,
we see that |ι(X)| = X with the discrete topology.

3 Simplicial spaces
Definition 3.1. A simplicial object in Sp, i.e. a functor ∆op → Sp is called
a simplicial space. The category of simplicial spaces (with morphisms being
natural transformations) is denoted SSp.

EachXn is a space (i.e. simplicial set) and all the di, si are maps of simplicial
sets. Thus for a simplicial space, we can think of it as a horizontal sequence
of simplicial sets Xn. Each of these is a vertical sequences of sets (Xn)k so we
picture X as a grid with (Xn)k = Xn,k and the n-axis is horizontal. We will
sometimes call n the outer or external dimension and k the inner or internal
dimension.

When taking this viewpoint, we denote the external face and degeneracy
maps (i.e. the face and degeneracy maps of the simplicial space X) with dhi , shi ,
where the h is not an index but stands for horizontal. For each space Xn, we
denote the inner face and degeneracy maps with dvi , svi , where the v stands for
vertical.

Another way to view a simplicial space X is as a (bi)functor X̃ : ∆op×∆op →
Sets where X̃(n, ·) = X : ∆op → Sets. We can precompose with the diagonal

functor diag : ∆op → ∆op×∆op to obtain a simplicial set ∆op diag−−→ ∆op×∆op X̃−→
Sets. With a few category-theoretic arguments one can show that this gives us
a functor diag : SSp→ Sp. However, one can also do this simplicially with the
notation above:

Definition 3.2. Let X be a simplicial space. Define diag(X)n = Xn,n and
di = dhi ◦ dvi , si = shi ◦ svi .

Proposition 3.3. Let X be a simplicial space. Then diag(X) as defined above is
a simplicial set and diag : SSp→ Sp is a functor which takes ϕ : X → Y ∈ SSp
to diag(ϕ) defined by diag(ϕ)(xn,n) = ϕ(xn,n).

Proof. Since diag(X)n = Xn,n = (Xn)n is a set for every n ∈ N, we only need to
check that the simplicial relations hold. Let i < j. Each dhj is a simplicial map
and thus commutes with all dvi , hence we find that didj = dhi d

v
i d
h
j d
v
j = dhi d

h
j d
v
i d
v
j .

We can now apply the relations as normal, so that (again by commutativity),

didj = dhi d
h
j d
v
i d
v
j = dhj−1d

h
i d
v
j−1d

v
i = dhj−1d

v
j−1d

h
i d
v
i = dj−1di .

The other relations are proved in exactly the same way.
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For the second part, the only substantial thing to check is that diag(ϕ) is a
map of simplicial sets. Since ϕ is a map of simplicial spaces, it commutes with
the (external) face and degenerecy maps, so dhi ϕ = ϕdhi . Furthermore, for every
external dimension n, ϕn : Xn → Yn is a map of simplicial sets, so ϕ commutes
also with dvi . Thus

diϕ = dhi d
v
iϕ = dvi d

h
i ϕ = dviϕd

h
i = ϕdvi d

h
i = ϕdhi d

v
i = ϕdi .

The proof that ϕ commutes with si is done mutatis mutandis.

Definition 3.4. For n ∈ Cat, HomCat(·,n) : ∆op → Sets is a functor. We
define the simplicial set ∆[n] = HomCat(·,n).

Simplicially, for k, n ∈ N, we have ∆[n]k = HomCat(k,n) = Hom∆(k, n)
and ∆[n] is a simplicial set by precomposition: di = δi

∗, si = σi
∗. To be more

clear: for η : k → n, we have{
di(η) = η ◦ δi : k − 1→ k → n
si(η) = η ◦ σi : k + 1→ k → n

Definition 3.5. Likewise, HomCat(·, ·) : ∆op × ∆ → Sets is a (bi)functor, so
we define the cosimplicial space ∆ with ∆: n 7→ HomCat(·,n) = ∆[n].

This time, the (outer) face and degeneracy maps are defined by postcom-
position, so dih = δi∗, sih = σi∗. At inner dimension k, for the n-(co)simplex
η : k → n, we have {

dih(η) = δi ◦ η : k → n→ n+ 1 ,
sih(η) = σi ◦ η : k → n→ n− 1 .

When taking this simplicial point of view, we see that ∆ is a cosimplicial
space precisely because postcomposition commutes with precomposition.

Lemma 3.6. Let X be a simplicial set. If we have equivalence relations in each
Xn such that for all xn ∼ yn ∈ Xn it holds that dixn ∼ diyn, sixn ∼ siyn, then
X/ ∼ defined by (X/ ∼)n = Xn/ ∼ and di[xn] = [dixn], si[xn] = [sixn] is a
simplicial set.

Furthermore, if we have a simplicial map ϕ : X → Y such that ϕ(xn) =
ϕ(yn) for all equivalent xn ∼ yn ∈ Xn, then we have a factorization

X
ϕ
//

p

��

Y

X/ ∼

ϕ̃

<<

where ϕ̃[xn] = ϕ(xn) and p(xn) = [xn].

Proof. This is an easy example of how to use the definitions. First of all, if
everything is well-defined, the diagram certainly commutes.

For the first statement, let us first check that di : (X/ ∼)n → (X/ ∼)n−1 is
well-defined. If [xn] = [yn], so that xn ∼ yn, then dixn ∼ diyn by assumption,
so di[xn] = [dixn] = [diyn] = di[yn] and similarly for si. It is obvious that the
simplicial relations hold. Thus X/ ∼ is a simplicial set.
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We see that ϕ̃ is a well-defined function in each dimension since for [xn] = [yn]
it holds that ϕ̃[xn] = ϕ(xn) = ϕ(yn) = ϕ̃[yn] by the assumption given on ϕ. We
need to check that ϕ̃ commutes with di, si:

diϕ̃[xn] = diϕ(xn) = ϕdi(xn) = ϕ̃[dixn] = ϕ̃di[xn]

since ϕ is a simplicial map. As usual, the proof for si is exactly the same.
We also see that dip(xn) = di[xn] = [dixn] = pdi(xn) and likewise for si, so

p is a simplicial map.

In analogy with the geometric realization functor | − | : Sp → Top we will
now define the realization functor | − | : SSp→ Sp.

Definition 3.7. For a simplicial space X, we define the realization of X to be
the space

|X| =
∐
n≥0

Xn ×∆[n]/ ∼

where we in each (internal) dimension k have the identifications

(dhi xn,k, k
η−→ n− 1) ∼ (xn,k, δ

i
∗(η)) = (xn,k, k

η−→ n− 1
δi−→ n)

and
(shi xn,k, k

η−→ n+ 1) ∼ (xn,k, σ
i
∗(η)) = (xn,k, k

η−→ n+ 1
σi−→ n)

Furthermore, for f : X → Y ∈ SSp, we define

|f | : |X| → |Y |, [xn,k, k
η−→ n] 7→ [f(xn,k), k

η−→ n] .

Proposition 3.8. The constructions above makes |·| : SSp→ Sp into a functor.

Proof. The proof is an easy consequence of Lemma 3.6 and the fact that every
relation is generated by the two types of relations (dhi xn,k, η) ∼ (xn,k, δ

i
∗(η))

and (shi xn,k, η) ∼ (xn,k, σ
i
∗(η)). Let X ∈ Sp and (xn,k, η) ∈

∐
Xn × ∆[n].

Since dj(xn,k, η) = (dvjxn,k, δ
j∗(η)) and we have commutativity of horizontal

and vertical maps, we get

dj(d
h
i xn,k, η) = (dhi d

v
jxn,k, δ

j∗(η))

∼ (dvjxn,k, δ
i
∗δ
j∗(η))

= dj(xn,k, δ
i
∗(η)) .

There are three more of these to check, but they are near identical to this. The
lemma implies that |X| is a well-defined simplicial set.

Let f : X → Y ∈ SSp. Note that this means that f commutes with all
dhi , d

v
j , s

h
i , s

v
j . We define ϕ :

∐
Xn × ∆[n] → |Y | by ϕ(xn,k, η) = [f(xn,k), η].

Then

diϕ(xn,k, η) = [dvi f(xn,k), δi
∗
(η)] = [fdvi (xn,k), δi

∗
(η)] = ϕdi(xn,k, η)

and same for si, so ϕ is a simplicial map.
From the second part of Lemma 3.6, the calculation

ϕ(dhi xn,k, η) = [fdhi xn,k, η] = [dhi f(xn,k), η] = [f(xn,k), δi∗] = ϕ(xn,k, δ
i
∗(η))

(and its counterpart with degeneracy maps) implies that ϕ̃ is a well-defined
simplicial map, and evidently |f | = ϕ̃. The other axioms for functors are trivial.
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Remark 3.9. It is nice to note that if we have µ : m→ n so that µ∗h : Xn,k →
Xm,k we only need to remember that µ is a combination of face and degeneracy
maps to see that we have the easily remembered formula

(µ∗h(xn,k), η) ∼ (xn,k, µ∗(η))

Indeed, we could have defined the equivalence relation to be generated by all
such relations, but it is often more practical to use the fact that every morphism
in ∆ is generated by face and degeneracy maps so that also the equivalence
relation is generated by the two formulas in our definition.

Example 3.10. In particular, we can consider a space X as a simplicial space
ι(X) by letting ι(X)n = X for all n in the same way as we did when we
considered sets as spaces in Remark 2.4. With this definition, |ι(X)| = X either
by the same reasoning as before or by looking at the diagonal space.

We have so far seen that for a simplicial space X, we can construct two
spaces |X| and diag(X). We will now show in detail that they are naturally
isomorphic. For this we will use a preliminary lemma.

Lemma 3.11. If a simplicial map f is a bijection in each dimension, then f is
an isomorphism of simplicial sets.

Proof. Let f : X → Y ∈ Sp. In each dimension n we have a two-sided inverse
gn : Yn → Xn. We only need to show that g defined in the obvious way is a
simplicial map. We thus want to show that the diagram

Yn
gn //

di

��

Xn

di

��

Yn−1

gn−1
// Xn−1

commutes.
Since f is a simplicial map it holds that difn = fn−1di. From this it follows

that gn−1difn = gn−1fn−1di = di, hence also dign = gn−1difngn = gn−1di.

Theorem 3.12. Let X be a simplicial space. Then |X| ∼= diag(X) naturally.

Proof. A typical k-simplex in |X| is represented by (xn,k, k
η−→ n) ∈ Xn,k×∆[n]k.

Define ϕ : diag(X)→ |X| by

ϕ : Xn,n → |X|n, xn,n 7→ [xn,n, n
Id−→ n]

For xk,k ∈ diag(X)k, di(xk,k) = dhi d
v
i (xk,k). In |X|, the face map di is

induced by the product face map dvi × δi
∗, so that

di[xn,k, k
η−→ n] = [dvi (xn,k), k − 1

δi−→ k
η−→ n]

We can now check that ϕ is a simplicial map. On the one hand,

di(ϕ(xk,k)) = di[xk,k, k
Id−→ k] = [dvi (xk,k), k − 1

δi−→ k] .
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On the other hand,

ϕ(di(xk,k) = [dhi d
v
i (xk,k), k − 1

Id−→ k − 1] = [dvi (xk,k), k − 1
δi−→ k] .

The case for si is identical.

Now define ψ :
∐
n≥0Xn × ∆[n] → diag(X) by ψ(xn,k, k

η−→ n) 7→ η∗h(xn,k).
We will show that this is a simplicial map. Since η is a combination of face and
degeneracy maps and vertical face and degeneracy maps commute with their
horizontal counterparts, we have that

diψ(xn,k, k
η−→ n) = dhi d

v
i η
∗
h(xn,k) = dhi η

∗
hd
v
i (xn,k)

but also

ψdi(xn,k, k
η−→ n) = ψ(dvi (xn,k), k − 1

δi−→ k
η−→ n) = dhi η

∗
hd
v
i (xn,k)

since (δi)∗h = dhi by definition. The case for si is done in exactly the same way
and so ψ is a simplicial map.

We will now show that ψ respects the relations we use to define |X| from∐
n≥0Xn ×∆[n], so that Lemma 3.6 gives us an induced simplicial map

ψ̃ : |X| → diag(X) .

Let xn,k ∈ Xn,k and k η−→ n− 1. Then we have

ψ(dhi (xn,k), η) = η∗hd
h
i (xn,k)

which equals
ψ(xn,k, δ

i
∗(η)) = η∗h(δi)∗h(xn,k) = η∗hd

h
i (xn,k) .

The same holds in the same way for the other relation involving degeneracy
maps. Since all relations are sequences of such relations, ψ respects the defining
relations of |X|.

As the reader probably has guessed, ϕ and ψ̃ are inverses of each other, hence
simplicial isomorphisms of |X| and diag(X). We check that for xn,n ∈ diag(X)n,
ψ̃ψ(xn,n) = ψ̃[xn,n, n

Id−→ n] = xn,n. For xn,k ∈ Xn,k and k η−→ n it holds that

ψϕ̃[xn,k, η] = ϕ(η∗h(xn,k)) = [η∗h(xn,k), k
Id−→ k] = [xk,n, η] .

As for naturality, let f : X → Y ∈ SSp. We see directly that the following
diagram commutes:

diag(X)
ϕ
//

diag(f)

��

|X|

|f |
��

diag(Y )
ϕ

// |Y |

xn,n
� //

_

��

[xn,n, n
Id−→ n]

_

��

f(xn,n) � // [f(xn,n), n
Id−→ n]

This completes the proof.
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4 Nerves and the simplicial replacement
When constructing ∆[n] = HomCat(·,n) we use that HomCat(·,D) is a functor
for D ∈ Cat. The generalization is called the nerve construction.

Definition 4.1. For a small category D, we define the simplicial space N(D)
called the nerve of D by

N(D) = HomCat(·,D) : ∆op → Sets

The face and degeneracy maps are again coming from precomposition of the
face and degeneracy maps in ∆, so for τ : n→ D, diτ = τ ◦ δi and siτ = τ ◦ σi

More concretely, an n-simplex σ ∈ N(Dn) is a sequence of objects and
morphisms σ = (σ(0)

α1−→ σ(1)
α2−→ . . .

αn−−→ σ(n)) inD. The face and degeneracy
maps are then defined as follows:

di(σ) =


(σ(1)→ . . .→ σ(n)), i = 0

(σ(0)→ . . .→ σ(i− 1)
αi+1αi−−−−→ σ(i+ 1)→ . . .→ σ(n)), 0 < i < n

(σ(0)→ . . .→ σ(n− 1)), i = n

and

si(σ) = (σ(0)→ . . .→ σ(i)
Id−→ σ(i)→ σ(i+ 1)→ . . .→ σ(n)) .

In the above, it is understood that the maps not explicitely named are the
corresponding ones in σ. In what follows, for σ ∈ N(D)n the first morphism
σ(0) → σ(1) will always be denoted α1. It will play a special role when we
define the simplicial replacement.

Proposition 4.2. The nerve construction gives us a functor N : Cat → Sp
which on morphisms is defined by postcomposition.

Proof. This follows immediately from the fact that postcomposition commutes
with precomposition.

Proposition 4.3. N : Cat → Sp respects (finite) products (up to isomor-
phism).

Proof. Consider the product categoryC×D. ThenN(C×D)n = HomSp(n,C×
D) ∼= HomSp(n,C)×HomSp(n,D) = N(C)n×N(D)n naturally. Furthermore,
this isomorphism clearly commutes with di, si, so N(C×D) ∼= N(C)×N(D).

Definition 4.4. Let F : D → Sp be a diagram of spaces. Then we define the
simplicial replacement q∗F ∈ SSp by

(q∗F )n =
∐

σ∈N(D)n

F (σ(0))

where si is sending F (σ(0)) to F (siσ(0)) by the identity map and di is sending
F (σ(0)) to F (diσ(0) by the identity when i > 0 and by the map F (α1) when
i = 0.
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Remark 4.5. We will work quite a lot with the simplicial replacement q∗F
and thus we will need to introduce some notation. The component F (σ(0)) ⊆
hocolim(F )n indexed by σ ∈ N(D)n will be denoted with F (σ(0))(σ). For
xk ∈ F (σ(0))

(σ)
k we write x(σ)

k . All the information we need is in this notation:
inner dimension, F (σ(0)) and the index σ.

Proposition 4.6. If D is a small category, then

q∗ : SpD → SSp

is a functor.

Proof. Let F,G : D → Sp and let τ : F → G be a natural transformation so
that we have simplicial maps τd : F (d)→ G(d) for every d ∈ D.

For every (outer) dimension n, define

(q∗τ)n :
∐

σ∈N(D)n

F (σ(0))→
∐

σ∈N(D)n

G(σ(0))

by
F (σ(0))

(σ)
k 3 x(σ)

k 7→ τσ(0)(x
(σ)
k ) =

(
τσ(0)(xk)

)(σ)

on each component. Each of these is a simplicial map, so by Proposition 2.2
we get simplicial maps (q∗τ)n. We need to prove that q∗τ : q∗ F → q∗G is
a map of simplicial spaces. Remember that for i > 0, di(x

(σ)
k ) = x

(diσ)
k and

d0(x
(σ)
k ) = (F (α1)(xk))(d0σ). Also, si(x

(σ)
k ) = x

(siσ)
k for all i.

Thus for i > 0,

q∗τ(di(x
(σ)
k )) = τ(diσ)(0)(x

(diσ)
k )

= (τσ(0)(xk))(diσ)

= di((τσ(0)(xk))(σ))

= di(q∗τ(x
(σ)
k ))

and correspondingly for all si. For the remaining case i = 0, we have

q∗τ(d0(x
(σ)
k )) = q∗τ((F (α1)(xk))(d0σ)) = (τ(d0σ)(0)(F (α1)(xk)))(d0σ)

but
d0(q∗τ(x

(σ)
k )) = d0((τσ(0)(xk))(σ)) = (G(α1)(τσ(0)(xk)))(d0σ) .

However, τ is a natural isomorphism, so the following diagram commutes:

F (σ(0))
τσ(0)

//

F (α1)

��

G(σ(0))

G(α1)

��

F (σ(1))
τσ(1)

// G(σ(1))

Because (d0σ)(0) = σ(1), this implies that q∗τ(d0(x
(σ)
k )) = d0(q∗τ(x

(σ)
k )). We

conclude that q∗τ is a map of simplicial spaces.
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Finally, if τ = IdF , then clearly q∗τ is also the identity. Let F τ−→ G
θ−→ H

be a sequence of natural transformations. Then for every d ∈ D,

F (d)
τd //

(θτ)d

##

G(d)

θd

��

H(d)

commutes and hence by the definition of q∗τ , q∗(θτ) = (q∗θ) ◦ (q∗τ).

5 Homotopy colimits
Definition 5.1. If F : D→ Sp is a diagram in Sp, then we define

hocolim(F ) = diag(q∗F ) .

Example 5.2. It is not hard to verify that if we let D be the category 1 with
two objects and a unique morphism 0 ≤ 1 and let F : D → Sp be defined by
F (0) = F (1) = ∆[0] = ∗, then even though all the spaces in the diagram are
sets (discrete spaces), the homotopy colimit is ∆[1] which is not discrete.

This example is in analogue with the topological example where we have two
discrete one-point (topological) spaces and glue them together with an interval
I = |∆[1]|. In both cases we thus see that even though colimits of diagram of
discrete spaces are discrete, the homotopy colimit need not be.

Example 5.3. Let F : D → Sp be a a constant functor, i.e. F (d) = X for
every d ∈ D and F (d

α−→ d′) = IdX for every morphism α. Then we prove that
hocolim(F ) ∼= X ×N(D).

Since F (d) = X for every d ∈ D, we get that

hocolim(F )n = diag(q∗F )n =
∐

σ∈N(D)n

X(σ)
n

where X(σ) = X for every σ ∈ N(D)n. A face map in a diagonal is by definition
a composition of the horizontal (outer) face map and the vertical (inner) face
map. Thus di(x

(σ)
n ) = (dixn)(diσ) where the first di is the inner face map in X(σ)

and the second one is the face map in N(D). For i = 0 we note that F (α1) is
the identity map for any α1 : σ(0)→ σ(1), so also d0(x

(σ)
n ) = (d0xn)(d0σ) in this

particular example. Also, si(x
(σ)
n ) = (sixn)(siσ).

Define ϕ : hocolim(F )→ X ×N(D) at dimension n by x(σ)
n 7→ (xn, σ). This

is clearly a bijection dimensionwise, so it suffices to show that ϕ is a simplicial
map. This is easy to verify:

ϕdi(x
(σ)
n ) = ϕ((dixn)(diσ)) = (dixn, diσ) = di(xn, σ) = diϕ(x(σ)

n )

and likewise for si.

Corollary 5.4. With the definition above, hocolim : DSp → Sp is a functor.
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Proof. We compose the functor q∗ : SpD → SSp with diag : SSp → Sp. By
definition, hocolim = diag ◦ q∗.

Definition 5.5. Let F : D→ Sets be a diagram. We will associate a category
Tr(F ) called the transport category of F as follows. The objects are pairs
(d, x) where d ∈ Ob(D) and x ∈ F (d). A morphism f̃ : (d, x) → (d′, x′) is a
morphism f : d → d′ ∈ D such that F (f)(x) = x′. Composition is defined by
the composition in D.

Note that the the morphisms from (d, x) ∈ Tr(F ) are characterized by the
morphisms with domain d in D since x′ is determined by x.

Proposition 5.6. For F : D→ Sets, N(Tr(F )) ∼= hocolim(F ).

Proof. We view each F (d) ∈ Sets as discrete spaces. Then

(hocolim(F ))n = diag(q∗F )n =
∐

σ∈N(D)n

F (σ(0))

since F (d)n = F (d) for every d ∈ D and n ≥ 0. We see that n-simplices
in hocolim(F ) correspond exactly to pairs (σ, x) where σ ∈ N(D)n and x ∈
F (σ(0)). As noted previously, this also holds for n-simplices in N(Tr(F )) since
an element in N(Tr(F ))n is a sequence

(c0, x)
α1−→ (c1, F (α1)(x))

α2−→ . . .
αn−−→ (cn, F (αn · · ·α1)(x))

with x ∈ F (c0) and (c0
α1−→ c1

α2−→ . . .
αn−−→ cn) ∈ N(D)n. We thus have

an obvious isomorphism if this identification respects the face and degeneracy
maps in both cases. We first look at hocolim(F ).

Let σ ∈ N(D)n and x(σ)
n ∈ F (σ(0)) ⊆ (hocolim(F ))n. For i > 0, di(x

(σ)
n ) =

(dixn)(diσ) = x
(diσ)
n since all face and degeneracy maps are identity in the dis-

crete space F (σ(0)). For i = 0, we have d0(x
(σ)
n ) = (F (α1)(xn))(d0σ).

Turning to N(Tr(F )), the n-simplex corresponding to x(σ)
n is

σ̃ =
(

(σ(0), xn)
α1−→ (σ(1), F (α1)(xn))

α2−→ . . .
αn−−→ (σ(n), F (αn · · ·α1)(x))

)
.

We will suppress the notation slightly in what follows, but there should be no
confusion as to what is meant. For i > 0,

di(σ̃) =
(

(σ(0), xn)→ . . .→ (σ(i− 1), . . .)
αi+1αi−−−−→ (σ(i+ 1), . . .)→ . . .

)
which corresponds to x(diσ)

n . Finally,

d0(σ̃) =
(

(σ(1), F (α1)(xn))
α2−→ . . .

)
which corresponds to (F (α1)(xn))(d0σ).

The verification for si is of course done in the same way.
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6 Simplicial homotopies
Proposition 6.1. We call a simplicial map f : X → Y a weak equivalence
if |f | : |X| → |Y | is a weak equivalence of topological spaces, meaning that
πn|f | : πn(|X|, x0) → πn(|Y |, |f |(x0)) is an isomorphisms for every n ∈ N and
every basepoint x0 ∈ |X|.
Definition 6.2. We define two simplicial maps f, g : X → Y to be (simplicially)
homotopic if there is a simplicial map h : X ×∆[1]→ Y that restricts to f and
g on the subspaces X× (0) and X× (1) respectively. We use the notation f ' g
for homotopic maps.

Corollary 6.3. If f ' g : X → Y , then |f | ' |g| : |X| → |Y |.
Proof. There is a simplicial map h : X × ∆[1] → Y by assumption. We apply
the geometric realization functor and obtain |h| : |X| × I → |Y | by Proposition
2.3 and this is a topological homotopy between |f | and |g|.

Lemma 6.4. Let F,G : C→ D be two functors. There is a natural transforma-
tion τ : F → G if and only if there is a functor ρ : C× 1→ D with ρ|C×0 = F ,
ρ|C×1 = G.

Proof. Suppose that we have a functor ρ as stated above. That means that
for every c ∈ C we have a morphism ρ(1c × (0 ≤ 1)) : F (d) → G(d) for every
f : c→ c′ ∈ C, the following diagram commutes in C× 1:

c× 0
f×10 //

1c×(0≤1)

��

c′ × 0

1c′×(0≤1)

��

c× 1
f×11 // c′ × 1

Let τc = ρ(1c × (0 ≤ 1)). Then by applying ρ to the diagram we obtain

F (c)
F (f)
//

τc

��

F (c′)

τc′

��

G(c)
G(f)
// G(c′)

.

This commutes for every f : c→ c′ ∈ C, so τ is a natural transformation.
Conversely, suppose that we have a natural transformation τ : F → G. We

define a functor ρ : C×1→ D by ρ(c, 0) = F (c), ρ(c, 1) = G(c) on objects. For
morphisms, we define ρ(1c, (0 ≤ 1)) = ρd, ρ(f, 10) = F (f) and ρ(f, 11) = G(f).
A general morphism in C × 1 is a composition of these and it can easily be
shown to be a functor by using that F and G are functors together with the
commutativity of τ with F,G.

Corollary 6.5. If τ : F → G is a natural transformation of two functors
F,G : C→ D, then N(F ) ' N(G).

Proof. By the previous Lemma, there exists a functor ρ : C × 1 → D which
restricts to F and G on C × 0 and C × 1 respectively. We have seen that the
nerve functor preserves products, so we get a simplicial map N(ρ) : N(C) ×
N(1) = N(C) ×∆[1] → D which restricts to N(F ) and N(G). By definition,
N(F ) ' N(G) as simplicial maps.
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Proposition 6.6. If F : C → D is an equivalence of categories, then N(F ) is
a weak equivalence.

Proof. The assumption is that there exists a functor G : D → C such that
GF ∼= 1C and FG ∼= 1D (this only means that they are naturally isomorphic,
not necessarily equal). By Corollary 6.5, N(F )N(G) ' 1N(C) and N(G)N(F ) '
1N(D). From this it follows that |N(F )| is a homotopy equivalences and thus in
particular a weak equivalence.

Definition 6.7. A simplicial space X is said to be weakly contractible if the
unique simplicial map X → ∗ is a weak equivalence. Equivalently, X is weakly
contractible if |X| is a contractible topological space.

Proposition 6.8. If D is a category with either an initial or a terminal object,
then N(D) is weakly contractible.

Proof. We will only do the proof where D has an initial object d. The case
where D has a terminal object is very similar.

Let ∗ denote the category with one object and no nonidentity morphisms.
We denote the unique functor D→ ∗ with F and define G : ∗ → D by G(∗) = d.
Then FG = 1∗ of course. We will construct a natural transformation τ : GF →
1D and then the statement follows from Corollary 6.5.

Note that GF (x) = d for every x ∈ D and for every morphism f we have
that GF (x

f−→ x′) = (d
1d−→ d). Let τ : GF → 1D be defined by the unique

morphism τx : d → x for every x ∈ D. Then for the morphism x
f−→ x′ ∈ D we

need to show commutativity of the diagram

d
τx //

1d
��

x

f

��

d
τx′ // x′

but this obviously holds because fτx is a map with domain d, so by the universal
property of the initial object d we have fτx = τx′ . By Corollary 6.5, N(D) is
weakly equivalent to N(∗) = ∗.

7 G-spaces
Any group G can be considered as a category with one object (usually denoted
with ∗) and morphisms corresponding to the elements of the group G. We
denote this category with G in order to distinguish them. Note that a group
homomorphism G → H is the same thing as a functor G → H. There are
several characterizations of a group action for a group G and a set X. One
nice characterization is that a group action ρ is a functor ρ : G → Sets with
ρ(∗) = X. Since every morphism in G is an isomorphism, also ρ(g) : X → X are
isomorphism. Furthermore, we define the set of orbits X/G = {Gx ; x ∈ X} of
orbits. It is convenient to use the notation [x] := Gx for the equivalence classes
in X/G.
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This concept is easily generalized to arbitrary categories by simply replacing
the category Sets with another category of our choice. We will consider G-
spaces, that is, functors ρ : G → Sp. We see that for a given group G, a G-
action on the spaceX ∈ Sp concists of simplicial isomorphisms ρ(g) : X → X for
g ∈ G, which in turn consists of functions ρ(g)n : Xn → Xn commuting with the
face and degeneracy maps. Because of this fact, we can form the quotient space
X/G which is defined by (X/G)n = Xn/G and di[xn] = [dixn], si[xn] = [sixn].

Example 7.1. In this example we will see that there is no nontrivial Z/2-action
on ∆[1] ∈ Sp. Denote the 0-simplices with (0), (1) and the non-degenerate 1-
simplex with (0, 1).

If g is the generator of Z/2, then the action on ∆[1] is completely determined
by g·(0, 1) since any simplex x ∈ ∆[1] can be written as η∗(x) for some η ∈ ∆. In
other words, ∆[1] is generated by the simplex (0, 1). For more on this concept,
see for example [Fri12]. To get a non-trivial action on ∆[1], it must thus hold
that g ·(0, 1) 6= (0, 1). However, then without loss of generality, g ·(0, 1) = (0, 0),
so g · (0) = g · (d1(0, 1)) = d1(g · (0, 1)) = (0) but also g · (1) = g · (d0(0, 1)) =
d0(g · (0, 1)) = (0), implying that the action on ∆[1]0 is not a bijection.

If we consider Σ as defined in Example 9.4, then it is not hard to show that
g · (0, 1) = (1, 0), g · (1, 0) = (0, 1) defines a group action. We see that Σ/G for
G = Z/2 is a space with one 0-simplex v and one degenerate 1-simplex e which
is different from s0(v). Of course, |Σ/G| ∼= |Σ|/G ∼= RP 1.

Definition 7.2. For a group G, we define the category EG with objects cor-
responding to elements g ∈ G and exactly one morphism between every object.
We also define the simplicial set EG = N(EG) ∈ Sp.

Since every morphism g → gh = g′ ∈ EG is unique, we will write it simply
as g ·h−→ gh. Note however that with this notation, ·h considered as a functor is
contravariant.

We define an action on EG, e.g. a functor λ : G → Cat with λ(∗) = EG

and λ(∗ g−→ ∗) = λg : EG → EG, which in turn is defined by λg(h) = gh and
λg(h1

·h2−−→ h1h2) = (gh1
·h2−−→ gh1h2).

By composing this with the nerve functor, we get a a G-action on the space
EG = N(EG) by N ◦ λ : G → Cat → Sp. One easily verifies that this action
is defined by

g · (g0 → g1 → . . .→ gn) = (gg0 → gg1 → . . .→ ggn)

for g ∈ G and (g0 → . . .→ gn) ∈ EG

Definition 7.3. Let E : G → Sp be a weakly contractible G-space. From
the theory of covering spaces, we see that |E| → |E/G| ∼= |E|/G is a covering
space. Since |E| is contractible and the deck of transformations is G, |E/G| is a
classifying space for G in the topological sense. We call E/G a classifying space
for G.

For a reference on covering spaces, see [Hat02], in particular Proposition
1.40. For classifying spaces (K(G, 1)-spaces), see [Hat02, Ch. 1B].

Proposition 7.4. Let G be a group. Then BG := N(G) is a classifying space
for G.
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Proof. From the discussion above, we see that EG = N(EG) is a weakly con-
tractible space by Proposition 6.8 and we also have a G-action on it which is
easily seen to be free. Furthermore, EG/G ∼= N(G) by an obvious isomorphism
(just think about what the two spaces are!). Hence N(G) is a classifying space
for G.

8 Homotopy orbit spaces
Definition 8.1. For a G-space X : G → Sp, we define the homotopy orbit
space

XhG := hocolim(X) .

Example 8.2. Let X : G → Sp be a constant functor with X(∗) = X̃. Then
this is the same as Example 5.3, so XhG

∼= X̃ × N(G). In particular, for the
constant functor with X(∗) = ∗ = ∆[0], XhG

∼= N(G) = BG.

Proposition 8.3. For the G-space X : G → Sp, it holds that XhG
∼= (X ×

EG)/G where X × EG has been given the diagonal action.

Proof. An n-simplex in N(G), if viewed as EG/G with the notation above, is
a sequence σ = (∗ ·g1−−→ ∗ ·g2−−→ . . .

·gn−−→ ∗) but multiplication from the right is
strictly speaking not a group action since it is contravariant. In order to solve
this we consider the opposite group Gop and the opposite category Gop. Thus
when we look at hocolim(X), we set X(·g1)(xn) := g−1

1 (xn).
The proof will be in three steps. First we construct a simplicial map ϕ : X×

EG → XhG. After that we verify that ϕ sends elements in the same orbit of
(X × EG)/G to the same element, so that we get a simplicial map ϕ̃ : (X ×
EG)/G→ XhG. As a last step, we prove that this is an isomorphism.

One of the hurdles here is the notation. For an element g0 ∈ G and an
n-simplex σ = (∗ ·g1−−→ ∗ ·g2−−→ . . .

·gn−−→ ∗) ∈ N(G)n, we can assign a unique
n-simplex σg0 in N(EG)n = EGn, namely

σg0 = (g0 → g0g1 → . . .→ g0 · · · gn) .

Using this notation, we define

ϕ : X × EG→ XhG, (xn, σg0) 7→ (g−1
0 xn) ∈ X(σ)

n .

For i > 0,

diϕ(xn, σg0) = di((g
−1
0 xn)(σ)) = (dig

−1
0 xn)(diσ) = (g−1

0 dixn)(diσ)

since the automorphisms given by the G-action are simplicial maps and so com-
mute with all face and degeneracy maps. On the other hand,

ϕdi(xn, σg0) = ϕ(dixn, (diσ)g0) = (g−1
0 dixn)(diσ)

so diϕ = ϕdi. One proves in the same way that siϕ = ϕsi for all i. It remains
to show that d0ϕ = ϕd0.

Remembering that X(·g1) = g−1
1 by contravariance, we find that

d0ϕ(xn, σg0) = d0((g−1
0 xn)(σ)) = (g−1

1 d0g
−1
0 xn)(d0σ) = (g−1

1 g−1
0 d0xn)(d0σ) .
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Since d0(σg0) = (g0g1 → . . .→ g0 · · · gn), we get

ϕd0(xn, σg0) = ϕ(d0xn, d0(σg0)) = ((g0g1)−1d0xn)(d0σ)

an hence we conclude that ϕ : X × EG→ XhG is a simplicial map.

Next, for g ∈ G,

ϕ(g · (xn, σg0)) = ϕ(gxn, (gg0 → . . .→ gg0 · · · gn))

= ((gg0)−1gxn)(σ′) = (g−1
0 xn)(σ′)

= ϕ(xn, σg0)

since by inspection, σ′ := (∗ ·g1−−→ ∗ ·g2−−→ . . .
·gn−−→ ∗) = σ. Thus we have a

well-defined map
ϕ̃ : (X × EG)/G→ XhG .

It remains to show that this is an isomorphism. For this it is sufficient to
show bijectivity dimensionwise by Lemma 3.11. For surjectivity, take xσn ∈ X

(σ)
n ,

where σ = (∗ ·g1−−→ ∗ ·g2−−→ . . .
·gn−−→ ∗) as before. Then ϕ̃(xn, σ1G) = x

(σ)
n , where

1G is the identity element in G.
For injectivity, suppose that ϕ̃[xn, σg0 ] = ϕ̃[yn, τh0

] which, by definition, is
(g−1

0 xn)(σ) = (h−1
0 yn)(τ). This can only hold if they lie in the same component,

meaning that σ = τ . Thus σg0 and τh0 differ only by the object in EG they
begin with, say h0 = gg0, where g ∈ G. But inside this set, we must also
have g−1

0 xn = h−1
0 yn = g−1

0 g−1yn, so yn = gxn. Clearly this implies that
g · (xn, σg0) = (gxn, gσg0) = (yn, τh0

), so they lie in the same orbit and therefore
represent the same element.

Definition 8.4. Given a group G, let GSp := SpG be the category of G-
spaces. To remind the reader: objects are functors G → Sp, and morphisms
are natural transformations.

Since hocolim = diag ◦ q∗ is a functor, we have a functor

hG = hocolim : Gsp→ Sp .

Thus for a diagram of G-spaces F : D → GSp, we obtain a diagram of spaces
by postcomposing with the functor hG:

FhG = hG ◦ F : D→ Sp

so we can consider hocolim(FhG).
On the other hand, we can consider the homotopy colimit if we view F simply

as a diagram of spaces. Formally, we have the forgetful functor U : GSp→ Sp

sending G
F−→ Sp to G(∗) and postcomposing with this functor is the same thing

as considering the diagram F as a diagram of spaces withoutG-action. With just
a slight abuse of notation, we write hocolim(F ) := hocolim(UF ) = diag(q∗UF ).
For x(σ)

n ∈ UF (σ(0))n, we define an action g · x(σ)
n by the action it has in

F (σ(0))n. This is an action on hocolim(F ) if it commutes with the face and
degeneracy maps. In the same way as in previous proofs, this will boil down to
commutativity of UF (α1) with face and degeneracy maps, but this holds true
since F (α1) is a G-map. Thus we can also consider (hocolim(F ))hG.
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Proposition 8.5. For a group G, a small category D and a functor F : D →
GSp, there is a natural isomorphism

(hocolim(F ))hG ∼= hocolim(FhG)

Proof. An n-simplex in (hocolim(F ))hG consists of a pair (τ, y) ∈ N(G)n ×
hocolim(F )n, where in turn y = (σ, x) ∈ N(D)n × F (σ(0))n. However, an n-
simplex in hocolim(FhG) consists of a pair (σ′, z) ∈ N(D)n×F (σ′(0))hG where
z = (τ ′, x′) ∈ N(G)n × F (σ′(0))n.

We define ϕ : (hocolim(F ))hG → hocolim(FhG) by

(τ, (σ, x)) 7→ (σ, (τ, x)) .

The face and degeneracy maps in both cases are given by the diagonal face and
degeneracy maps, so

ϕdi(τ, (σ, x)) = ϕ(diτ, (diσ, dix))

= (diσ, (diτ, dix))

= di(σ, (τ, x))

= diϕ(τ, (σ, x))

and likewise for si.

9 Homology
For X ∈ Sp, we will now define the the homology of X with coefficients in an
abelian group M .

Definition 9.1. Let Z[−] : Sets→ AbGrp be the functor that sends a set to
the abelian group generated by the elements of the set.

Let M ⊗− : AbGrp→ AbGrp be the usual tensor functor.
Furthermore, we define N : AbGrp → Comp(AbGrp) which sends a sim-

plicial abelian group A to the chain complex with N (A)n = An/(s0(An−1 +
. . . sn−1(An−1))) and differential induced by ∂ =

∑
(−1)idi.

Definition 9.2. Let X ∈ Sp. We form the simplicial abelian group M ⊗ Z[X]
and apply the functor N to this. The homology of this chain complex is called
the homology of X with coefficients in M . We write

H∗(X;M) := H(N (M ⊗ Z[X]))

and consider it as a graded abelian group.

Remark 9.3. Since |X| is a CW-complex with cells corresponding to non-
degenerate simplices of X, it is easy to see that H∗(X;M) ∼= H∗(|X|;M) since
N (M ⊗ Z[X]) is exactly the cellular complex of |X|.

Example 9.4. Let Σ be the simplicial set generated by Σ0 = {(0), (1)}, Σ1 =
{(0, 1), (1, 0), (0, 0), (1, 1)} and di(v0, . . . , vn) = (v0, . . . , v̂i, . . . , vn) (where as
usual v̂i means that vi is left out from the sequence) and si(v0, . . . , vn) =
(v0, . . . , vi, vi, . . . , vn) for v1, . . . , vn ∈ {0, 1}.

19



The non-degenerate simplices are (0), (1), (0, 1) and (1, 0). There are sim-
plices of every dimension, but the rest are degenerate, for example s2s0(1, 0) =
(1, 1, 0, 0) ∈ Σ3. Using Z-coefficients, we see for example that Z[Σ]1 = Z4 and
Z[Σ]2 = Z6, but after applying the functor N , only the factors coming from
non-degenerate simplices remain. Hence N (Z[Σ]) looks like

. . .→ 0
∂2−→ Z(0,1) ⊕ Z(1,0) ∂1−→ Z(0) ⊕ Z(1) → 0 .

To see what the differential ∂1 is, we first compute{
d0(0, 1) = (1),
d1(0, 1) = (0),

{
d0(1, 0) = (0),
d1(1, 0) = (1),

so ∂1 : Z ⊕ Z → Z ⊕ Z is defined by ∂1(x, y) = (y − x, x − y). We find that
H0(Σ;Z) = (Z ⊕ Z)/〈(1,−1)〉 ∼= Z, H1(Σ;Z) = Ker(∂1) ∼= Z and Hn(Σ;Z) = 0
for n ≥ 2. This is of course the same thing as H∗(|Σ|) ∼= H∗(S

1).

Remark 9.5. One can generalize the above discussion. Let X be a simplicial
space and M an abelian group. We picture X as a sequence

. . .← Xn−1
d←− Xn

d←− Xn+1 ← . . .

with each Xn being a simplicial set vertically. For a fix j, we can apply the
functor Hj(−;M) dimensionwise to X, so that Hj(X;M)k = Hj(Xk;M). This
gives us an simplicial abelian group which we picture as

. . .← Hj(Xn−1;M)
d̂←− Hj(Xn;M)

d̂←− Xj(Xn+1;M)← . . . .

We denote the i:th homology of this with HiHj(X;M). This will give the
E2-page of a spectral sequence which is obtained as described below.

Let X be a simplicial space and consider the realization |X| =
∐
i≥0Xi ×

∆[i]/ ∼∈ Sp. This is associated with a map q :
∐
i≥0Xi ×∆[i] → |X| and so

for the simplicial space

X(n) :=
∐

0≤i≤n

Xi ×∆[i] ⊆ X

we can consider its image under the map q and define:

Fn|X| := X(n)/ ∼

Then we have a filtration

F0|X| ⊆ F1|X| ⊆ . . . ⊆ Fn|X| ⊆ . . . ⊆ |X| .

To this we apply the procedure described in Definition 9.2 and obtain a filtration
of simplicial abelian groups:

Z[F0|X|] ⊆ Z[F1|X|] ⊆ . . . ⊆ Z[Fn|X|] ⊆ . . . ⊆ Z[|X|] .

Finally we note that if we then apply the homology functor, we obtain a filtration
of the homology H∗(|X|,Z) = H(N (Z[|X|])).

By the general theory of spectral sequences, this filtration gives us a spectral
sequence converging toH∗(diag(X);Z). Bousfield-Kan [BK72] describes the E2-
page as follows:
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Theorem 9.6. For a simplicial space X with the filtration described above,
there are natural isomorphisms

E2
i,j
∼= HiHj(X;M) .

Proof. See [BK72, XII 5.7].
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