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1. Introduction

Let k be a field and let G be a finite group. In this situation we may form the category
Repk(G) of representations of G. An object of this category is a pair (V, ρ) consisting of a
vector space V over k and a representation ρ of G on V . A morphism from (V, ρ) to (W,σ) is
a k-linear map ϕ ∶V → W which satisfy that ϕ ○ ρ(g) = σ(g) ○ ϕ for each element g of G. We
have the following classical result due to Maschke.

Theorem 1.1 (Maschke). Let G be a finite group. If k is a field whose characteristic does not
divide the order of G, then the category Repk(G) of representations of G is semi-simple.

To put this in more concrete terms, if k is a field whose characteristic does not divide the
order of G, then every representation of G is a direct sum of irreducible representations. On
the other hand, if k is a field of positive characteristic which divides the order of G, then the
category of representations of G is extremely complicated. Let us try to rephrase Maschke’s
result in a different way. First observe that the category of representations of G is isomorphic
to the category of left k[G]-modules. More concretely, a representation of G is a vector space
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V over k equipped with a left action of G. There is a k-linear endomorphism of V given by
v ↦ ∑g∈G gv which factors as follows

V ↠ VG
NmGÐÐÐ→ V G ↪ V.

The k-linear map NmG ∶VG → V G from the coinvariants to the invariants of the action of G on
V is called the norm map. Note that VG ≃H0(G;V ) and V G ≃H0(G;V ). In [36], Tate defined
what is now called the Tate cohomology groups. These are defined by splicing together group
homology and group cohomology. More precisely, the Tate cohomology groups are defined by

Ĥn(G;V ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Hn(G;V ) n ≥ 1

coker NmG n = 0

ker NmG n = −1

H−(n+1)(G;V ) n ≥ −2

and there is an exact sequence

0→ Ĥ−1(G;V ) →H0(G;V ) NmGÐÐÐ→H0(G;V ) → Ĥ0(G;V ) → 0

of groups. In particular, the Tate cohomology groups measure the failure of the norm map being
an isomorphism. The Tate cohomology groups are most naturally thought of as corepresentable
functors on the stable module category StModk[G] of left k[G]-modules. Recall that an object
of the stable module category is a left k[G]-module. The set of morphisms from M to N in
the stable module category is defined as Homk[G](M,N) modulo the relation that ϕ ∼ ψ if the
difference ϕ − ψ factors through a projective k[G]-module. If M is a k[G]-module, then we
may choose a projective k[G]-module P and a surjective ϕ ∶P ↠ M homomorphism of k[G]-
modules. The assignment M ↦ kerϕ defines an endofunctor Ω on the stable module category
of k[G]-modules and there is an isomorphism

Ĥn(G;V ) ≃ HomStModk[G]
(k,ΩnV )

where k is equipped with the trivial G-action. If the characteristic of k does not divide the
order of k, then it follows from Maschke’s theorem that k[G] is semi-simple. Consequently,

every module over k[G] is projective. We conclude that the Tate cohomology groups Ĥn(G;V )
vanish for every integer n or equivalently that the norm map NmG ∶VG → V G is an isomorphism.
On the other hand, if the characteristic of k divides the order of G, then the norm map is in
general not an isomorphism. In conclusion, the perspective that we have tried to advocate here
is the following. If V is a representation of G, then we should ask whether the norm map is
an isomorphism or equivalently, whether the Tate cohomology groups vanish. The goal of this
project is twofold. First of all, we refine this story to the ∞-category of spectra and various
chromatic localizations of the ∞-category of spectra. More precisely, we will see that there is
a functor (−)tG from the ∞-category of spectra with a G-action to the ∞-category of spectra
such that for every spectrum X with an action of G, there is a cofiber sequence

XhG
NmGÐÐÐ→XhG →XtG

in the ∞-category of spectra, where XhG and XhG denote the homotopy coinvariants and homo-
topy invariants respectively (see Remark 2.8). The functor (−)tG is called the Tate construction
and the map NmG ∶XhG →XhG is called the norm map. The Tate construction is a refinement
of the Tate cohomology groups to the ∞-category of spectra. More precisely, if A is abelian
group equipped with an action of G, then

πnHA
tG ≃ Ĥ−n(G;A)
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where the Eilenberg–Mac Lane spectrum HA is equipped with the trivial G-action. Moreover,
the long exact sequence associated to the fiber sequence

(HA)hG
NmGÐÐÐ→ (HA)hG → (HA)tG

recovers the exact sequence above (see Example 2.14). Just as we may think of a representation
of G as a functor BG→Vectk from the group G considered as a groupoid with a single object
to the category of vector spaces over k, we define a spectrum with an action of G as a functor
from a classifying space of G considered as a Kan complex to the ∞-category of spectra. The
second goal of this project is to replace the classifying space of G with more general Kan com-
plexes which satisfy certain finiteness conditions.

In general, if X is a spectrum equipped with an action of G, then we may ask if the norm
map is an equivalence of spectra or equivalently if the Tate construction vanishes. Let us fix a
prime number p. If X is the Eilenberg–Mac Lane spectrum of the rational numbers equipped
with the trivial G-action, then the norm map NmG ∶ (HQ)hG → (HQ)hG is an equivalence.
On the other hand, if X is the Eilenberg–Mac Lane spectrum of Fp equipped with the trivial

G-action, then the norm map NmG ∶ (HFp)hG → (HFp)hG is in general not an equivalence. In
fact, it is an equivalence precisely if G is the trivial group. This is analogous to the situation
in ordinary representation theory as described above. However, in higher algebra the situation
is more complicated. Besides the Eilenberg–Mac Lane spectrum of the rational numbers and
the Eilenberg–Mac Lane spectrum of Fp there are fields of intermediate characteristic which
interpolate betweenHQ andHFp. More precisely, for each natural number n there is a spectrum
K(n) called the nth Morava K-theory spectrum at the prime p. For example, the first Morava
K-theory K(1) is equivalent to mod p complex K-theory KU/p. The nth Morava K-theory
K(n) admits a complex orientation and the associated formal group have height exactly n. In
fact, it is consequence of the thick subcategory theorem of Devinatz–Hopkins–Smith [13] that
the Morava K-theories are the prime fields in the ∞-category of spectra. In the language of
Balmer (see [1]), the prime spectrum of the ∞-category of p-local finite spectra is labeled by
the Morava K-theories. Impressionistically, we picture the prime fields of the ∞-category of
spectra as follows

HF2 HF3 HF5 ⋯

⋮ ⋮ ⋮ ⋮

K(2)2 K(2)3 K(2)5 ⋯

K(1)2 K(1)3 K(1)5 ⋯

HQ ⋯
where K(n)p denotes the nth Morava K-theory at the prime p. In conclusion, the Morava
K-theories provide deep information about the global structure of the ∞-category of spectra.
For example, we might be interested in computing the homotopy groups π∗S0 of the sphere
spectrum. Let LK(n) denote the Bousfield localization of the ∞-category of spectra with respect

to the nth Morava K-theory. We can try to compute the homotopy groups π∗LK(n)S0 of the
K(n)-local sphere spectrum for every integer n and every prime number p. However, even
though we might understand the local pieces π∗LK(n)S0 it is not evident how to actually
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assemble these pieces into a global computation of π∗S0. This is were the Morava E-theories
enter the story1. For each natural number there is a spectrum En called the nth Morava E-
theory spectrum (see Section 5). Let Ln denote the Bousfield localization of the ∞-category
of spectra with respect to the nth Morava E-theory spectrum. If X is a spectrum, then the
Bousfield localizations Ln assemble into the chromatic tower

⋯ → L2X → L1X → L0X

and if X is a p-local finite spectrum, then the tower converges. This is the content of the
chromatic convergence theorem due to Hopkins and Ravenel (see [23, Lecture 32]). More
precisely, if X is a p-local finite spectrum, then the canonical map

X
≃Ð→ lim

n
LnX

from X to the limit of the chromatic tower is an equivalence in the ∞-category of spectra.
Moreover, for every natural number n there is a chromatic fracture square

LnX LK(n)X

Ln−1X Ln−1LK(n)X

in the ∞-category of spectra (see Remark 6.7). Consequently, to compute π∗S0 it suffices to
compute π∗LK(n)S0 for every integer n and prime number p together with the gluing data
expressed by the chromatic fracture squares. This is by no means an easy task. However,
the ∞-category of K(n)-local spectra exhibits some surprising duality phenomena that we will
investigate in this paper. In [9], Greenlees and Sadofsky establish an interesting result in this
direction.

Theorem 1.2 (Greenlees–Sadofsky). Let G be a finite group and let K(n) denote the nth
Morava K-theory spectrum equipped with the trivial G-action. Then the norm map

NmG ∶K(n)hG →K(n)hG

is an equivalence of spectra.

Intuitively, this means that representation theory over the intermediate characteristics in
higher algebra behave more like representation theory in characteristic zero than representation
theory in characteristic p. We will provide a proof of this theorem in Section 4. More generally,
Hovey and Sadofsky [14] prove a globalization of this result.

Theorem 1.3 (Hovey–Sadofsky). Let G be a finite group and let X be a K(n)-local spectrum
equipped with an action of G. Then the K(n)-localized norm map

NmG ∶XhG →XhG

is an equivalence in the ∞-category of K(n)-local spectra.

The first part of this paper will culminate with a proof of Hovey and Sadofsky’s result (see
Theorem 6.1). In the second part of this paper we will place Hovey and Sadofsky’s result
into a more general categorical framework following Hopkins and Lurie’s paper [12]. Let X
be a K(n)-local spectrum equipped with an action of a finite group G classified by a functor

X ∶BG→ SpK(n) of ∞-categories. The unique map BG→ ∗ induces a functor SpK(n) → SpBGK(n)
from the ∞-category of K(n)-local spectra to the ∞-category of K(n)-local spectra equipped

1We will later refer to Morava E-theory as Lubin–Tate spectra.
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with an action of G and this functor is informally given by endowing the K(n)-local spectrum X
with the trivial G-action. This functor admits a left adjoint determined by X ↦XhG and a right
adjoint determined by X ↦XhG. An equivalent way to formulate Hovey and Sadofsky’s result
is that the natural transformation NmG ∶ (−)hG → (−)hG determined by the K(n)-localized
norm map is an equivalence of functors. More generally, we will study the following situation.
Let C be a stable ∞-category which admits small limits and colimits and let ρ ∶X → C be a
diagram in C indexed by a Kan complex X. The unique map f ∶X → ∗ induces a functor
f∗ ∶C→ CX and this functor admits a left adjoint f! and a right adjoint f∗. In Section 7 we will
define a natural transformation NmX ∶ f! → f∗ which recovers the usual norm map in the case
where X is the classifying space of a finite group (see Example 8.10). We can ask when this
natural transformation is an equivalence of functors. The main theorem of [12] is the following
(see Theorem 11.1).

Theorem 1.4 (Hopkins–Lurie). Let X be a Kan complex and suppose that for every vertex x
of X the sets πn(X,x) are finite for every integer n and trivial for n≫ 0. Let ρ ∶X → SpK(n) be

a diagram of K(n)-local spectra indexed by X. Then the natural transformation NmX induces
a natural equivalence

NmX ∶ colimX ρ
≃Ð→ limXρ

in the ∞-category of K(n)-local spectra.

If X is the classifying space of a finite group, then Hopkins and Lurie’s result recovers Hovey
and Sadofsky’s result above. The proof of Hopkins and Lurie’s theorem depends crucially on
the Ravenel–Wilson calculation [32] which we state in Section 10. Before each section of this
paper we will give a more detailed outline of the contents which will appear.

Terminology. We will freely use the language of ∞-categories as developed by Lurie in [22]
and [24]. Let Sp denote the ∞-category of spectra and let S0 denote the sphere spectrum. Let
S denote the ∞-category of spaces. Concretely, an object of the ∞-category of spaces is a Kan
complex. If A is an E1-ring, then we let LModA denote the ∞-category of left modules over A
in the ∞-category of spectra. Similarly, we let RModA denote the ∞-category of right modules
over A. If A is an E∞-ring, then we write ModA instead of LModA or RModA.

Acknowledgements. I would like to give my warmest thanks to Tobias Barthel for suggesting
and supervising this project. I have enjoyed every part of the process tremendously. Thanks
for teaching me so such cool chromatic homotopy theory and for being very supportive and
accessible.

Part 1. Vanishing of the K(n)-local Tate construction

Let G be a finite group. The goal of the first part of this paper is to prove Hovey and
Sadofsky’s result that the Tate construction vanishesK(n)-locally. In Section 2 we introduce the
Tate construction following [27] and obtain a universal characterization of the Tate construction
due to Klein [16]. Moreover, we discuss that the Tate construction admits a lax symmetric
monoidal structure which will be important later (see Theorem 2.15). In Section 3 we show
that the K(n)-cohomology of the classifying space of G is finitely generated as a left module
over the K(n)-cohomology of a point (see Proposition 3.6). This is the crucial input for the
proof of Greenlees and Sadofsky’s result that the Tate construction of the trivial G-action on
the nth Morava K-theory vanishes which we prove in Section 4 (see Theorem 4.1). To prove
Greenlees and Sadofsky’s result we present an argument due to Kuhn (see Proposition 4.3)
which allows us to reduce to the case where G is a cyclic group of order p. In Section 5 we recall
some material from stable homotopy theory that we will need. More precisely, we briefly discuss
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Bousfield localizations, Lubin–Tate spectra, and a 2-periodic version of Morava K-theory. In
Section 6 we employ the vanishing result due to Greenlees and Sadofsky to prove Hovey and
Sadofsky’s theorem that the Tate construction vanishes K(n)-locally (see Theorem 6.1).

2. The Tate construction

We will start by defining the ∞-category of spectra with an action of a group following [27].

Definition 2.1. Let G be a group and let C be an ∞-category. A G-equivariant object of C is
a functor from the classifying space BG of G regarded as a Kan complex to C. The ∞-category
of G-equivariant objects of C is the ∞-category Fun(BG,C) of functors from BG to C.

Remark 2.2. Let C be an ∞-category which admits small limits and colimits. If f ∶X → Y
is a map of Kan complexes, then the induced functor f∗ ∶Fun(Y,C) → Fun(X,C) given by
composition with f admits a left adjoint f! and a right adjoint f∗ as depicted in the following
diagram

Fun(Y,C)

Fun(X,C)

f∗f! f∗

The left adjoint f! of f∗ is given by sending a functor F ∶X → C to a left Kan extension of F
along f (see [22, Proposition 4.3.3.7]). Similarly, the right adjoint f∗ of f∗ is given by sending
a functor F ∶X → C to a right Kan extension of F along f . In particular, if f ∶X → ∗ is the
unique map, then a left adjoint of f∗ is given by F ↦ colimX F and a right adjoint of f∗ is
given by F ↦ limX F .

Definition 2.3. Let G be a group and let p ∶BG → ∗ denote the unique map. Let C be an
∞-category which admits limits and colimits indexed by BG.

(1) The homotopy orbit functor (−)hG ∶CBG → C is a left adjoint of p∗.

(2) The homotopy fixed point functor (−)hG ∶CBG → C is a right adjoint of p∗.

Remark 2.4. We will primarily be interested in the case where C is the ∞-category of spectra.
Recall that Sp is a stable and presentable ∞-category (see [24, Proposition 1.4.3.6] and [24,

Proposition 1.4.4.4]) which implies that the ∞-category SpBG of G-equivariant objects of Sp
inherits the structure of a stable presentable ∞-category ([24, Proposition 1.1.3.1] and [22,
Proposition 5.5.3.6]). Instead of saying that X is a G-equivariant object of the ∞-category of
spectra we will often say that X is a spectrum with a G-action.

Let G be a topological group. We want to construct a natural transformation

NmG ∶ (−)hG → (−)hG

of functors from the ∞-category of spectra with a G-action to the ∞-category of spectra. We
follow [27, Section I.3 and I.4].

Theorem 2.5 ([27, Theorem I.3.3]). Let C be a small stable ∞-category and let D be a full
subcategory of C which is stable and satisfies that the inclusion D↪ C is exact.

(1) Let W be the set of morphisms in C whose cofiber is an object of D. Then the Dwyer-Kan
localization C/D ∶= C[W −1] is a stable ∞-category and the canonical functor π ∶C→ C/D
is exact.
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(2) Let E be a stable ∞-category and let FunEx
0 (C,E) denote the full subcategory of FunEx(C,E)

spanned by those functors which carry an object of D to the zero object of E. Then com-
position with π∶C→ C/D induces an equivalence

FunEx(C/D,E) → FunEx
0 (C,E)

of ∞-categories.

(3) Let E be a presentable stable ∞-category. The functor i ∶FunEx(C/D,E) ↪ FunEx(C,E)
admits a left adjoint L ∶FunEx(C,E) → FunEx(C/D,E) which is a localization functor.

Proof. See [27, Theorem I.3.3]. �

Theorem 2.5 above allows us to construct a norm map NmG ∶ (−)hG → (−)hG and show that
it is uniquely characterized by a few simple properties completely bypassing the use of genuine
equivariant homotopy theory. The characterization of the norm map is due to Klein (see [16])
but the proof that we will give is due to Nikolaus and Scholze.

Theorem 2.6 (Klein [16], Nikolaus–Scholze [27, Theorem I.4.1]). Let S be a Kan complex, and
let p ∶S → ∗ denote the unique map.

(1) There exists an essentially unique initial functor pt∗ ∶SpS → Sp together with a natural

transformation p∗ → pt∗ which satisfies that pt∗ vanishes on compact objects of SpS and
that the fiber of the natural transformation p∗ → pt∗ preserves small colimits.

(2) There exists an essentially unique object DS of SpS such that the fiber of the natural
transformation p∗ → pt∗ is given by the construction

X ↦ p!(DS ⊗X).
The object DS of SpS is given by the composite

S → SS
Σ∞

+ÐÐ→ SpS
p∗Ð→ Sp

where the first functor is induced by the functor MapS ∶S × S → S given by sending a
pair (s, t) of vertices of S to the space of paths from s to t.

Proof. We will show part (1) by applying Theorem 2.5 with C = SpS and D = (SpS)ω the

compact objects of SpS . We cannot directly apply this theorem since C is not a small ∞-
category. However, we may choose a cardinal κ large enough such that p∗ and pt∗ are κ-
accessible. Then we prove the theorem in the full subcategory of κ-compact objects of C and
D and then pass to Indκ-categories. Consequently, we will carry out the proof working in
C with the understanding that a formal arguement takes care of the set-theretical issues. It
follows from Theorem 2.5 that the canonical functor π ∶SpS → SpS/(SpS)ω is an exact functor of

stable ∞-categories and the full inclusion i ∶FunEx(C/D,E) ↪ FunEx(C,E) admits a left adjoint

L ∶FunEx(C,E) → FunEx(C/D,E) which is a localization functor. We have a diagram

FunEx(SpS/(SpS)ω,Sp) FunEx
0 (SpS ,Sp)

FunEx(SpS ,Sp)

i

≃

L

of ∞-categories. Note that p∗ ∶SpS → Sp is an exact functor. Consequently, we define the
functor pt∗ ∶SpS → Sp by (i ○L)(p∗). It follows from the horizontal equivalence in the diagram

above that the functor pt∗ vanishes on compact objects of SpS . The unit id → i ○ L of the
adjunction which exhibits L as a left adjoint of i provides a natural transformation p∗ → pt∗ and
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pt∗ is initial with these properties. The argument that the fiber of the natural transformation
p∗ → pt∗ preserves small colimits is completely formal (see [27, Theorem I.3.3]). To end the
proof of (1) it remains to show that the functor pt∗ is the essentially unique functor with
these properties. It follows from [22, Proposition 5.5.1.9] that composition with the inclusion

(SpS)ω ↪ SpS induces an equivalence

LFun(SpS ,Sp) ≃Ð→ FunEx((SpS)ω,Sp)

of ∞-categories, where LFun(SpS ,Sp) denotes the full subcategory of Fun(SpS ,Sp) spanned
by those functors that preserves small colimits. The restriction of p∗ to the full subcategory
(SpS)ω of compact objects of SpS is exact which proves the wanted. See [27, Theorem I.4.1]
for the argument of (2). �

Remark 2.7. Let G be a topological group. In [17, Theorem 10.1], Klein shows that DBG ≃
SAdG where SAdG denotes the suspension spectrum of the one-point compactification of the
adjoint representation of G. It follows from Theorem 2.6 that there exists an essentially unique
functor (−)tG ∶SpBG → Sp together with a natural transformation (−)hG → (−)tG which satisfies

that (−)tG vanishes on compact objects of SpBG. Furthermore, for every spectrum X with an
action of G, there exists a fiber sequence

(SAdG ⊗X)hG Ð→XhG Ð→XtG

in the ∞-category of spectra. The functor (−)tG is called the Tate construction and the natural
transformation (SAdG⊗−) → (−)hG is called the norm map which we denote NmG. For example
if X is a spectrum equipped with an action of the circle group T, then DBT ≃ S1 so there is a
fiber sequence

ΣXhT
NmTÐÐ→XhT Ð→XtT

in the ∞-category of spectra (see [27, Corollary I.4.3]).

Remark 2.8. We will primarily be interested in the case where G is a finite group. In this case
there is a natural equivalence DBG ≃ S0 of spectra. The Tate construction (−)tG ∶SpBG → Sp

is the essentially unique functor which vanishes on compact objects of SpBG and sits in a fiber
sequence

XhG
NmGÐÐÐ→XhG Ð→XtG

in the ∞-category of spectra.

Let G be a finite group and let F ∶SpBG → Sp be a functor. We need a way to recognize
when F is equivalent to the Tate construction (−)tG ∶SpBG → Sp. It follows from the universal
characterization of the Tate construction that if F is equipped with a natural transformation
(−)hG → F and F vanishes on compact objects of the ∞-category of spectra with a G-action,
then there is an equivalence (−)tG ≃ F of functors. The following result identifies the compact

generators of SpS . If s ∶ ∗ → BG is a map of Kan complexes specifying a basepoint of BG, then
the pullback functor s∗ ∶SpBG → Sp admits a left adjoint s! ∶Sp→ SpBG.

Lemma 2.9. Let G be a finite group.

(1) The functor s! preserves compact objects and s!S
0 is a compact generator of SpBG.

(2) There is an equivalence s∗s!S
0 ≃ Σ∞

+ G of spectra.

Proof. The functor s∗ preserves small colimits. It follows that the left adjoint s! of s∗ carries
compact objects of Sp to compact objects of SpBG. Let f ∶X → Y be a map in the ∞-category
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SpBG of spectra with a G-action. The map f is an equivalence if the induced map πns
∗f is an

isomorphism for all integers n since the functor s∗ is conservative. We have that

πns
∗X ≃ Homh Sp(Sn, s∗X) ≃ Homh SpBG(s!S

n,X).

It follows that s!S
0 is a compact generator of SpBG which proves (1). There is a pullback

diagram

ΩBG ∗

∗ BG

q

q s

s

in the ∞-category of spaces. Invoking [24, Lemma 6.1.6.3] we find that the natural transfor-
mation s∗s! → q!q

∗ is an equivalence in Fun(Sp,Sp). Since q!q
∗S0 ≃ Σ∞

+ G we conclude that
s∗s!S

0 ≃ Σ∞
+ G. �

Remark 2.10. Let G be a finite group and let s ∶ ∗ → BG specify a basepoint of BG. Suppose
that F ∶SpBG → Sp is a functor which is equipped with a natural transformation (−)hG → F
and satisfies that Fs!S

0 ≃ 0. It follows from Theorem 2.6 and Lemma 2.9 that there exists
a unique, up to a contractible space of choice, natural transformation (−)tG → F which is an
equivalence.

Remark 2.11. In the second part of this paper we will provide a different construction of the
norm map due to Hopkins and Lurie in [12]. We can use Remark 2.10 above to show that the
two constructions agree in certain cases.

Remark 2.12. Let G be a finite group. In this paper it will suffice to work in the ∞-category
SpBG of spectra with a G-action. However, in this remark we will say a few things about the
∞-category SpG of genuine G-equivariant spectra. The reader is refered to Section II.2 of [27]
for a precise definition of SpG. If X is a genuine G-equivariant spectrum, then we may form the
categorical fixed points XH for every subgroup H of G and we obtain a functor (−)H ∶SpG → Sp.
There is natural map XH → XhH for every subgroup H of G and X is Borel-complete if this
map is an equivalence for all subgroups H of G. The ∞-category SpBG of spectra with a
G-action is equivalent to the full subcategory of SpG spanned by those genuine G-equivariant
spectra which are Borel-complete. The Tate construction of a genuine G-equivariant spectrum
was originally introduced by Greenless and May in [8] and we recall their construction. Let

X be a genuine G-equivariant spectrum and let ẼG denote the cofiber of the canonical map
Σ∞
+ EG→ S0 in SpG. There is a commutative diagram

Σ∞
+ EG⊗X X ẼG⊗X

Σ∞
+ EG⊗ F (Σ∞

+ EG,X) F (Σ∞
+ EG,X) ẼG⊗ F (Σ∞

+ EG,X)

in SpG. It follows from the Adams equivalence [20, Theorem II.7.1] that

Σ∞
+ EG⊗ F (Σ∞

+ EG,X) ≃ Σ∞
+ EG⊗X

in SpG. Applying the functor (−)G we obtain a commutative diagram

XhG XG ΦGX

XhG XhG XtG

≃
NmG
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of spectra. The spectrum ΦGX is called the geometric fixed point spectrum of X. By construc-
tion

XtG ≃ (ẼG⊗ F (Σ∞
+ EG,X))G.

Alternatively, it follows from [8, Proposition 2.6] that the Tate construction can be computed
by

XtG ≃ F (ẼG,Σ(X ⊗Σ∞
+ EG))G.

Remark 2.13. Let G be a finite group and let X be a spectrum equipped with a G-action.
There are spectral sequences computing the homotopy groups of XhG, XhG, and XtG respec-
tively. We will describe these spectral sequences very briefly here. For a more complete reference
see [8, Section 10] or [2, Section 2]. There is a spectral sequence

E2
s,t ≃Hs(G;πtX) ⇒ πt+sXhG

with differentials dr ∶E2
s,t → E2

s−r,t+r−1 called the homotopy orbits spectral sequence. Similarly,
there are two spectral sequences with signature

Es,t2 ≃Hs(G;πtX) ⇒ πt−sXhG

Es,t2 ≃ Ĥs(G;πtX) ⇒ πt−sXtG

and differentials dr ∶Es,t2 → Es+r,t+r−1
2 . The first one is called the homotopy fixed-point spectral

sequence and the second one is called the Tate spectral sequence. If X is the Eilenberg–Mac
Lane spectrum HA of an abelian group A equipped with an action of G, then all of these
spectral sequences converge strongly in the sense of [4, Definition 5.2].

Example 2.14. Let A be an abelian and let G be a finite group and equip the Eilenberg–Mac
Lane spectrum HA with the trivial G-action. The E2-page of the homotopy fixed-point spectral
sequence is given by

Es,t2 ≃Hs(G;πtHA) ≃
⎧⎪⎪⎨⎪⎪⎩

Hs(G;A) if t = 0

0 otherwise

Consequently, there are no non-trivial differentials on the E2-page. It follows that πn(HAhG) ≃
H−n(G;A) for every integer n. A completely similar argument reveals that πn(HAtG) ≃
Ĥ−n(G;A). The E2-page of the homotopy orbits spectral sequence is given by

E2
s,t ≃Hs(G;πtHA) ≃

⎧⎪⎪⎨⎪⎪⎩

Hs(G;A) if t = 0

0 otherwise

We conclude that πn(HAhG) ≃Hn(G;A) for every integer n. The fiber sequence

HAhG →HAhG →HAtG

induces a long exact sequence in homotopy

⋯ → Ĥ−1(G,A) →H0(G;A) NmGÐÐÐ→H0(G;A) → Ĥ0(G;A) → ⋯
We will end this section by discussing multiplicative structures on the Tate construction.

Let us fix a compact Lie group G. Recall that the ∞-category of spectra admits the structure
of a symmetric monoidal ∞-category [24, Corollary 4.8.2.19]. It follows that the ∞-category

SpBG of spectra with a G-action aquires the structure of a symmetric monoidal ∞-category.
Moreover, the pullback functor p∗ ∶Sp → SpBG is symmetric monoidal. It follows from [24,
Corollary 7.3.2.7] that the homotopy fixed point functor (−)hG aquires a lax symmetric monoidal
structure. It turns out that the Tate construction admits a lax symmetric monoidal structure
as the following theorem makes precise.
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Theorem 2.15. Let G be a compact Lie group. The Tate construction (−)tG ∶SpBG → Sp
admits an essentially unique lax symmetric monoidal structure such that the natural transfor-
mation (−)hG → (−)tG refines to a lax symmetric monoidal transformation.

Proof. See [27, Theorem I.3.1]. �

Remark 2.16. Theorem 2.15 states that the Tate construction admits an essentially unique
lax symmetric monoidal structure. More precisely, this means that the space consisting of pairs
of a lax symmetric monoidal structure on (−)tG and a refinement of the natural transformation
(−)hG → (−)tG to a lax symmetric monoidal transformation is contractible.

Remark 2.17. Let R be an E∞-ring spectrum equipped with an action of a finite group G.
It follows from Theorem 2.15 above that the Tate construction RtG aquires the structure of
an E∞-ring spectrum. Moreover, if M is an R-module spectrum, then M tG is an RtG-module
spectrum.

Remark 2.18. Theorem 2.15 is originally due to Greenlees and May in [8]. Recall from Remark
2.12 that if X is a genuine G-equivariant spectrum, then the Tate construction is given by

XtG ≃ (ẼG⊗ F (Σ∞
+ EG,X))G.

It follows that the Tate construction is a composite of functors which admit lax symmetric
monoidal structures. However, the uniqueness part of Theorem 2.15 is not obvious from this
perspective.

Remark 2.19. In this project we will mainly be interested in the case where G is a finite
group. However, the case where G is a compact Lie group is very important. For example
if A is an E1-ring, then we can construct a spectrum THH(A) called topological Hochschild
homology of A. It turns out that this spectrum admits a cyclotomic structure in the sense
of [27]. More precisely, the spectrum THH(A) admits a T-action and there is a T-equivariant
map THH(A) → THH(A)tCp of spectra for every prime p, where the target is equipped with
the residual T/Cp ≃ T-action. See [27] for details on this construction. In [10], Hesselholt
introduced topological periodic cyclic homology as the Tate construction of the T-action on
THH(A), that is TP(A) ∶= THH(A)tT. Topological periodic cyclic homology has significant
arithmetic interest. For example if A is the Eilenberg-MacLane spectrum of a commutative
algebra over a perfect field, then Bhatt–Morrow–Scholze construct a filtration on topological
periodic cyclic homology whose graded pieces are related to crystaline cohomology. See [3] for
details.

3. Morava K-theory and classifying spaces of finite groups

Let p be a prime number and let K(n) be the nth Morava K-theory spectrum with π∗K(n) ≃
Fp[v±1

n ], where vn is in degree 2(pn−1). Recall that K(n) admits the structure of an E1-ring and
there is a map MU(p) → K(n) of spectra which equips K(n) with a complex orientation. The
associated formal group has height exactly n and the p-series of this formal group is given by
[p](t) = vntp

n

. In fact, these properties characterize K(n) up to equivalence in the ∞-category
of spectra. More precisely, we have the following result (see [23, Lecture 24]).

Proposition 3.1. Let R be an E1-ring equipped with a complex orientation whose formal
group has height exactly n, and whose homotopy groups of the underlying spectrum are given
by π∗R ≃ Fp[v±1

n ]. Then there exists an equivalence K(n) ≃ R of spectra.

The reader is refered to [31] or [23] for details on Morava K-theory.
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Remark 3.2. In the second part of this project we will be interested in a 2-periodic version of
Morava K-theory and some finer structural properties of the ∞-category of K(n)-local spectra.
In section 5 we will recall all the material that we will need.

The goal of this section is to show that K(n)∗BG is finitely generated as a left module over
K(n)∗ when G is a finite group. This argument is due to Ravenel in [30] which does not seem
to be available. I learned the argument from Tobias Barthel.

Lemma 3.3. If Cpk denotes the cyclic group of order pk for some natural number k, then

K(n)∗(BCpk) ≃K(n)∗[[x]]/(xp
kn

),

where x ∈K(n)2(CP∞).

Proof. The degree pk map on CP∞ induces a fiber sequence BCpk → CP∞ → CP∞ which

deeloops to a fiber sequence S1 → BCpk
πÐ→ CP∞. Since K(n) admits a complex orientation,

there is a Gysin sequence

⋯ K(n)∗(BCpk) K(n)∗(CP∞) K(n)∗(CP∞) K(n)∗(BCpk) ⋯∂ π∗

where the map K(n)∗(CP∞) →K(n)∗(CP∞) is multiplication by the pk-series xp
kn

. It follows

that ∂ is surjective since multiplication by xp
kn

is injective on K(n)∗(CP∞). Recall that
K(n)∗(CP∞) ≃K(n)∗[[x]] where x ∈K(n)2(CP∞) since K(n) admits a complex orientation.
Consequently, we find that

K(n)∗(BCpk) ≃K(n)∗(CP∞)/(xp
kn

) ≃K(n)∗[[x]]/(xp
kn

)

where x ∈K(n)2(CP∞) as wanted. �

Remark 3.4. The Künneth formula (see [31]) combined with Lemma 3.3 above allow us to
compute K(n)∗(BA) for a finite abelian group A.

Proposition 3.5. If G is a p-group, then K(n)∗(BG) is a finitely generated left K(n)∗-module.

Proof. We proceed by induction on the order of G. If G is the trivial group, then there is
nothing to prove. Suppose that G is not the trivial group and let H be a normal subgroup of
G of index p and assume that K(n)∗(BH) is a finitely generated left K(n)∗-module. There
exists a fiber sequence BH → BG → BCp since H is a subgroup of G of index p. Let K be
a group defined by the pullback of G → Cp along the quotient map Z → Cp, and consider the
resulting commutative diagram

BH BK S1

BH BG BCp

We first show that K(n)∗(BK) is a finitely generated left K(n)∗-module. The Atiyah–
Hirzebruch spectral sequence associated to the fiber sequence BH → BK → S1 collapses on the
second page since there are no non-trivial differentials. It follows that K(n)∗(BK) is finitely
generated over K(n)∗ since K(n)∗(BH) is finitely generated over K(n)∗ by assumption. Note
that there is a fiber sequence S1 → BCp → CP∞ and consider the associated Atiyah–Hirzebruch
spectral sequence

Es,t2 ≃Hs(CP∞;K(n)t(S1)) ⇒K(n)s+t(BCp)
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We show that there exists an element y on some page of E with satisfies that dr(y) = xpn ,

where x ∈ K(n)∗(BCp) ≃ K(n)∗[[x]]/(xpn) and dr denotes the differential on the rth-page of
E. Consider the Atiyah–Hirzebruch spectral sequence

Ẽs,t2 ≃Hs(CP∞;K(n)t(∗)) ⇒K(n)s+t(CP∞)

associated to the fiber sequence ∗ → CP∞ idÐ→ CP∞. The element x ∈ Ẽ2,0
2 survives to the

Ẽ∞-page which means that d̃r(x) = 0 for all r ≥ 2. There is a commutative diagram

S1 BCp CP∞

∗ CP∞ CP∞

of fiber sequences which induces a map ϕ ∶ Ẽs,tr → Es,tr of spectral sequences. Let ϕ(x) denote
the image of x in the spectral sequence E. By naturality of the Atiyah–Hirzebruch spectral
sequence we conclude that dr(ϕ(x)) = 0 for all r ≥ 2 since d̃r(x) = 0 for all r ≥ 2. The element

xp
n

cannot survive to the E∞-page since xp
n = 0 in K(n)∗(BCp). Thus, there exists an element

y on some page Er which satisfies that dr(y) = xp
n

. This proves the claim. Note that there
is a fiber sequence BK → BG → CP∞ and consider the associated Atiyah–Hirzebruch spectral
sequence

Ês,t2 ≃Hs(CP∞;K(n)t(BK)) ⇒K(n)s+t(BG)
There is a commutative diagram

BK BG CP∞

S1 BCp CP∞

of fiber sequences which induces a map ψ ∶Es,tr → Ês,tr of spectral sequences. There exists

an element y on some page Er of E with dr(y) = xp
n

by the argument above. It follows

that the image of xp
n

under the map ψ of spectral sequences must die in Ê by naturality of
the Atiyah–Hirzebruch spectral sequence. We conclude that K(n)∗(BG) is a subquotient of

K(n)∗(BK)[[x]]/(xpn) which is finitely generated since K(n)∗(BK) is finitely generated over
K(n)∗. It follows that K(n)∗(BG) is finitely generated over K(n)∗ since K(n)∗ is a graded
Noetherian ring. �

Proposition 3.6. If G is a finite group, then K(n)∗(BG) is a finitely generated left K(n)∗-
module.

Proof. As before we may assume that G is not the trivial group. Let H be a Sylow p-subgroup of
G and let i ∶H ↪ G denote the inclusion homomorphism. There is a transfer map Tr ∶Σ∞

+ BG→
Σ∞
+ BH of spectra (see [15]) such that the composite

Σ∞
+ BG

TrÐ→ Σ∞
+ BH

Σ∞

+
Bi

ÐÐÐ→ Σ∞
+ BG

induces multiplication by the index [G ∶H] on H∗(−;Z). We conclude that the composite

(Σ∞
+ BG)(p)

Tr(p)ÐÐÐ→ (Σ∞
+ BH)(p)

(Σ∞

+
Bi)(p)ÐÐÐÐÐÐ→ (Σ∞

+ BG)(p)
is an equivalence in the ∞-category of spectra since p is coprime to the index [G ∶H]. It follows
that the composite

K(n)∗(BG)
(Σ∞

+
Bi)∗

ÐÐÐÐÐ→K(n)∗(BH) Tr∗ÐÐ→K(n)∗(BG)
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on K(n)-cohomology is an isomorphism since K(n)∗(X(p)) ≃K(n)∗(X) for all spectra X. We
conclude that K(n)∗(BG) is a retract of K(n)∗(BH) as left K(n)∗-modules. This proves the
wanted since K(n)∗(BH) is finitely generated as a left K(n)∗-module by Proposition 3.5. �

Remark 3.7. Let X be a spectrum. If K(n)∗(X) is a finitely generated left K(n)∗-module,
then K(n)∗(X) is also a finitely generated left K(n)∗-module. This follows from the fact that
the canonical map

K(n)∗(X) → HomK(n)∗(K(n)∗(X),K(n)∗(X))

is an isomorphism (See [31]).

4. Vanishing of the Tate construction on K(n)
Fix a prime number p. The goal of this section is to prove the following result due to

Greenlees and Sadofsky.

Theorem 4.1 (Greenlees–Sadofsky [9, Theorem 1.1]). Let G be a finite group. If K(n) denotes
the nth Morava K-theory spectrum at the prime p equipped with the trivial G-action, then
K(n)tG ≃ 0.

Remark 4.2. The proof of this result is elementary in the sense that it does not rely on the
Periodicity Theorem of Hopkins and Smith [13]. The proof will crucially use the characterization
of the Tate construction we obtained previously, the complex orientation of Morava K-theory,
and the computation that the K(n)-cohomology of the classifying space of a finite group is
finitely generated as a left K(n)∗-module. In Section 6 we will show that the Tate construction
vanishes K(n)-locally which is due to Hovey and Sadofsky [14]. Theorem 4.1 above is perhaps a
first indication that such a result is true. Indeed, Hovey and Sadofsky’s argument uses Greenlees
and Sadofsky’s result, the Periodicity Theorem, and that the Bousfield localization with respect
to Morava E-theory is smashing due to Hopkins and Ravenel (see [23, Lecture 31]).

We will first present an argument due to Kuhn [19] which allows us to reduce to the case
where G is a cyclic group of order p. This relies crucially on the characterization of the Tate
construction that we obtained previously.

Proposition 4.3 (Kuhn [19, Proposition 1.10]). Let R be an E1-ring. If RtCp ≃ 0 for all prime
numbers p where R is equipped with the trivial Cp-action, then M tG ≃ 0 for all left R-module
spectra M and all finite groups G.

Remark 4.4. In the setting of Proposition 4.3 above, if R is the nth Morava K-theory spectrum
at the prime p, then it suffices to show that K(n)tCp vanishes at the single prime p.

We will prove Propositon 4.3 using the following two lemmas.

Lemma 4.5 (Kuhn [19, Lemma 2.7]). Let G be a p-group and let X be a spectrum with a
G-action. If XtGp ≃ 0 for every p-Sylow subgroup Gp of G where p is a prime number dividing
the order of G, then XtG ≃ 0.

Proof. See [19, Lemma 2.7]. �

Lemma 4.6 (Kuhn [19, Lemma 2.8]). Let H be a normal subgroup of a finite group G and let

R be an E1-ring spectrum equipped with a G-action. If RtH ≃ 0 and RtG/H ≃ 0, then RtG ≃ 0.
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Proof. We wish to show that the norm map NmG(R) ∶RhG → RhG is an equivalence. It follows
from Remark 2.10 that if the composite

Σ∞
+ GhG ≃ (Σ∞

+ GhH)hG/H (Σ∞
+ G

hH)hG/H

(Σ∞
+ G

hH)hG/H ≃ Σ∞
+ G

hG

NmH(Σ∞

+
G)hG/H

NmG/H(Σ∞

+
GhH)

is an equivalence in Sp, then NmG(X) is an equivalence precisely if both NmH(X)hG/H and

NmG/H(XhH) are equivalences in Sp for all X in SpBG. We first show that NmH(Σ∞
+ G)hG/H

is an equivalence. There is an equivalence

Σ∞
+ G ≃ ⊕

gH∈G/H
Σ∞
+ H

of spectra from which it follows that NmH(Σ∞
+ G) is an equivalence. Consequently, we conclude

that NmH(Σ∞
+ G)hG/H is an equivalence. Next, we show that NmG/H(Σ∞

+ G
hH) is an equiva-

lence. Observe that there are equivalences Σ∞
+ G

hH ≃ Σ∞
+ GhH ≃ Σ∞

+ G/H. This gives rise to a
commutative diagram

(Σ∞
+ G

hH)hG/H (Σ∞
+ G

hH)hG/H

(Σ∞
+ G/H)hG/H (Σ∞

+ G/H)hG/H

≃

NmG/H(Σ∞

+
GhH)

≃

≃
NmG/H(Σ∞

+
G/H)

where NmG/H(Σ∞
+ G/H) is an equivalence by Remark 2.10. We conclude that NmG/H(Σ∞

+ G
hH)

is an equivalence. To end the proof we need to show that both NmH(R)hG/H and NmG/H(RhH)
are equivalences in Sp. We have that RtH ≃ 0 by assumption which implies that NmK(R) is
an equivalence. It follows that NmH(R)hG/H is an equivalence. Note that RhH admits the

structure of a left R-module by Remark 2.17. It follows that (RhH)tG/H admits the structure

of a left RtG/H -module. But RtG/H vanishes by assumption so we conclude that (RhH)tG/H ≃ 0
which implies that NmG/H(RhH) is an equivalence. This ends the proof. �

Proof of Proposition 4.3. By Lemma 4.5 we may assume that G is a p-group. If M is a left
R-module, then M tG admits the structure of a left RtG-module by Remark 2.17. Consequently,
it suffices to show that RtG vanishes. Since G is a p-group it is in particular a solvable group
so we may choose a series

1 = G0 ⊆ G1 ⊆ ⋯ ⊆ Gn−1 = Gn = G
such that each Gi is a normal subgroup of Gi+1 and Gi+1/Gi is a cyclic group of prime order
for all i ∈ {0,1, . . . , n − 1}. Note that RtG1 ≃ 0 since G1 is a cyclic group of prime order. Since

G2/G1 is a cyclic group of prime order then RtG2/G1 ≃ 0. It follows from Lemma 4.6 that
RtG2 ≃ 0. If we continue in this fashion we ultimately find that RtGn−1 ≃ 0. As before we find
that RtG/Gn−1 ≃ 0 since G/Gn−1 is a cyclic group of prime order so Lemma 4.6 gives RtG ≃ 0 as
wanted. �

We have reduced proving Theorem 4.1 to the case where G is a cyclic group of order p. The
following argument is due to Greenlees and Sadofsky in [9].
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Remark 4.7. Recall that if ξ ∶E → X is a complex vector bundle over a space X, then we
can form the associated Thom spectrum Xξ of ξ as the suspension spectrum Σ∞ Th ξ of the
Thom space of ξ. If ζ is a complex vector bundle over a compact space X, then there exists a
complex vector bundle η over X such that ξ ⊕ η ≃ εn for some integer n. In this case we define
X−ζ ∶= Σ−nXη ≃ Σ∞−nThη.

Lemma 4.8 (Greenlees–Sadofsky [9, Lemma 2.1]). Let G be a finite group and let ζ be a
finite dimensional complex vector bundle over BG. If R is an E1-ring equipped with a complex
orientation satisfying that R∗BG is a finitely generated left R∗-module, then

lim←Ð
s

(R⊗BG−sζ) ≃ 0

in the ∞-category SpBG of spectra with a G-action.

Proof. Let BG(k) denote the k-skeleton in a CW-filtration on the classifying space BG of G.
There exists a sufficiently large natural number r such that R∗(BG(r)) → R∗(BG) is surjective
since R∗BG is a finitely generated left R∗-module. Let λ denote the rank of ζ and choose an
integer j such that r − (s + j)λ < −sλ. There is a commutative diagram

R∗BG(r) R∗BG

R∗−λBG
−sζ
(r) R∗−λBG−sζ

≃ ≃

for every integer s by the Thom isomorphism. It follows that the map R⊗BG−sζ
(r) → R⊗BG−sζ

of spectra is surjective on π∗ for every integer s. Note that the composite

BG
−(s+j)ζ
(r) → BG−(s+j)ζ → BG−sζ

is nullhomotopic in SpBG since the top dimensional cell of BG
−(s+j)ζ
(r) is in a lower dimensional

than the bottom dimensional cell of BG−sζ by the choice of j. This means that the composite

R⊗BG−(s+j)ζ
(r) → R⊗BG−(s+j)ζ → R⊗BG−sζ

is nullhomotopic in SpBG. Since R ⊗BG−(s+j)ζ
(r) → R ⊗BG−(s+j)ζ is surjective on π∗ we must

have that R ⊗ BG−(s+j)ζ → R ⊗ BG−sζ is the zero homomorphism on π∗. It follows that
lim←Ðs(R⊗BG−sζ) ≃ 0 in SpBG as wanted. �

Proposition 4.9 (Greenlees–Sadofsky [9, Lemma 2.2]). Let G be a finite group and let V be a
complex representation of G. If R is an E1-ring equipped with a complex orientation satisfying
that R∗BH is a finitely generated left R∗-module for every subgroup H of G, then

F (S∞V ,R⊗Σ∞
+ EG) ≃ 0

in the ∞-category SpBG of spectra with a G-action, where R is endowed with the trivial G-
action.
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Proof. First note that

F (S∞V ,R⊗Σ∞
+ EG) ≃ F (limÐ→

r

SrV ,R⊗Σ∞
+ EG)

≃ limÐ→
r

F (SrV ,R⊗Σ∞
+ EG)

≃ limÐ→
r

R⊗Σ∞
+ EG⊗ S−rV .

If H is a subgroup of G, then the Adams equivalence [20, Theorem II.7.1] provides a natural
equivalence

(R⊗Σ∞
+ EG⊗ S−rV )H ≃ limÐ→

r

R⊗BH−rζ

in the ∞-category SpBG of spectra with a G-action, where ζ is the complex vector bundle over
BH induced by restricting the complex representation of G to the subgroup H. Consequently,
we find that

F (S∞V ,R⊗Σ∞
+ EG)H ≃ limÐ→

r

R⊗BH−rζ ≃ 0

where the last equivalence follows from Lemma 4.8 above. We conclude that

F (S∞V ,R⊗Σ∞
+ EG) ≃ 0

in SpBG by the G-Whitehead theorem. �

The nth Morava K-theory spectrum at a prime p is equipped with a complex orientation and
Proposition 3.6 combined with Remark 3.7 assert that K(n)∗(BG) is a finitely generated left
K(n)∗-module when G is a finite group. With this in mind we can now finally prove Theorem
4.1.

Proof of Theorem 4.1. By Proposition 4.3 and Remark 4.4 it suffices to show that K(n)tCp
vanishes where Cp denotes the cyclic group of order p. Let V be the cyclic complex repre-
sentation of Cp, and let ζ be the associated complex line bundle over BCp. Observe that

Σ∞
+ ECp ≃ Σ∞

+ S(∞V ), and the cofiber ẼCp of Σ∞
+ ECp → S0 is equivalent to Σ∞S∞V . It

follows from Remark 2.12 and Proposition 4.9 that

K(n)tCp ≃ (ΣF (ẼCp,K(n) ⊗Σ∞
+ ECp))Cp

≃ (ΣF (S∞V ,K(n) ⊗Σ∞
+ ECp))Cp ≃ 0

which ends the proof. �

5. Lubin–Tate spectra and the K(n)-local category

In this section we briefly review some terminology from stable homotopy theory following
[12] and [23] that we will need later. To keep the exposition brisk we refer the interested reader
to [12] or [23] for a more complete reference. We will start by briefly discussing the Bousfield
localization of the ∞-category of spectra. Let E be a spectrum. Recall that a spectrum X
is E-acyclic if X ⊗ E ≃ 0. A spectrum Y is E-local if every map X → Y out of an E-acyclic
spectrum X is nullhomotopic. A map X → Y of spectra is an E-equivalence if the induced map
X ⊗E → Y ⊗E is an equivalence.

Proposition 5.1 (Bousfield [5]). Let E be a spectrum. If X is a spectrum, then there exists
an essentially unique cofiber sequence

GEX →X → LEX

in the ∞-category of spectra satisfying the following:
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(1) The spectrum GEX is E-acyclic.

(2) The spectrum LEX is E-local.

We obtain a functor LE ∶Sp → Sp called the Bousfield localization of the ∞-category of spectra
with respect to E. The map X → LEX is characterized up to equivalence by the following
properties:

(1) The spectrum LEX is E-local.

(2) The map X → LEX is an E-equivalence.

Let LK(n) denote a Bousfield localization of the ∞-category of spectra with respect to the
nth Morava K-theory K(n). Similarly, let Ln denote a Bousfield localization of the ∞-category
of spectra with respect to the nth Morava E-theory. We let SpK(n) denote the ∞-category of

K(n)-local spectra, that is SpK(n) ∶= LK(n)Sp is the essential image of the Bousfield localization
of the ∞-category of spectra with respect to the nth Morava K-theory.

Let us briefly recall the construction of Lubin–Tate spectra2 following [12, Section 2.1].

Definition 5.2. Let κ be a perfect field of characteristic p > 0. An infinitesimal thickening of
κ is a pair (A,ρA) where A is a complete local Noetherian ring with maximal ideal mA and ρA
is a ring homomorphism ρA ∶A→ κ which induces an isomorphism A/mA ≃ κ.

Definition 5.3. Let κ be a perfect field of characteristic p > 0. Let G0 be a formal group
over κ and let (A,ρA) be an infinitesimal thickening of κ. A deformation of G0 along ρA is a
pair (G, α) where G is a formal group over A and α is an isomorphism G0 ≃ (ρA)∗G of formal
groups.

Remark 5.4. The collection of deformations of G0 along ρA can be organized into a groupoid
DefG0(A,ρA) and this groupoid is always discrete. See [23, Lecture 21, Remark 3] for the
argument.

Let G0 be a formal group over κ and let (A,ρA) be a infinitesimal thickening of κ. Lubin
and Tate [21] show that there exists a universal deformation of G0. We formulate the theorem
as in [25, Theorem 3.0.1].

Theorem 5.5 (Lubin–Tate). Let κ be a perfect field of characteristic p > 0, and let G0 be a 1-
dimensional formal group of height n < ∞ over κ. Then there exists an infinitesimal thickening
(RLT, ρLT) of κ and a deformation (G, α) of G0 along ρLT which satisfies the following universal
property: if (A,ρA) is any other infinitesimal thickening of κ, then extension of scalars induces
an equivalence

Hom/κ(RLT,A) ≃ DefG0(A,ρA)
of categories, where Hom/κ(RLT,A) denotes the set of ring homomorphisms over κ considered
as a category with only identity morphisms.

Proof. See [23, Lecture 21] for a proof. �

Definition 5.6. Define a category FGpf as follows:

(1) An object of FGpf is a pair (κ,G), where κ is a perfect field of characteristic p > 0 and
G is a 1-dimensional formal group of finite height over κ.

(2) A morphism from (κ,G) to (κ′,G′) in FGpf is a pair (f,α), where f ∶κ → κ′ is a ring
homomorphism and α is an isomorphism G′ ≃ f∗G of formal groups over κ′.

2In the introduction we called these Morava E-theories.
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We will think of the category FGpf as an ∞-category by applying the nerve construction N .

Definition 5.7 ([12, Definition 2.1.8]). A Lubin–Tate spectrum is an E∞-ring E which satisfies
the following conditions:

(1) The E∞-ring E is even-periodic. This means that if n is odd, then πnE ≃ 0 and
there exists an element β ∈ π2E such that multiplication by β induces an isomorphism
πnE → πn+2E for every integer n.

(2) The underlying commutative ring π0E is a complete local Noetherian ring with maximal
ideal m whose residue field κ(E) ∶= π0E/m is perfect of characteristic p > 0.

(3) Let G denote the formal group over π0E induced from the complex orientation of E,
and let G0 denote the formal group over κ(E). Then G0 has finite height and G is a
universal deformation of G0 in the sense of Theorem 5.5.

Let CAlgLT denote the full subcategory of the ∞-category CAlg of E∞-rings spanned by the
Lubin–Tate spectra. Define the height of E to be the height of the formal group G0 over the
residue field κ(E).

Theorem 5.8 (Goerss–Hopkins–Miller). The construction E ↦ (κ(E),G0) refines to an equiv-
alence

CAlgLT

≃Ð→ NFGpf

from the ∞-category of Lubin–Tate spectra to the ∞-category of 1-dimensional formal groups
of finite height over perfect fields of characteristic p > 0.

Remark 5.9. Let us provide some background on the Goerss–Hopkins–Miller theorem. Let
G0 be a 1-dimensional formal group of finite height over a perfect field κ of characteristic p > 0.
It follows from Theorem 5.5 that there exists an infinitesimal thickening (RLT, ρLT) of κ and a
universal deformation (G, α) of G0 along ρLT. The complete local Noetherian ring RLT is called
the Lubin–Tate ring. Morava observed that the universal deformation G over the Lubin–Tate
ring RLT was Landweber exact. Thus we obtain an even-periodic cohomology theory which
is represented by an even-periodic spectrum E(G0,κ) by Brown representability. Note that the
spectrum E(κ,G0) is functorial in the pair (κ,G0) up to homotopy. Hopkins and Miller show that
the spectrum E(κ,G0) admits an essentially unique E1-ring structure using obstruction theory.
Goerss and Hopkins obtained a refinement of this result namely that the spectrum E(κ,G0)
admits an essentially unique E∞-ring structure and that E(κ,G0) depends functorially on the
pair (κ,G0) (see [7]). Recently, Lurie has given a new construction of Lubin–Tate spectra in
[25] which bypasses the use of Landweber’s theorem. Very roughly, the idea is to realize E(κ,G0)
as a solution to a moduli problem in the ∞-category of E∞-rings.

Example 5.10. Let κ be a perfect field of characteristic p > 0, and let G0 be a 1-dimensional
formal group of finite height over κ. The content of the Goerss–Hopkins–Miller theorem above
is that there exists a unique, up to contractible choice, E∞-ring E which is admits the structure
of a Lubin–Tate spectrum in the sense of Definition 5.7. In fact, there is a non-canonical
identification π0E ≃ W (κ)[[u1, . . . , un]] of the complete local Noetherian ring π0E with the
ring of formal power series over the ring of Witt vectors W (κ) of κ. It will be convenient to set
u0 ∶= p. For each 0 ≤ i ≤ n we obtain an E-module homomorphism ui ∶E → E. For each i we let
Mi denote the cofiber of ui ∶E → E in the ∞-category ModE of E-modules. For each integer
n ≥ 1 define the 2-periodic Morava K-theory by

K(n) ∶= ⊗
0≤i<n

Mi
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where the tensor product is formed in the symmetric monoidal ∞-category ModE of E-modules.
The 2-periodic Morava K-theory spectrum K(n) is a E-module and the homotopy groups are
given by

πiK(n) ≃
⎧⎪⎪⎨⎪⎪⎩

κ i = 2j

0 i = 2j + 1.

In the second part of this paper we will only be concerned with 2-periodic Morava K-theory
in contrast to the 2(pn − 1)-periodic Morava K-theory considered previously. Observe that the
2(pn − 1)-periodic Morava K-theory is a direct summand of 2-periodic Morava K-theory.

The following theorem characterizes the ∞-category of K(n)-local spectra as the essential
image of an accesible and exact localization functor.

Proposition 5.11. Let E be a Lubin-Tate spectrum of height n and let K(n) denote the Morava
K-theory spectrum asssociated to E. Then the following are satisfied:

(1) The inclusion ι ∶SpK(n) ↪ Sp admits a left adjoint F which is accesible and exact, and

the ∞-category SpK(n) of K(n)-local spectra is the essential image of L = ι○F ∶Sp→ Sp.

(2) The symmetric monoidal structure on Sp given by the smash product of spectra induces
a symmetric monoidal structure on the ∞-category of K(n)-local spectra. The inclusion
ι ∶SpK(n) ↪ Sp aquires a lax symmetric monoidal structure and its left adjoint F ∶Sp→
SpK(n) aquires a symmetric monoidal structure.

Proof. See [12, Proposition 2.1.15] and [12, Proposition 2.1.3]. �

Remark 5.12. Recall that the symmetric monoidal structure on the ∞-category of spectra
given by the smash product of spectra satisfies that the tensor product ⊗ ∶Sp×Sp→ Sp preserves
small colimits seperately in each variable and that the sphere spectrum S0 is the unit [24,
Corollary 4.8.2.19]. Let

⊗̂ ∶SpK(n) × SpK(n) → SpK(n)
denote the localized tensor product on the ∞-category of K(n)-local spectra induced by the
usual symmetric monoidal structure on Sp. Explicitly, if X and Y are K(n)-local spectra, then
X⊗̂Y ≃ L(X ⊗ Y ). It follows that the functor ⊗̂ preserves small colimits seperately in each
variable and that the K(n)-local sphere LK(n)S0 is the unit of ⊗̂.

Remark 5.13. Let R be an E∞-ring and let A be an E1-algebra object of the ∞-category
ModR of R-modules. Let ABModA(ModR) denote the ∞-category of A-A-bimodule objects of
ModR. The ∞-category of A-A-bimodules is presentable [24, Corollary 4.3.3.10] and the relative
tensor product ⊗A endows ABModA(ModR) with a monoidal structure and ⊗A preserves small
colimits seperately in each variable [24, Corollary 4.4.2.15]. Endow the ∞-category of spaces
with its Cartesian monoidal structure. It follows that there is an essentially unique monoidal
functor

A[−] ∶S→ ABModA(ModR)
which preserves small colimits. If X is a space, then the underlying spectrum of A[X] can be
identified with A⊗Σ∞

+ X. We will be interested in the case where R is a Lubin–Tate spectrum.
Let E be a Lubin–Tate spectrum associated to the pair (κ,G0) where κ is a perfect field of
characteristic p > 0 and G0 is a formal group of height n over κ, and let K(n) be the associated
Morava K-theory spectrum. If X is a space, then we define E∧

∗ (X) = π∗LK(n)E[X].

Proposition 5.14. The functor ⊗̂ determines a fully faithful embedding

α ∶SpK(n) → Fun(SpK(n),SpK(n))
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whose essential image is the full subcategory of Fun(SpK(n),SpK(n)) spanned by those functors
which preserve small colimits. Moreover, the embedding α aquires a monoidal structure if we
endow Fun(SpK(n),SpK(n)) with the monoidal structure given by composition of functors.

Proof. Combine [12, Proposition 2.1.5] and [12, Remark 2.1.6]. �

We will end this section with a result which shows that every K(n)-local spectrum can be
constructed from K(n)-local E-module spectra where E is a Lubin–Tate spectrum of height n.
This will be crucial later on.

Proposition 5.15. Let E be a Lubin–Tate spectrum of height n and let K(n) be the Morava
K-theory spectrum associated to E. If C is a stable subcategory of SpK(n) which is closed under

retracts and contains the essential image of the forgetful functor ModE(SpK(n)) → SpK(n), then
C = SpK(n).

Proof. See [12, Propositon 5.2.6]. �

6. Vanishing of the K(n)-local Tate construction

Let us once more fix a prime number p. In section 4 we arrived at the following result due
to Greenlees and Sadofsky: if the nth Morava K-theory spectrum K(n) is equipped with a
trivial action of a finite group G, then the Tate construction of the trivial action of G on K(n)
vanishes (see Theorem 4.1). The goal of this section is to explain a globalization of this result
namely that the Tate construction vanishes K(n)-locally.

Theorem 6.1 (Hovey–Sadofsky [14]). If G is a finite group, then LK(n)(LK(n)S0)tG ≃ 0, where

LK(n)S0 is equipped with the trivial G-action.

Remark 6.2. If X is an object of SpK(n) equipped with an action of a finite group G, then

XtG admits the structure of a module over (LK(n)S0)tG since both LK(n) and (−)tG admit a

lax symmetric monoidal structures. It follows from Theorem 6.1 above that XtG ≃ 0 in SpK(n)
or equivalently that the K(n)-local norm map NmG ∶XhG →XhG is an equivalence in SpK(n).

If X is a spectrum, then we let ⟨X⟩ denote the Bousfield class of X as defined in [5]. We
need the following lemma due to Ravenel.

Lemma 6.3 (Ravenel [29]). If X is a spectrum equipped with a self-map f ∶ΣkX →X, then

⟨X⟩ = ⟨X/f ⊕ f−1X⟩.

Proof. If Y is a spectrum in the Bousfield class of X, then it is easy to see that Y is X/f -acyclic
and f−1X-acyclic. Conversely, if Y is contained in the Bousfield class of ⟨X/f ⊕ f−1X⟩, then
we in particular have that X/f ⊗ Y ≃ 0. It follows that f ∶Σk(X ⊗ Y ) ≃ ΣkX ⊗ Y → X ⊗ Y is
an equivalence. We conclude that X ⊗ Y ≃ f−1(X ⊗ Y ) ≃ 0 as wanted. �

If X is a spectrum, then we let Thick⊗X denote the full subcategory of the ∞-category of
spectra spanned by those spectra that can be obtained in finitely many steps from spectra on
the form X ⊗ Y by taking cofibers and retracts. The proof of Theorem 6.1 is a consequence of
the following three results due to Hovey and Sadofsky.

Lemma 6.4 (Hovey–Sadofsky [14, Lemma 2.1]). There exists a finite spectrum F of type n
such that LnF is an object of Thick⊗K(n).

Proof. See [14, Lemma 2.1]. �
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Lemma 6.5 (Hovey–Sadofsky [14, Lemma 3.1]). Let G be a finite group. If X is a spectrum
contained in Thick⊗K(n), then XtG ≃ 0 where X is equipped with the trivial G-action.

Proof. It suffices to show that (K(n)⊗Y )tG ≃ 0 for every spectrum Y which we equip with the
trivial G-action. Recall that K(n) admits the structure of an E1-ring and K(n) ⊗ Y aquires
the structure of a left K(n)-module spectrum. It follows from Remark 2.17 that (K(n)⊗Y )tG
admits the structure of a left K(n)tG-module. We conclude that (K(n) ⊗ Y )tG ≃ 0 since
K(n)tG ≃ 0 by Theorem 4.1. �

Proposition 6.6 (Hovey–Sadofsky [14, Lemma 3.2]). Let G be a finite group. If F is a finite
spectrum of type n equipped with the trivial G-action, then Ln(X ⊗F )tG ≃ 0 for every spectrum
X with a G-action.

Proof. Let C denote the full subcategory of Sp spanned by those finite spectra F which satisfy
that Ln(X ⊗ F )tG ≃ 0 for every spectrum X with a G-action, where F is equipped with the
trivial G-action. The full subcategory C of Sp is a thick subcategory. It follows from the Thick
Subcategory Theorem [13, Theorem 7] that C is contained in the full subcategory Cm of Sp
spanned by those spectra which are K(m−1)-acyclic for some m. We show that C is contained
in Cn. It suffices to show that the intersection of C and Cn is non-zero. There exists a finite
spectrum F ′ of type n which satisfies that LnF

′ is an object of Thick⊗K(n) by Lemma 6.4.
Let X be a spectrum equipped with a G-action. It follows that X ⊗ LnF

′ is an object of
Thick⊗K(n). We conclude that Ln(X ⊗F ′) is contained in Thick⊗K(n) since Ln is smashing
(see [23, Lecture 31]). It follows from Lemma 6.5 that Ln(X ⊗ F ′)tG ≃ 0 where F ′ is equipped
with the trivial G-action. This means that F ′ is an object of C. We certainly also have that F ′ is
an object of Cn since F ′ has type n. In conclusion, we have shown that Cn ⊆ C. Consequently,
if F is a finite spectrum of type n equipped with the trivial G-action, then the underlying
spectrum of F is contained in Cn hence in C which yields the wanted. �

Remark 6.7. The previous results were stated in terms of the Bousfield localization of the
∞-category of spectra with respect to Lubin–Tate spectra. If X is a spectrum, then for every
integer n ≥ 1 there is a pullback sqaure

LnX LK(n)X

Ln−1X Ln−1LK(n)X

in the ∞-category of spectra called the chromatic fracture square (see [23, Lecture 23]). In
particular, if F is a finite spectrum of type n, then

Ln−1LK(n)F ≃ Ln−1(F ⊗LK(n)S
0) ≃ LK(n)S

0 ⊗Ln−1F.

since F is a compact object of Sp and the Bousfield localization Ln is smashing. It follows that
the horizontal map LnF → LK(n)F in the chromatic fracture square above is an equivalence
since Ln−1F vanishes.

Corollary 6.8. Let G be a finite group. If F is a finite spectrum of type n, then (LK(n)F )tG ≃ 0
where F is equipped with the trivial G-action.

Proof. Follows from Proposition 6.6 and Remark 6.7 above. �

Proof of Theorem 6.1. It suffices to show that K(n)⊗(LK(n)S0)tG vanishes. Using Lemma 6.3
inductively we may write

⟨S0⟩ = ⟨F (n) ⊕
n−1

⊕
i=0

T (i)⟩,
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where F (n) is a finite spectrum of type n and T (i) is a telescope of a vi self-map on a finite
spectrum of type i. Note that K(n) ⊗ T (i) ≃ 0 for every integer 0 ≤ i ≤ n − 1. Using this
observation and that F (n) is a compact object we find that

⟨K(n) ⊗ (LK(n)S
0)tG⟩ = ⟨K(n) ⊗ (LK(n)S

0)tG ⊗ F (n)⟩
= ⟨K(n) ⊗ (LK(n)F (n))tG⟩.

Corollary 6.8 gives that (LK(n)F (n))tG ≃ 0 so K(n) ⊗ (LK(n)S0)tG ≃ 0 as wanted. �

Example 6.9. If G is not a finite group, then we cannot expect Theorem 6.1 to be true
anymore. For example if G = T is the circle group and the nth Morava K-theory spectrum
K(n) is equipped with the trivial T-action, then Greenlees and Sadofsky show that

K(n)tT ≃ ⊕
k≥a

Σ2kK(n) ⊕ ∏
k<a

Σ2kK(n)

for every integer a (see [9, page 8]).

Remark 6.10. We have established that the Tate construction vanishes K(n)-locally. In
[19], Kuhn shows that the Tate construction also vanishes T (n)-locally. In practice the T (n)-
cohomology is computationally inaccessible so Kuhn’s proof proceeds in a fundamentally dif-
ferent way than the proof of Greenlees, Hovey, and Sadofsky. Kuhn’s proof is based on the
Bousfield–Kuhn functor and the Kahn–Priddy splitting. Recall that the Bousfield–Kuhn func-
tor is a functor Φ ∶S∗ → SpT (n) from the ∞-category of pointed spaces to the ∞-category of

T (n)-local spectra such that there is a natural equivalence ΦΩ∞ ≃ LT (n). A good reference
on the Bousfield–Kuhn functor is [18]. Recently, Clausen and Mathew gave a very short and
elegant proof of Tate vanishing T (n)-locally which also relies on the Kahn–Priddy theorem but
in a simpler way than Kuhn’s argument (see [6]).

Remark 6.11. The Tate construction vanishing T (n)-locally implies that the Tate construc-
tion vanishes K(n)-locally as well. If the Telescope Conjecture is true, then the Tate construc-
tion vanishing K(n)-locally would imply the Tate construction vanishing T (n)-locally. The
Telescope conjecture is not known to be true but it is not known to be false either.

Remark 6.12. There are many surprising consequences of the Tate construction vanishing
T (n)-locally. A map f ∶X → Y of pointed spaces is a vn-periodic equivalence if Φ(f) is an
equivalence, where Φ denotes the Bousfield–Kuhn functor. In [11], Heuts describes the ∞-
category Mf

n obtained from the ∞-category of pointed spaces by inverting the vn-periodic
equivalences. The main result of Heuts’ paper is an equivalence Mf

n ≃ Lie(SpT (n)) betweeen
the ∞-category of pointed spaces with the vn-periodic equivalences inverted and the ∞-category
of Lie algebras in T (n)-local spectra. Recall that a symmetric sequence of T (n)-local spectra
is a collection of T (n)-local spectra C ∶= {Ck}k≥0 where Ck is equipped with an action of the
symmetric group Σk for every k ≥ 0. The construction

X ↦⊕
k≥0

(Ck ⊗X⊗k)hΣk

defines an endofunctor FC ∶SpT (n) → SpT (n) on the ∞-category of T (n)-local spectra. Such a
functor is called a coanalytic functor. It turns out that the construction defined above induces
an equivalence from the ∞-category of symmetric sequences of T (n)-local spectra to the ∞-
category of coanalytic functors [11, Proposition 4.8]. This is a special feature of the T (n)-local
category and it is a shadow of the Tate construction vanishing T (n)-locally. This result is the
crucial input for Heuts’ result described above. We refer the reader to the recent paper [11] of
Heuts for more details.
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Remark 6.13. Let G a finite group. In [34], Strickland exploits that the Tate construction van-
ishes K(n)-locally to show that the spectrum LK(n)Σ∞

+ BG admits the structure of a Frobenius
object in the stable homotopy category of K(n)-local spectra.

Part 2. Ambidexterity

In the second part of this project we place Hovey and Sadofsky’s result on the Tate con-
struction vanishing K(n)-locally into a categorical framework following [12]. More concretely,
we will be interested in the following situation. Let C be an ∞-category which admits small
limits and colimits and let f ∶X → Y be a map of Kan complexes. The induced functor
f∗ ∶Fun(Y,C) → Fun(X,C) admits a left adjoint f! and a right adjoint f∗. We picture the
situation as follows

Fun(Y,C)

Fun(X,C)

f∗f! f∗

In Section 7 we will inductively construct a natural transformation f! → f∗ of functors and we
will be interested in the situation where the natural transformation f! → f∗ is an equivalence of
functors. More generally, we will specify the following data:

(1) A collection of morphisms in the ∞-category of spaces called ambidextrous.

(2) For each ambidextrous morphism f ∶X → Y in the ∞-category of spaces a natural
transformation

µf ∶ idFun(Y,C) → f!f
∗

which exhibits f! as a right adjoint of f∗.

The collection of ambidextrous maps in the ∞-category of spaces captures precisely when
the natural transformation f! → f∗ is an equivalence of functors. We will work with the slightly
more flexible notion of Beck–Chevalley fibrations which we introduce in Section 7. However,
we will mostly apply this machinery to the situation where X is a Kan complex and f is the
unique map X → ∗ from X to a point. In this case we say that X is C-ambidextrous if the
unique map X → ∗ is ambidextrous. In Section 8 we impose certain finiteness conditions on
the Kan complex X and examine what kind of structure or property of the ∞-category C we
should impose to force X is to be C-ambidextrous. The results of Section 8 are completely
formal. However, the ultimate goal of this project is to prove a result due to Hopkins and Lurie
which generalizes Hovey and Sadofsky’s result which occupied us throughout the first part of
this paper. Hopkins and Lurie prove the following result.

Theorem 6.14 (Hopkins–Lurie). Let K(n) denote the nth Morava K-theory spectrum. Let
X be a Kan complex and suppose that for every vertex x of X the sets πm(X,x) are finite for
every integer m and trivial for m≫ 0. Then X is SpK(n)-ambidextrous.

The remaining sections of this paper are devoted to the proof of this result. In contrast to
the first part of this paper we will work with a 2-periodic version of Morava K-theory. The
2-periodic Morava K-theories naturally admit the structure of a module over certain E∞-rings
called Lubin–Tate spectra as discussed in Section 5 or more specifically in Example 5.10. In
general it is hard to determine whether a Kan complex X is C-ambidextrous. In Section 9 we
define a trace form on X and we will see that this trace form is a perfect pairing precisely if X
is C-ambidextrous (see Proposition 9.8). In Section 10 we state the Ravenel–Wilson calculation
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[32] as rephrased by Hopkins and Lurie in [12] (see Theorem 10.12). Finally, in Section 11 we
give a proof of Hopkins and Lurie’s result (see Theorem 11.1).

7. Beck–Chevalley fibrations and norm maps

We will start by introducing some terminology following [12, Section 4]. Let X be an ∞-
category and let q ∶C→ X be a map of simplicial sets which is both a Cartesian fibration and a
coCartesian fibration. If X is an object of X, then the fiber CX ∶= C ×X X is an ∞-category. If
f ∶X → Y is a morphism in X, then f gives rise to an adjunction

CX CY
f!

f∗

of ∞-categories. If the reader is not familiar with adjunctions between ∞-categories we refer to
[22, Section 5.2]. Let ηf ∶ idCX → f∗f! denote the unit and let εf ∶ f!f

∗ → idCY denote the counit
of this adjunction. If σ ∶∆1 ×∆1 → X is a commutative diagram in X depicted as follows

X ′ Y ′

X Y

f ′

g′ g

f

then there is a canonical equivalence (g′)∗f∗ ≃Ð→ (f ′)∗g∗ of functors from CY from CX′ .

Definition 7.1. Let X be an ∞-category and let q ∶C → X be a map of simplicial sets which
is both a Cartesian fibration and a coCartesian fibration. The Beck–Chevalley transformation
associated to a commutative diagram

X ′ Y ′

X Y

f ′

g′ g

f

in X is the natural transformation BC[σ] ∶ f ′! (g′)∗ → g∗f! given by the composition

f ′! (g′)∗
ηfÐ→ f ′! (g′)∗f∗f!

≃Ð→ f ′! (f ′)∗g∗f!

εf ′Ð→ g∗f!.

Definition 7.2. Let X be an ∞-category which admits pullbacks. A map q ∶C→ X of simplicial
sets which is both a Cartesian fibration and a coCartesian fibration is a Beck–Chevalley fibration
if for every pullback diagram σ

X ′ Y ′

X Y

f ′

g′ g

f

in X, the associated Beck–Chevalley transformation BC[σ] ∶ f ′! (g′)∗ → g∗f! is an equivalence of
functors from CX to CY ′ .

Let X be an ∞-category which admits pullbacks, and let q ∶C → X be a Beck–Chevalley
fibration. As mentioned in the introduction we will define a class of morphisms in X called
ambidextrous which satisfy that if f is ambidextrous, then the left adjoint f! of f∗ is also a
right adjoint of f∗. In fact, we will construct a natural transformation Nmf ∶ f! → f∗ called the
norm map and show that if f is ambidextrous, then the norm map is an equivalence. More
precisely, for every integer n ≥ −2 we will specify the following data:
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(1) A collection of morphisms in X called n-ambidextrous.

(2) For each n-ambidextrous morphism f ∶X → Y in X a natural transformation

µ
(n)
f ∶ idCY → f!f

∗

which exhibits f! as a right adjoint of f∗.

Construction 7.3. We will achieve this by induction on n. Let X be an ∞-category which
admits pullbacks and let q ∶C → X be a Beck–Chevalley fibration. If n = −2, then a morphism
f ∶X → Y in X is n-ambidextrous precisely if f is an equivalence. In this case the functor f∗ is
an equivalence of ∞-categories which means that the counit εf ∶ f!f

∗ → idCY is an equivalence

of functors. We let µ
(n)
f ∶ idCY → f!f

∗ be a homotopy inverse of εf . For the induction step

assume that the collection of n-ambidextrous morphisms in X have been defined for some

integer n ≥ −2 and that the natural transformation µ
(n)
g ∶ idCY → g!g

∗ has been specified for
every n-ambidextrous morphism g ∶X → Y in X. Let f ∶X → Y be a morphism in X, and let
δ ∶X →X ×Y X denote the diagonal map determined by the commutative diagram

X

X ×Y X X

X Y

δ

idX

idX
π2

π1

f

f

in X. The Beck–Chevalley transformation BC[σ] ∶ (π1)!π
∗
2

≃Ð→ f∗f! associated to the pullback
square above is an equivalence since q ∶C → X is a Beck–Chevalley fibration. Consequently,

we let BC[σ]−1 ∶ f∗f!
≃Ð→ (π1)!π

∗
2 denote a homotopy inverse of BC[σ]. The morphism f is

weakly (n + 1)-ambidextrous if the diagonal map δ is n-ambidextrous. If f is weakly (n + 1)-
ambidextrous, then we define a natural transformation ν

(n+1)
f ∶ f∗f! → idCX by the composition

f∗f!
BC[σ]−1ÐÐÐÐ→ (π1)!π

∗
2

µ
(n)
δÐÐ→ (π1)!δ!δ

∗π∗2 ≃ (π1δ)!(π2δ)∗ = idCX .

The morphism f ∶X → Y is (n + 1)-ambidextrous if for every pullback diagram

X ′ Y ′

X Y

f ′

g′ g

f

in X, the morphism f ′ is weakly (n+1)-ambidextrous and the associated natural transformation

ν
(n+1)
f ′ ∶ (f ′)∗f ′! → idCX′

exhibits (f ′)∗ as a left adjoint of f ′! . In other words the natural transformation ν
(n+1)
f ′ is the

counit of an adjunction between (f ′)∗ and f ′! . If f is (n+1)-ambidextrous, then f is in particular

weakly (n+1)-ambidextrous and we let µ
(n+1)
f ∶ idCY → f!f

∗ be a unit of the adjunction between

f∗ and f! compatible with the counit ν
(n+1)
f ∶ f∗f! → idCX .

Remark 7.4. In the setting of Construction 7.3 above, if f is a weakly m-ambidextrous mor-
phism in X for some integer m ≥ −1, then one can show that the natural transformation

ν
(m)
f ∶ f∗f! → idCX is independent of m. Let us specify exactly what this means. Let m and n
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be integers with −1 ≤m ≤ n. If f is a weakly m-ambidextrous morphism in X, then f is also n-

ambidextrous and the natural transformations ν
(m)
f and ν

(n)
f agree up to homotopy. Similarly,

let m and n be integers with −2 ≤ m ≤ n. If f is an m-ambidextrous morphism in X, then f

is also n-ambidextrous and the natural transformations µ
(m)
f and µ

(m)
f agree up to homotopy.

This is proved in [12, Proposition 4.1.10].

Definition 7.5. Let X be an ∞-category which admits pullbacks and let q ∶C→ X be a Beck–
Chevalley transformation. Let f ∶X → Y be a morphism of X.

(1) The morphism f is weakly ambidextrous if f is weakly n-ambidextrous for some integer

n ≥ −1. Set νf ∶= ν(n)f where ν
(n)
f is the natural transformation defined in Construction

7.3.

(2) The morphism f is ambidextrous if f is n-ambidextrous for some integer n ≥ −2 that
is, if every pullback f ′ of f is weakly ambidextrous and the natural transformation νf ′

exhibits (f ′)∗ as a left adjoint of f ′! . We let µf ∶ idCY → f!f
∗ denote a compatible unit

of this adjunction.

Definition 7.6. Let q ∶C→ X be a Beck–Chevalley fibration and let f ∶X → Y be a morphism
in X. Suppose that f∗ ∶CY → CX admits a right adjoint f∗ ∶CX → CY . If f is weakly ambidex-
trous, then we let Nmf ∶ f! → f∗ denote the image of the natural transformation νf under the
equivalence

MapFun(CX ,CX)(f∗f!, idCX ) ≃ MapFun(CX ,CY )(f!, f∗)
of spaces. The natural transformation Nmf ∶ f! → f∗ is called the norm map associated to f .

Remark 7.7. Let q ∶C → X be a Beck–Chevalley fibration. A morphism f ∶X → Y in X is
ambidextrous precisely if for every pullback diagram

X ′ Y ′

X Y

f ′

g′ g

f

in X the following three conditions are satisfied:

(1) The morphism f ′ is weakly ambidextrous.

(2) The functor (f ′)∗ admits a right adjoint f ′∗.

(3) The norm map Nmf ′ ∶ f ′! → f ′∗ associated to f ′ is an equivalence.

Let X be an ∞-category which admits pullbacks. If q ∶C → X is a Beck–Chevalley fibra-
tion, then we have introduced a collection of morphisms in X called ambidextrous. Now
we want to specialize to the case where X is the ∞-category S of spaces. Let C be an ∞-
category which admits small limits and colimits. The construction X ↦ Fun(X,C) refines to
a functor Fun(−,C) ∶Sop → Cat∞ of ∞-categories which is classified by a Cartesian fibration
q ∶LocSys(C) → S by unstraightening (see [22, Section 3.3.2]). If f ∶X → Y is a morphism of
spaces, then the functor f∗ ∶LocSys(C)Y → LocSys(C)X can be canonically identified with the
functor f∗ ∶Fun(Y,C) → Fun(X,C) given by composition with f . Since C admits small limits
and colimits we conclude that the functor f∗ admits a left adjoint given by a left Kan extension
of f , and a right adjoint f∗ given by a right Kan extension of f . It follows from [22, Corollary
5.2.2.5] that q ∶LocSys(C) → S is also a coCartesian fibration.
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Proposition 7.8. Let C be an ∞-category which admits small limits and colimits. The functor
q ∶LocSys(C) → S classifying the functor Sop → Cat∞ determined by X ↦ Fun(X,C) is a Beck–
Chevalley fibration.

Proof. See [12, Proposition 4.3.3]. �

Definition 7.9. Let C be an ∞-category which admits small limits and colimits, and let
q ∶LocSys(C) → S be the Beck–Chevalley fibration of Proposition 7.8.

(1) A Kan complex X is weakly C-ambidextrous if the unique map X → ∗ is weakly am-
bidextrous.

(2) A Kan complex X is C-ambidextrous if X is weakly C-ambidextrous and the natural
transformation νf ∶ f∗f! → idFun(X,C) exhibits f∗ as a left adjoint of f!.

Remark 7.10. Let C be an ∞-category which admits small limits and colimits. Let X be a
Kan complex and let f ∶X → ∗ denote the unique map. The Kan complex X is C-ambidextrous
precisely if the norm map NmX ∶ f! → f∗ is an equivalence.

Example 7.11. Let C be an ∞-category which admits small colimits. The empty Kan complex
∅ is weakly C-ambidextrous. This follows from the observation that the diagonal map δ ∶ ∅ →
∅ ×∗ ∅ is an equivalence.

Ambidexterity of a map f ∶X → Y of Kan complexes is a condition on the fibers of f as the
following Proposition makes precise. We will say that a map f ∶X → Y is n-truncated for some
integer n if for every object Z of the ∞-category of spaces, the induced map MapS(Z,X) →
MapS(Z,Y ) has n-truncated fibers which means that the homotopy groups of the fibers vanish
for every point of the fibers and every i > n.

Proposition 7.12. Let C be an ∞-category which admits small colimits.

(1) A Kan fibration f ∶X → Y between Kan complexes is weakly ambidextrous if and only
if f is n-truncated for some integer n and each fiber of f is weakly C-ambidextrous.

(2) A Kan fibration f ∶X → Y between Kan complexes is ambidextrous if and only if f is
n-truncated for some integer n and each fiber of f is C-ambidextrous.

Proof. See [12, Proposition 4.3.5]. �

8. First examples of ambidexterity

Let C be an ∞-category which admits small limits and colimits. In the previous section we
defined what it means for a Kan complex X to be C-ambidextrous (see Definition 7.9). The
goal of this section is to provide a host of examples of C-ambidextrous spaces. We follow [12,
Section 4.4] closely. One might expect that ambidexterity is a property of the chosen Kan
complex X but we will see that it also relies crucially on the ∞-category C. However, we will
need to impose certain finiteness conditions on the Kan complex X which are captured in the
following definition.

Definition 8.1. Let n be an integer. A Kan complex X is a finite n-type if the following are
satisfied.

(1) For every vertex x of X, the homotopy groups πm(X,x) vanish for m > n.

(2) For every vertex x of X, the sets πm(X,x) are finite for every integer m.
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Definition 8.2. Let n ≥ −2 be an integer. An ∞-category C which admits small colimits is
n-semiadditive if every finite n-type is C-ambidextrous.

Remark 8.3. Let C be an ∞-category which admits small colimits and let X be a Kan complex.
For every pair of vertices x and y in X we can form the space of paths Px,y from x to y in X
by

Px,y = {x} ×Fun({0},X) Fun(∆1,X) ×Fun({1},X) {y}.
It follows from Proposition 7.12 that X is weakly C-ambidextrous if and only if for all vertices
x and y in X the space of paths in X from x to y is C-ambidextrous. This observation will
be important. For example if C is the ∞-category Sp of spectra and X is the classifying space
BG of a finite group, then BG is weakly Sp-ambidextrous precisely if the loop space ΩBG is
Sp-ambidextrous.

Lemma 8.4. Let C be an ∞-category which admits small colimits. The empty Kan complex is
C-ambidextrous if and only if C is pointed.

Proof. Let E denote the unique vertex of Fun(∅,C) ≃ ∆0 and let f ∶ ∅ → ∗ denote the unique
map. The functor f∗ ∶C→∆0 is the constant functor with value E. It follows that a left adjoint
f! ∶∆0 → C of f∗ carries E to an initial object of C. By definition the empty Kan complex is C-
ambidextrous precisely if the natural transformation νf ∶ f∗f! → id is the counit of an adjunction
which exhibits f∗ as a left adjoint of f!. This is equivalent to the following: for every object C
of C the canonical map

MapC(C, f!E) →MapFun(∅,C)(f∗C, f∗f!E)
νfÐ→MapFun(∅,C)(f∗C,E)

of spaces is an equivalence. Since MapFun(∅,C)(f∗C,E) ≃ ∗ this is equivalent to f!E being a
final object. This ends the proof. �

Remark 8.5. Let C be an ∞-category which admits small limits and colimits. In this case we
can give a more conceptually pleasing proof of Lemma 8.4. A left adjoint f! of f∗ carries E to
an initial object of C, and a right adjoint f∗ carries E to a final object of C. Consequently, the
norm map Nmf ∶ f!E → f∗E is an equivalence if and only if C is pointed.

Proposition 8.6. Let C be an ∞-category which admits small colimits. Then C is (−1)-
semiadditive if and only if C is pointed.

Proof. Assume that C is (−1)-semiadditive. The empty Kan complex ∅ is a finite (−1)-type
so ∅ is C-ambidextrous by assumption. It follows from Lemma 8.4 that C is pointed. Con-
versely, assume that C is pointed and let X be a finite (−1)-type. If X is empty, then X is
C-ambidextrous by Lemma 8.4. If X is contractible, then X is C-ambidextrous since C admits
small colimits. �

Proposition 8.6 above gives a complete characterization of those ∞-categories which are
(−1)-semiadditive. Our next goal is to obtain a similar characterization for 0-semiadditive
∞-categories. The following remark is crucial.

Remark 8.7. Let C be a pointed ∞-category which admits small limits and colimits. Let X
be a set which we regard as a discrete Kan complex. An object of the ∞-category Fun(X,C)
of functors from X to C can be identified with a sequence (Cx)x∈X of objects in C indexed by
X. Let f ∶X → ∗ denote the unique map. The functor f∗ ∶C → Fun(X,C) admits both a left
adjoint f! and a right adjoint f∗. The left adjoint f! is given by

(Cx)x∈X ↦ ∐
x∈X

Cx
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while the right adjoint f∗ is given by

(Cx)x∈X ↦ ∏
x∈X

Cx.

Since C is pointed it follows that C is (−1)-ambidextrous by Proposition 8.6. We conclude that
X is weakly C-ambidextrous by Remark 8.3. In particular, there is a norm map Nmf ∶ f! → f∗
which assigns to each sequence (Cx)x∈X of objects in C the morphism

θ ∶ ∐
x∈X

Cx Ð→ ∏
y∈X

Cy

whose (x, y)-component is idCx if x = y and the zero morphism otherwise. Consequently, we
find that X is C-ambidextrous if and only if the morphism θ is an equivalence for every sequence
(Cx)x∈X of objects of C.

Proposition 8.8. Let C be an ∞-category which admits small limits and colimits. Then the
following are equivalent:

(1) The ∞-category C is 0-semiadditive

(2) The ∞-category C is pointed and for every pair of objects C and D in C the canonical

map C ∐D → C ×D given by the matrix (idC 0
0 idD

) is an equivalence.

Proof. Assume that C is 0-semiadditive. Apply Remark 8.7 above with X a discrete space
consisting of two points. For the converse, let X be a finite 0-type. We want to show that X is
C-ambidextrous. We will prove this by induction on the cardinality of X. If X is empty, then
X is C-ambidextrous since C is pointed. Assume that X is non-empty and choose a point x in
X. Let Y = {x, y} be a discrete space consisting of two points. Define a function f ∶X → Y by

f(t) =
⎧⎪⎪⎨⎪⎪⎩

x if t = x
y if t ≠ x

By Proposition 7.12 it suffices to show that the fibers of f are C-ambidextrous and that Y is
C-ambidextrous. First note that the fiber f−1{x} is C-ambidextrous since it is contractible.
The cardinality of f−1{y} is strictly less than the cardinality of X so f−1{y} is C-ambidextrous
by the inductive hypothesis. It follows from Remark 8.7 that Y is C-ambidextrous. �

Corollary 8.9. If C is a stable ∞-category which admits small limits and colimits, then C is
0-semiadditive.

Example 8.10. Let G be a finite group and let f ∶BG → ∗ denote the unique map. It
follows from Corollary 8.9 that the stable ∞-category Sp of spectra is 0-semiadditive. Since
the classifying space BG is a finite 1-type it follows from Remark 8.3 that BG is weakly Sp-
ambidextrous. This means that we have a natural transformation NmG ∶ (−)hG → (−)hG and
we define the Tate construction (−)tG as the cofiber of NmG. We claim that this norm map is
equivalent to the norm map we defined in Section 2 (see Remark 2.8). Let s ∶ ∗ → BG classify a
basepoint of BG. By Remark 2.10 it suffices to show that f!s!S

0 → f∗s!S
0 is an equivalence of

spectra. First observe that f!s! ≃ (f ○ s)!S
0 ≃ S0. Since the classifying space BG of G is weakly

Sp-ambidextrous it follows from Proposition 7.12 that the map s ∶ ∗ → BG is ambidextrous. It
follows that the norm map Nms ∶ s! → s∗ is a natural equivalence. Consequently, we find that
f∗s!S

0 ≃ f∗s∗S0 ≃ S0 and the norm map Nms!S0 is equivalent to the identity on S0.

Example 8.11. Let G be a finite group. It follows from the Tate construction vanishing K(n)-
locally (see Theorem 6.1) that the classifying space BG of G is SpK(n)-ambidextrous. The Tate
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construction vanishes T (n)-locally (see Remark 6.10) so the classifying space BG of G is also
SpT (n)-ambidextrous.

Remark 8.12. Let G be a finite group and let C be a stable ∞-category which admits small
limits and colimits. In section 2 we were solely interested in the ∞-category of spectra with
a G-action. However, we can define a natural transformation (−)hG → (−)hG of functors from
CBG to C using Corollary 8.9. Consequently, we can define the Tate construction on C. An
example of particular interest is the derived ∞-category D(R) of modules over a commutative
ring R.

Finally, we examine what kind of structure on the underlying ∞-category we need to impose
to go from 0-semiadditivity to 1-semiadditive and more generally from n-semiadditivity to
(n + 1)-semiadditivity. We will first introduce some terminology.

Notation 8.13. Let C be an n-semiadditive ∞-category for some integer n ≥ −2. Let X be
a finite n-type and let p ∶X → ∗ denote the unique map. There is a natural transformation
µp ∶ idC → p!p

∗ which exhibits p! as a right adjoint of p∗. Let C and D be a pair of objects
of C and let f ∶X → MapC(C,D) be a map of Kan complexes. The natural transformation
µp determines a natural transformation u ∶p∗C → p∗D. The construction that sends a map
f ∶X →MapC(C,D) to the composite

C
µpÐ→ p!p

∗C
p!uÐÐ→ p!p

∗D
εpÐ→D

determines a map

dµX ∶Fun(X,MapC(C,D)) Ð→MapC(C,D)
of spaces.

Notation 8.14. Let C be a 0-semiadditive ∞-category and let X be a set consisting of two
elements. For every pair of objects C and D in C we ontain an addition map

+ ∶MapC(C,D) ×MapC(C,D) →MapC(C,D)
by specializing the map dµX described in Notation 8.13 above. This addition map is associative
and commutative up to homotopy with unit the zero map 0 ∶C → D in C. Let n ≥ 0 be an
integer, and let [n] ∶C → C denote the n-fold sum of idC with itself under the addition map on
MapC(C,C). The morphism [n] ∶C → C can be identified with the following composite

C
δÐ→ ∏

1≤i≤n
C ≃ ∐

1≤j≤n
C

δ′Ð→ C

where δ is the canonical diagonal map, δ′ is the codiagonal, and the equivalence follows from
Remark 8.7.

Example 8.15. Let C be a stable ∞-category which admits small limits and colimits, and
let n ≥ 1 be an integer. For every object C of C we can form the (discrete) ring EndC(C) ∶=
Ext0

C(C,C) of endomorphisms of C in C. If the endomorphism ring EndC(C) admits the
structure of a Q-algebra, then the morphism [n] ∶C → C in EndC(C) is an equivalence. An
inverse is given by the morphism 1

n
idC ∶C → C in EndC(C).

Example 8.16. Let C be a stable ∞-category which admits small limits and colimits, and let
C be an object of C. Let p be a prime number and let n ≥ 1 be an integer which is relatively
prime to p. If the endomorphism ring EndC(C) admits the structure of a Z(p)-module, then the

morphism [n] ∶C → C is an equivalence. Note that 1
n

is an element of Z(p) since n is relatively

prime to p. It follows that an inverse of [n] is given by 1
n

idC ∶C → C.
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Proposition 8.17. Let C be a 0-semiadditive ∞-category which admits small limits and col-
imits. If there exists a prime number p which satisfies that for every integer n ≥ 1 which is
relatively prime to p, the morphism [n] ∶C → C is an equivalence for every object C of C, then
C is 1-semiadditive if and only if the Eilenberg–Mac Lane space K(Z/p,1) is C-ambidextrous.

Proof. If C is 1-semiadditive, then the Eilenberg–Mac Lane space K(Z/p,1) is C-ambidextrous
since K(Z/p,1) is a finite 1-type. Conversely, suppose that the Eilenberg–Mac Lane space
K(Z/p,1) is C-ambidextrous, and let X be a finite 1-type. We may assume that X is connected
by applying Proposition 7.12 to the map X → π0X. In other words, we may assume that X
is homotopy equivalent to the classifying space BG of a finite group G. We first assume that
G is a p-group and proceed by induction on the order of G. If G is the trivial group, then we
are done. Assume that G is not the trivial group and choose a normal subgroup H of G of
index p. By the inductive hypothesis we conclude that B(G/H) is C-ambidextrous. For every
x ∈ B(G/H) the fiber of the map BG → B(G/H) is equivalent to BH ≃ K(Z/p,1) which is
C-ambidextrous by assumption. It follows that BG is C-ambidextrous from Proposition 7.12.
It remains to show that it suffices to handle the case where G is a p-group. Choose a p-Sylow
subgroup of the finite group G, and let g ∶BP → BG denote the map induced by the inclusion
P ↪ G, and let f ∶BG → ∗ denote the unique map. It follows from Proposition 7.12 that the
map g is ambidextrous since g is equivalent to a covering map with finite fibers. Let L ∶BG→ C

be a local system and define a natural transformation α ∶L→ L by the composite

L→ g∗g∗L ≃ g!g
∗L→ L.

We show that α is an equivalence. It suffices to show that the induced map x∗α ∶x∗L→ x∗L is
an equivalence for every point x ∶ ∗ → BG of BG. Let n be the cardinality of G/P and note that
n is relatively prime to p since P is a p-Sylow subgroup. Now, the map x∗α is homotopic to
[n] ∶x∗L→ x∗L which is an equivalence by assumption. We conclude that L is a retract of g!g

∗L
and we may therefore assume that L is on the form g!L

′ for some L′ ∈ Fun(BP,C). Ultimately,
we want to show that Nmf ∶ f! → f∗ is an equivalence since BG is weakly C-ambidextrous. Thus,
it suffices to show that

f!g!L
′ NmfÐÐ→ f∗g!L

′

is an equivalence. Since g is ambidextrous it suffices to show that the composite

f!g!L
′ NmfÐÐ→ f∗g!L

′ ≃ÐÐ→
Nmg

f∗g∗L′

is an equivalence. There is an equivalence Nmg ○Nmf ≃ Nmfg by [12, Remark 4.2.4]. Conse-
quently, we can replace G by the p-group P . This ends the proof. �

Proposition 8.18. Let C be a 0-semiadditive ∞-category which admits small limits and colim-
its, and let p be a prime number. If the morphism [p] ∶C → C is an equivalence for every object
C of C, then the classifying space BG of every finite p-group is C-ambidextrous.

Proof. The proof is very similar to the proof of Proposition 8.17. See [12, Proposition 4.4.17]
for details. �

Proposition 8.19. Let C be an ∞-category which admits small limits and colimits. If n ≥ 2 is
an integer, then C is n-semiadditive if and only if C is (n − 1)-semiadditive and the Eilenberg–
Mac Lane spaces K(Z/p,n) are C-ambidextrous for every prime p.

Proof. Let n ≥ 2 be an integer. The only if direction is immediate. Suppose that C is (n − 1)-
semiadditive and that the Eilenberg–Mac Lane spaces K(Z/p,n) are C-ambidextrous for every
prime p. Let X be a finite n-type. The truncation τ≤n−1X is a finite (n − 1)-type hence C-
ambidextrous by assumption. Consequently, it suffices to show that the homotopy fibers of the
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map X → τ≤n−1X are C-ambidextrous. We may therefore assume that X is homotopy equivalent
to K(A,n) for some finite abelian group A. We proceed by induction on the cardinality of A.
If A is trivial, then there is nothing to prove. If A ≃ Z/p, then X ≃K(Z/p,n) is C-ambidextrous
by assumption. Otherwise, choose a short exact sequence 0 → A′ → A → A′′ → 0 of abelian
groups with ∣A′∣ < ∣A∣ and ∣A′′∣ < ∣A∣. This induces a fiber sequence

K(A′, n) →X →K(A′′, n)

from which we conclude that the homotopy fibers of the map X → K(A′′, n) are homo-
topy equivalent to K(A′, n). By the induction hypothesis we conclude that both K(A′, n)
and K(A′′, n) are C-ambidextrous. Invoking Proposition 7.12, we conclude that X is C-
ambidextrous. �

Proposition 8.20. Let C be a stable ∞-category which admits small limits and colimits. If p
is a prime number which satisfies that [p] ∶C → C is an equivalence for every object C of C,
then K(Z/p,m) is C-ambidextrous for every integer m ≥ 1.

Proof. The proof will proceed by induction on m. If m = 1, then K(Z/p,1) is C-ambidextrous
by Propositon 8.18 above. Assume that m ≥ 2 and let f ∶K(Z/p,m) → ∗ denote the unique
map. It follows from the induction hypothesis that K(Z/p,m) is weakly C-ambidextrous
since ΩK(Z/p,m − 1) ≃ K(Z/p,m). Consequently, it suffices to show that the right adjoint
f∗ ∶Fun(K(Z/p,m),C) → C preserves small colimits. We will show that f∗ is an equivalence of
∞-categories. It suffices to show that the diagonal map C → Fun(K(Z/p,m),C) is an equiva-
lence of ∞-categories. By [22, Lemma 3.1.3.2] it suffices to show that for every simplicial set
K the map

Fun(K,C)≃ → Fun(K,Fun(K(Z/p,m),C))≃

induced by the diagonal is a homotopy equivalence. We may replace C by Fun(K,C) and reduce
to showing that the diagonal map

C≃ → Fun(K(Z/p,m),C)≃ ≃ Fun(K(Z/p,m),C≃)

is a homotopy equivalence. For this it suffices to show that for every integer n ≥ 1 the map

δn ∶ τ≤nC≃ → Fun(K(Z/p,m), τ≤nC≃)

is a homotopy equivalence. We proceed by induction on n. Since m ≥ 2 we conclude that
K(Z/p,m) is 2-connective. The case n = 1 follows immediately. Assume that δn is a homotopy
equivalence. Consider the following commutative diagram

τ≤n+1C
≃ Fun(K(Z/p,m), τ≤n+1C

≃)

τ≤nC≃ Fun(K(Z/p,m), τ≤nC≃)

δn+1

ϕn+1 Fun(K(Z/p,m),ϕn+1)
δn

in the ∞-category of spaces. We want to show that δn+1 is a homotopy equivalence. It suffices
to show that δn+1 induces a homotopy equivalence between the homotopy fiber of ϕn+1 and
Fun(K(Z/p,m), ϕn+1) respectively over every vertex of τ≤nC≃. The fiber of ϕn+1 over C is
homotopy equivalent to the Eilenberg–Mac Lane space K(Ext−nC (C,C), n + 1) where C is an
object of C which depends on the choice of vertex of τ≤nC≃. We conclude that it suffices to show
that the map

K(Ext−nC (C,C), n + 1) → Fun(K(Z/p,m),K(Ext−nC (C,C), n + 1))
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is a homotopy equivalence or equivalently that the fiber of the map above vanishes. The
abelian group Ext−nC (C,C) admits the structure of a Z[ 1

p
]-module from which it follows that

Hk
red(K(Z/p,m); Ext−nC (C,C)) vanishes for all k. This ends the proof. �

We end this section by pointing out some nice consequences of the results above.

Corollary 8.21. Let C be a 0-semiadditive ∞-category which admits small limits and colimits.
If the morphism [n] ∶C → C is an equivalence for every integer n ≥ 1 and every object C of C,
then C is 1-semiadditive.

Proof. It suffices to show that K(Z/p,1) is C-ambidextrous by Proposition 8.17. Since Z/p is a
p-group, and BZ/p ≃K(Z/p,1) this follows from Proposition 8.18. �

Corollary 8.22. Let C be a stable ∞-category which admits small limits and colimits. If the
endomorphism ring EndC(C) admits the structure of a Q-algebra for every object C of C, then
C is n-semiadditive for every integer n ≥ −2.

Proof. We may assume that n ≥ 1 by Corollary 8.9. It follows from Example 8.15 that the
morphism [n] ∶C → C is an equivalence for every object C of C. We conclude that C is 1-
semiadditive using Corollary 8.21. By Proposition 8.20 we see thatK(Z/p,m) is C-ambidextrous
for every prime number p and every integer m ≥ 1. Proposition 8.19 implies that C is n-
semiadditive as wanted. �

Corollary 8.23. Let C be a stable ∞-category which admits small limits and colimits, and let p
be a prime. If the endomorphism ring EndC(C) admits the structure of a Z(p)-module for every
object C of C, then C is n-semiadditive if and only if the Eilenberg–Mac Lane spaces K(Z/p,m)
are C-ambidextrous for 1 ≤m ≤ n.

Proof. The only if direction is immediate. Suppose that the Eilenberg–Mac Lane spaces
K(Z/p,m) are C-ambidextrous for 1 ≤ m ≤ n. It suffices to show that C is 1-semiadditive
by Proposition 8.19. By Example 8.16 the condidition in Proposition 8.17 is satisfied, thus it
suffices to show that K(Z/p,1) is C-ambidextrous which follows by assumption. �

Example 8.24. Let n ≥ 1 be an integer and let X be spectrum. The endomorphism ring
EndSpK(n)

(LK(n)X) admits the structure of a Z(p)-module. Let l be an integer which is not

divisible by p and let l ∶K(n) → K(n) denote multiplication by l on K(n). Since l is not
divisible by p we conclude that l is an equivalence which in turn means that

l ∶X ⊗K(n) →X ⊗K(n)
is an equivalence. It follows that l ∶LK(n)X → LK(n)X is an equivalence. Consequently, we
obtain a ring homomorphism Z(p) → EndSpK(n)

(LK(n)X) which endows the endomorphism ring

EndSpK(n)
(LK(n)X) with the structure of a Z(p)-module. Since SpK(n) is the essential image

of the Bousfield localization LK(n) (see Propositon 5.11) we conclude that the endomorphism
ring EndSpK(n)

(Y ) admits the structure of a Z(p)-module for every K(n)-local spectrum Y .

9. Duality and trace forms

Let C be an ∞-category which admits small limits and colimits and let X be a Kan complex.
In general it is difficult to determine whether X is C-ambidextrous. For example if G is a finite
group, then the classifying space of G is SpK(n)-ambidextrous precisely if the Tate construction

vanishes K(n)-locally. The goal of this section is to provide some tools in determining whether
X is C-ambidextrous. Assume that X is weakly C-ambidextrous. In section 7 we constructed
a norm map on X which should be thought of as a map from the cohomology of X to the
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homology of X, that is a bilinear pairing on the homology of X. The idea is that this pairing
is perfect precisely if X is C-ambidextrous. The notion of a pairing is encoded by the notion of
duality in a monoidal ∞-category which we now recall following [12, Section 5.1].

Definition 9.1. Let C be a category equipped with a monoidal structure ⊗ and let 1 denote
the unit object. Let X and Y be objects of C. A map e ∶X ⊗ Y → 1 in C is a duality datum if
there exists a map c ∶1→ Y ⊗X such that the composites

X
id⊗cÐÐ→X ⊗ Y ⊗X e⊗idÐÐ→X

Y
c⊗idÐÐ→ Y ⊗X ⊗ Y id⊗eÐÐ→ Y

equal the identities on X and Y respectively. If C is a monoidal ∞-category with unit 1, then
a map e ∶X ⊗ Y → 1 in C is a duality datum if it is a duality datum in the homotopy category
of C.

Definition 9.2. Let C be a symmetric monoidal ∞-category with unit 1. An object X of C
is dualizable if there exists another object Y of C and a duality datum e ∶X ⊗ Y → 1. Let
dim(X) ∈ π0 MapC(1,1) be the morphism given by the composite

1
cÐ→ Y ⊗X ≃X ⊗ Y eÐ→ 1

where c ∶1→ Y ⊗X is compatible with e.

Notation 9.3. Let X be an ∞-category which admits pullbacks and let q ∶C → X be a Beck–
Chevalley fibration. If f ∶X → Y be a morphism in X, then the functor f∗ ∶CY → CX admits a
left adjoint f!. Let [X/Y ] denote the functor [X/Y ] ∶CY → CY given by [X/Y ] ∶= f!f

∗. If f
is weakly C-ambidextrous, then we have a natural transformation νf ∶ f∗f! → idCX . In the case
where f is weakly C-ambidextrous we define a natural transformation

TrFmf ∶ [X/Y ] ○ [X/Y ] → idCY

by

(f!f
∗)(f!f

∗) ≃ f!(f∗f!)f∗
νfÐ→ f!f

∗ εfÐ→ idCY .

The natural transformation TrFmf is called the trace form of f .

Remark 9.4. Assume that the ∞-category C admits small colimits and letX be a Kan complex.
The unique map f ∶X → ∗ defines a functor [X/∗] ∶= [X] ∶C → C as above. The ∞-category C

is naturally tensored over the ∞-category S of spaces (see [22, Section 4.4.4]) and the functor
[X] ∶C → C is given by tensoring with X. If X is weakly C-ambidextrous, then we denote the
trace form of f by TrFmX . If Y is a Kan complex and g ∶Y → X is a map of Kan complexes,
then the counit g!g

∗ → id induces a natural transformation

[Y ] = f!g!g
∗f∗ → f!f

∗ = [X]

which we denote αg.

Notation 9.5. Let C be an ∞-category which admits small colimits. Let X be a pointed Kan
complex and let e ∶ ∗ → X denote a basepoint of X, and let f ∶X → ∗ denote the unique map.
Assume that e is ambidextrous and let µe ∶ idC → e!e

∗ denote the natural transformation which
exhibits e! as a right adjoint of e∗. Let Tre ∶ [X] → idC denote the natural transformation given
by

[X] = f!f
∗ µeÐ→ f!e!e

∗f∗ ≃ idC .
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Notation 9.6. Let C be an ∞-category which admits small colimits. Let X be a pointed
Kan complex and let e ∶ ∗ → X denote a point of X, and let f ∶X → ∗ denote the unique
map. If α ∶ [X] → idC is a natural transformation, then we let α(e) ∶ idC → idC be the natural
transformation given by the composite

idC ≃ f!e!e
∗f∗

ηeÐ→ f!f
∗ αÐ→ idC .

In the case where e is ambidextrous and α = Tre, then Tre(e) is given by

idC ≃ f!e!e
∗f∗

ηeÐ→ f!f
∗ TreÐÐ→ idC .

Remark 9.7. Let C be an ∞-category which admits small colimits. Let X be a Kan complex
and let f ∶X → ∗ denote the unique map. If e ∶ ∗ → X is an ambidextrous map, then the
following two natural transformations

f!f
∗ TreÐÐ→ idC ≃ f!e!e

∗f∗
f!ηef

∗

ÐÐÐ→ f!f
∗

f!f
∗ f!εff

∗

ÐÐÐ→ f!f
∗f!f

∗ Tref!f
∗

ÐÐÐÐ→ f!f
∗

are homotopic. The assertion is consequence of the following commutative diagram

f!f
∗ f!f

∗f!f
∗

f!e!e
∗f∗ f!e!e

∗f∗f!f
∗

f!f
∗ f!f

∗f!f
∗

f!f
∗

εf

µe µe

εf

ηe ηe

εf

ηf

The following result makes precise what we tried to explain in the introduction of this section.

Proposition 9.8 (Hopkins–Lurie [12, Proposition 5.1.8]). Let X be an ∞-category which admits
pullbacks and let q ∶C→ X be a Beck–Chevalley fibration. Let f ∶X → Y be a weakly ambidextrous
morphism in X. The following are equivalent:

(1) The natural transformation νf ∶ f∗f! → idCX exhibits f! as a right adjoint of f∗.

(2) The trace form TrFmf ∶ [X/Y ] ○ [X/Y ] → idCY of f is a duality datum in the ∞-
category Fun(CY ,CY ) of endofunctors on CY equipped with the monoidal structure given
by composition of functors.

Proof. We first show that (1) implies (2). By assumption the natural transformation νf ∶ f∗f! →
idCX exhibits f! as a right adjoint of f∗. We may choose a compatible unit µf ∶ idCX → f!f

∗ for
this adjunction such that the following two composites

f∗
f∗µfÐÐÐ→ f∗f!f

∗ νff
∗

ÐÐÐ→ f∗

f!

µff!ÐÐ→ f!f
∗f!

f!νfÐÐ→ f!

are homotopic to the identity. Define a natural transformation c ∶ idCY → [X/Y ] ○ [X/Y ] by

idCY

µfÐ→ f!f
∗ f!ηff

∗

ÐÐÐÐ→ f!f
∗f!f

∗,
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where ηf ∶ idCX → f∗f! is the unit of the adjunction which exhibits f! as a left adjoint of f∗. We
show that the pair (c,TrFmf) exhibits the functor [X/Y ] as a self-dual object of Fun(CY ,CY ).
We must show that the following two composites

[X/Y ] f!f
∗cÐÐÐ→ [X/Y ] ○ [X/Y ] ○ [X/Y ]

TrFmf f!f
∗

ÐÐÐÐÐÐ→ [X/Y ]

[X/Y ] cf!f
∗

ÐÐÐ→ [X/Y ] ○ [X/Y ] ○ [X/Y ]
f!f

∗ TrFmfÐÐÐÐÐÐ→ [X/Y ]
are homotopic to the identity. We will show that the first composite is homotopic to the iden-
tity. The remaining case follows from a completely similar argument. There is a commutative
diagram

f!f
∗ f!f

∗f!f
∗ f!f

∗

f!f
∗f!f

∗f!f
∗ f!f

∗f!f
∗

f!f
∗

f!f
∗µf

f!f
∗c

f!νff
∗

f!ηff
∗f!f

∗ f!ηff
∗

f!νff
∗f!f

∗

TrFmf f!f
∗

εff!f
∗

which implies the wanted. It remains to show that (2) implies (1). Suppose that the trace form
TrFmf exhibits the functor [X/Y ] as self-dual object of Fun(CY ,CY ) and choose a natural
transformation c ∶ idCY → [X/Y ] ○ [X/Y ] compatible with TrFmf . We want to show that the
natural transformation νf ∶ f∗f! → idCX exhibits f! as a right adjoint of f∗. We need to specify
a compatible unit of νf . Define two natural transformations

µ ∶ idCY

cÐ→ f!f
∗f!f

∗ εff!f
∗

ÐÐÐ→ f!f
∗

µ′ ∶ idCY

cÐ→ f!f
∗f!f

∗ f!f
∗εfÐÐÐ→ f!f

∗.

We show that the following natural transformations

α ∶ f!
µf!ÐÐ→ f!f

∗f!

f!νfÐÐ→ f!

α′ ∶ f∗ f∗µ′ÐÐ→ f∗f!f
∗ νff

∗

ÐÐÐ→ f∗

are homotopic to the identity. This would give that µ ≃ µ′ is the unit for the adjunction specified
by the counit νf as wanted. We show that α is homotopic to the identity. Let εf ∶ f!f

∗ → idCY

denote a counit of the adjunction between f! and f∗. It follows that the composite

MapFun(CX ,CY )(f!, f!) →MapFun(CY ,CY )(f!f
∗, f!f

∗)
εfÐ→MapFun(CY ,CY )(f!f

∗, idCY )

is a homotopy equivalence of spaces. Under this homotopy equivalence the natural transforma-
tion µ is carried to

f!f
∗ µf!f

∗

ÐÐÐ→ f!f
∗f!f

∗ f!νff
∗

ÐÐÐÐ→ f!f
∗ εfÐ→ idCY

thus it suffices to show that this natural transformation is homotopic to the counit εf . This
natural transformation is equivalent to the following natural transformation

f!f
∗ cf!f

∗

ÐÐÐ→ f!f
∗f!f

∗f!f
∗ εff!f

∗f!f
∗

ÐÐÐÐÐÐ→ f!f
∗f!f

∗ TrFmfÐÐÐÐ→ idCY .
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Moreover, there is a commutative diagram

f!f
∗ f!f

∗f!f
∗f!f

∗ f!f
∗f!f

∗

f!f
∗ idCY

cf!f
∗

id

εff!f
∗f!f

∗

f!f
∗ TrFmf TrFmf

εf

which shows that the composite above is homotopic to the counit εf . This ends the proof. �

Remark 9.9. Let n ≥ 1 be an integer and let X be a Kan complex. Recall from Remark 5.12
that the ∞-category SpK(n) of K(n)-local spectra admits a symmetric monoidal structure ⊗̂
and the functor ⊗̂ determines a fully faithful embedding

α ∶SpK(n) → Fun(SpK(n),SpK(n))

whose essential image is the full subcategory of Fun(SpK(n),SpK(n)) spanned by those func-

tors that preserve small colimits (see Propositon 5.14). Furthermore, if Fun(SpK(n),SpK(n)) is
equipped with the monoidal structure given by composition, then α admits a monoidal struc-
ture. The functor [X] ∶C → C preserves small colimits since it is given by tensoring with X
(see Remark 9.4) and the functor [X] corresponds to the K(n)-local spectrum [X](LK(n)S0) ≃
LK(n)Σ∞

+ X under the equivalence α.

Corollary 9.10. Let n ≥ 1 be an integer and let X be a Kan complex. If X is weakly SpK(n)-
ambidextrous, then the map

TrFmX ∶LK(n)Σ
∞
+ X⊗̂LK(n)Σ

∞
+ X → LK(n)S

0

is a duality datum in SpK(n) if and only if X is SpK(n)-ambidextrous.

Proof. Follows from Remark 9.9 and Proposition 9.8. �

We will need the following two result from [12].

Proposition 9.11 (Hopkins–Lurie [12, Proposition 5.1.13]). Let C be an ∞-category which
admits small colimits and let X be a simplicial set equipped with the structure of a simplicial
group. Let f ∶X → ∗ denote the unique map, e ∶ ∗ → X denote the identity element of X, and
let s ∶X ×X → X denote the subtraction map on X given by (x, y) ↦ x−1y on the simplices of
X. If X is weakly C-ambidextrous, then the trace form TrFmX on X is given by the composite

[X] ○ [X] ≃ [X ×X] αsÐ→ [X] TreÐÐ→ idC .

Proof. See Hopkins–Lurie [12, Proposition 5.1.13]. �

Proposition 9.12 (Hopkins–Lurie [12, Proposition 5.1.18]). Let C be an ∞-category which ad-
mits small limits and colimits. Let G be a simplicial group and assume that G is C-ambidextrous.
Let e ∶ ∗ → G denote the inclusion of the identity element and let E ∶ ∗ → BG denote the inclusion
of the basepoint. Then there exists a canonical homotopy

dim(G) ≃ Tre(e) ○TrE(E)

of natural transformations from the identity functor idC to itself.

Proof. See Hopkins–Lurie [12, Propostion 5.1.18]. �
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10. On p-divisible groups and the Ravenel–Wilson calculation

The goal of this section is to state part of the Ravenel–Wilson calculation [32] as rephrased
by Hopkins and Lurie in [12] that we will need. First our primary concern will be to define the
notion of a truncated p-divisible group over a commutative ring which will require us to recall
some terminology from algebraic geometry. We follow [28], [33, Tag 03NV], and [35].

Definition 10.1. Let C be a category. A Grothendieck topology on C is a set Cov(C) of
collections {ϕi ∶Ui → U ∣ Ui, U ∈ C}i∈I of morphisms in C called coverings which satisfy the
following conditions:

(1) If ϕ ∶V → U is an isomorphism, then {ϕ ∶V → U} is a covering in C.

(2) If {ϕi ∶Ui → U}i∈I is a covering in C and {ψj ∶Vij → Ui}j∈J is a covering in C for every
i ∈ I, then {ϕi ○ ψj ∶Vij → U}i∈I,j∈J is a covering in C.

(3) If {ϕi ∶Ui → U}i∈I is a covering in C and ϕ ∶V → U is a morphism in C, then the
pullback

Ui ×U V V

Ui U

fi

gi ϕ

ϕi

exists in C for every i ∈ I and {fi ∶Ui ×U V → V }i∈I is a covering in C.

A site is a category equipped with a Grothendieck topology.

We will primarily be interested in a Grothendieck topology on the category of schemes
determined by the fpqc coverings which we now define.

Definition 10.2. Let S be a scheme. A collection of morphisms {Ui → U}i∈I in the category
Sch/S of schemes over S is a fpqc covering if the induced morphism

∐
i∈I
Ui → U

is faithfully flat and quasi-compact.

Remark 10.3. The collection of fpqc coverings endows the category Sch/S of schemes over S
with the structure of a site. See [33, Tag 022D] for the argument.

Let S be a scheme and let {ϕi ∶Ui → U}i∈I be a fpqc covering of schemes over S. If
F ∶ (Sch/S)op →Grp is a functor, then there is a diagram

F (U) ∏i∈I F (Ui) ∏i,j∈I F (Ui ×U Uj)
α

β

in the category of groups where the group homomorphism F (U) → ∏i∈I F (Ui) is determined
by sending x ∈ F (U) to (Fϕi)(x) ∈ F (Ui). Let i ∈ I and j ∈ J and form the pullback

Ui ×U Uj Uj

Ui U

fj

fi ϕj

ϕi

in the category of schemes over S. The group homomorphism α is determined by sending
si ∈ F (Ui) to (Ffi)(si) ∈ F (Ui×UUj) while β is determined by sending si ∈ F (Ui) to (Ffj)(si) ∈
F (Ui ×U Uj).
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Definition 10.4. Let S be a scheme and let Sch/S denote the category of schemes over S.
A functor F ∶ (Sch/S)op → Grp satisfies the sheaf condition for the fpqc topology if for every
fpqc covering {Ui → U}i∈I of schemes over S the diagram

F (U) ∏i∈I F (Ui) ∏i,j∈I F (Ui ×U Uj)

is an equalizer in the category Grp of groups.

Let S be a scheme. Recall that a group scheme G over S is a scheme G → S over S which
admits the structure of a group object in the category Sch/S of schemes over S. Equivalently,
a group scheme over S is a functor G ∶ (Sch/S)op → Grp. If G takes values in the category of
abelian groups Ab, then G is a commutative group scheme over S. Let GrSch/S denote the
category of group schemes over S. Note that a group scheme over S satisfies the sheaf condition
for the fpqc topology.

Definition 10.5. Let S be a scheme. A finite flat group scheme over S is a commutative group
scheme ϕ ∶G→ S over S which satisfies that

(1) The morphism ϕ is a finite flat morphism of schemes over S.

(2) The sheaf ϕ∗(OG) is a locally free OS-module of locally constant rank r > 0.

Definition 10.6 (Tate [35]). Let S be a scheme and let p be a prime number. Let h ≥ 0 be an
integer. A p-divisible group of height h over S is an inductive system G = (Gv, iv)v≥0 satisfying
the following conditions:

(1) Each Gv is a finite flat group scheme over S of order pvh.

(2) The sequence

0→ Gv
ivÐ→ Gv+1

[pv]ÐÐ→ Gv+1

is exact where [pv] denotes the homomorphism given by multiplication by pv on the
group scheme Gv.

Example 10.7 ([35, Section 2.1]). Let R be a commutative ring and let p be a prime number.
Let X be an abelian scheme over R of dimension d. For each integer n ≥ 0 let [pv] ∶X → X
denote the homomorphism of abelian schemes overR given by multiplication by pv and letX[pv]
denote the kernel of [pv]. For each integer v ≥ 0 there is a canonical map iv ∶X[pv] → X[pv+1]
and the inductive system (X[pv], iv) forms a p-divisible group over R of height 2d. One could
for example consider an elliptic curve E over R which is an abelian scheme of dimension 1.

Example 10.8 ([35, Section 1.2]). Let G be a finite group scheme over a scheme S. The
Cartier dual G∗ of G is defined by

G∗ = HomGrSch/S(G,Gm).
The construction G ↦ G∗ defines an endofunctor on the category of finite group schemes over

S. There is a canonical isomorphism G
≃Ð→ (G∗)∗ of group schemes over S.

We need to introduce the relative Frobenius homomorphism on scheme (see [33, Tag 0CC6]).
Let R be a commutative ring and let p be a prime number. Assume that p = 0 in R. Let X be
a scheme over SpecR and let FrobX ∶X → X denote the absolute Frobenius map on X. Form
a pullback

X(p) X

SpecR SpecR
FrobR
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in the category of schemes over SpecR. The absolute Frobenius homomorphism on X induces a
unique homomorphism FX ∶X →X(p) of schemes over SpecR such that the following diagram

X X(p) X

SpecR SpecR

FX

FrobX

FR

commutes. The homomorphism FX ∶X → X(p) is called the relative Frobenius on X. Let G
be a finite flat group scheme over R and let FG ∶G → G(p) denote the relative Frobenius. Let
FG∗ ∶G∗ → (G∗)(p) ≃ (G(p))∗ denote the relative Frobenius on the Cartier dual of G. Define

the relative Verschiebung homomorphism VG ∶G(p) → G as the Cartier dual of FG∗ , that is
VG ∶= (FG∗)∗.

Definition 10.9. Let R be a commutative ring and let G be a finite flat group scheme of rank
pn. Suppose that G is annihilated by p. Set H = G ×SpecR SpecR/p and let H(p) denote the
pullback of G along the Frobenius map on R/p. The group scheme G is a truncated p-divisible

group of height n and level 1 over R if the relative Frobenius homomorphism FH ∶H → H(p)

induces an epimorphism

H

kerV H(p) H

FH

VH

of fpqc sheaves where VH ∶H(p) →H denotes the relative Verschiebung homomorphism.

Remark 10.10. There are different ways of defining a truncated p-divisible group of level 1.
Definition 10.9 above is taken from [12, Proposition 3.1.5]. See also [12, Definition 3.1.3].

Remark 10.11 ([12, Remark 3.1.9]). Let R be a commutative ring and let G be a truncated

p-divisible group of level 1 over R. Set G0 ∶= SpecR/p×SpecRG and let G
(p)
0 denote the pullback

along the Frobenius ϕ ∶R/p → R/p. Let F ∶G0 → G
(p)
0 denote the relative Frobenius. It follows

from the definition that the kernel kerF of F is a finite flat group scheme over SpecR/p. We
say that the truncated p-divisible group G has dimension d if kerF has rank pd over R/p.

Finally, we state the Ravenel–Wilson calculation as rephrased by Hopkins and Lurie in [12].

Theorem 10.12 (Ravenel–Wilson, Johnson–Wilson, Hopkins–Lurie). Let E be a Lubin–Tate
spectrum associated to the pair (κ,G0) where κ is a perfect field of characteristic p and G0 is
a formal group of height n over κ. Let m ≥ 1 be an integer.

(1) Both E0K(Z/p,m) and E∧
0K(Z/p,m) are free modules of rank p(

n
m
) over π0E.

(2) The scheme SpecE∧
0K(Z/p,m) is a truncated p-divisible group of height (n

m
), dimension

(n−1
m

), and level 1 over π0E.

Proof. Combine [12, Theorem 3.4.1] and [12, Theorem 3.5.1]. �

Remark 10.13. It follows from Theorem 10.12 above that E∧
0K(Z/p,m) is a free module of

rank p(
n
m
) over the Lubin–Tate ring π0E. In particular, we conclude that E∧

0K(Z/p,m) is a
projective module over π0E. Furthermore, there is a equivalence

LK(n)E[K(Z/p,m)] ≃ Ep
(
n
m

)
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of E-modules [12, Proposition 3.4.3].

Let X be a Kan complex and suppose that X is weakly SpK(n)-ambidextrous. In this
situation we constructed a trace form TrFmX on X and it follows from Corollary 9.10 that X
is SpK(n)-ambidextrous precisely if the trace form on X is a duality datum in the ∞-category

of K(n)-local spectra. The trace form on X induces a homomorphism

β0 ∶E∧
0 (X) ⊗π0E E

∧
0 (X) → π0E

of π0E-modules and we will see that it suffices to show that β0 is a duality datum in the
category of π0E-modules. If X is the Eilenberg–MacLane space K(Z/p,m) for some m ≥ 1,
then it follows from Theorem 10.12 that E∧

0X admits the structure of a finite flat π0E-algebra.
In this case there is an algebraicly defined trace form on E∧

0X. Invoking the following general
result due to Tate we conclude that this trace form on E∧

0X is a duality datum.

Proposition 10.14 (Tate). Let R be a commutative ring and let p be a prime number which
is not a zero-divisor in R. Let G be a truncated p-divisible group over R of height h, dimension
d, and level 1 and write G = SpecA where A is a finite flat R-algebra of rank ph. Let σ ∶A→ A
dentote the antipodal map and let λ ∶A → R be an R-module homomorphism with the following
properties:

(1) The R-module homomorphism λ satisfies that λ(1) = ph−d.

(2) If ∆ ∶A → A⊗R A is the ring homomorphism classifying the multiplication on G, then
the composite

A
∆Ð→ A⊗R A

λ⊗idÐÐ→ A

is given by a↦ λ(a).

Then the construction (a, b) ↦ λ((σa)b) determines a duality datum A⊗RA→ R in the category
of R-modules.

Proof. See [12, Corollary 5.2.4]. �

11. Proof of the main result

In this section we will be occupied with the proof of the following result due to Hopkins and
Lurie in [12].

Theorem 11.1 (Hopkins–Lurie [12, Theorem 5.2.1]). Let K(n) be the nth Morava K-theory
spectrum and let X be a Kan complex. If X is a finite m-type for some integer m ≥ −2, then
X is SpK(n)-ambidextrous.

The proof will be carried out in several steps using most of the material that we have
presented so far. In [12], Hopkins and Lurie provide an outline of their strategy which we
repeat here.

(1) Using Corollary 8.23 we may assume thatX is the Eilenberg–MacLane spaceK(Z/p,m).
(2) It follows from Corollary 9.10 that it suffices to show that the trace form

TrFmX ∶LK(n)Σ
∞
+ X⊗̂LK(n)Σ

∞
+ X → LK(n)S

0

is a duality datum in the symmetric monoidal ∞-category of K(n)-local spectra.

(3) Let E denote a Lubin–Tate spectrum associated to the Morava K-theory spectrum
K(n). Using Proposition 11.9, we reduce to showing that the trace form

LK(n)E[X] ⊗E LK(n)E[X] → E
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is a duality datum in the symmetric monoidal ∞-category ModE(SpK(n)) of E-modules
in SpK(n).

(4) A consequence of the Ravenel–Wilson calculation is that LK(n)E[X] is a projective
E-module of finite rank (see Example 11.6). Using Proposition 11.8 it suffices to show
the trace form

β0 ∶E∧
0 (X) ⊗π0E E

∧
0 (X) → π0E

is a duality datum in the category of π0E-modules which is a purely algebraic claim.

(5) The pairing β0 on E∧
0 (X) can be identified with a multiple of an algebraicly defined

trace pairing on E∧
0 (X). Invoking a general result due to Tate (see Proposition 10.14)

we conclude that β0 is a duality datum.

We will start by reviewing some facts about projective and flat modules over E1-rings fol-
lowing [24, Chapter 7] and [12, Section 5.1].

Definition 11.2. Let R be an E1-ring.

(1) A left R-module M is π-projective if π0M is projective as a left module over π0R and
the canonical map

πmR⊗π0R π0M → πmM

is an isomorphism of left π0R-modules for every integer m. Let LModproj
R denote the

full subcategory of the ∞-category LModR of left modules over R spanned by the
π-projective left R-modules.

(2) A left R-module M is flat if π0M is flat as a left module over π0R and the canonical
map

πmR⊗π0R π0M → πmM

is an isomorphism of left π0R-modules for every integer m. Let LMod♭R denote the full
subcategory of the ∞-category LModR of left modules over R spanned by the flat left
R-modules.

Remark 11.3. Let R be a connective E1-ring. In [24, Section 7.2.2], a left module over R
is said to be projective if M is a projective object of the ∞-category LModR of modules over
R in the sense of [22, Definition 5.5.8.18]. Let LProjR denote the full subcategory of LModR
spanned by the left modules over R which are projective. In this project we will need to work
over nonconnective E∞-rings so we will need the weaker notion of being π-projective. It follows
from [24, Lemma 7.2.2.14] and [24, Proposition 7.2.2.18] that if R is a connective E1-ring, then
a left module M over R is projective precisely if M is π-projective as a left module over R.

Remark 11.4. Let R be an E1-ring and let M be a left module over R. If M admits the
structure of a π-projective left module over R, then M is also a flat left module over R.

Example 11.5. Let m ≥ 1 be an integer, and let R be an E1-ring. The m-fold product Rm

of R with itself admits the structure of a left R-module. We have that π0R
m ≃ (π0R)m is a

projective π0R-module and for every integer n the canonical map

πnR⊗π0R π0R
m → πnR

m

is an isomorphism of π0R-modules. It follows that Rm is a π-projective R-module.

Example 11.6. Let E be a Lubin–Tate spectrum associated to the pair (κ,G0) where κ is a
perfect field of characteristic p and G0 is a formal group of height n over κ. Let K(n) be the
associated Morava K-theory spectrum. It follows from Remark 10.13 and Example 11.5 that

LK(n)E[K(Z/p,m)] is a π-projective E-module of rank p(
n
m
) for every integer m ≥ 1.
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We need the following variant of [24, Proposition 7.2.2.16]. The proof is completely analogous
to the proof of [24, Proposition 7.2.2.16].

Proposition 11.7. Let f ∶R → S be a map of E1-rings and suppose that f induces an isomor-
phism πnf ∶πnR → πnS for every integer n ≥ 0. Let G ∶LModS → LModR denote the forgetful
functor and let F ∶LModR → LModS denote a left adjoint of G determined by the construction
M ↦ S ⊗RM . Then the functor F induces an equivalence

F ∶LModproj
R

≃Ð→ LModproj
S

of ∞-categories.

Proof. Let τ≥0R → R denote a connective cover of R which exists by [24, Proposition 7.1.3.13].
We obtain a commutative diagram

LModR

LModτ≥0R LModS

of ∞-categories. We may therefore assume that R is connective. Let LMod≥0
R denote the full

subcategory of LModR spanned by those left modules over R which satisfy that πnM ≃ 0 for
n < 0. Let LMod≤0

R denote the full subcategory of LModR spanned by those left modules over
R which satisfy that πnM ≃ 0 for n > 0. Let F ′ denote the compsosite

LMod≥0
R ↪ LModR

FÐ→ LModS .

The pair (LMod≥0
R ,LMod≤0

R ) determines an accesible t-structure on LModR since R is connective

([24, Proposition 7.1.1.13]). It follows that the inclusion LMod≥0
R ↪ LModR admits a right

adjoint τ≥0. Consequently, the functor F ′ admits a right adjoint G′ given by the composite

LModS
GÐ→ LModR

τ≥0ÐÐ→ LMod≥0
R .

Using [24, Propositon 7.2.2.13] it is obvious that both F ′ and G′ preserve flatness. Similarly,
one finds that F ′ and G′ also carry π-projectives to π-projectives. It follows that the functors
F ′ and G′ restrict to an adjunction

LModproj
R LModproj

S

F ′

G′

of ∞-categories. To show that F ′ is an equivalence of ∞-categories it suffices to show that the
unit and the counit of the adjunction above are equivalences.

(1) Let M be a left module over R which is π-projective. We want to show that the unit
map M → τ≥0(S⊗RM) is an equivalence. If n < 0, then πnM ≃ 0 and πnτ≥0(S⊗RM) ≃ 0.
If n ≥ 0, then it follows from [24, Proposition 7.2.2.13] that

πnτ≥0(S ⊗RM) ≃ πn(S ⊗RM) ≃ πnS ⊗π0R π0M.

Invoking the assumption that πnS ≃ πnR and that M is π-projective we conclude that

πnS ⊗π0R π0M ≃ πnR⊗π0R π0M ≃ πnM

as wanted.
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(2) Let N be a left S-module which is π-projective. We want to show that the counit
S ⊗R G′(N) → N is an equivalence. Since G′(N) ≃ τ≥0G(N) is π-projective we also
have that G′(N) is flat. As before we find that

πn(S ⊗R G′(N)) ≃ πnR⊗π0R π0N ≃ πnN

for every integer n.

�

Proposition 11.8. Let M and N be π-projective R-modules over an E∞-ring R. A morphism
e ∶M ⊗R N → R is a duality datum in the ∞-category ModR of R-modules if and only if the
induced map

π0M ⊗π0R π0N → π0R

is a duality datum in the category Modπ0R of π0R-modules.

Proof. Let R be an E∞-ring and consider the connective cover f ∶ τ≥0R → R of R. It follows
from [24, Proposition 7.1.3.13] that R admits a connective cover and the same result also gives
that the map f induces an isomorphism πn(τ≥0R) → πnR for every integer n ≥ 0. Proposition
11.7 above supplies an equivalence

LModproj
τ≥0R

≃Ð→ LModproj
R

of ∞-categories given by the construction M ↦ R⊗τ≥0RM . Consequently, we may assume that
R is connective. In this case we may apply [24, Corollary 7.2.2.19]. Since R is connective we

have that ProjR ≃ Modproj
R (see Remark 11.3). We conclude that the construction M ↦ π0M

determines an equivalence

hModproj
R

≃Ð→Modproj
π0R

of categories, where Modproj
π0R

denotes the category of modules over π0 which are projective.
This ends the proof. �

Theorem 11.1 will be a consequence of the following two results.

Proposition 11.9 (Hopkins–Lurie [12, Corollary 5.2.5]). Let E be a Lubin–Tate spectrum
associated to the pair (κ,G0) where κ is a perfect field of characteristic p and G0 is a formal
group of height n over κ. Let K(n) denote the associated Morava K-theory spectrum. Let m ≥ 1
be an integer and assume that K(Z/p,m − 1) is SpK(n)-ambidextrous. Then the map

β ∶LK(n)E[K(Z/p,m)] ⊗E LK(n)E[K(Z/p,m)] → E

of E-module spectra in SpK(n) determined by the trace form of K(Z/p,m) is a duality datum.

Proof. Let m ≥ 1 be an integer and set X =K(Z/p,m) to ease notation. Recall that LK(n)E[X]
is a projective E-module of finite rank (see Example 11.6). Invoking Proposition 11.8, it suffices
to show that the map β induces a duality datum

β0 ∶E∧
0 (X) ⊗π0E E

∧
0 (X) → π0E

in the category of π0E-modules. If e ∶ ∗ → X classifies the identity element of X, then the
natural transformation Tre ∶ [X] → idSpK(n)

induces a homomorphism λ ∶E∧
0 (X) → π0E of π0E-

modules. Let σ ∶E∧
0 (X) → E∧

0 (X) denote the antipode of E∧
0 (X). It follows from Proposition



46 JONAS MCCANDLESS

9.11 that β admits a factorization

E∧
0 (X) ⊗π0E E

∧
0 (X) π0E

E∧
0 (X)

β

λ

where the vertical π0E-module homomorphism is determined by the construction (x, y) ↦
(σx)y. Consequently, it suffices to show that λ satisfies (1) and (2) of Proposition 10.14.

(1) We wish to show that

λ(1) = p(
n
m
)−(n−1m ) = p(

n−1
m−1

).

We proceed by induction on m. Let e′ ∶ ∗ → K(Z/p,m − 1) classify a basepoint of
K(Z/p,m−1). The map e′ induces a homomorphism λ′ ∶E∧

0K(Z/p,m−1) → π0E of π0E-
modules as above. Let η′ ∶π0E → E∧

0K(Z/p,m−1) denote the unit of E∧
0K(Z/p,m−1).

Unwinding the definition of Tre′(e′) we obtain a commutative diagram

π0E π0E

E∧
0K(Z/p,m − 1)

Tre′(e′)

η′
λ′

of π0E-modules which means that λ′(1) = Tre′(e′)(1). Similarly, we conclude that
λ(1) = Tre(e)(1). Recall that E∧

0K(Z/p,m − 1) is a projective π0E-module of rank

p(
n
m−1

). It follows that dimE∧
0K(Z/p,m − 1) = p( n

m−1
). Using Proposition 9.12 we find

that

λ(1)λ′(1) = p(
n
m−1

).

Consequently, it suffices to show that

λ′(1) = p(
n
m−1

)−(n−1m−1
) =

⎧⎪⎪⎨⎪⎪⎩

p(
n−1
m−2

) m ≥ 2

1 m = 1

This follows from the inductive hypothesis if m ≥ 2. If m = 1, then the identity clearly
holds. This proves (1).

(2) Let ∆ ∶E∧
0X → E∧

0X ⊗π0E E
∧
0X denote the comultiplication on E∧

0X. It follows from
Remark 9.7 that the composite

E∧
0X

∆Ð→ E∧
0X ⊗π0E E

∧
0X

λ⊗idÐÐ→ E∧
0X

coincides with the composite

E∧
0X

λÐ→ π0E
ηÐ→ E∧

0X.

This proves (2).
We conclude that the homomorphism β0 ∶E∧

0 (X) ⊗π0E E∧
0 (X) → π0E of π0E-modules is a

duality datum in the category of π0E-modules. It follows that the map

β ∶LK(n)E[K(Z/p,m)] ⊗E LK(n)E[K(Z/p,m)] → E

of E-module spectra in SpK(n) determined by the trace form of K(Z/p,m) is a duality datum
as wanted. �
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Proposition 11.10 (Hopkins–Lurie [12, Corollary 5.2.7]). Let E be a Lubin–Tate spectrum
associated to the pair (κ,G0) where κ is a perfect field of characteristic p and G0 is a formal
group of height n over κ. Let K(n) denote the associated Morava K-theory spectrum. Let
m ≥ 1 be an integer and assume that K(Z/p,m − 1) is SpK(n)-ambidextrous. Then K(Z/p,m)
is SpK(n)-ambidextrous.

Proof. Let m ≥ 1 be an integer and let X = K(Z/p,m) to ease notation. We have that X is
weakly SpK(n)-ambidextrous since K(Z/p,m−1) is SpK(n)-ambidextrous by assumption. Using
Corollary 9.10, it suffices to show that the trace form

TrFmX ∶LK(n)Σ
∞
+ X⊗̂LK(n)Σ

∞
+ X → LK(n)S

0

is a dualtity datum in SpK(n). Equivalently, for every pair Y and Z of K(n)-local spectra the
composite θY,Z given by

MapSpK(n)
(Y,LK(n)Σ∞

+ X⊗̂Z) MapSpK(n)
(LK(n)Σ∞

+ X⊗̂Y,LK(n)Σ∞
+ X⊗̂LK(n)Σ∞

+ X⊗̂Z)

MapSpK(n)
(LK(n)Σ∞

+ X⊗̂Y,Z)

−○(TrFmX ⊗̂ idZ)

is a homotopy equivalence, where the first map is given by tensoring with LK(n)Σ∞
+ X in SpK(n).

Let C denote the full subcategory of SpK(n) spanned by those Z which satisfy that θY,Z is a
homotopy equivalence for all Y in SpK(n). Note that C is a stable subcategory of SpK(n) closed
under retracts. We use Proposition 5.15 to show that C = SpK(n). Suppose that Z admits

the structure of an E-module. Recall that the underlying spectrum of E[X] is equivalent to
E⊗̂LK(n)Σ∞

+ X. Consequently, we can identity θY,Z with the following map

MapModE(SpK(n))(E⊗̂Y,LK(n)E[X] ⊗E Z)

MapModE(SpK(n))(LK(n)E[X] ⊗E (E⊗̂Y ), LK(n)E[X] ⊗E LK(n)E[X] ⊗E Z)

MapModE(SpK(n))(LK(n)E[X] ⊗E (E⊗̂Y ), Z)

−○(β⊗idZ)

which is a homotopy equivalence since β is a duality datum by Proposition 11.9. �

Proof of Theorem 11.1. We may assume that m ≥ 1 since the ∞-category of K(n)-local spectra
is a stable ∞-category which admits small limits and colimits. We want to show that the
∞-category of K(n)-local spectra is m-semiadditive. It follows from Corollary 11.10 that the
Eilenberg–Mac Lane space K(Z/p,m) is SpK(n)-ambidextrous for every m ≥ 1. Using Example

8.24 and Corollary 8.23 we conclude that the ∞-category SpK(n) of K(n)-local spectra is m-
semiadditive as wanted. �

Remark 11.11. Recall from Remark 6.10 that the Tate construction vanishes T (n)-locally.
However, the analogue of Theorem 11.1 for the ∞-category of T (n)-local spectra is not known.
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