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Abstract

Given connection ∇ on a smooth vector bundle E → M , with connected base space M , the
set of the parallel transport maps (associated to ∇) along closed loops based at x ∈M form a
subgroup, Hol(∇), of the general linear group on the fibre Ex, GL(Ex). The group Hol(∇) is
known as the holonomy group of the connection and it is independent of the base point x under
conjugation of elements of the general linear group. It therefore defines a global invariant for the
connection. If M is simply connected, then Hol(∇) is a Lie subgroup of GL(k,R). Restricting
Hol(∇) to nullhomotopic loops gives rise the restricted holonomy group, Hol0(∇), which is
exactly the identity component of Hol(∇). The Lie algebra associated to Hol0(∇) and Hol(∇)
is called the holonomy algebra, hol(∇). The holonomy algebra is a linear subspace of End(Ex)
and it coincides with the the subspace of End(Ex) generated by a special class of endomorphism
obtained through the curvature tensor R(∇) of the connection.
This important result is captured by the Ambrose-Singer holonomy theorem. In this report we
investigate the dependence of parallel transport maps on the curvature, building the necessary
tools to prove the Ambrose-Singer holonomy theorem.
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1
Introduction

In this project we discuss some aspects of the theory of connections on vector bundles, focusing
in particular on two topics, the curvature and the holonomy group of a connection. The parallel
transport map associated to a given connection is an important tool to ”detect” the effects of
curvature. Curvature can, in fact, be understood as a measure of the extent to which parallel
transport around closed loops fails to preserve the geometrical data being transported.
Given a connection ∇ on a smooth vector bundle E → M with k-dimensional connected
base space M , parallel transport maps along loops based at x ∈ M define a set of linear
endomorphisms, Hol(∇), on the fibres Ex. Under composition and inverse of parallel transport
maps, Hol(∇) acquires the structure of a subgroup of the general linear group GL(Ex) and it
is known as the holonomy group of ∇. In addition, if M is simply connected then Hol(∇) is a
Lie subgroup of GL(Ex) ( ∼= GL(k,R)). It is interesting to observe that Hol(∇) is independent
of the base point x under conjugation of elements of the general linear group and thus, it is a
global invariant for the connection, whereas curvature is a local invariant.
If we restrict the definition of holonomy group to nullhomotopic loops, then Hol(∇) group is
said to be restricted. The restricted holonomy group, Hol0(∇) is a Lie subgroup of GL(Ex) and
it is the identity connected component of Hol(∇) with an associated Lie (holonomy) algebra
hol(∇).
The curvature and the holonomy group of a connection are strictly related. One can construct a
class of endomorphisms on a fibre Ex at x by acting the curvature tensor R(∇) on a parallelely
transported section and of E and then transporting the resulting section back to the starting
point. It turns out that the linear subspace of End(Ex) spanned my these maps coincide
exactly with holp(∇). This result is encapsulated by the Ambrose-Singer holonomy theorem.
The Ambrose-Singer holonomy theorem along with its ”almost converse” result that the cur-
vature R(∇)p of a connection ∇ at p lies in hol(∇)⊗ ∧2T ∗pM , for any p ∈M , make it evident
that the holonomy algebra both constrains the curvature and is determined by it.
Moreover, the Ambrose-Singer holonomy theorem together with the Bianchi identities lie at the
basis of the methods employed by Berger to prove his classification of Riemannian holonomy
groups [1].



4 Introduction

The goal of this paper is two-fold: we both aim at introducing the machinery required to prove
the Ambrose-Singer holonomy theory and at investigating the details of the dependence of
parallel transport on the curvature.
Chapter 2 sets the notation and defines parallel transport in terms of the pullback bundle
construction.
In chapter 3 we define a smooth homotopies and use their properties to explore some basic
properties of parallely transport maps and curvature and how such maps are connected to
curvature.
In chapter 4 the theory of holonomy groups is introduced and some important examples are
given for Riemannian symmetric spaces. Finally we discuss the relation between holonomy and
curvature and work out a proof of the Ambrose-Singer holonomy theorem.
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Preliminaries

In this chapter, we provide a brief account of some constructions in the framework of differential
geometry. We shall assume that the reader is already familiar with the basic ideas of the theory
of differential manifolds. We will mainly focus on establishing the notation and for sake of
brevity of this review chapter many details and proofs are left to the references.
Since this chapter is designed around the notion of vector bundle, section 2.1 covers vector,
tensor and form fields as they are constructed as sections of tensor and exterior products of
vector bundles.
After having defined connections on a generic vector bundle in section 2.2, the focus is soon
shifted to the construction of pullback bundles and the connections induced on them. This
particular type of induced connection will then be used to define the parallel transport map:
the main theme of this note.
We conclude this introductory chapter by shortly discussing the notion of curvature and torsion
of a connection in section 2.3.

2.1 Basic Constructions in Differential Geometry

We recall that a vector bundle E with fibre space F (typical fibre) over a manifold M is a

Figure 2.1: Vector bundle.

fibre bundle whose fibres are (real or complex) vector spaces. That is, E is a manifold equipped
with a continuous surjective map π : E →M , where each Ex = π−1(x) and the typical fibre F
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are vector spaces. In addition, given an open neighbourhood U of each point x ∈M , the local
homeomorphisms (trivializations), φ : π−1(U)→ U ×F , can be chosen so that their restriction
to each fibre is a linear isomorphism, φ : Ex → {x} × F ∼= F [2].
If E and M are endowed with smooth structures, π is a smooth map and the local trivializations
can be chosen to be diffeomorphisms, then we say that the vector bundle E is smooth. In what
follows we will always refer to smooth vector bundles unless we specify otherwise. Depending
on what we wish to emphasize, we may sometimes leave out some or all of the elements of the
definition and simply use E, E →M or π : E →M to denote a vector bundle.

Figure 2.2: An everyday example of fibre bundle: the intuition behind the term ”fibre bundle”
is evident. This hairbrush is like a fibre bundle in which the base space M is a cylinder and
the bristles are the fibres Ex. The map π : Ex →M would take all the points on any bristle to
the point on the cylinder where the bristle attaches.

Now, let M be a smooth n-dimensional manifold, with tangent bundle TM and cotangent
bundle T ∗M . Then TM and T ∗M are vector bundles over M [3].

Figure 2.3: A map associating to each point on a surface a vector normal to it can be viewed
a section.

A section of a vector bundle is a section of its map π, that is a continuos map σ : M → E such
that π ◦ σ = IdM . The map that associates to each point on a surface a vector normal to it
can be viewed as an example of section of the tangent bundle.
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If E is a vector bundle over M , we use the notation C∞(E) for the vector space (under point-
wise addition and scalar multiplication) of smooth (global) sections of E [3]. The elements of
C∞(TM) and C∞(T ∗M) are called vector fields and 1-form fields respectively. The symbol
C∞(M) will be used to denote the vector space of smooth functions (maps from M to Rn) on
M .
By taking tensor products of the vector bundles TM and T ∗M we obtain the bundles of tensors
on M . A

(
k
l

)
-tensor field T is the smooth section of a bundle

⊗k T ∗M ⊗
⊗l TM for some

k, l ∈ N 1.
Let U be an open set in M , and (x1, . . . , xn) coordinates on U (i.e. the component functions
of a chart φ : U → Rn). Then, at each point x ∈ U , ∂

∂x1 , . . . ,
∂
∂xn form a basis for TxU , the

tangent space at x. We will often abbreviate the operators ∂
∂xi to ∂i. Hence, any smooth vector

field v on U can be uniquely written as v =
∑n

i=1 v
i ∂
∂xi for some smooth component functions

v1, . . . , vn : U → R.
Similarly, at each x ∈ U , dx1, . . . , dxn are a basis for T ∗xU , the cotangent space at x. Thus we
can uniquely write any 1-form α on U as α =

∑n
i=1 αidx

i for some smooth component functions
α1, . . . , αn : U → R.
In the same way, a tensor T in C∞(

⊗k T ∗M ⊗
⊗l TM) yields the following coordinate repre-

sentation

T =
∑

1≤ai≤n, 1≤i≤l
1≤bj≤n, 1≤j≤k

T a1...al
b1...bk

dxb1 ⊗ · · · ⊗ dxbk ⊗ ∂

∂xa1
⊗ · · · ⊗ ∂

∂xal
.

To avoid the cumbersome proliferation of summation symbols every time we write a tensor
equation in component form, it is useful to adopt the Einstein summation convention. Accord-
ing to this rule, summation is implied whenever one index is repeated in a lower and upper
position. With this convention the component expressions for a vector, a 1-form and a

(
k
l

)
-tensor are, respectively, recast as the more compact form

v = vi
∂

∂xi
, α = αidx

i, T = T a1...al
b1...bk

dxb1 ⊗ · · · ⊗ dxbk ⊗ ∂

∂xa1
⊗ · · · ⊗ ∂

∂xal
.

As a generalization of 1-forms, we define p-forms to be totally antisymmetric (alternating)
tensors of type

(
p
0

)
. i.e. ω is a p-form if for any exchance of any two arguments ai and aj ,

ω(a1 . . . ai . . . aj . . . ap) = −ω(a1 . . . aj . . . ai . . . ap)

.
1When mentioning the order (type) of a tensor we follow the most commonly used notation in Mathematics:

the ”upper” (covariant order) indicates the number of vectors that the multilinear map takes as arguments.
Similarly the ”lower” (contravariant) order tells us about the number ”covectors” (1-forms). Notice, however,
that some authors, especially in the Theoretical Physics literature, tend to exchange the role of these two
numbers. This results, for instance, in p-forms being called

`
0
p

´
antisymmetric tensors.
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The set of all the p-forms is closed under addition and scalar multiplication and therefore
it constitutes a subspace, denoted by ΛpT ∗M , of

⊗p T ∗M , i.e. the space of all
(
p
0

)
-tensors.

Because of the (anti-) symmetry if its elements, ΛpT ∗M has dimension
(
p
n

)
(when p ≤ n, 0

otherwise, by anti-symmetry of the forms) with n = dimTxM . Again, in a local coordinates
at x, a p-form ω can be written as

ω =
∑

1≤a1<···<ap≤n
1≤ai≤n

ωa1...apdx
1 ⊗ · · · ⊗ dxp.

Notice, however, that the restrictions on the summation are not evident (notationally) in the
Einstein summation convention, but they are indeed accounted for in practice 2 .
One can associate a p-form to any tensor of type

(
p
0

)
through the alternating map, Alt :⊗p T ∗M → ΛpT ∗M . The map Alt is defined as

AltT (V1, . . . , Vp) =
1
p!

sgnσ
∑
σ∈Sp

T (Vσ(1), . . . , Vσ(p)),

where Sp is the group of permutations of p objects and sgnσ gives +1 if the permutation σ is
obtained by an even number of transpositions and −1 if this number is odd.
There is an important natural operation defined on differential forms called the exterior product.
Let α be a l-form and β be a p-form, then The exterior product associates to a l-form α and a
p-form β a l+p-form, α∧β, obtained by ”antisymmetrizing” the tensor product α⊗β through
the alternating map:

α ∧ β := Alt(α⊗ β).

The exterior product is bilinear, associative and anticomutative (α ∧ β = (−1)lpβ ∧ α).
The pth exterior power of the cotangent bundle,

∧p T ∗M is a real vector bundle over M with
fibres of dimension

(
n
p

)
(for n ≥ p, 0 otherwise, n) and the space of its smooth section is denoted

by C∞(
∧p T ∗M).

We observe that
∧p T ∗M is a subbundle of

⊗p T ∗M [2].
For every smooth manifold there are unique linear maps d : C∞(

∧p T ∗M)→ C∞(
∧p+1 T ∗M),

defined for each integer p ≥ 0, that extend the concept of differential of a function (a 0-form)
[3]. The exterior derivative d of a function is a 1-form which we identify with its differential,
df .
In addition, d satisfies

α ∧ β = (dα) ∧ β + (−1)lα ∧ (dβ), ∀ α ∈ C∞(∧lT ∗M), β ∈ C∞(∧pT ∗M)

and

d2 = d ◦ d = 0.
2The very same observation holds for any tensor that possesses symmetries in its arguments. For example,

the subspace of totally symmetric tensors of type
`

p
0

´
has dimesion

`
n+p−1

p

´
, for any p and n in N [4].
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Differential forms in the kernel of d are said to be closed forms and a p-form that can be written
as the exterior derivative of a p − 1-form is called exact. As d2 = 0, every exact form is also
closed [3].
Consider any two smooth vector fields, v and w. The Lie bracket, [v, w], is another smooth
vector field on M , defined as the commutator of v and w, i.e. for a function f on M we have

[v, w]f = v(wf)− w(vf).

The Lie bracket is bilinear, antisymmetric and satisfies the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for any three vector fields x, y, z on M .

2.2 Connections on Vector Bundles

The definition of vector bundle makes precise the idea ”attaching vectors 3 to the points” of a
manifold. To compare and manipulate objects defined on different fibres, we need, however, to
provide a method to set up such operations in a consistent fashion (fibres are otherwise linear
spaces with no natural relation between them).
There are a number of different angles from which to approach the notion of connection, a device
to ”connect” or identify fibres over infinitesimally nearby points, each definition being useful
for a certain framework of questions and applications. In analogy with the notion of directional
derivative, we will define a connection as a derivation on sections of a vector bundle. Our
discussion here will however be limited to using connections (covariant derivatives) to define a
parallel transport map. Whereas a connection is a means to compare sections at nearby points
[5], the parallel transport map allows to (parallely) move a vector along a curve to an arbitrary
point on a manifold.
To generalize the notion of directional differentiation for sections of a vector bundle E → M
along a vector field X a map

∇ : C∞(TM)× C∞(E)→ C∞(E)

which we write as (X,σ) 7→ ∇Xσ, must satisfy the following properties:

a) It must be C∞(M)-linear in X (we expect that after rescaling the ”direction” vector, the
derivative along X should only rescale by the same factor):

∀ f, g ∈ C∞(M), ∇(fX1+gX2)σ = f∇X1σ + g∇X2σ.

3In this context we will use the word ”vector” to mean an element of a fibre (vector space) of a vector bundle.
The term ”vector field” will be reserved to denote a section of the tangent bundle, while we will simply use
”section” when referring to an arbitrary vector bundle.
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b) It must be R- (or C-) linear in σ

∀ a, b ∈ R (or C), ∇X(aσ1 + bσ2) = a∇Xσ1 + b∇Xσ2.

c) It must satisfy a Leibniz-like rule

∇Xfσ = (X · f)σ + f∇Xσ ∀ f ∈ C∞(M), σ ∈ C∞(E).

Since ∇ is to be a derivation, it has to satisfy some kind of product rule. The only
product defined in an abstract vector bundle is the multiplication of a section with a
smooth function. Here we have assumed that the ∇ behaves like an ordinary directional
derivative when acting on a smooth function, thus X · f = df(X) denotes the action of
X on f (which in local coordinates equals Xa∂af , the Lie derivative of f by X).

Condition a) on ∇ defines a map

∇σ : C∞(TM)→ C∞(E), X 7→ ∇Xσ

for any section σ ∈ C∞(E). This is a C∞(M)-linear bundle map between the tangent bundle
and an arbitrary vector bundle over the same base manifold M . By naming Hom(TM,E) the
space of C∞(M)-linear bundle maps from TM to E we have the natural isomorphim (see [2, 6]
for details)

∇σ ∈ Hom(TM,E) ∼= C∞(T ∗M ⊗ E).

Summarizing, we can recast the observations above as the following definition:

Definition 2.2.1. Let E →M a smooth vector bundle over a smooth manifold M . A (linear)
connection or covariant derivative ∇ is a linear map ∇ : C∞(E)→ C∞(E ⊗ T ∗M) satisfying
the Leibniz rule

∇fσ = f∇σ + σ ⊗ df, (2.1)

whenever σ ∈ C∞(E) and f is a smooth function on M .

We notice that connections do exist on any vector bundle and if m ∈M , then the value of the
section ∇Xσ at m depends only on the value of X and σ at m [5, 7–9].
Now let x ∈ M and U be an open neighbourhood of x such that a chart for M and a local
trivialization of E are both defined on U . Assuming that M has dimension l, we obtain the
local coordinate vector fields ∂1, . . . , ∂l. The subset E |U= π−1(U) of E is again a vector bundle
[3] with the restriction of π as its projection map. For fibres of dimension n, a basis of Rn

yields a basis µ1, . . . , µn of (smooth) sections of E |U (a local frame) through the identification

E |U∼= U × Rn.

For a connection ∇ on E, we define ln2 smooth functions (on E |U ) by
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∇∂i
µj =: Γkijµk.

The ”section component” functions Γkij are called Christoffel symbols.
More generally, we can write a similar expression for the covariant derivative of a section of
E|U , σ = σkµk along a generic vector V = V i∂i

∇V σ = ∇V i∂i
σkµk

= V i(∂iσk + Γkijσ
j)µk.

(2.2)

Consider now two manifolds B and M , a vector bundle E over B and a smooth map f : M → B.
Recall that we can construct a bundle over M by ”pulling back” the fibres of E [9, 10]. The
pullback bundle f∗E is defined as

f∗E = {(x, e) ∈M × E | f(x) = π(e)} ⊂M × E.
The projection onto the second factor, F (x, e) = e, gives the commutative diagram below.

M B

f*E E

f

F

!' ! 

Figure 2.4: Pullback of a vector bundle.

The restriction of F to each fibre (f∗E)p over p ∈ M is, then, an isomorphism onto a fibre
Ef(p) and the projection map π′ is given by the projection on the first factor, i.e. π′(x, e) = x.
We say that F is a bundle morphism covering f .
In this scheme, composition defines a pulback operation on the sections of E: if σ is a section
of E over B, then the pullback section f∗σ = σ ◦ f is a section of f∗E over M .
Moreover, given a local trivialization of E, (U,ψ) there is a corresponding local trivialization
of f∗E constructed as (f−1U, φ), with φ(x, e) = (x,proj2(ψ(e))) [9] (the symbol proj2 denotes
projection on the second coordinate of U × Rn).
Connections on vector bundles naturally induce connections on derived bundles, such as direct
sum, multilinear, dual or exterior product bundles. For instance, a connection ∇ on TM
extends naturally to connections all the bundles of tensors

⊗k T ∗M ⊗
⊗l TM for k, l ∈ N. All

of these induced connections on tensor bundles are conventionally also written as ∇. Through
∇ we can thus differentiate any tensor field on M .
Pullback bundles are no exception and we can define a pullback connection, i.e. a map

f∗∇ : C∞(TM)× C∞(f∗E)→ C∞(f∗E).
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Let E →M be a vector bundle with fibres of dimension m. It is necessary to first remark that
a frame (µ1, . . . , µn) on E (the same reasoning holds for local frames covering M) induces a
set of pullback sections (f∗µ1, . . . , f

∗µn) on the fibres of f∗E.
Since, the fibres of E and f∗E are identified pointwise by a bundle morphism, this ”pulled back
frame” (f∗µ1, . . . , f

∗µn) is actually a local frame on f∗E. As any section of f∗E can be written
as a linear combination of such pullback sections, by linearity of the connection it suffices to
define f∗∇ on sections of the form f∗σ [11].
Let ∇ be a connection on E then any tangent vector X ∈ TM and any section σ of E we can
define a connection on f∗E as

(f∗∇)Xf∗σ := f∗(∇f∗Xσ),

with f∗X being the pushforward of X through f (a more detailed discussion on pullback
connections can be found in [10, 12]).
We can apply the above construction to pull back a vector bundle through a curve on a
manifold. Let M be a manifold, E → M a vector bundle over M , and ∇ a connection on E.
Let γ̃ : [0, 1] → M be a smooth curve on M parametrized by the unit interval. Smoothness
of γ̃ means by definition that there exists a smooth curve γ defined on some open interval
containing [0, 1] that extends γ̃. We can thus work with γ and restrict back to the original
interval when we need to, obtaining in this way a smooth map between manifolds 4.
The pullback bundle γ∗(E) over [0, 1] is then a vector bundle with fibre Eγ(t) over t ∈ [0, 1],
where Ex is the fibre of E over x ∈ M (the fibres of E and γ∗E are identified pointwise). Let
σ be a smooth section of γ∗(E) over [0, 1], so that σ(t) ∈ Eγ(t) for each t ∈ [0, 1], we say that
the section σ(t) is a section along the curve γ.
The connection ∇ is pulled back under γ to give a connection on γ∗(E) over [0, 1].

Definition 2.2.2. Let E →M be a vector bundle, γ : I →M a smooth curve; we say that the
section σ of γ∗(E) is parallel along γ if its covariant derivative under the pullback connection
vanishes,

γ∗(∇γ∗∂tσ(t)) = ∇γ̇(t)σ(t) = 0 ∀ t ∈ [0, 1], (2.3)

where γ̇(t) is d
dtγ(t) regarded as a vector of Tγ(t)M .

Again the (pointwise) identification of the fibres allows us to write the element γ∗(∇γ∗∂tσ(t))
in the fibre Et of γ∗(E) as ∇γ̇(t)σ(t) in the fibre Eγ(t) of E, in equation (2.3).
In local coordinates, we can write (2.3) in terms of Christoffel symbols through (2.2) to give

∂tσ
j(t)µj(t) + γ̇(t)σj(t)Γjik(t)µj(t) = 0,

thus it defines a system of first order ordinary equations for the components of σ(t)

4This definition of smoothness is equivalent to the component functions γ̃i having one-sided derivatives of all
orders at the endpoints (in any local coordinate systems). The values on [0, 1] of any continuous function of the
derivatives of γ̃i are independent of the extension we choose for γ̃ [8].
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∂tσ
j(t) + γ̇(t)σj(t)Γjik(t) = 0.

Therefore, for each possible initial value e ∈ Eγ(0), by the Cauchy-Lipschitz theorem [13] there
exists a unique, smooth solution σ on all of [0, 1] with σ(0) = e. We shall use this fact to define
parallel transport.

Definition 2.2.3. Let M be a manifold, E a vector bundle over M , and ∇ a connection on E.
Suppose that γ : [0, 1] → M is smooth, with γ(0) = x and γ(1) = y, x, y ∈ M . Then for each
e ∈ Ex, there exists a unique smooth section σ of γ∗(E) satisfying ∇γ̇(t)σ(t) = 0 for t ∈ [0, 1]
and σ(0) = e. Define Pγ(e) = σ(1). Then Pγ : Ex → Ey is a well-defined linear map, called
the parallel transport map.

This definition easily generalizes to the case when γ is continuous and piecewise smooth, by
requiring σ to be continuous and differentiable whenever γ is differentiable.
As we have seen above, if x0 and x1 are point in M , the fibres Ex0 and Ex1 (over x0 and x1

respectively) can be identified by choosing a curve γ with γ(0) = 1 and γ(1) = x1 and parallely
transporting each section σ0 ∈ Ex0 to Ex1 along γ. This identification depends only on the
choice of γ. Moreover, from parallel transport we can recover the notion of covariant derivative
[8, 14]. In fact, for a parallel transport map Pγ , the following relation holds for any σ ∈ C∞(E)

∇γ̇(0)σ := lim
t→0

Pγσ(t)− σ(0)
t

.

A connection is therefore an infinitesimal version of parallel transport, in this sense it ”connects”
fibres at nearby points.

2.3 Curvature and Torsion

Associated to a connection there are two important tensor fields, that play a very important
role in Geometry and in many of its applications to Theoretical Physics, namely curvature and
torsion.
The approach we take to define curvature makes use of vector fields and the Lie bracket of
vector fields.
Let ∇ be a connection on a vector bundle E → M , then there exists a unique 2-form R(∇)
”with values in the end bundle End(E) = E ⊗ E∗”, that is R(∇) ∈ End(E) ⊗ Λ2T ∗M , such
that it defines a map R(∇) : C∞(TM)× C∞(TM)× C∞(E)→ C∞(E) given by:

R(∇)(X,Y )σ = ∇X∇Y σ −∇Y∇Xσ −∇[X,Y ]σ. (2.4)

By definitionR(∇) is multilinear inX, Y and σ and antisymmetric inX and Y , i.e. R(∇)(X,Y )σ =
−R(∇)(X,Y )σ.
One way to understand the curvature of a connection is the following. Define Vi = ∂i for
i = 1, . . . n (provided that n is the dimension of the fibres of E). Then Vi is a vector field over
some open subset U of M and [Vi, Vj ] = 0. For σ ∈ C∞(E) we may interpret ∇Viσ as a kind
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of ”partial derivative” ∂σ
∂xi of the section σ (see [6], for a detailed discussion on how to make

the identification partial / covariant derivative precise.
Then equation (2.4) implies that

R(∇)(Vi, Vj)σ =
∂2σ

∂xi∂xj
− ∂2σ

∂xj∂xi
.

Thus the curvature of ∇ measures how much these ”partial derivatives” of σ fail to commute.
Now, partial derivatives of functions do commute, ∂2f

∂xi∂xj − ∂2f
∂xj∂xi = 0, if f ∈ C∞(M). However

this does not hold in general for arbitrary sections of E. Behind this ”noncummatitivity” lurks
the fact that the ”background space” is curved. In chapter 3 we will see how curvature captures
the dependence of parallel transport on the chosen path.
Now let ∇ be a connection on the tangent bundle TM of M , rather than on a general vector
bundle. There is a unique map

T (∇) : C∞(TM)× C∞(TM)→ C∞(TM),

associated to ∇ called the torsion of the connection.
The torsion is defined by

T (∇)(V,W ) = ∇VW −∇WV − [V,W ]. (2.5)

From this definition we recover that the torsion is tensorial and anti-symmetric in V and W .
A connection is called torsionless if the corresponding torsion vanishes. If the curvature van-
ishes, then the connection is called flat. A connection that is both torsionless and flat is locally
Euclidean, meaning that there exist local coordinates for which all of the Christoffel symbols
vanish [5, 6, 14].
For a torsion-free connection ∇, the curvature R(∇) and its derivative ∇R(∇) have certain
extra symmetries, known as the Bianchi identities [1].

Proposition 2.3.1. Let M be a manifold and ∇ a torsion-free connection on its tangent bundle
TM . Then the curvature R(∇) of ∇ satisfies the following tensor equations, known as the first
and second Bianchi identities respectively

R(∇)(X,Y )σ +R(∇)(σ,X)Y +R(∇)(Y, σ)X = 0,

for σ ∈ C∞(TM) and

∇XR(∇)(Y, Z) +∇ZR(∇)(X,Y ) +∇YR(∇)(Z,X) = 0.



3
Parallel Transport and Curvature

We now set up some of the theory that will allow us to define the holonomy group of a
connection and eventually will come into play in the Ambrose-Singer holonomy theorem [15].
This collection of basic results are however interesting on their own as they clarify the relation
between curvature and parallel transport.

3.1 Parallel Frames

We begin by taking a closer look at some properties of the parallel transport map that lead to
the definition of parallel frames along a curve.
Before we continue, however, it is important to remark that the definitions and results presented
below for smooth curves and smooth sections along smooth curves extend naturally to piecewise
smooth curves and sections. In fact, suppose that γ : I → M is piecewise smooth curve and
σ is a piecewise smooth section along γ. Then, all we need to do is choose and work with
a subdivision · · · < ti−1 < ti < ti+1 < . . . of I such that both γ and σ are smooth on the
subintervals [ti−1, ti], so that the definition of parallel transport applies as we defined it for
piecewise smooth curves in section 2.2.
Moreover, the composition and inverse of piecewise smooth paths are piecewise smooth paths.
Let x, y and z ∈M and let α : [0, 1]→M and β : [0, 1]→M be piecewise smooth paths in M
with α(0) = x, α(1) = y = β(0) and β(1) = z. We define the paths α−1 and βα by

α−1 = α(1− t), βα(t) =
{
α(2t) if 0 ≤ t ≤ 1

2
β(2t− 1) if 1

2 ≤ t ≤ 1
.

Then α−1 and βα(t) are piecewise smooth in M with α−1(0) = y, α−1(1) = x, αβ(0) = x and
αβ(1) = z. This is one of the reasons to consider piecewise smooth curves, which along with
the following results, encapsulates the defining properties of holonomy groups (as we will see
in the next chapter).
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Lemma 3.1.1. Given a piecewise smooth path α and its inverse α−1, defined as above, then
Pα and Pα−1 are inverse maps.

Proof. Suppose we have ex ∈ Ex and Pα(ex) = ey ∈ Ey. Then there is a unique parallel section
σ of Eα(t) with σ(0) = ex and σ(1) = ey. Now if we define σ̃(t) = σ(1− t), then σ̃ is a parallel
section of (α−1)∗(E). We have that σ̃(0) = ey and σ̃(1) = ex, which implies Pα−1(ey) = ex.
Thus, if Pα(ex) = ey, then Pα−1(ey) = ex and so Pα−1 is the inverse map of Pα [1]. �

In particular, if γ is any piecewise smooth curve in M , then Pγ is invertible and

(Pγ)−1 = Pγ−1 . (3.1)

Lemma 3.1.2. Given two piecewiese smooth paths α : [0, 1]→M and β : [0, 1]→M be piece-
wise smooth paths in M with α(0) = x, α(1) = y = β(0) and β(1) = z and their composition
βα defined as above, then

Pβ ◦ Pα = Pβα. (3.2)

Proof. The proof of this result parallels that of lemma 3.1.1. If we have ex ∈ Ex, Pα(ex) =
ey ∈ Ey and Pβ(ey) = ez ∈ Ez. Then, there exists a unique parallel section γα of Eα(t) with
σα(0) = ex and σα(1) = ey. Likewise, Then, there exists a unique parallel section σβ of Eβ(t)

with σβ(0) = ey and σβ(1) = ez.
If we define

σ̃(t) =
{
σα(2t) if 0 ≤ t ≤ 1

2
σβ(2t− 1) if 1

2 ≤ t ≤ 1
, (3.3)

then γ̃ is a parallel section of (βα)∗(E).
So we have that γ̃(0) = ex and γ̃(1) = ez, which implies Pβα(ex) = ez. Thus, if Pβ ◦ Pα(ex) =
Pβ(Pα(ex)) = ez, then Pβα(ex) = ez and so

Pβ ◦ Pα = Pβα.

�

In what follows we let M be a smooth manifold, E → M a (smooth) vector bundle over M
and γ : I →M a smooth curve. This notation will be used repeatedly.

Lemma 3.1.3. Let t0 ∈ I and σ1, . . . , σk be parallel sections along γ. Suppose that σ1(t0), . . . , σk(t0)
form a basis of Eγ(t0), then σ1(t), . . . , σk(t) is a basis for Eγ(t) for all t ∈ I.

Proof. Let Pγ be the parallel transport map along γ from p = γ(t0) to q = γ(t). By definition
we have σi(t) = Pγσi(t0). Since Pγ is a linear bijective map (lemma 3.1.1 shows the existence
of the inverse map), it maps basis elements to basis elements. So for all t ∈ I, σi(t) i = 1, . . . , k
is a basis for Eγ(t). �
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Definition 3.1.4. Let Φ = (σ1, . . . , σn) be a n-tuple of parallel section along a curve γ. We
say that Φ is a frame of the vector bundle E along γ if σ1(t), . . . , σn(t) is a basis of the fibre
Eγ(t) for all t ∈ I.

We call C∞γ (E) the set of smooth sections along the curve γ (i.e. those sections σ(t) in Eγ(t)
for all the t ∈ I).
Now let Φ = (σ1, . . . , σk) be a parallel frame along γ and let σ be a smooth section in C∞γ (E).
Then there is a smooth map p : I → Rk (or Ck), such that

σ =
k∑
i=1

piσi.

The map p is called the principal part of σ with respect to Φ.
Since the sections σi are parallel along γ, by the Leibniz rule for the connection, we have

∇∂tσ =
k∑
i=1

(∂tpi)σi. (3.4)

By selecting a parallel frame we can thus reduce covariant derivatives of a section to partial
derivatives of its principal part. We can restate this result as the following lemma:

Lemma 3.1.5. Let σ in C∞γ (E), t0 ∈ I and Pγ be the parallel transport map along γ from γ(t)
to q = γ(t0). Then

Pγ∇∂tσ = ∂tPγσ. (3.5)

Proof. Choose a parallel frame Φ = (σ1, . . . , σk) of E along γ and let p be the principal part
of the section σ with respect to Φ. By the definition of parallel frame we have

Pγσ =
k∑
i=1

pi(t0)σi(t0)

and

Pγ∇∂tσ =
k∑
i=1

(∂tpi)(t0)σi(t0).

In analogy with (3.4) we may write ∇∂tPγσ := ∂tPγσ, hence we can define the action of ∂t on
a parallely transported section Pγσ as the sum of the partial derivative of the principal part
multiplied by the the basis sections at t0, i.e.

∂tPγσ :=
k∑
i=1

(∂tpi)(t0)σ(t0).

It follows that
Pγ∇∂tσ = ∂tPγσ.

�



18 Parallel Transport and Curvature

3.2 Parallel Transport and Curvature

We start with generalizing the concept of parallel transport along a curve to parallel transport
along a family of piecewise smooth curves, namely along a piecewise smooth homotopy.

Definition 3.2.1. Let let I be an interval and M be a smooth manifold. Define continuous
map

H : I × [a, b]→M, H(s, t) = hs(t)

where hs : [a, b] → M is a family of piecewise smooth maps, and H(s, t) is smooth in s. The
map H is called a piecewise smooth homotopy on M .

We say that a piecewise smooth homotopy is proper when H(s, a) = p and H(s, b) = q for some
points p, q ∈M and all s ∈ I (all the curves in the family begin and end at the same points).
The map H traces a ”net” of curves on M . For each s in I we have a piecewise smooth curve
hs from hs(a) to hs(b). In addition, we can smoothly ”move” from one curve hs to another
by fixing t in [a, b] and letting s run through I. Thus, for a fixed t, H selects a smooth curve
I → M on the net. Any two points in the image of H can therefore be joined by a (on the
whole) piecewise smooth curve. In this sense we can apply the pullback bundle construction
to define a section ”along the homotopy” and set up a parallel transport map. We denote a
section along H by σ(s, t) (the ”coordinates” (s, t) tell us on which curve hs and at what point
of the curve the section is). We will only write σ when it is clear from the context that we
mean one of such sections.
We will focus exclusively on parallel transport along the curves hs and use Ps,t to denote parallel
transport through the map Phs from the point hs(t) to hs(b) (in a similar fashion we write P−1

s,b

for the inverse map from hs(b) to hs(t)).
Consider a vector bundle E → M endowed with a connection ∇ with curvature R. Through
piecewise smooth homotopies we can gain some important insight into the relation between
parallel transport and curvature. In order to investigate this relation we construct a map Rs,t :
C∞(E) → C∞(E), composing parallel transport with the curvature map (defined by (2.4)).
First we transport the section γ from hs(b) to hs(t) and then we apply the curvature map on γ
and the ”tangent vectors” ∂tH(s, t) and ∂sH(s, t). Finally we transport R(∂tH(s, t), ∂sH(s, t))σ
back to hs(b). In symbols we have

Rs,t = Ps,t ◦R(∂tH(s, t), ∂sH(s, t)) ◦ P−1
s,t . (3.6)

Lemma 3.2.2. Let σ be a piecewise smooth section along a piecewise smooth homotopy H
(defined as above), such that ∇∂tσ(s, t) = 0 and ∇∂sσ(s, a) = 0 for all s ∈ I.
Then

∇∂sσ(s, b) =
(∫ b

a
Rs,tdt

)
σ(s, b). (3.7)

To prove the lemma 3.2.2 we will need the following result:
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Lemma 3.2.3. Let E → M be a smooth vector bundle, U ⊂ R2 be open and f = f(x, y) be a
smooth map from U to M . If σ is a smooth section of E on F (U) 1, then

∇∂x∇∂yσ −∇∂x∇∂yσ = R(∂xf, ∂yf)σ. (3.8)

Proof of lemma 3.2.3. Using the definition of curvature given in (2.4) we have

R(∂xf, ∂yf)σ = ∇∂x∇∂yσ −∇∂y∇∂xσ −∇[∂x,∂y ]σ,

but the Lie bracket of the coordinate vector fields ∂x and ∂y in R2 vanishes, making the term
∇[∂x,∂y ]σ disappear. We are thus left with equation (3.8).

�

Equation (3.8) actually follows from the more general property

R(f∗X, f∗Y )σ = ∇X∇Y σ −∇Y∇Xσ −∇[X,Y ]σ,

for a smooth map f : N → M between smooth manifolds and X,Y ∈ C∞(TN). We refer to
[10] for a proof of this statement.

Proof of lemma 3.2.2. By (3.8) and the assumptions we made on σ we have

∇∂s∇∂tσ = ∇∂t∇∂sσ +R(∂tH, ∂sH)σ = R(∂tH, ∂sH)σ.

By lemma 3.1.5 we can write

∂tPs,t∇∂sσ(s, t) = Ps,t(∇∂t∇∂sσ(s, t))
= Ps,t(R(∂tH(s, t), ∂sH(s, t))σ(s, t))

= Ps,t(R(∂tH(s, t), ∂sH(s, t))P−1
s,b (σ(s, b)))

= Rs,tσ(s, b).

(3.9)

Before continuing we observe that if we define End(Ehs(b)) to be the space of all linear maps
from Ehs(b) to itself, then Rs,t ∈ End(Ehs(b)) (Rs,t is a composition of linear maps that begins
and ends at Ehs(b)). For each s ∈ I, Rs,t traces out a curve in End(Ehs(b)). Now, under scalar
multiplication and composition of maps, End(Ehs(b)) is given the structure of a vector space,
therefore we can integrate along the curves given by Rs,t.
For a fixed s, the integral

∫ b
a Rs,tdt is again a linear map from Ehs(b) to Ehs(b), therefore it

belongs to End(Ehs(b)).
By definition of Ps,t, Ps,b = IdEhs(b)

. As we assumed that ∇∂sσ(·, a) = 0 we can write

∇∂sσ(s, b) = Ps,b∇∂sσ(s, b)− Ps,a∇∂sσ(s, a). (3.10)

1Being an open subset of R2, U is itself a manifold. Therefore the pullback bundle construction we presented
in section 2.2 applies to this case too and our definition of section ”along a curve” extends to the map f .
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By using (3.9), we get

Ps,b(∇∂sσ(s, b))− Ps,a(∇∂sσ(s, a)) =
∫ b

a
∂tPs,t(∇∂sσ(s, t))dt

=
∫ b

a
Rs,tσ(s, b)dt

=:
(∫ b

a
Rs,tdt

)
σ(s, b).

The last step defines the action of
∫ b
a Rs,tdt on the section σ(s, b) ∈ Ehs(b). �

An interesting application of lemma 3.2.2 occurs in the case of H being a proper piecewise
smooth homotopy. Note that now we are dealing with a ”net” of curves on M and we can
parallel transport and take covariant derivative in both the t and s direction. The principal
part of a section also depends on both t and s in this case. So we have an analogous version of
the result of lemma 3.2.2 for the action of ∂s:

Ps,t∇∂sσ = ∂sPs,tσ. (3.11)

Under the assumptions of lemma 3.2.2, σ(·, a) is constant and (3.10) can be restated as

∇∂sσ(s, b) = Ps,b∇∂sσ(s, b) = ∂sPs,bσ(s, b) = ∂sσ(s, b).

Then (3.7) yields

∂sσ(s, b) =
(∫ b

a
Rs,tdt

)
σ(s, b), (3.12)

which is a first order linear ordinary differential equation for σ(s, b).
If Ps,a denotes parallel translation from hs(a) to hs(b) (in the case of a proper piecewise smooth
homotopy all the curves hs originate at hs(a) and end at hs(b)), then by our assumptions on
σ, σ(s, b) = Ps,a(σ(s, a)), which allows for (3.12) to be restated as

∂sPs,a(σ(s, a)) =
(∫ b

a
Rs,tdt

)
(Ps,a(σ(s, a))). (3.13)

Therefore (since σ(·, a) is constant) we have

∂sPs,a =
(∫ b

a
Rs,tdt

)
Ps,a. (3.14)

In this sense, curvature tells us about the dependence of parallel transport on the chosen path.
An intuitive example is provided by parallel transporting a tangent vector along the geodesics
(great circles) of a sphere.
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Figure 3.1: Parallel transport on the sphere.

Start with a vector at N and first transport it to B along the meridian connecting N to B and
then along the path N -A-B (see figure 3.2). The results of the two operations differ! The two
vectors transported to B are twisted by an angle.
Now let p ∈M , A,B ∈ TpM and f : U →M be a smooth map with

f(0) = p, ∂xf |0 = A, ∂yf |0 = B,

where U ⊂ R2 is an (open) neighbourhood of 0.
Consider the homotopy H(s, t) : [0, 1]× [0, 1]→M of piecewise smooth curves hs(t) defined by

hs(t) =


f(4st, 0) if 0 ≤ t ≤ 1

4
f(s, s(4t− 1)) if 1

4 ≤ t ≤
1
2

f(s(3− 4t), s) if 1
2 ≤ t ≤

3
4

f(0, 4s(1− t)) if 3
4 ≤ t ≤ 1

(3.15)

The domains of the maps hs(t) of the family defined through f are ”square loops” of side s.
For, fix s, (4st, 0) spans the segment of x-axis from 0 to s as t changes from 0 to 1

4 . Likewise
(s, s(4t− 1)) is the vertical segment from (s, 0) to (s, s) at t goes from 1

4 to 1
2 and (s(3− 4t), s)

connects (s, s) to (0, s) for t ranging over [12 ,
3
4 ]. The loop is completed by (0, 4s(1− t)) with t

spanning [34 , 1]. Thus the parameter s scales the loops ranging from 0 to 1, see figure 3.2. Thus
when s→ 0, the loop shrinks to one point, namely p ∈M .
By making use of this special piecewise smooth homotopy the next theorem expresses the
infinitesimal dependence of parallel translation on the curvature.



22 Parallel Transport and Curvature

Figure 3.2: The ”shrinking” homotopy.

Theorem 3.2.4. Let M be a smooth manifold, p ∈ M , H the piecewise smooth homotopy
defined above. Let Ps be the parallel transport map along the curve hs defined from hs(0) to
hs(1). Then

∂sPs|s=0 = 0

and

∂s∂sPs|s=0 = 2R(A,B)|s=0.

Proof. By the definition of H and the antisymmetry of the curvature tensor in its two ”vector
arguments” we obtain

R(∂tH, ∂sH) =
{

0 if t ≤ 1
4 or t ≥ 1

4sR(∂yf, ∂xf) if 1
4 ≤ t ≤

3
4

(3.16)

As usual, if we define Rs,t as in (3.6) with a = 0 and b = 1, then by (3.12) we get

∂sPs =
(∫ 3

4

1
4

Rs,tdt

)
Ps. (3.17)

It follows that, since Rs,t = 0 at 0, ∂sPs|s=0 also vanishes.
Now for the second derivative we have

∂s(∂sPs)|0 = lim
s→0

∂sPs(s)|s − ∂sPs|0
s

= lim
s→0

∂sPs|s
s

(3.18)

From (3.16) we have
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Rs,t
4s

= PsR(∂yf, ∂xf)P−1
s .

Now substituting (3.17) in the expression for the limit gives us

∂s(∂sPs)|0 = lim
s→0

∫ 3
4
1
4

Rs,tdt|s
s

Since parallel translation depends continuously on the path ((3.14)),

1
4s
Rs,t = Ps,tR(∂yf, ∂xf)P−1

s,t → R(A,B)

uniformly in t (t is in the interval [0, 1]) for s→ 0. We thus get

∂s(∂sPs)|0 =
∫ 3

4

1
4

4R(A,B)dt|0 =
1
2

4R(A,B)|0 = 2R(A,B)|0.

�
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4
Holonomy Groups and the Ambrose-Singer

Holonomy Theorem

Parallel transport along closed curves (loops) defines a group of endomorphisms on the fibers
of a vector bundle. The holonomy group of a generic connection is therefore a subgroup of
the general linear group of each fiber and, being independent of the base point of the loop,
it defines a global invariant for the connection. In this chapter we introduce the notion of
holonomy group and explain some of its basic properties.
As curvature provides a measure of the extent to which parallel transport along loops fails to
preserve the geometrical data being transported, it is no surprise that holonomy groups turn
out to be deeply related to curvature. In particular, it turns out that the Lie algebra of an
holonomy group both constrains curvature and is determined by it.
Using the results we obtained in chapter 3 we investigate this relation as it is captured by the
Ambrose-Singer theorem.
For sake of completeness, we have collected some useful definitions and properties about Lie
groups that will frequently be used throughout the chapter.
We remind the reader that all the manifolds we will consider in this chapter are assumed to be
connected.

4.1 Lie Groups and Lie Algebras: Some Elementary Facts

A Lie group G is a group endowed with the structure of a smooth manifold (or, more generally,
of the disjoint union of finitely many smooth manifolds) for which the multiplication (G×G→
G, (g, h) 7→ gḣ) and inverse (G→ G , g 7→ g−1) maps are smooth.

G1) A Lie subgroup, H of a Lie group G is a subgroup of G endowed with a smooth manifold
structure, making it into a Lie group and an immersed submanifold of G through a smooth
inclusion map.

G2) A closed subgroup of a Lie group is always a Lie subgroup.
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G3) IfG is a connected Lie group, then the component containing the identity is a Lie subgroup
of G.

G4) Every arcwise connected 1 subgroup of a Lie group is a Lie subgroup [16].

Given two Lie groups G and H, the map Φ : G→ H is called a Lie group homomorphism if it
is a continuous group homomorphism. If, in addition, Φ is bijective with continuous inverse, Φ
is called a Lie group isomorphism.
A representation of a Lie group G on a vector space V over a field K, dim(V ) ≥ 1, is a Lie
group homomorphism from G to the general linear group over V :

Π : G→ GL(V ).

The space V is called the representation space and it dimension is known as the dimension of
the representation.
Let Π be a finite dimensional representation of a Lie group G on a space V . A subspace W
of V is called invariant if Π(g)w ∈ W for all w ∈ W and g ∈ G. We say that an invariant
subspace W is nontrivial if W 6= {0} and W 6= V . A representation with no nontrivial invariant
subspaces is called irreducible. If the Lie group homomorphism is one-to-one the representation
is called faithful.
Given a Lie group there exists a special class of vector fields characterized by invariance under
group action. Define the left translation La : G → G, by Lag = ag with a, g ∈ G (similarly
we can define a right translation). The map La is a diffeomorphism and it induces a map
La∗ : TgG→ TagG between the tangent spaces at g and ag ∈ G. A vector field X on G is said
to be a left-invariant vector field if La∗X|g = X|ag.
Fix a point p ∈ G, a vector V ∈ TpG defines a unique left invariant vector field XV over G by
XV |g = Lg∗V , g ∈ G. In fact, we have XV |ag = Lag∗V = (LaLg)∗V = La∗Lg∗V = La∗XV |g.
Conversely, a left-invariant vector field X defines a unique vector V = X|p ∈ TpG. We denote
the set of left invariant vector fields by g. The map TpG → g, that associates XV to V is
an isomorphism, and therefore g is a vector space isomorphic to TpG. Since g is a subset of
C∞(G), the Lie bracket defined in section 2.1 is also defined on g. In addition, g is also closed
under the Lie bracket: if we consider two points g and ag = Lag in G and apply La∗ to the Lie
bracket of X,Y ∈ g, we have

La∗[X,Y ]|g = [La∗X|g, La∗Y |g] = [X,Y ]|ag.

Thus, [X,Y ] ∈ g.

1A note on connectedness.
We will use the term connected (or path-connected) for a topological space X to mean that any two of its points
can be joined by a continuous path. We say that X is arcwise connected if any two distinct points can be joined
by an arc, that is a path which is a homeomorphism (a continuous map with continuous inverse between [0, 1]
and its image in M). The set X = {a, b} with the trivial topology is connected with paths γ : [0, 1] → X, defined
by γ(t) = a for all t 6= 1 and γ(1) = b. It is not arwise connected since γ is not even an injective map.
Finally, being simply connected will mean that every loop based at a point can be continuosly/smoothly con-
tracted to the constant loop.
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We call g (the set of the left-invariant vector fields endowed with the Lie bracket [ , ] : g×g→ g)
the Lie algebra associated to the Lie group G.

A1) A vector subspace of a Lie algebra which is also closed under the Lie bracket is a Lie
subalgebra.

A2) If H is a Lie subgroup of a Lie group G, then the Lie algebra h of H is a Lie subalgebra
of g, the Lie algebra of G.

A3) Let g be the Lie algebra of a Lie group G, then each Lie subalgebra of g is the Lie algebra
of exactly one Lie subgroup of G.

A4) The Lie algebra of a connected Lie group is isomorphic to the Lie algebra of its connected
component cointaining the identity.

A linear map φ : g→ h, between the Lie algebras g and h is called a Lie algebra homomorphism
if it preserves the Lie brackets, i.e. φ([X,Y ]) = [φ(X), φ(Y )]. If, in addition, φ is also bijective
we have a Lie algebra isomorphism.
Every Lie group homomorphism gives rise to a Lie algebra homomorphism [17]. To see this let
us introduce the notions of one-parameter subgroup and exponential map. Let G be a Lie group
and g be its Lie algebra. A Lie group homomorphism φ : R → G is called a one-parameter
subgroup of G. Let X be a vector of g, it can be shown that there exists a unique one-parameter
subgroup such that λX : R→ G such that λ′(0) = X [18].
Then, the exponential map in G, exp : g→ G, is defined by

exp : X 7→ λX(1).

Any Lie group homomorphism between two Lie groups gives rise through the exponential map
to a Lie algebra homomorphism between the correponding Lie algebras [17, 19]. Let Φ : G→ H
be a Lie group homomorphism, then there exists a unique Lie algebra homomorphism φ : g→ h

such that

Φ(exp(X)) = exp(φ(X)).

As we did for Lie groups we can now define a representation of a Lie algebra g on a vector
space V over a field K, dim(V ) ≥ 1, as a Lie algebra homomorphism from g to the Lie algebra
associated to the general linear group over V :

π : g→ gl(V ).

The terms invariant, nontrivial and irreducible, faithful are defined for representations of Lie
algebras exactly in the same way in which we introduced them for Lie groups.
We conclude this section with an example of Lie group and corresponding Lie algebra repre-
sentation. Consider a Lie group G with Lie algebra g. For each g in G we define a linear map
adjoint map (also known as the the adjoint action of G on g) Adg : g→ g to be Adg(a) = gag−1,
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for all a ∈ g. The map Adg is invertible with inverse Adg−1 . Since each element of G defines
such a map we have the map Ad : G→ GL(g).
It can be shown that the map Ad is a group homomorphism [17]. Moreover, being a group
homomorphism into the general linear group of g, Ad is a representation of G, which is referred
to as the adjoint representation.
Similarly for any X in the Lie algebra g there exists a linear, generated by the the adjoint map
of G, adX : g→ g. This map has the property that adX(Y ) = [X,Y ] with Y ∈ g [17, 19]. The
maps adX give rise to the Lie algebra homomorphism ad : g→ gl(g) defined by ad(X) = adX .
The map ad is therefore a representation of g, named the adjoint representation.
We refer to [19] for an extensive treatment on Lie groups.

4.2 Loops and Holonomy Groups

After our brief aside on Lie groups, we now define a special class of piecewise smooth paths.
Notice that all the manifolds we will consider from now on are assumed to be connected (even
if we will not state this property explicitly).

Definition 4.2.1. Let E →M be a vector bundle and ∇ a connection on E. Fix a point p ∈M .
A piecewise smooth path γ : [0, 1] →M is said to be a loop based at p if γ(0) = γ(1) = p.

We notice that if γ is a loop based at p, then the parallel transport map Pγ : Ep → Ep
is an invertible linear map. It therefore belongs to GL(Ep), the group of linear invertible
transformations on Ep. This leads to the definition of our main object: the holonomy group of
a connection:

Definition 4.2.2. We define the holonomy group Holp(∇) of the connection ∇ to be the group
Holp(∇) := {Pγ | γ is a loop based at p} ⊂ GL(Ep).

If α and β are loops based at p, so are α−1 and βα (their inverse and composition). By lemma
3.1.1 and 3.1.2 we have that P−1

α = Pα−1 and Pβ ◦ Pα = Pβα. Thus, if Pα and Pβ belong to
Holp(∇), so do P−1

α and Pβα . This means that the set Holp(∇) is closed under the operations
of composition and taking the inverse and therefore is a subgroup of GL(Ep), which justifies
calling Holp(∇) a group.
Since M is connected, we can find a piecewise smooth path γ : [0, 1] → M joining any two
points p = γ(0) and q = γ(1) in M .
We have the parallel transport map Pγ : Ep → Eq. If now α is a loop based at p, then the
composition γαγ−1 gives a loop based at q and lemma 3.1.2 yields Pγαγ−1 = Pγ ◦ Pα ◦ P−1

γ .
Thus, Pγ ◦ Pα ◦ P−1

γ ∈ Holp(∇) if Pα ∈ Holp(∇). So, for all the elements of Holp(∇) it holds
that

Pγ Holp(∇)P−1
γ = Holq(∇). (4.1)

From which it follows that the holonomy groups are independent of the base point. In fact,
suppose that E has fibre Rk, then the identification Ep ∼= Rk induces a group isomorphism
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GL(Ep) ∼= GL(k,R). From this viewpoint we may consider Holp(∇) as a subgroup H of
GL(k,R). If we choose a different local trivialization Ep ∼= Rk, then there exists some a ∈
GL(k,R) such that aHa−1 is a subgroup of GL(k,R). The holonomy group of a connection
is therefore a subgroup of the general linear group, defined up to a conjugation. In addition,
through (4.1) we see that there is no distinction between different base points: Holp(∇) and
Holq(∇) do yield the same subgroup of GL(k,R), up to conjugation. We have thus proven:

Proposition 4.2.3. Let E → M be a vector bundle with fibre Rk, and ∇ a connection on
E. For each p ∈ M , the holonomy group Holp(∇) may be regarded as a subgroup of GL(k,R)
defined up to conjugation within GL(k,R). In this sense it is independent of the base point p.

We simply write the holonomy groups of the connection ∇ as Hol(∇) ⊂ GL(k,R) by implicitly
supposing two subgroups of GL(k,R) to be equivalent if they are conjugate in GL(k,R).
In the same fashion, proposition 4.2.3 extends to vector bundles with complex fibers.
In the case of vector bundles over simply-connected manifolds we have that Hol(∇) is a con-
nected Lie group.

Proposition 4.2.4. Let simply-connected manifold M , E a vector bundle over M with fibre
Rk and ∇ a connection on E. Then Hol(∇) is a connected Lie subgroup of GL(k,R).

Proof. Choose a base point p in M and consider a loop γ based at p. Since M is simply con-
nected, the loop γ can be continuously contracted to a constant loop c through the (continuous)
homotopy

H : [0, 1]× [0, 1]→M,

with H(0, t) = γ and H(1, t) = c. In addition, H(s, t) = γs(t) : [0, 1] → M satisfies γs(0) =
γs(1) = p for all s ∈ [0, 1].
Notice the usual requirement for the definition simply connectedness is that the above homotopy
depend continuously on s and t. However, as shown in [5], we can also suppose that H depends
on both s and t in a piecewise smooth way. Thus, we have that s→ Pγs is a piecewise smooth
map from [0, 1] to Holp(∇). Now, as γ0 is the constant loop at p, it follows that Pγ0 = Id and
Pγ1 = Pγ .
Therefore, each Pγ ∈ Holp(∇) can be joined to Pγ0 by a piecewise smooth path within Holp(∇).
By G4) of section 4.1, every arcwise connected subgroup of a Lie group is a connected subgroup.
So Holp(∇) is a connected Lie subgroup of GL(k,R).

�

When M is not simply-connected it is convenient to define a restricted version of the holonomy
group.

Definition 4.2.5. Let γ : [0, 1]→M be a loop based at p ∈M , we say that γ is null-homotopic
if there is a piecewise smooth homotopy

H : [0, 1]× [0, 1]→M,

such that H(0, t) = γ(t) and H(1, t) = c, where c is the constant loop based at p.
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Definition 4.2.6. Let M be a (smooth) manifold, p ∈M , E a vector bundle over M with Rk

and ∇ a connection on E. We define the restricted holonomy group Hol0p(∇) to be

Hol0p(∇) := {Pγ | γ is a null-homotopic loop based at p}.

Then Hol0p(∇) is a subgroup of GL(Ep). Again, we may consider Hol0p(∇) as a subgroup of
GL(k,R) defined up to conjugation. As before, it is then independent of the base point and we
write it as Hol0(∇) ⊆ GL(k,R).
For the reader interested in more algebraic topological aspects of the theory we have collected
some properties of Hol0p(∇) in the following proposition.

Proposition 4.2.7. Let M be a manifold, E a vector bundle over M with fibre Rk and ∇
a connection on E. Then Hol0p(∇) is connected Lie subgroup of GL(k,R). In particular, it
is the connected component of Hol(∇) that contains the identity and is a normal subgroup of
Hol(∇). There is a natural, group homomorphism between the fundamental group of M and
Hol(∇)/Hol0(∇). Thus, if M is simply connected, then Hol(∇) = Hol0(∇).

Proof. The very same argument used to prove proposition 4.2.4 yields that the restricted holon-
omy group Hol0(∇) is a connected Lie subgroup of GL(k,R).
Now to show that it is a normal subgroup, we fix p ∈ M and let α and β be loops based a p
with β being null-homotopic. Then, also the composition αβα−1 is null-homotopic. Thus, if
Pα ∈ Holp(∇) and Pβ ∈ Hol0p(∇), we have that Pαβα−1 = PαPβP

−1
α is in Hol0p(∇). Therefore

Hol0p(∇) is a normal subgroup of Hol0p(∇).
The group homomorphism φ : π1(M)→ Holp(∇)/Hol0p(∇) is given by the φ([γ]) = Pγ ·Hol0p(∇),
which associates the homotopy class [γ] of π1(M) with the coset Pγ ·Hol0p(∇).
Since π1(M) is countable, the quotient group Holp(∇)/Hol0p(∇) is also countable. Therefore,
Hol0p(∇) is the connected component containing the identity. �

Now, given a vector bundle E →M with fiber Rk and a connection ∇ on E we can define the
holonomy algebra of the restricted holonomy group.

Definition 4.2.8. We define the holonomy algebra, hol0(∇) to be the Lie algebra of the re-
stricted holonomy group Hol0(∇).

Similarly, for Hol0p(∇) (which is a Lie subgroup of GL(k,R)) we define holp(∇) to be the Lie
algebra of Hol0p(∇) for any p ∈M . The space holp(∇) is a Lie subalgebra of End(Ep).
We conclude this section with an observation. First we notice that since Hol0(∇) is the identity
component of Hol(∇), by A5) their Lie algebras coincide. Also, by A3), the lie algebra hol(∇)
is a Lie subalgebra of gl(k,R) (defined up to the adjoint action of GL(k,R)).
Moreover, although Hol0(∇) is a Lie subgroup of GL(k,R), it may not necessarily be a closed
subgroup, and subsequently it may not a submanifold of GL(k,R). For example, consider the
inclusion of R in T 2 = R2/Z given by t 7→ (t+ Z,

√
2t+ Z) for t ∈ R. This is a non-closed Lie

subgroup of a Lie group. Even if, the restricted holonomy group, Hol0(∇), is closed, the ”full”
group, Hol(∇), may or may not be closed in GL(k,R).
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4.3 Examples: Riemannian Holonomy Groups

A wealth of examples of holonomy groups is found for connection on Riemannian manifolds.
Let (M, g) be a Riemannian manifold of dimension n, endowed with a Levi-Civita connection
∇. Then ∇g = 0 and g is a constant tensor in the sense of definition A.0.3. By proposition
A.0.4 if p ∈ M , then the action of Holp(∇) on TpM preserves the metric g|p on TpM . The
group Holp(∇) lies therefore in the subgroup of GL(TpM) of transformations under which g|p is
invariant. In other words, Holp(∇) is isomorphic to a subgroup of the orthogonal group O(n).
Some well-known examples of Riemannian holonomy groups are [19]

• the holonomy group of Rn is the trivial group {Id},

• the unit spheres Sn with the round metric have holonomy group SO(n),

• the hyperbolic space Hn with the hyperbolic metric has holonomy group SO(n),

• the projective spaces CPn with the Fubini-Study metric has the unitary group U(n) as
holonomy group.

The manifolds in the list above are examples of irreducible symmetric spaces (see [19]). From
the theory of symmetric spaces one has that the action of the holonomy group of such class
of spaces induces a representation on the tangent spaces, TxM , of M . This representation is
faithful and it is known as holonomy representation. Through these properties, the holonomy
group of a Riemannian symmetric space is easily found. A large number of holonomy groups
in fact occur in this way: every compact, connected, simple Lie group is the holonomy group
of an irreducible Riemannian symmetric space, with the adjoint representation as holonomy
representation [1]. For a through introduction to the theory of symmetric space we refer the
reader to [19].

4.4 The Ambrose-Singer Holonomy Theorem

Proposition 4.2.3, stating the independence of Hol(∇) on any base point (up to conjugation),
shows that the holonomy group is a global invariant of a connection (compare with curvature
that, instead, is a local invariant as it varies from point to point on the manifold).
For a given connection on a vector bundle, the holonomy group (or the Lie algebra) is closely
related to its curvature. More precisely, the holonomy algebra both constrains the curvature
and is determined by it, as the results below illustrate.

Proposition 4.4.1. Let M be a manifold, E a vector bundle over M and ∇ a connection on
E. Then for each p ∈M the curvature R(∇)|p of ∇ at p lies in holp(∇)⊗

∧2 T ∗pM .

In other words, the holonomy group of a connection places a linear restriction upon its curva-
ture. The result above follows from a similar one obtained for principal bundles. As the theory
of principle bundles is beyond the scope of this note, we refer to [1] for a proof and a review of
the relations between principal and vector bundles.
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The relations between holonomy algebra and curvature is strengthened by the Ambrose-Singer
holonomy theorem [15] that we state and prove below.
With the notation of chapter 3 we set

Rγ(u, v) = P−1
γ ◦R(Pγu, Pγv) ◦ Pγ , (4.2)

where γ : [0, 1] → M is a piecewise smooth curve in manifold M with γ(0) = p, γ(1) = q,
p, q ∈M and u, v ∈ TpM . The map Rγ(u, v) is an endomorphism of Ep.

Theorem 4.4.2. [Ambrose-Singer Holonomy Theorem] Let M be a manifold, E a vector bundle
over M and ∇ a connection in E. Fix p ∈ M so that holp∇ is a Lie subalgebra of End(Ep).
Then, holp∇ is the subalgebra generated by the endomorphisms Rγ(u, v) for all piecewise smooth
curves γ and vector u and v in TpM .

Proof. Let γ : [0, 1] → M be a piecewise smooth curve with γ(0) = p, γ(1) = q, p, q ∈ M
u, v ∈ TpM . Let U ⊂ R2 be an open neighbourhood of 0 and f : U → M be a smooth map
with f(0) = q = γ(1), ∂xf(0) = Pγu and ∂yf(0) = Pγv.
Define loops hs(t), 0 ≤ s ≤ 1 based at q as in (3.15). Then the piecewise smooth curves

γs = γhsγ
−1

are null-homotopic loops at p (as hs contracts to q, γs contracts to p).
For 0 ≤ τ ≤ 1, let Pτ be the parallel transport map along the curve γs with s = τ2. Then, by
(3.14) and theorem 3.2.4, Pτ : [0, 1]→ GL(Ep) is a continuously differentiable curve contained
in H = Hol0p(∇) and

∂τPτ |τ=0 = P−1 ◦R(Pγv, Pγu)Pγ = Rγ(v, u) ∈ TpH ∼= holp(∇).

Thus the endomorphisms Rγ(v, u) contain the generators of holp(∇). It follows thats holp(∇)
is the subspace of End(Ep) with elements Rγ(v, u). �

The Ambrose-Singer holonomy theorem shows that holp(∇) is the vector subspace of End(Ep)
spanned by the endomorphisms Rγ(u, v). Thus, R(∇) determines hol(∇) and, hence Hol0(∇).
As a simple example we may consider a flat connection, R(∇) = 0. Then hol(∇) = 0, from
which it follows that Hol0(∇) = Id.
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Appendix: Constant Tensors

Let ∇ be a connection on the tangent bundle TM of a manifold M . As we mentioned in 2.2,
∇ extends to connections on all tensor bundles

⊗k T ∗M ⊗
⊗l TM for k, l ∈ N (remember that

we still use ∇ to denote this extended connection).

Definition A.0.3. A tensor field T is called constant if

∇T = 0.

The constant tensors on M are determined entirely by the holonomy group of the connection.

Theorem A.0.4. Let M be a manifold, ∇ be a connection on TM . Fix point p in M and
let H = Holp(∇). Then H acts naturally on the tensor powers

⊗k T ∗M ⊗
⊗l TM . Suppose

S ∈ C∞
(⊗k T ∗M ⊗

⊗l TM
)

is a constant tensor field, then S|p is fixed by the action of H
on
⊗k T ∗M ⊗

⊗l TM . Conversely, if S|p
⊗k T ∗M ⊗

⊗l TM is fixed by H, it extends to a
unique constant tensor field S ∈ C∞

(⊗k T ∗M ⊗
⊗l TM

)
.

Proof. The main idea in the proof is that constant tensors are invariant under parallel transport
along paths within the manifold M . Let us see how this works in detail.
Let γ be a loop based at p and Pγ ∈ GL(Ep) the parallel transport map using the extension
of ∇ to E =

⊗k T ∗M ⊗
⊗l TM . Then Pγ ∈ Holp(∇) = H, and there is some element h ∈ H

such that Pγ = h. Moreover, for every h ∈ H we have Pγ = h for some loop γ in M based at p.
Now, since ∇S = 0, the pullback γ∗(S) is a parallel section of the pullback bundle γ∗(E) over
[0, 1]. Therefore Pγ(S|γ(0)) = S|γ(1), but since γ(0) = γ(1) = p, we have Pγ(S|p) = S|p. Thus,
h(S|p) = S|p for all h ∈ H and S|p is fixed by the action of H on Ep.
For the converse, suppose that S|p ∈ Ep is fixed by H. We will define a tensor field S ∈ C∞(E)
which satisfies the given properties. Let q be any point of M . Since M is connected, there is a
piecewise smooth joining p and q. Let α : [0, 1]→M and β : [0, 1]→M with α(0) = β(0) = p
and α(1) = β(1) = q be two such paths. Let Pα, Pβ : Ep → Eq be the parallel transport maps,
so that Pα−1β = P−1

α Pβ. Now α−1β is a loop based at p, thus Pα−1β = h for some h ∈ H. By
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assumption we have h(S|p) = (P−1
α Pβ)S|p = S|p, giving PβS|p = PαS|p, which shows that the

element PαS|p of Eq only depends on depends on q and not on the path α.
Define a section S of E by Sq = PαS|p where α is any piecewise smooth path from p to q, then
S is well-defined. If γ is any path in M , then the pullback section γ∗(S) is parallel. Thus, S is
differentiable with ∇S = 0 and clearly S ∈ C∞(E). �
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