
Exotic fusion systems and Euler characteristics

Eske Sparsø

Advisor: Jesper M. Møller

September 19, 2011

Master Thesis in Mathematics.
Department of Mathematical Sciences, University of Copenhagen



Abstract

We construct and examine some specific exotic fusion systems: The Ruiz-Viruel examples defined
over over the extraspecial group of order 73 and exponent 7, and the Solomon fusion systems
defined over certain 2-groups. The Euler characteristics (as defined by Leinster) of these fusion
systems are computed.
A theorem of Jacobsen and Møller states that a group fusion system and its exterior quotient
have a common coweighting, and in particular that they have the same Euler characteristic. We
extend this theorem to all fusion systems.

Resume

Vi konstruerer og studerer en række specifikke eksotiske fusionssystemer: Ruiz-Viruel eksem-
plerne defineret p̊a den ekstraspecielle gruppe af orden 73 og eksponent 7, samt Solomon-
fusionssystemerne defineret p̊a visse 2-grupper. Vi udregner Eulerkarakteristikkerne af disse
fusionssystemer, jvf. Leinsters definition.
En sætning af Jacobsen og Møller, siger, at et fusionssystem og dets ydre kvotient har samme
kovægtning, og specielt samme Eulerkarakteristik. Vi udvider denne sætning til at omhandle
alle fusionssystemer.
Specialet er skrevet p̊a engelsk.
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Introduction

The Euler characteristic is one of the oldest topological invariants. Despite its simplicity, being
just a number, it has remarkable properties and uses. For instance, it behaves in the same way
with respect to disjoint unions and products as cardinality of sets does, and may be viewed as
a generalization of cardinality. Leinster puts it very well in [Le]:
”We first learn of Euler characteristic as ’vertices minus edges plus faces’, and later as an alter-
nating sum of ranks of homology groups. But Euler characteristic is much more fundamental
than these definitions make apparent, as has been made increasingly explicit over the last fifty
years; it is something akin to cardinality or measure. More precisely, it is the fundamental
dimensionless quantity associated with an object.”
Euler characteristics can be defined for certain finite categories by introducing so-called weight-
ings and coweightings of the category. Important examples of categories with Euler characteristic
are fusion systems and the partially ordered set of p-subgroups of some fixed group. The defi-
nition is consistent with the definition of the Euler characteristic of a topological space, in the
sense that a category and its geometric realization have the same Euler characteristic if the
latter has only finitely many non-degenerate simplices.
While Euler characteristics cannot establish homotopy equivalences, they can indicate the ex-
istence of such equivalences between spaces with the same Euler characteristic. An example
is the partial order of all nontrivial p-subgroups of a given finite group G. The partial order
may be thought of as the category S∗G whose objects are the nontrivial p-subgroups, with a
single morphism from P to Q if P 6 Q. It is known that if G contains a nontrivial, normal
p-subgroup, then S∗G is contractible (Quillen, 1978). This, of course, implies that the Euler
characteristic of the category is χ(S∗G) = 1, but that result is certainly much easier to obtain
and motivates a search for such a homotopy equivalence. In the same manner, if we let SeaG
denote the full subcategory of S∗G generated by the non-trivial, elementary abelian p-subgroups
of G, then χ(S∗G) = χ(SeaG ). This result can be proved by showing that the coweighting of S∗G
is concentrated on the elementary abelian subgroups. It also follows from the fact that the
inclusion SeaG → S∗G is a homotopy equivalence (Quillen).
But the nature of Euler characteristics is not only comparative. For instance, |G|p | (1−χ(S∗G)),
where |G|p denotes the p-part of |G|, i.e. the highest power of p that divides |G|. If Fp(G) denotes
the fusion system of the group G at the prime p, and Fp(G)∗ its full subcategory obtained by
removing the trivial group, one has that |G|p′ · χ(Fp(G)∗) ∈ Z. This puts restrictions on groups
that may realize the fusion system Fp(G), which is interesting if G itself is unknown. It also
leads to the question of existence of |G|p′-fold covering maps E → BFp(G)∗, such that E has
Euler characteristic |G|p′ . Another property is that all known Euler characteristics of fusion
systems are positive. Most of them are also less than 1; the smallest group G that gives rise to
a fusion system of Euler characteristic > 1 has order 288.
The coweighting of Fp(G)∗ turns out to be concentrated on the elementary abelian p-subgroups,
just like it is for S∗G. But whether or not Fp(G)∗ and its full subcategory of the elementary
abelian p-subgroups are homotopy equivalent or related in some other way is unknown.
If one looks at weightings instead, the weighting of S∗G is concentrated on the p-radical sub-
groups of G, and in fact, S∗G ' SrG, where SrG is the full subcategory of p-radical subgroups.
The analogue in the setting of fusion systems is that the weighting of FcG (the full subcategory
of so-called FG-centric subgroups) is concentrated on those subgroups that in addition are FG-
radical, i.e. χ(Fp(G)c) = χ(Fp(G)cr). But whether their geometric realizations are homotopy
equivalent is unknown.

In [JM] the notion of the exterior quotient F̃∗ of a fusion system F is defined, and it is proved
that χ(F∗) = χ(F̃∗) whenever F is a group fusion system. This is a corollary to a stronger re-
sult, namely that F̃p(G)∗ and Fp(G)∗ have the same coweighting for all finite groups G. In this
thesis, we generalize these two results to include all fusion systems. This is done near the end of
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section 5. The thesis focuses on some examples of exotic fusion systems as Euler characteristics
related to group fusion systems are treated in detail in [JM]. Section 4 describes three examples
of exotic fusion systems that come from the classification of all p-local finite groups over the
extraspecial group of order p3 and exponent p ([RV]). The computations of the Euler charac-
teristics of these fusion systems and their exterior quotients is what led to the generalizations of
the mentioned theorems of [JM]. Section 1 provides the definition and most basic properties of
fusion systems, as well as some technical lemmas. Finally, we compute the Euler characteristics
of the Solomon fusion systems, a well-known class of examples of exotic fusion systems at the
prime p = 2. The fusion systems are constructed and studied in the sections 7 through 10. It
turns out that they all have the same Euler characteristic, which is rather interesting.
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1 Fusion systems

Let G be a group, and let g ∈ G. g induces a homomorphism cg : G → G by conjugation
by g, that is cg(x) = gx = gxg−1 for all x ∈ G. If H and K are subgroups of G such that
gH := gHg−1 6 K, then conjugation by g induces a homomorphism H → K which we denote
cg|H,K . (In general, if φ is some homomorphism, A a subgroup of its source, and φ(A) 6 B, we
write φ|A,B to denote the homomorphism obtained by restricting the source of φ to A and its
target to B. We may write φ|A or just φ when the meaning is clear from the context). Define
HomG(H,K) = {cg|H,K | gH 6 K}. Notice that any homomorphism given by conjugation by
some element is injective.

Definition. A fusion system F is a category whose objects are the set of all subgroups of some
finite p-group S, and whose morphisms P → Q are a set of injective group homomorphisms
P → Q, such that HomS(P,Q) ⊆ F(P,Q), for every pair of objects P,Q 6 S.
Futhermore, each morphism of F must decompose as an F-isomorphism (in the categorial sense)
followed by an inclusion (as a homomorphism of groups).

We say that F is a fusion system over S. Since all F-morphisms are group homomorphisms we
write HomF (P,Q) = F(P,Q) and may refer to them as F-homomorphisms. Whenever P 6 Q,
conjugation by the identity element of S induces the inclusion homomorphism ιP,Q : P ↪→ Q,
i.e. ιP,Q ∈ HomS(P,Q) for all P 6 Q 6 S. If we combine this fact with the ’decomposition
property’ of F-homomorphisms from the definition, we see that we may restrict any given F-
homomorphism to any subgroup of its source, and we may restrict its target to any subgroup
that contains its image.
We say that P and Q are F-conjugate when they are isomorphic in F , and write IsoF (P,Q) =
HomF (P,Q). The set of all F-conjugates to P will be denoted PF . We also write AutF (P ) =
HomF (P, P ) (an injective endomorphism of a finite group is necessarily an automorphism).
Similarly, AutS(P ) = HomS(P, P ), and so on. With this notation, the inner automorphisms of
a subgroup, P 6 S, is Inn(P ) = HomP (P, P ). The group of outer F-automorphisms of P is
defined as OutF (P ) = AutF (P )/Inn(P ). Out(P ) and OutS(P ) are defined analogously.
Two elements x, x′ ∈ S are said to be F-conjugate if there is an F-homomorphism with φ(x) = x′.
In that case φ restricts to an F-isomorphism 〈x〉 → 〈x′〉 by the above comments. By xF we
shall denote the set of all F-conjugates to x.

A very important class of fusion systems are group fusion systems.

Definition. Let G be a finite group, p a prime, and S ∈ Sylp(G). The fusion system of G over
S, denoted FS(G), is the fusion system over S with morphisms HomFS(G)(P,Q) = HomG(P,Q)
for all P,Q 6 S.

If F is a fusion system over S, F ′ is a fusion system over S′, and φ : S → S′ is an isomorphism
which induces a bijection HomF (P,Q) → HomF ′(φ(P ), φ(Q)) for each pair P,Q 6 S, we say
that F and F ′ are isomorphic fusion systems. If S and T are two Sylow-p-subgroups of a group
G, then FS(G) and FT (G) are isomorphic. We may therefore just speak of ’the fusion of G at
p’ without specifying a Sylow-p-subgroup of G.

Definition. Let S be a finite p-group, and let F be a fusion system over S. A subgroup P 6 S
is said to be

• fully F-centralized if |CS(P )| ≥ |CS(Q)| for all Q ∈ PF .

• fully F-normalized if |NS(P )| ≥ |NS(Q)| for all Q ∈ PF .

• fully F-automized if AutS(P ) ∈ Sylp(AutF (P )).
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• receptive if for all Q ∈ PF , each isomorphism φ ∈ IsoF (Q,P ) extends to an F-homomorphism
Nφ → S, where

Nφ
def
= {g ∈ NS(Q) | φ ◦ cg|Q,Q ◦ φ

−1 ∈ AutS(P )}

F is saturated if every F-conjugacy class contains an element which is both fully automized and
receptive.

The definition of receptivity might at first sight look somewhat technical, but it is not hard to
see that Nφ is the largest subgroup of NS(Q) to which φ could possibly extend (within F). φ
induces a homomorphism AutS(Q) to AutF (P ) by conjugation; one can also think of Nφ as
as all elements that induce automorphisms in the preimage of AutS(P ). Note that Nφ always
contains Q as well as CS(Q).
We may write ’fully centralized in F ’ instead of ’fully F-centralized’ or even drop the F alto-
gether. Likewise for the other properties.

Every group fusion system is saturated. The proof is basic and relies just on the explicit structure
of the morphisms.
A saturated fusion system that is not a group fusion system is called exotic. Such fusion systems
exist; we will study some examples later.
The definition of saturation varies in the literature. We will mention another one which will be
important to us. As we have already stated one definition, this other definition will have the
form of a proposition.

Proposition 1. [AKO, 2.5]. Let S be a p-group, and F a fusion system over S. Then F is
saturated if and only if

i. every fully F-normalized subgroup is fully F-centralized and F-automized.

ii. every fully F-centralized subgroup is receptive in F .

Definition. Let S be a p-group, and F a fusion system over S. To each P 6 S we define a
fusion subsystem CF (P ), the centralizer fusion system of P , as the fusion system over CS(P )
whose morphisms are

HomCF (P )(Q,Q
′) = {φ ∈ HomF (Q,Q′) |∃φ̃ ∈ HomF (PQ,PQ′) :

φ̃(Q) = Q′, φ̃|
Q,Q′ = φ;

φ̃(P ) = P, φ̃|P,P = idP }

for all pairs Q,Q′ 6 CS(P ).

Centralizer fusion systems are a special case of a larger class of fusion subsystems which also
include the so-called normalizer fusion systems. When x ∈ S, we will write CF (x) instead of
CF (〈x〉) for brevity.
Having defined a fusion system, we would like it to be saturated. The following proposition
provides a sufficient condition.

Proposition 2. Let S be a finite p-group, F a saturated fusion system over S, and P 6 S. The
centralizer fusion system of P , CF (P ) is saturated if P is fully F-centralized.

Proof. (see [AKO, pp. 20-21]). Let R 6 CS(P ) be given. We will show that RCF (P ) contains an
element R0 which is both fully automized and receptive.
For each F-homomorphism φ with source PR, consider the quantity |NS(φ(R)) ∩ CS(φ(P ))|; in
case φ is the extension of an CF (P )-homomorphism, φ(P ) = P . We claim that
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|NS(φ(R)) ∩ CS(φ(P ))| is maximal for some such homomorphism. Choose φ ∈ HomF (PR, S)
such that |NS(φ(R)) ∩ CS(φ(P ))| is maximal, and set P1 = φ(P ). Then (φ|P,P1 )−1 ∈ HomF (P1, P ),

and since P is fully F-centralized it is receptive, so we may extend (φ|P,P1 )−1 to an F-homomorphism
N(φ|

P,P1
)−1 → S. Since P1 as well as CS(P1) are contained in N(φ|

P,P1
)−1 we can restrict to

P1 · CS(P1), and we obtain an F-homomorphism α : P1 · CS(P1) → S. As R 6 CS(P ), we
have that φ(R) 6 CS(φ(P )) = CS(P1). Therefore, φ(PR) 6 P1 · CS(P1), so we may form the
composition α ◦ φ ∈ HomF (PR, S). It satisfies α ◦ φ|P = idP , and since R 6 CS(P ), α ◦ φ maps
R into CS(P ). By definition of CF (P ), its restriction to R defines a CF (P )-homomorphism. Set
R0 = α ◦ φ(R), we see that

α(NS(φ(R)) ∩ CS(φ(P ))) 6 NS(R0) ∩ CS(P ).

This proves the claim by choice of φ. Explicitly:

|NS(R0) ∩ CS(P )| ≥ |NS(ψ(R0)) ∩ CS(ψ(P ))| (1)

for all ψ ∈ HomF (PR0, S).
Now set I = {α ∈ AutF (PR0) | α(P ) = P, α|P,P = idP , α(R0) = R0}, i.e. I consists of all
F-automorphisms of PR0 that restrict to CF (P )-automorphisms of R0. Note that restriction
in this manner actually defines an isomorphism of groups. If x ∈ S is such that cx|PR0,PR0

∈
AutS(PR0) ∩ I, then x ∈ NS(R0) (since cx(R0) = R0) and x ∈ CS(P ) (since cx|P,P = idP ), i.e.
x ∈ NCS(P )(R0) which means that cx|R0,R0

∈ AutCS(P )(R0). Conversely, any such automorphism
is the restriction of an element of AutS(PR0)∩ I. It follows that R0 is fully CF (P )-automized if
AutS(PR0)∩ I ∈ Sylp(I). As F is saturated, there is Q ∈ (PR0)F which is fully automized and
receptive. Let ψ ∈ HomF (PR0, Q), and let T ∈ Sylp(I) such that AutS(PR0) ∩ I 6 T . ψTψ−1

is a p-subgroup of AutF (Q), so we can find α ∈ AutF (Q) such that αψTψ−1α−1 6 AutS(Q).
Now

AutS(Q) ∩ αψIψ−1α−1 > αψTψ−1α−1 ∈ Sylp(αψIψ
−1α−1)

The left-hand side is a p-group, so equality must hold, i.e.

AutS(Q) ∩ αψIψ−1α−1 ∈ Sylp(αψIψ
−1α−1)

In particular

|AutS(PR0) ∩ I| ≤
∣∣AutS(Q) ∩ αψIψ−1α−1

∣∣ . (2)

Since Q is fully F-centralized we also have that

|CS(PR0)| ≤ |CS(Q)| (3)

On the other hand we have established that

AutS(PR0) ∩ I ∼= (NS(R0) ∩ CS(P ))/CS(PR0)

and likewise

AutS(Q) ∩ αψIψ−1α−1 ∼= (NS(αψR0) ∩ CS(αψP ))/CS(Q)

Using the property (1) of R0 we get that

|CS(PR0)| |AutS(PR0) ∩ I| ≥
∣∣AutS(Q) ∩ αψIψ−1α−1

∣∣ |CS(Q)| (4)

Comparing the inequalities of (2), (3), and (4), we see that equality must hold in all of them.
Then (2) tells us that AutS(PR0) ∩ I is a Sylow-p-subgroup of I, and (3) tells us that PR0 is
fully centralized in F . These results allow us to prove that R0 is receptive in CF (P ).
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Let R ∈ RCF (P )
0 , and let φ ∈ HomCF (P )(R,R0) be an isomorphism. By definition of the cen-

tralizer fusion system, there is an extension φ̃ ∈ HomCF (P )(PR,PR0) of φ which restricts to
the identity on P . Now let J 6 I be the subgroup {α ∈ I | α|R0,R0

∈ AutCS(P )(R0, R0)}. If
g ∈ NS(PR0) induces an element of AutS(PR0) ∩ I, then g ∈ NS(R0) and g ∈ CS(P ), that is
g ∈ NCS(P )(R0), which means that cg|PR0,PR0

∈ J . Thus

AutS(PR0) ∩ J = AutS(PR0) ∩ I

and since AutS(PR0) ∩ I ∈ Sylp(I) anj J 6 I, we see that AutS(PR0) ∩ J ∈ Sylp(J).

φ̃AutS(PR)φ̃−1 ∩ J is a p-subgroup of J ; let α ∈ J such that

αφ̃(AutS(PR) ∩ φ̃−1Jφ̃)φ̃−1α−1 6 AutS(PR0) ∩ J (5)

αφ̃ ∈ HomF (PR,PR0) extends to a homomorphism ψ ∈ HomF (N
αφ̃
, S) since PR0 is receptive in

F (it is fully F-centralized). We wish to see that Nφ 6 N
αφ̃

. Let g ∈ Nφ, i.e. g ∈ NCS(P )(R) and

φcg|R,Rφ−1 ∈ AutCS(P )(R0). The first property implies that g ∈ CS(P )NS(R) 6 NS(PR), and

then the second one implies that φ̃cg|PR,PR φ̃−1 ∈ J . We conclude that cg|PR,PR ∈ AutS(PR) ∩
φ̃−1Jφ̃, but then (5) says that g ∈ N

αφ̃
, as desired. By definition of J and I, α is conjugation by

some element x ∈ NCS(P )(R0). This allows us to form the composition c−1
x ◦ψ ∈ HomF (N

αφ̃
, S).

Both c−1
x and ψ restrict to the identity on P ; if an element of N

αφ̃
centralizes P , then so does its

image under c−1
x ◦ψ. In particular c−1

x ◦ψ maps Nφ to CS(P ). Furthermore, c−1
x ◦ψ maps R to

R0. Combining these results we see that restriction of c−1
x ◦ ψ defines a CF (P )-homomorphism

Nφ → CS(P ), which restricted to R equals φ. This shows that R0 is receptive.

The next proposition, although more technical in its presentation, also relates saturation of a
fusion system with saturation of some centralizer subsystems.

Proposition 3. [LO, 1.1]. Let S be a p-group and F a fusion system over S. F is saturated if
and only if there is a set C ⊂ S of elements of order p with the following three properties:

1. Each element of S of order p is F-conjugate to an element of C.

2. If x ∈ S has order p and is F-conjugate to x′ ∈ C, then there exists an F-homomorphism
ψ : CS(x)→ CS(x′) with ψ(x) = x′.

3. The centralizer fusion system CF (x) is saturated for all x ∈ C.

Proof. The ’only if’ part is rather straightforward: Take C = {x ∈ S | |x| = p, 〈x〉 fully centralized}.
If x ∈ S is of order p but 〈x〉 is not fully centralized there is an F-isomrphism ψ : 〈x〉 → P with
P fully centralized. P has order p and is generated by ψ(x), and ψ(x) must then belong to C,
i.e. 1. holds. Nψ clearly contains CS(x), since each element of CS(x) induces the identity on
〈x〉. As 〈ψ(x)〉 is fully centralized and F is saturated, 〈ψ(x)〉 is receptive, and so ψ extends to an
F-homomorphism ψ̃ : CS(x)→ S. But the image is ψ̃(CS(x)) 6 (CS(ψ(x))), and 2. is satisfied.
C also satisfies condition 3. by Proposition 2.

Now assume that C is a set of elements of S of order p, and that C has the three properties
listed above. To prove that F is saturated, we show that it satisfies the conditions of Proposi-
tion 1.
Given subgroups P 6 S and A 6 AutF (P ), A acts on Z(P ), and we will let Z(P )A denote the
subgroup of elements fixed by this action. Define a set

U = {(P, x) | P 6 S, x ∈ S, |x| = p; ∃T ∈ Sylp(AutF (P )) : AutS(P ) 6 T, x ∈ Z(P )T }
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and define a subset U0 = {(P, x) ∈ U | x ∈ C}. If P 6= 1 and AutS(P ) 6 T ∈ Sylp(AutF (P )),

then |Z(P )T | is divisible by p and non-empty; in particular it contains an element of order p. In
other words, for every P 6 S, P 6= 1, there is an x ∈ S such that (P, x) ∈ U .
Now let (P, x) ∈ U0 and assume that P is not fully F-centralized. Let P ′ ∈ PF be fully
F-centralized and let φ ∈ IsoF (P, P ′), then φ(x) ∈ Z(P ′). By property 2., there is ψ ∈
HomF (CS(φ(x)), CS(x)) such that ψ(φ(x)) = x. Let P ′′ = ψ(φ(P )), then ψ ◦ φ is an F-
isomorphism P → P ′′ which maps x to x. Since x ∈ Z(P ) we also have x ∈ Z(P ′′), and so
P, P ′′ 6 CS(x). As such, ψ ◦ φ is also a CF (x)-isomorphism P → P ′′. CS(P ′) 6 CS(φ(x))
so we may apply ψ to CS(P ′) and we have ψ(CS(P ′)) 6 CS(P ′′). We now have inequali-
ties |CS(P )| < |CS(P ′)| ≤ |CS(P ′′)|. Both CS(P ) and CS(P ′′) are contained in CS(x), hence∣∣CCS(x)(P )

∣∣ < ∣∣CCS(x)(P
′′)
∣∣. We have thus proved

∀(P, x) ∈ U0 : P is fully CF (x)-centralized ⇒ P is fully F-centralized (6)

Given (P, x) ∈ U , we have that NS(P ) 6 CS(x) since x ∈ Z(P ) is fixed by each element of
AutS(P ). Therefore AutS(P ) = AutCS(x)(P ). The CF (x)-automorphisms of P are exactly
the F-automorphisms of P that restrict to the identity on 〈x〉. Every element of the T ∈
Sylp(AutF (P )) associated to (P, x) has this property, i.e. T 6 AutCF (x)(P ). But then T is also
a Sylow-p-subgroup of AutCF (x)(P ) 6 AutF (P ). As AutS(P ) = AutCS(x)(P ) we conlude that
AutCS(x)(P ) ∈ Sylp(AutCF (x)(P )) if and only if AutS(P ) ∈ Sylp(AutF (P )), i.e. we have proven
that

∀(P, x) ∈ U : P is fully CF (x)-automized ⇔ P is fully F-automized (7)

Let P 6 S be given and assume that P is fully F-normalized. We will show that P is fully
centralized and fully automized in F . Pick x ∈ S such that (P, x) ∈ U (such an x exists)
and choose x′ ∈ C and a homomorphism ψ ∈ HomF (CS(x), CS(x′)) that maps x to x′. Like
above, NS(P ) 6 CS(x) and ψ(NS(P )) 6 NS(ψ(P )). But since P is fully F-normalized, we
must have ψ(NS(P )) = NS(ψ(P )). Let T ∈ Sylp(AutF (P )) be as in the definition of U . Then
ψTψ−1 ∈ Sylp(AutF (ψ(P ))), and since AutS(P ) 6 T and NS(ψ(P )) = ψ(NS(P )) we get that
AutS(ψ(P )) 6 ψTψ−1. In addition, given any α ∈ T we have that ψαψ−1(x′) = x′ since
x′ = ψ(x) and each α ∈ T fixes x. This shows that x′ ∈ Z(ψ(P ))ψTψ

−1
, and we conclude that

(ψ(P ), x′) ∈ U0. As P is fully F-normalized and ψ(NS(P )) = NS(ψ(P )), we see that ψ(P )
is fully F-normalized as well. Furthermore, NS(ψ(P )) 6 CS(x′), and so NS(ψ(P )) = NCS(x′).
In general, given Q 6 CS(x′) we clearly have the inequality |NS(Q)| ≥

∣∣NCS(x′)(Q)
∣∣. We

conclude that ψ(P ) is fully CF (x′)-normalized, and using Proposition 1 we get that ψ(P ) is
fully centralized and fully automized in CF (x′). By (6) and (7), ψ(P ) is fully automized and
fully centralized in F . But since P is also fully F-normalized, F-conjugate to ψ(P ), and since

AutS(P ) ∼= NS(P )/CS(P )

we see that P is fully automized and fully centralized in F .
Next we show that F satisfies the second condition of Proposition 1 which will finish the proof.
Let φ : P → P ′ be an F-isomorphism, and assume that P ′ is fully F-centralized. Let x′ ∈ S be
such that (P ′, x′) ∈ U , and set x = φ−1(x′) ∈ Z(P ). By definition of F , x′ is fixed under the
action of each element of AutS(P ′). Recall that

Nφ = {g ∈ NS(P ) | φcg|P,P φ
−1 ∈ AutS(P ′)}

We see that cg|P,P (x) = x for all g ∈ Nφ, i.e. Nφ 6 CS(x). By arguments presented
earlier (P ′, x′) ∈ U implies that NS(P ′) 6 CS(x′). Now pick y ∈ C such that y is F-
conjugate to x, and thereby also to x′. Pick homomorphisms ψ ∈ HomF (CS(x), CS(y)) and
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ψ′ ∈ HomF (CS(x′), CS(y)) such that ψ(x) = ψ′(x′) = y, and set Q = ψ(P ), Q′ = ψ′(P ′). From
the relations established so far, we see that

ψ′(CCS(x′)(P
′)) = ψ′(CS(P ′)) = CS(Q′) = CCS(y)(Q

′)

where the second equality follows from the fact that P ′ is fully F-centralized. Now define
τ = ψ′|P,Q ◦ φ ◦ (ψ|

P ′,Q′ )
−1. τ is an F-isomorphism Q → Q′ which fixes y. So τ is even an

CF (y)-isomorphism. Since ∣∣CS(P ′)
∣∣ =

∣∣CS(Q′)
∣∣ =

∣∣CCS(y)(Q
′)
∣∣

and P ′ is fully F-centralized, Q′ is fully CF (y)-centralized. As CF (y) is saturated, Q′ is receptive
in CF (y) by Proposition 1. Hence τ extends to some τ̃ ∈ HomCF (y)(Nτ , CS(y)). Given q′ ∈ Q′
and g ∈ Nφ we have

(τ̃ψ(g))q′(τ̃ψ(g))−1 = τ(ψ(g)τ−1(q′)ψ(g)−1)

The argument of the right-hand side is in P since ψ(g) ∈ ψ(Nφ) 6 NS(Q), and we can apply τ
to it. As τ−1(q′) is in the domain of ψ we can continue the rewriting:

τ(ψ(g)τ−1(q′)ψ(g)−1) = τψ(g(ψ−1τ−1(q′))g−1) = ψ′φ(g(ψ′φ)−1(q′)g−1) = ψ′φcgφ
−1(ψ′)−1(q′)

(with proper restrictions of some of the homomorphisms; these have been omitted in order not
to make the notation too cumbersome). By choice of g we can find h ∈ NS(P ′) such that
φcgφ

−1 = ch, and then

ψ′φcgφ
−1(ψ′)−1(q′) = ψ′ch(ψ′)−1(q′) = ψ′(h)q′ψ′(h)−1 = cψ′(h)(q

′)

These calculations show that τcψ(g)τ
−1 = cψ′(h) as automorphisms Q′ → Q′. As cψ′(h) ∈

AutCS(y)(Q
′) (since h ∈ NS(P ′) 6 CS(x′) and ψ maps CS(x′) to CS(y)) we have that ψ(g) ∈ Nτ

by definition. Thus ψ(Nφ) 6 Nτ . The calculations also show that τ̃(ψ(g)) and ψ′(h) induce
the same element of AutCS(y)(Q

′), and so τ̃(ψ(g))ψ′(h)−1 ∈ CS(Q′). But we have already seen
that CS(Q′) = ψ(CS(P ′)), hence we get that τ̃(ψ(Nφ)) 6 Im(ψ′). This allows us to form the
composition

φ̃ := (ψ′)−1 ◦ τ̃ ◦ ψ|Nφ

Then φ̃ is an F-homomorphism Nφ → S, and φ̃|P = φ, by construction. Hence φ̃ is our desired
extension of φ, and we conclude that P ′ is receptive in F .

We wish to state Alperin’s Fusion Theorem. To do so, we must first define a few more properties
that subgroups of a fusion system may have.

Definition. Let S be a finite p-group and F a fusion system over S. A subgroup P 6 S is said
to be

• F-centric if CS(Q) 6 Q (equivalently CS(Q) = Z(Q)) for all Q ∈ PF .

• F-radical if Op(OutF (P )) = 1. (Recall that for a group G, Op(G) is the smallest normal
p-subgroup of G).

Notice that if P 6 S is F-centric then so is each member of PF , and in particular they are
all fully F-centralized. The F-centric subgroups are closed under taking overgroups, i.e. if
P 6 Q 6 S and P is F-centric, then so is Q: Every Q′ ∈ QF contains a subgroup P ′ ∈ PF .
But then CS(Q′) 6 CS(P ′) 6 P ′ 6 Q′.
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The set of F-radical subgroups are also closed under F-conjugation: If φ ∈ IsoF (Q,P ), then
OutF (Q) ∼= OutF (P ) since conjugation by φ defines automorphisms AutF (Q) ∼= AutF (P ) and
Inn(Q) ∼= Inn(P ).
When P is a p-subgoup of a group G, one says that P is p-centric (in G) if Z(P ) ∈ Sylp(CG(P )),
and P is p-radical if OP (NG(P )/P ) = 1. If S ∈ Sylp(G) and P 6 S, it is not hard to see that
P is p-centric if and only if it is FS(G)-centric. It can be shown using basic manipulations and
the explicit structure of the morphisms of FS(G). There is no immediate connection between
being p-racical in G and being FS(G)-radical; one does not imply the other. However, if P is
FS(G)-centric and FS(G)-radical, then P is p-radical in G.

We can now state Alperin’s Fusion Theorem, which essentially concerns uniqueness of fusion
systems.

Theorem 4 (Alperin’s Fusion Theorem). Let S be a finite p-group, and F a saturated fusion
system over S. Set

Fcrn = {S} ∪ {P 6 S | P is centric, radical, and fully normalized in F}

Given any F-isomorphism φ ∈ IsoF (P, P ′) there exist subgroups

P = P0, P1, . . . , Pn = P ′ 6 S, and Q1, . . . , Qn ∈ Fcrn

and automorphisms αi ∈ AutF (Qi), such that

• Pi−1, Pi 6 Qi and αi(Pi−1) = Pi, for i = 1, . . . , n.

• φ = αn|Pn−1,Pn
◦ . . . ◦ α1|P0,P1 .

The set Fcrn is an example of a so-called conjugation family, which is just a collection C of
subgroups of S, for which the statement of the theorem is true with C in place of Fcrn.
Alperin’s Fusion Theorem is a version of the more general Alperin-Goldschmidt Fusion Theorem,
which has the exact same formulation, except that Fcrn is replaced with a smaller conjugation
family. One can take this idea further and determine all minimal (with respect to inclusion)
conjugation families. However, for our purposes, Fcrn will suffice.
Loosely speaking, Alperin’s Fusion Theorem states that 〈AutF (P ) | P ∈ Fcrn〉 = F . It is
enough to know the isomorphisms of a fusion system, since every morphism is an isomorphism
followed by an inclusion.

2 The extraspecial group of order p3 and exponent p

The examples of exotic fusion systems provided by Ruiz and Viruel is [RV] are defined on the
extraspecial group of order p3 and exponent p for the prime p = 7. The group is defined for all
odd primes and has the presentation

p1+2
+

def
= 〈a, b, c | ap = bp = cp = 1, ac = ca, bc = cb, ab = bac〉

We will need to study this group and its group of automorphisms in detail. This section, and
the next, follow the [RV].
We first note that a and b generate p1+2

+ and that every element of p1+2
+ can be written in

the form arbsct with a, b, c ∈ {0, . . . , p − 1}, in particular the order of p1+2
+ is at most p3. It

is indeed p3: c is central so 〈c〉 6 Z(p1+2
+ ) and 〈c〉 E p1+2

+ . The quotient p1+2
+ /〈c〉 is abelian;

it is generated by the images of a and b under the canonical epimorphism p1+2
+ → p1+2

+ /〈c〉.
Elementary calculations show that p1+2

+ /〈c〉 has order p2, since otherwise a or b would be central
in p1+2

+ . As such,
∣∣p1+2

+

∣∣ = p3 and every element can be written uniquely in the form arbsct

mentioned above.
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We also note that the fact that 〈c〉 has order p and is normal in p1+2
+ with abelian quotient implies

that 〈c〉 = [p1+2
+ , p1+2

+ ], the commutator subgroup of p1+2
+ . It also holds that 〈c〉 = Z(p1+2

+ ): c is
central and if arbsct ∈ Z(p1+2

+ ) for some r, s, t ∈ {0, . . . , p− 1} then

ar+1bsct = aarbsct = arbscta = ar+1bsct−s

and thus s = 0 (by the uniqueness of such presentations of elements of p1+2
+ ). A similar argument

shows that r = 0.
As a and b generate p1+2

+ , any endomorphism of p1+2
+ is defined by its values on these two

elements. The next lemma tells us explicitly what the endomorphisms and automorphisms of
p1+2

+ look like.

Proposition 5. Any assigment a 7→ ar
′
bs
′
ct
′
, b 7→ arbsct with r′, s′, t′, r, s, t ∈ {0, . . . , p − 1}

defines an endomorphism of p1+2
+ .

The endomorphism is an automorphism if and only if p - r′s− rs′.

Proof. Let φ : 〈a, b〉 → p1+2
+ be the homomorphism defined by φ(a) = ar

′
bs
′
ct
′

and φ(b) = arbsct

(here 〈a, b〉 denotes the free group on the symbols a and b). If φ respects the relations in our
presentation of p1+2

+ , it induces an endomorphism of p1+2
+ . To be precise, if we let c denote the

element a−1b−1ab of 〈a, b〉 we have to check that φ(a)p = φ(b)p = φ(c)p = 1, that φ(a)φ(c) =
φ(c)φ(a), and that φ(b)φ(c) = φ(c)φ(b).
Computations using only the definition of φ and the relations of p1+2

+ show that φ(c) = cr
′s−rs′ .

The conditions φ(c)p = 1, φ(a)φ(c) = φ(c)φ(a) and φ(b)φ(c) = φ(c)φ(b) are therefore satisfied.
That φ(b)p = 1 can be shown as follows:

φ(b)p = (arbsct)p = (arbs)p = arbsarbs(arbs)p−2 = c−rsa2rb2r(arbs)p−2

= . . . = c−rs
∑p−1
i=1 iaprbpr = c−rs

p(p−1)
2 = 1

where the last equality follows from the fact that p | p(p−1)
2 , since p is an odd prime. Analogously,

one can show that φ(a)p = 1. In the following, φ will denote the induced endomorphism of p1+2
+ .

Assume that p - r′s− rs′. Let u, v, w ∈ {0, . . . , p− 1}, and assume that φ(aubvcw) = 1. I.e.

1 = φ(a)uφ(b)vφ(c)w = (ar
′
bs
′
ct
′
)u(arbsct)v(cr

′s−rs′)w

= aur
′+vrbus

′+vsc∗

(the exponent of c is irrelevant to the argument, so we write ∗ in its place for brevity). Modulo p
we have ur′ ≡ −vr and −us′ ≡ vs. In particular uvr′s ≡ uvrs′ (mod p), and so p | uv(r′s−rs′).
By assumption we must have p | u or p | v. If p | u but p - v, the first pair of congruences imply
that p | r and p | s, which contradicts p - r′s− rs′. Likewise p |⇒ p | u, hence p divides both u
and v. Now

1 = φ(aubvcw) = φ(c)w = c(r′s−rs′)w

so p | w. We conclude that φ is injective if p - r′s − rs′. On the other hand we know that
φ(c) = cr

′s−rs′ , so the condition is necessary.

Note that the proposition accounts for all automorphisms of p1+2
+ . We continue with a description

of the structure of the group of automorphisms of p1+2
+ .

Proposition 6. There is a surjective homomorphism Aut(p1+2
+ )→ GL2(Fp) given by

φ 7→
(
r′ r
s′ s

)
=: Mφ,

where r′, s′, r, s are given by φ(a) = ar
′
bs
′
ct
′
, φ(b) = arbsct.

The homomorphism induces an isomorphism Out(p1+2
+ )→ GL2(Fp).
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Proof. Using Proposition 5, it is clear that the assignment φ 7→ Mφ defines a surjective map
Aut(p1+2

+ ) → GL2(Fp). To see that it is a homomorphism, let ψ ∈ Aut(p1+2
+ ) be given by

ψ(a) = au
′
bv
′
cw
′

and ψ(b) = aubvcw. Then we have

ψ(φ(a)) = au
′r′+us′bv

′r′+vs′c∗

ψ(φ(b)) = au
′r+usbv

′r+vsc∗

and so

Mψφ =

(
u′r′ + us′ u′r + us
v′r′ + vs′ v′r + vs

)
=

(
u′ u
v′ v

)(
r′ r
s′ s

)
= MψMφ

To prove the last claim of the lemma, we need to consider inner automorphisms of p1+2
+ . Let

x, y, z ∈ {0, . . . , p− 1}, then

(axbycz)a(axbycz)−1 = ac−y

(axbycz)b(axbycz)−1 = bcx

which shows that all inner automorphisms of p1+2
+ map to the identity matrix of GL2(Fp). Con-

versely, let φ ∈ Aut(p1+2
+ ) and assume that Mφ =

(
1 0
0 1

)
. Then there are t′, t ∈ {0, . . . , p−1}

such that φ(a) = act
′

and φ(b) = bct. But then φ is the automorphism given by conjugation by
atb−t

′
. Hence Inn(p1+2

+ ) is the kernel of the epimorphism Aut(p1+2
+ )→ GL2(Fp).

The identification Out(p1+2
+ ) ∼= GL2(Fp) will be very important in the analysis of fusion systems

defined over p1+2
+ . Another ingredient will be Alperin’s Fusion Theorem. In order to apply it to

a given fusion system F over p1+2
+ , we need to study the subgroups of p1+2

+ and determine which
of them are F-centric and F-radical.

Lemma 7. Every proper subgroup of p1+2
+ is abelian. They can be described as follows:

1. There are p + 1 elementary abelian subgroups of p1+2
+ of rank 2. These are Vi := 〈c, abi〉,

for i = 0, . . . , p− 1, and Vp := 〈c, b〉. They are all normal in p1+2
+ .

2. There are 1 + p+ p2 subgroups of p1+2
+ of order p.

Proof. Let H be a non-abelian subgroup of p1+2
+ , and let x, y ∈ H be two non-commuting

elements. By Proposition 5, the assignment a 7→ x, b 7→ y defines a homomorphism φ : p1+2
+ →

p1+2
+ , whose image is 〈x, y〉. This image is non-abelian and isomorphic to p1+2

+ / kerφ, hence kerφ
does not contain the commutator subgroup of p1+2

+ which is 〈c〉. In particular φ(c) 6= 1, but
from the proof of Proposition 5, this is the same as saying that φ is an automorphism of p1+2

+ .
Hence H = p1+2

+ .
ad 1. Let V 6 p1+2

+ be elementary abelian of rank 2. As V ∼= Z/pZ × Z/pZ, we may regard V
as an Fp-vector space, hence the choice of the letter ’V ’. (Explicitly, the action of Fp on V is
given by z.x = xz, which is well-defined since every element (save the neutral one) of p1+2

+ has
order p).
We claim that c ∈ V : Assume this is not the case and let x, y ∈ V be generators of V . Then
V = 〈x, y〉 � 〈x, y, c〉 6 p1+2

+ . But as c is central in p1+2
+ , we get that 〈x, y, c〉 is an abelian

subgroup of p1+2
+ of order > p2, a clear contradiction. Therefore, V = 〈c, x〉 for some x ∈ V .

Write x = arbsct, r, s, t ∈ {0, . . . , p − 1}. If r = 0, then V = Vp. If r 6= 0, we may assume that
r = 1 by replacing x by some suitable power of x, and so V = Vs.
That each Vi, i = 0, . . . , p, is normal in p1+2

+ is immediate once we recall that c is central in p1+2
+ ,

and that the exponents r, s of every element arbsct ∈ p1+2
+ are unchanged under conjugation by

all elements of p1+2
+ .
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ad 2. This result is a matter of counting: Every element of p1+2
+ , save the neutral element,

has order p, and lies in excatly one subgroup of p1+2
+ of order p. Consequently, there are

(p3 − 1)/(p− 1) = 1 + p+ p2 such subgroups.

We will often need to refer to the set of elementary abelian subgroups of p1+2
+ of rank 2; let V

denote this set, i.e. V = {Vi | i = 0, . . . , p} with the notation of the lemma.

3 Fusion systems over p1+2
+

We now turn our attention to fusion systems defined over p1+2
+ . Alperin’s Fusion Theorem play

a key role in the classification of saturated fusion systems over p1+2
+ done by A. Ruiz and A.

Viruel. To make use of it, we need to understand the F-centric and F-radical subgroups of
p1+2

+ for a given fusion system F over p1+2
+ . If V 6 p1+2

+ is elementary abelian of rank 2, its
group of automorphisms can be identified canonically with GL2(Fp) (though this identification
is unlike the one established in the previous section; Out(p1+2

+ ) ∼= GL2(Fp)). And since V is
abelian, the group of automorphisms of V is the same as the group of outer automorphisms of
V ; Aut(V ) = Out(V ), in particular AutF (V ) = OutF (V ) for any given fusion system F over
p1+2

+ .

Lemma 8. Let F be a fusion system over p1+2
+ .

1. The F-centric subgroups are exactly the elementary abelian subgroups of rank 2 and p1+2
+

itself.

2. Each V ∈ V is F-radical if and only if SL2(Fp) 6 AutF (V ). ([RV, 4.1]).

Proof. ad 1. It is trivial that p1+2
+ is F-centric.

We know that 〈c〉 = Z(p1+2
+ ), which implies that Cp1+2

+
(〈c〉) = p1+2

+ , and so 〈c〉 cannot be

F-centric. But Z(p1+2
+ ) 6 Cp1+2

+
(P ) for any subgroup P 6 p1+2

+ , so any F-centric subgroup

must contain 〈c〉. The rank 2 elementary abelian subgroups are therefore the only remaining
candidates, and we have to show that every one of them is F-centric. Given V ∈ V, we have
V 6 Cp1+2

+
(V ), but equality must hold since otherwise Cp1+2

+
(V ) = p1+2

+ and V would be central.

Hence every rank two elementary abelian subgroup is F-centric.

ad 2. Let V ∈ V be given. Assume first that SL2(Fp) 6 AutF (V ). The order of SL2(Fp)
is (p− 1)p(p+ 1) while the order of GL2(Fp) is (p− 1)2p(p+ 1). Any non-trivial p-subgroup of
AutF (V ) must therefore have order p and be a Sylow-p-subgroup of AutF (V ). The groups{(

1 z
0 1

)
| z ∈ Fp

}
, and

{(
1 0
z 1

)
| z ∈ Fp

}
,

are two distinct Sylow-p-subgroups of SL2(Fp) and of AutF (V ) as well. But then AutF (V ) has
no normal subgroup of order p, and we conclude that Op(AutF (V )) = 1, i.e. that V is F-centric.

Now assume that V is F-radical. V is one of the groups described in Lemma 7. Assume
for convenience that V = V0 = 〈c, a〉; the argument is the same for all the Vi. The elements
of V are exactly the elements ciaj , i, j ∈ {0, . . . , p − 1}. ciaj 7→ (i, j) defines an isomorphism
V → Z/pZ×Z/pZ, and this isomorphism induces the isomorphism Aut(V ) ∼= GL2(Fp) mentioned

earlier, though we will just write Aut(V ) = GL2(Fp). The matrix T =

(
1 1
0 1

)
∈ SL2(Fp)

corresponds to the automorphism of V given by c 7→ c, a 7→ ca. But that is the restriction to
V of the inner automorphism of p1+2

+ given by conjugation by b−1. Therefore T ∈ AutF (V ).
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T has order p, so 〈T 〉 is a Sylow-p-subgroup of AutF (V ). But then AutF (V ) must contain
more than one Sylow-p-subgroup, since otherwise 〈T 〉 would be normal in AutF (V ). We claim
that the number of Sylow-p-subgroups of GL2(Fp) is p+ 1; using Sylow’s theorems, this would
imply that AutF (V ) contains all of them. The number of Sylow-p-subgroups of GL2(Fp) equals
[GL2(Fp) : NGL2(Fp)(〈T 〉)]. Simple computations show that an element of GL2(Fp) normalizes

〈T 〉 if and only if it is an upper triangular matrix, i.e.
∣∣NGL2(Fp)(〈T 〉)

∣∣ = (p− 1)2p.
In particular, we now know that AutF (V ) contains all elements of GL2(Fp) of order p. We will
use this to show that SL2(Fp) 6 AutF (V ). We first show that AutF (V ) contains all diagonal
matrices of SL2(Fp). Let x ∈ Fp, x 6= 0, then(

x 0
0 x−1

)
=

(
1 0

x−1 − 1 1

)(
1 1
0 1

)(
1 0

x− 1 1

)(
1 −x−1

0 1

)
∈ AutF (V )

Now let M =

(
q r
s t

)
∈ SL2(Fp). Note that

S :=

(
0 1
−1 0

)
=

(
1 1
0 1

)(
1 0
−1 1

)(
1 1
0 1

)
∈ AutF (V )

If q = 0, then r, s 6= 0 and s = −r−1 and we have that

M =

(
1 0
−ts 1

)(
−r 0
0 s

)
S−1 ∈ AutF (V )

If q 6= 0, we have that

M =

(
1 0

q−1s 1

)(
q 0
0 t− q−1rs

)(
1 q−1r
0 1

)
∈ AutF (V )

Which finishes the proof of the ’only if’-part.

Since all rank 2 elementary abelian subgroups are normal in p1+2
+ , they are all fully normalized.

As a consequence of the lemma, we therefore have that such a subgroup V is an element of Fcrn
if and only if V is F-radical. Let Fer denote the set of all rank 2 elementary abelian subgroups
of p1+2

+ that are F-radical.
We wish to condense the information needed to uniquely define any saturated fusion system over
p1+2

+ to a minimum. The next lemma takes another step towards that goal.

Lemma 9. [RV, 4.4]. Let F be a saturated fusion system over p1+2
+ , and let V 6 p1+2

+ be
elementary abelian of rank 2. Then AutF (V ) can be determined explicitly from the following
knowledge: AutF (p1+2

+ ); and whether or not V is F-radical.

Proof. First we deal with the case in which V is not F-radical. Applying Alperin’s Fusion Theo-
rem (theorem 4) we see that every F-automorphism of V is the restriction of an F-automorphism
of p1+2

+ . (And any such restriction defines an F-automorphism of V by the definition of fusion
systems).

Now assume that V is F-radical. V has the form V = 〈C,AiBj〉 for some i, j ∈ {0, 1, . . . , p−1}.
We have our usual identification AutF (V ) 6 GL2(Fp) with respect to this basis.
From Lemma 8 we know that SL2(Fp) 6 AutF (V ). Furthermore AutF (V ) must contain all
possible restrictions of elements of AutF (p1+2

+ ). These restrictions form a subgroup of AutF (V ) 6
GL2(Fp) so their determinants form a subgroup of F∗p. Let R denote this subgroup. Then
AutF (V ) contains every element of GL2(Fp) whose determinant is an element of R. (We can
identify R with the subgroup {diag (r, 1) | r ∈ R} 6 GL2(Fp). Then R acts on SL2(Fp) by
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conjugation. Our statement can now be rephrased to say that AutF (V ) contains SL2(Fp)o R;
the semidirect product of SL2(Fp) and R with respect to the acion of R just defined).
We claim that in fact AutF (V ) = SL2(Fp) o R. Let φ ∈ AutF (V ) and set d = det(φ). As
SL2(Fp) 6 AutF (V ), every matrix with determinant d is contained in AutF (V ); let ψ :=(
d 0
0 1

)
, then ψ ∈ AutF (V ). V is F-centric (by Lemma 8); in particular, V is fully F-

centralized and thereby receptive (by Proposition 1). Thus ψ extends to a ψ̃ ∈ HomF (Nψ, p
1+2
+ ).

We claim that Nψ = p1+2
+ . Let g = arbsct ∈ Np1+2

+
(V ) = p1+2

+ , then cg|V,V is the F-automorphism

of V with matrix

(
1 si− rj
0 1

)
. Now

ψcg|V,V ψ
−1 =

(
d 0
0 1

)(
1 si− rj
0 1

)(
d−1 0
0 1

)
=

(
1 (ds)i− (dr)j
0 1

)
i.e. ψcg|V,V ψ−1 = cadrbds |V,V ∈ Autp1+2

+
(V ), hence Nψ = p1+2

+ . So ψ is the restriction of

ψ̃ ∈ AutF (p1+2
+ ). Therefore d = det(ψ) ∈ R, and we conclude that φ ∈ SL2(Fp) : R.

Proposition 10. Let g =

(
α β
γ δ

)
∈ GL2(Fp) = Out(p1+2

+ ) be given, and let φg ∈ Aut(p1+2
+ )

be the automorphism given by

φg(a) = aαbγc−
1
2
αγ , and φg(b) = aβbδc−

1
2
βδ

Then we have the following series of results:

1. The map Φ: Out(p1+2
+ )→ Aut(p1+2

+ ) given by g 7→ φg is a homomorphism which splits the
canonical homomorphism Aut(p1+2

+ )→ Out(p1+2
+ ).

2. The action of Out(p1+2
+ ) on p1+2

+ defined by g.x = φg(x) induces an action of Out(p1+2
+ )

on Inn(p1+2
+ ).

3. There is an isomorphism Ψ: Inn(p1+2
+ ) o Out(p1+2

+ ) → Aut(p1+2
+ ) defined by (cx, g) 7→

cx ◦ φg. (The semidirect product is formed with respect to the action given in 2.).

4. If F is a fusion system over p1+2
+ , the above results all hold with OutF (p1+2

+ ) and AutF (p1+2
+ )

in place of Out(p1+2
+ ) and Aut(p1+2

+ ), respectively.

Proof. First of all we note that φg really is an automorphism of p1+2
+ , see Proposition 5. We will

now prove the statements 1.–4. one by one:
ad 1. We allow ourselves to write Out(p1+2

+ ) = GL2(Fp), by use of Proposition 6. With the
notation of that proposition, it is clear that Mφg = g for all g ∈ Out(p1+2

+ ), hence Φ is a splitting.
The more difficult part is to prove that Φ is a homomorphism. Let

g =

(
α β
γ δ

)
, h =

(
q r
s t

)
∈ Out(p1+2

+ )

be given. Then

φg(φh(a)) = φg(a
qbsc−

1
2
qs) = (aαbγc−

1
2
αγ)q(aβbδc−

1
2
βδ)s(cαδ−βγ)−

1
2
qs

=
(
aαqbγqc−

1
2

(αγq(q−1)+αγq)
)(

aβsbδsc−
1
2

(βδs(s−1)+βδs)
)
c−

1
2

(αδ−βγ)qs

= aαq+βsbγq+δsc−
1
2

(q2αγ+s2βδ+αδqs+βγqs)

But since

q2αγ + s2βδ + αδqs+ βγqs = (αq + βs)(γq + δs)
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and

gh =

(
αq + βs αr + βt
γq + δs γr + δt

)
We see that φg(φh(a)) = φgh(a). Similar computations show that φg(φh(b)) = φgh(b) as well,
hence φg ◦ φh = φgh, i.e. Φ is a homomorphism.

ad 2. With g =

(
α β
γ δ

)
∈ Out(p1+2

+ ), we have that φg(c) = cdet(g) (we have already used

this in the proof of the first part). As Inn(p1+2
+ ) ∼= p1+2

+ /Z(p1+2
+ ) and Z(p1+2

+ ) = 〈c〉 the claim
follows. Note that the action is g.cx = cφg(x) for all g ∈ Out(p1+2

+ ), x ∈ p1+2
+ . This will be used

below.

ad 3. From 1. it follows that Ψ as defined is bijective. To see that Ψ is a homomorphism,
let (cx, g), (cy, h) ∈ Inn(p1+2

+ )oOut(p1+2
+ ) be given. Then

Ψ((cx, g) · (cy, h)) = Ψ(cx ◦ cφg(y), gh)

= cx ◦ (φg ◦ cy ◦ φg−1) ◦ φgh
= cx ◦ φg ◦ cy ◦ φh
= Ψ(cx, g) ◦Ψ(cy, h)

ad 4. Note that for each φ ∈ Aut(p1+2
+ ), all elements of its coset in Aut(p1+2

+ )/Inn(p1+2
+ ) =

Out(p1+2
+ ) are F-morphisms if and only if φ is an F-morphism, since all inner automorphisms

of p1+2
+ are F-morphisms. This allows us to form the needed restrictions of the maps presented

in 1.–3.

The key result of the proposition is that we can recover AutF (p1+2
+ ) from OutF (p1+2

+ ) for any
fusion system F over p1+2

+ . Combining this result with Alperin’s Fusion Theorem (theorem 4),
we see that OutF (p1+2

+ ) and Fer (the rank 2 elementary abelian subgroups of p1+2
+ that are

F-radical) uniquely determine F . This is what the uniqueness half of the classification of the
saturated fusion systems over p1+2

+ is based on. However, the existence half is barely touched
upon, and how to construct such fusion systems is only stated implicitly. One chooses candidates
for OutF (p1+2

+ ) and Fer, and then constructs a fusion system that matches these choices. Most
possible choices lead to group fusion systems, but since our interest lies in the exotic examples
we need to describe the process of constructing fusion systems over p1+2

+ in much greater detail.
If F is a saturated fusion system over p1+2

+ , then OutF (p1+2
+ ) has order prime to p, since p1+2

+

is fully F-automized. We also note that AutF (p1+2
+ ) determines the F-conjugacy classes of the

rank 2 elementary abelian subgroups of p1+2
+ ; we just apply Alperin’s Fusion Theorem to an F-

isomorphism of two distinct elements of V. We can rephrase this and say that the F-conjugacy
classes are the orbits under the obvious action of AutF (p1+2

+ ) on V. In fact, OutF (p1+2
+ ) also

acts on V by g.V = φg(V ), and since each V ∈ V is normal in p1+2
+ , the orbits of these two

actions are the same.
We can now describe how every saturated fusion system over p1+2

+ can be constructed:

Proposition 11. Let O 6 GL2(Fp) be a subgroup of order prime to p. Let Vr ⊆ V be the union
of a subset of the orbits of the action of O described in Proposition 10; that is g.V = φg(V ),
g ∈ O.
Then one can construct a fusion system FO,Vr over p1+2

+ which satisfies OutFO,Vr (p1+2
+ ) = O,

and that V ∈ V is FO,Vr -radical if and only if V ∈ Vr.

Proof. Define A = Inn(p1+2
+ )oO with the action of O on Inn(p1+2

+ ) being the restriction of the
action described in Proposition 10. For each V ∈ Vr, set A|V = {α|V,V | α ∈ A, α(V ) = V }.
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Then define AV 6 Aut(V ) = GL2(Fp) as the subgroup SL2(Fp)oR, where R 6 F∗p is the group of
determinants of the elements of A|V . R only depends on the orbit of V . By an A-automorphism
we shall mean an element of A ∪

(⋃
V ∈Vr A|V

)
.

We now define F = FO,Vr as follows: Given subgroups P, P ′ 6 p1+2
+ that are isomorphic as

groups, let IsoF (P, P ′) be the set of all isomorphisms P → P ′ of the form

αn|Pn−1,Pn
◦ . . . ◦ α1|P0,P1

where P0 = P, P1, . . . , Pn = P ′ 6 p1+2
+ , and where αi is an A-automorphism of some Qi ∈

{p1+2
+ } ∪ Vr such that Pi−1, Pi 6 Qi, and αi(Pi−1) = Pi for i = 1, . . . , n. (I.e. we mimic the

morphism structure from the formulation of Alperin’s Fusion Theorem). Note that IsoF (P, P ′)
may very well be empty. Next, for arbitrary P,Q 6 p1+2

+ , define

HomF (P,Q) =
⋃
P ′6Q

{ιP ′,Q ◦ φ | φ ∈ IsoF (P, P ′)}

where ιP ′,Q denotes the inclusion of P ′ into Q. We claim that with these morphisms, F is a fusion
system with AutF (p1+2

+ ) = A, and AutF (V ) = AV for all V ∈ Vr. To prove this claim we need
to verify several properties. First we show that F is closed under composition of morphisms:
Let P,Q,R 6 p1+2

+ and let φ ∈ HomF (P,Q) and ψ ∈ HomF (Q,R). There are subgroups

P = P0, P1, . . . , Pn = φ(P ), P̂0 = Q, P̂1, . . . , P̂m = ψ(Q) 6 p1+2
+

and A-automorphisms α1, . . . , αn, α̂1, . . . , α̂m such that

ψ = ιψ(Q),R ◦ (α̂m|P̂m−1,P̂m
◦ . . . ◦ α̂1|P̂0,P̂1 ), and φ = ιφ(P ),Q ◦ (αn|Pn−1,Pn

◦ . . . ◦ α1|P0,P1 )

Set Pn+1 = α̂1(Pn), and define Pn+2, . . . , Pn+m recursively by Pn+i = α̂i(Pn+i−1). Then

ψφ = ιψφ(P ),R ◦ α̂m|Pn+m−1,Pn+m
◦ . . . ◦ α̂1|Pn,Pn+1

◦ αn|Pn−1,Pn
◦ . . . ◦ α1|P0,P1

and so ψφ is also an F-homomorphism.
Next we need to show that Homp1+2

+
(P,Q) ⊆ HomF (P,Q) for all P,Q 6 p1+2

+ . It is immediate

from our definition of the F-homomorphisms that AutF (p1+2
+ ) = A. In particular Inn(p1+2

+ ) ⊆
AutF (p1+2

+ ). An element of Homp1+2
+

(P,Q) has the form ιcg(P ),Q ◦ cg|P,cg(P )
, but that is an

F-homomorphism, since cg ∈ A.
To prove the claim, it remains to show that AutF (V ) = AV for all V ∈ Vr. We obviously
have AutF (V ) > AV . Now let φ ∈ AutF (V ); there are A-automorphisms αi of subgroups
Qi ∈ {p1+2

+ } ∪ Vr for i = 1, . . . , n, and subgroups P0, . . . , Pn 6 p1+2
+ such that Pi−1, Pi 6 Qi and

αi(Pi−1) = Pi, and

φ = αn|Pn−1,Pn
◦ . . . ◦ α1|P0,P1 (8)

We prove that φ ∈ AV by induction on n. We know that α(V ) ∈ Vr for all α ∈ A and all V ∈ Vr.
Therefore, Pi ∈ Vr for all i. If n = 1, then P0 = P1 = V and either Q1 = V or Q1 = p1+2

+ . In
either case, α1|V,V ∈ AV .
Now assume n > 1. If αn|Pn−1,Pn

∈ AV , then (αn|Pn−1,Pn
)−1 ◦ φ ∈ AV by induction, hence

φ ∈ AV . If αn|Pn−1,Pn
/∈ AV , then αn ∈ A. If also αn−1 ∈ A, then

φ = (αnαn−1)|Pn−2,Pn
◦ αn−2|Pn−3,Pn−2

◦ . . . ◦ α1|P0,P1

and inductively φ ∈ AV . If αn−1 /∈ A, then Pn−2 = Pn−1 =: V ′ 6= V and αn−1 ∈ AV ′ . We may
then rewrite (8) as follows:

φ = (αn|V ′,V ◦ αn−1 ◦ (αn|V ′,V )−1) ◦ αn|V ′,V ◦ αn−2|Pn−3,V
′ ◦ . . . ◦ α1|P0,P1 (9)
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Both AV and AV ′ are isomorphic to SL2(Fp) o R, and since V and V ′ are rank two elemen-
tary abelian groups we may view αn|V ′,V as an element of GL2(Fp). But then αn|V ′,V ◦ αn−1 ◦
(αn|V ′,V )−1 is an element of AutF (V ) 6 GL2(Fp) with the same determinant as αn−1. Hence

αn|V ′,V ◦αn−1 ◦ (αn|V ′,V )−1 ∈ AV . From (9) we conclude inductively that φ ∈ AV . We have now
covered all possible cases.

To finish the proof of the proposition we have to show that OutF (p1+2
+ ) = O, and that any

given V ∈ V is F-radical if and only if V ∈ Vr. The former property clearly holds since
AutF (p1+2

+ ) = A. Furthermore, each V ∈ Vr is F-radical by Lemma 8. Now let V ∈ V \ Vr
and assume that V is F-radical, i.e. that SL2(Fp) 6 AutF (V ). From our definition of the
F-homomorphisms we see that AutF (V ) = {α|V,V | α ∈ A, α(V ) = V }, which means that

every F-automorphism of V extends to an F-automorphism of p1+2
+ . If we write V = 〈c, x〉, the

automorphism corresponding to the matrix

(
1 0
1 1

)
∈ SL2(Fp) 6 AutF (V ) is the one given

by c 7→ cx, x 7→ x. This automorphism of V extends to an automorphism α ∈ AutF (p1+2
+ ).

αk(c) = c if and only if p | k, hence if αk is an inner automorphism of p1+2
+ , k must be a multiple

of p, i.e. the order of the class of α in OutF (p1+2
+ ) is a multiple of p. But this contradicts the

fact that the order of OutF (p1+2
+ ) is prime to p.

The proof is constructive and provides a procedure to construct fusion systems over p1+2
+ . Note

that if we start out with a saturated fusion system F and determine OutF (p1+2
+ ) and Fer the

construction presented above recovers F , i.e. F = FOutF (p1+2
+ ),Fer ; Alperin’s Fusion Theorem

provides the inclusion ’⊆’ while the axioms of the definition of fusion systems provides the other
one.
We should also make a warning concerning the uniqueness of the construction: Let O,O′ 6
GL2(Fp) be isomorphic and of order prime to p, and let Vr be chosen (w.r.t. the action of O on
V). The isomorphism O ∼= O′ need not provide a way to meaningully choose a subset of V with
respect to the action of O′ that should correspond to Vr. Even if we can make a meaningful
choice (e.g. if Vr = V) we don’t know whether the resulting fusion systems are isomorphic.
However, if O and O′ are conjugate in GL2(Fp) via some element g, then we have an element
φg ∈ Aut(p1+2

+ ) that relates the resulting fusion systems. In fact, φg induces an isomorphism of
these fusion systems, which can easily be checked.
Note also that the proposition makes no mention of saturation.

The classification is performed by inspecting the possible choices of O and Vr. Our interest
does not lie in the entire classification, but rather in the examples of exotic fusion systems it
provides. We shall therefore just mention the choices which lead to these exotic fusion systems.
There are three of them and they all occur at the prime p = 7.

4 Exotic fusion systems over p1+2
+

GL2(F7) contains the element y =

(
3 2
5 2

)
of order 48 (= 72−1). The twisting x =

(
0 1
1 0

)
acts on 〈y〉 by conjugation (explicitly, xyx = y7). The semidirect product 〈y〉o 〈x〉 with respect
to this action is the subgroup 〈y, x〉. So GL2(F7) contains a subgroup isomorphic to 48:2 (using
the notation of [At]). Such a subgroup is unique up to conjugation in GL2(Fp). GL2(F7) also
contains a subgroup isomorphic to 62:2 (i.e. (6× 6) : 2); e.g. the subgroup consisting of the 36
diagonal matrices and the 36 anti-diagonal matrices (x acts on either by conjugation).
Every maximal subgroup of GL2(F7) of order prime to p is isomorphic to either 48:2, 62:2 or 6S4.
(One can provide explicit generators of a subgroup isomorphic to 6S4). Furthermore any such
subgroup is unique up to conjugation in GL2(F7). The subgroup 〈y2, x〉 is isomorphic to 24:2.
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A subgroup of GL2(F7) which is isomorphic to 24:2 must be contained in a maximal subgroup
of the form 48:2 since it contains an element of order 24 which neither 6S4 or 62:2 does. In
addition 48:2 contains just a single subgroup which is isomorphic to 24:2 (since the cyclic group
of order 48 contains a unique subgroup of order 24). Therefore a subgroup of GL2(F7) which is
isomorphic to 24:2 is unique up to conjugation.
From now on we will use 48:2, 24:2 and 62:2 to refer to fixed subgroups of GL2(F7). 48:2 will be
the subgroup 〈y, x〉 with y and x as defined above, 24:2 will be the subgroup 〈y2, x〉, and 62:2
will be the subgroup consisting of all diagonal and anti-diagonal matrices.
We now define three fusion systems F48:2, F24:2, and F62:2 over 71+2

+ , corresponding to the choices
O = 48:2, 24:2, 62:2 respectively, with Vr = V in all three cases.

Proposition 12. The fusion systems F48:2, F24:2 and F62:2 are saturated and exotic.

Proof. We will use Proposition 3 with C = {c} to show that the fusion systems are saturated.
Let F be one of them. We first show that F satisfies the combination of the first two properties
of the proposition: We need to check every element of F (save the identity) since they all have
order 7. Each of the subgroups 62:2, 48:2, 24:2 6 GL2(F7) contain an element of determinant 3:

62:2 contains

(
3 0
0 1

)
, 48:2 contains y =

(
3 2
5 2

)
, and 24:2 = 〈y2, x〉 contains y4x. In each

case, we obtain an F-automorphism of 71+2
+ which maps c to c3. But then c can be mapped

to every non-identity element of 〈c〉 by an F-automorphism of 71+2
+ , since 3 generates F∗7. As

C71+2
+

(c) = 71+2
+ , this argument covers all elements of order 7 that are central.

Now let x ∈ 71+2
+ and assume that x is not central. Then 〈c, x〉 ∈ V, and

(
0 1
−1 0

)
∈ SL2(F7) 6

AutF (〈c, x〉) is an F-automorphism of 〈c, x〉 which maps x to c. Since 〈c, x〉 is abelian, we have
〈c, x〉 6 C71+2

+
(〈c, x〉), but if the inclusion were strict we would have C71+2

+
(〈c, x〉) = 71+2

+ , and

x would be central. Hence C71+2
+

(〈c, x〉) = 〈c, x〉, and after a composition with the inclusion

homomorphism 〈c, x〉 ↪→ 71+2
+ , we obtain our desired F-homomorphism C71+2

+
(〈c, x〉) → 71+2

+

which maps x to c.
Next we need to see that the centralizer fusion system CF (c) is saturated. We will use Proposition
1 to do so. 〈c〉 must clearly constitute its own CF (c)-conjugacy class, and there is just one CF (c)-
automorphism of 〈c〉. So 〈c〉 is trivially fully normalized, fully centralized, fully automized and
receptive in CF (c).
If x ∈ 71+2

+ is non-central, then we just saw that C71+2
+

(〈x〉) = 〈c, x〉. Furthermore N71+2
+

(〈x〉) =

〈c, x〉. So 〈x〉 is fully centralized and fully normalized in CF (c). AutCF (c)(〈x〉) is a subgroup of
Aut(〈x〉) which is cyclic of order p − 1. Therefore, 〈x〉 is also fully CF (c)-automized. Now let
y ∈ 71+2

+ be another non-central element, and assume φ is a CF (c)-isomorphism 〈y〉 → 〈x〉. By

definition of CF (c), there is an F-isomorphism φ̃ : 〈c, y〉 → 〈c, x〉 which extends φ and maps c to
c. In particular φ̃ is a CF (c)-morphism, and its source is N71+2

+
(〈y〉). We may therefore restrict

it to Nφ, and we conclude that 〈x〉 is receptive.
Now let V ∈ V. We know that N71+2

+
(V ) = 71+2

+ and that C71+2
+

(V ) = V . Therefore every

element of V is fully normalized and fully centralized in CF (c). The CF (c)-automorphisms of
V are all F-automorphisms of V that map c to c. We know that AutF (V ) = SL2(F7) o R for

some subgroup R 6 F∗7, and so AutCF (c)(V ) consists of all matrices of the form

(
1 s
0 r

)
with

r ∈ R, s ∈ F7. There are 7 |R| such matrices, and since Aut71+2
+

(V ) ∼= 71+2
+ /V has order 7, we

conclude that V is fully automized in CF (c).
Next we need to show that V is receptive in CF (c). We do that by showing that each CF (c)-
isomorphism with V as target extends to an CF (c)-automorphism of 71+2

+ . In order to do so, we
claim that it is enough to show that:
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1. Every element of AutCF (c)(V ) extends to an element of AutCF (c)(7
1+2
+ ).

2. For each V ′ ∈ V CF (c) there is an isomorphism ψ ∈ IsoCF (c)(V
′, V ) which extends to an

element of AutCF (c)(7
1+2
+ ).

The claim is true because every CF (c)-isomorphism φ : V ′ → V can be written as φ = α ◦ ψ for
some suitable α ∈ AutCF (c)(V ). And if α and ψ can be extended then the composite of their
extension will be an extension of φ.
Additionally, if V satisfies the two properties listed above, then so does every CF (c)-conjugate
to V ; every isomorphism between elements of V CF (c) factors through V .
Unfortunately, showing that V satisfies the two conditions requires a separate study of each of
the fusion systems F48:2, F24:2 and F62:2. Lemma 13 below contains the information needed,
and we use it to handle each of the three centralizer fusion systems in question:

CF62:2
(c): First we need to see what the CF62:2

(c)-conjugacy classes of the rank 2 elementary

abelian subgroups are. Let r ∈ F∗7 and set x′ =

(
0 −1
1 0

)
, g =

(
0 r
−r−1 0

)
and

h =

(
r−1 0
0 r

)
. Computations show that

φx′(c) = φg(c) = φh(c) = c,

φx′(a) = b,

φg(ab) = (ab−r
−2

)rc∗, φh(ab) = (abr
2
)r
−1
c∗

The first line shows that φx′ , φg, φh ∈ AutCF
62:2

(c)(7
1+2
+ ). The second line shows that V0

and V7 are CF62:2
(c)-conjugate. By letting r assume all values of F∗7, the last line shows

that V1, V2, . . . , V6 are CF62:2
(c)-conjugate. Since CF62:2

(c) is a subsystem of F62:2 there
can be no further relations. These arguments also show that every V ∈ V satisfies property
2. listed above, since we have shown the conjugacy relations via restrictions of CF62:2

(c)-

automorphisms of 71+2
+ .

Now let α ∈ AutCF
62:2

(c)(V0) be given. Then α =

(
1 s
0 r

)
for some s ∈ F7 and r ∈ F∗7

(since AutF62:2
(V0) = GL2(F7)). It is easy to check that (cb−s ◦ φh−1)|V0,V0 = α.

Finally let α ∈ AutCF
62:2

(c)(V1) be given. Then α =

(
1 s
0 r

)
for some s ∈ F7 and

r ∈ {±1}. Define g =

(
−1 0
0 −1

)
. Then det(g) = 1, so φg ∈ AutCF

62:2
(c)(7

1+2
+ ). One

checks that cb−s |V1,V1 = α if r = 1, and that (cb−(s−1) ◦ φg)|V1,V1 = α if r = −1.

CF48:2(c): First we determine the elements of 48:2 that have determinant 1, (they are exactly the
ones that define CF48:2(c)-automorphisms of 71+2

+ ). y has determinant 3, which generates
F∗7 and x has determinant −1, so the matrices we are looking for are exactly y6k and y3+6kx
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for k = 0, 1, . . . , 7. y6 =

(
0 6
1 4

)
and we determine the orbits of φy6 on V as follows

φy6(a) = b,

φy6(b) = a6b4c2 = (ab3)6c∗,

φy6(ab3) = b(a6b4c2)3 = a4b6c∗ = (ab5)4c∗,

φy6(ab5) = b(a6b4c2)5 = a2c∗;

φy6(ab) = b(a6b4c2) = a6b5c2 = (ab2)6c∗,

φy6(ab2) = b(a6b4c2)2 = a5b2c∗ = (ab6)5c∗,

φy6(ab6) = b(a6b4c2)6 = ab4c∗

So there are two orbits of φy6 : {V0, V7, V3, V5} and {V1, V2, V6, V4}.

y3x =

(
2 2
1 5

)
and we see that φy3x(a) = a2bc6 = (ab4)2c∗, which shows that V0 and

V4 are CF48:2(c)-conjugate. Therefore all rank 2 elementary abelian subgroups of 71+2
+ are

CF48:2(c)-conjugate, and they all have property 2. by the same argument as above.

The exact same argument as in the case of CF62:2
(c) shows that V1 has property 1.

CF24:2(c): We no longer have the element y3x at our disposal, since 24:2 is the subgroup of
48:2 generated by y2 and x. We still have y6, so the CF24:2(c)-conjugacy classes of V
are {V0, V7, V3, V5} and {V1, V2, V6, V4}. In the arguments above we only used the matrix
−I = y24 and elements of Inn(71+2

+ ) to show that V1 had property 2. as an object of
CF48:2(c), so since AutCF24:2 (c)(V1) = AutCF48:2 (c)(V1), V1 still has this property.

Now let α =

(
1 s
0 r

)
be a CF24:2(c)-automorphism of V0. We see that α = cb−s |V0,V0 if

r = 1, and α = (cbs ◦ φy24)|V0,V0 if r = −1. Hence in CF24:2(c) every automorphism of V0

extends to an automorphism of 71+2
+ .

Finally we note that 71+2
+ is fully normalized, fully centralized and receptive in CF (c) in all three

cases (this is trivial). That 71+2
+ is fully automized in CF24:2(c) means that AutCF24:2 (c)/Inn(71+2

+ )

has order prime to p. But AutCF24:2 (c)(7
1+2
+ ) is a subgroup of AutF (71+2

+ ), and AutF (71+2
+ )/Inn(71+2

+ ) =

OutF (71+2
+ ) which was chosen to have order prime to p.

Having now been through all subgroups of 71+2
+ we conclude that CF (c) is saturated for F =

F62:2,F48:2,F24:2, by use of Proposition 1. This finishes the proof of the saturation of the three
fusion systems.

That they are exotic fusion systems requires a proof of non-existence of finite groups G with
71+2

+ as Sylow-7-subgroup such that the group fusion system F71+2
+

(G) is isomorphic as a fusion

system to F62:2,F48:2 or F24:2. The proof relies on the classification of the finite simple groups
and will be omitted. See [RV, 4.17] for details.

We have already used the following lemma in the proof above. It will also be used to compute
the Euler characteristics of the fusion systems F62:2,F48:2, F24:2, and their outer quotients.

Lemma 13. In the fusion systems F48:2, F24:2 and F62:2 the (fusion) conjugacy classes of the
rank 2 elementary abelian subgroups of 71+2

+ and their automorphism groups are as presented in
the table below.
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F F-conjugacy classes of V F-automorphisms

F48:2 {V0, V1, V2, V3, V4, V5, V6, V7} SL2(F7)o {±1}
F24:2 {V0, V3, V5, V7}, {V1, V2, V4, V6} SL2(F7)o {±1}, SL2(F7)o {±1} resp.

F62:2 {V0, V7}, {V1, V2, V3, V4, V5, V6} GL2(F7), SL2(F7)o {±1} resp.

Proof. Recall that the action of OutF (71+2
+ ) determines the F-conjugacy classes of the rank 2

elementary abelian subgroups. The automorphism groups are determined as in the proof of
Lemma 9. Conjugate subgroups obviously have the same automorphisms.

F48:2: Computations show that the lowest positive power of y for which φy(V0) = V0 is y8 =(
3 0
0 3

)
(the criterion is that the lower left entry should be 0). φy defines a permutation

of the set V = {V0, . . . , V7}, and this permutation must have order 8, so it is an 8-cycle.
This means that all the elements of V are F48:2-conjugate. To see that AutF48:2(V0) =
SL2(F7)o {±1} we need to consider those elements of 48:2 whose induced automorphisms
of 71+2

+ map V0 to itself. The elements of 48:2 are yi and yix for i = 0, . . . , 47. The
remarks made so far show that φyi(V0) = V0 exactly when 8|i. We have that φy8(c) = c2

and φy8(a) = a3 which means that φy8 |V0,V0 has the matrix

(
2 0
0 3

)
with determinant

−1. The other automorphisms of the form φyi we need to consider are just powers of φy8 ,
so their determinants when restricted to automorphisms of V0 are just powers of −1.

Next we need to consider the automorphisms of the form φyix that map V0 to V0. Since φx
maps a to b, the requirement is that φyi should map b to a power of a. φy2 has this property,
hence φyix(V0) = V0 exactly if i ≡ 2 (mod 8). We have that φy2x(c) = c5 and φy2x(a) = a3,

so φy2x|V0,V0 =

(
5 0
0 3

)
with determinant 1. The other automorphisms we need to

consider have the form φy2+8kx, k = 1, . . . , 5. The decomposition φy2+8kx = φky8 ◦φy2x allow

us to compute the remaining determinants. They are (−1)k, k = 1, . . . , 5.

These arguments show that R = {±1} in the identification AutF48:2 = SL2(F7)oR.

F24:2 : The analysis will be very similar to the one above, since 24:2 is a subgroup of 48:2.
The action of φy2 on V has orbits {V0, V3, V5, V7} and {V1, V2, V4, V6}, while φx has orbits
{V0, V7}, {V1}, {V2, V4}, {V3, V5} and {V6}. So the F24:2-conjugacy classes are as in the
table.

AutF24:2(V0) = SL2(F7) o {±1} by the exact same arguments as above. AutF24:2(V1) can
be determined by a similar analysis. The elements of 24:2 whose induced automorphisms
of 71+2

+ map V1 to V1 are y8k and y8kx. φy8(c) = c2 and φy8(ab) = (ab)3c3 meaning that

φy8 |V1,V1 =

(
2 3
0 3

)
, which has determinant −1. φx(c) = c−1 while φx(ab) = ab, so

φx|V1,V1 =

(
−1 0
0 a

)
with determinant −1. We conclude that AutF24:2(V1) = SL2(F7)o

{±1} as well.

F62:2 : The matrix x =

(
0 1
1 0

)
∈ 62:2, defines the automorphism φx ∈ AutF62:2

which in-

terchanges a and b, i.e. φx(a) = b, φx(b) = a. So V0 and V7 are F62:2-conjugate; we
write V0 ∼ V7. Every diagonal matrix will fix V0 and V7 while every anti-diagonal matrix
interchanges V0 and V7, hence {V0, V7} is an F62:2-conjugacy class.

The matrix g =

(
1 0
0 i

)
∈ 62 : 2, i 6= 0, gives φg(ab) = abi, which shows that V1 ∼

V2 ∼ V3 ∼ V4 ∼ V5 ∼ V6. Hence the F62:2-conjugacy classes of the elementary abelian
subgroups of 71+2

+ of rank 2 are as in the table.
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To see that AutF62:2
(V0) = GL2(F7) we just need to find a g ∈ 62:2 such that φg restricts to

an automorphism of V0 with determinant 3 or 5, the generators of F∗7. Take g =

(
1 0
0 3

)
.

Then φg(c) = c3 and φg(a) = a, and so φg|V0,V0 =

(
3 0
0 1

)
.

To se that AutF62:2
(V1) = SL2(F7) o {±1}, let g =

(
q 0
0 r

)
, h =

(
0 s
t 0

)
∈ 62 : 2 be

given. We see that

φg(ab) = aqbr, φg(c) = cqr,

φh(ab) = asbt, φg(c) = c−st

so these automorphisms map V1 to V1 exactly when q = r and s = t. Assume now that
q = r and s = t. Computations show that aqbq = (ab)qc4q(q−1), and asbs = (ab)sc4s(s−1),
and we get that

φg|V1,V1 =

(
q2 4q(q − 1)
0 q

)
and φg|V1,V1 =

(
−s2 4s(s− 1)

0 s

)
with determinants q3 and −s3 = (−s)3. This means that the determinants of the elements
of AutF62:2

(V1) 6 GL2(F7) are exactly the cubes in F∗7, that is {±1}.

5 Euler characteristics of finite categories

Definition. Let C be a finite category (i.e. a category with a finite number of objects), and define
a square matrix ζ(C) whose rows and columns are indexed by Ob(C) by setting ζ(C)a,b = |C(a, b)|
for all pairs of objects a, b ∈ Ob(C).
A weighting for C is a map k• : Ob(C)→ Q which for all a ∈ Ob(C) satisfies∑

b∈Ob(C)

|C(a, b)| k•(b) = 1

A coweighting for C is a map k• : Ob(C)→ Q which for all b ∈ Ob(C) satisfies∑
a∈Ob(C)

k•(a) |C(a, b)| = 1 (10)

We will write kb instead of k(b) when k• is a weighting of C, and ka instead of k(a) when k• is a
coweighting of C, and consider (kb)b∈Ob(C) as a column vector and (ka)a∈Ob(C) as a row vector.
With this notation the requirements of the definition can be rewritten to say that

ζ(C)(kb) =

 1
...
1

 , and (ka)ζ(C) =
(

1 · · · 1
)

(11)

If k• is weighting of C and k• is a coweighting of C we see that∑
b∈Ob(C)

kb =
∑

b∈Ob(C)

∑
a∈Ob(C)

ka |C(a, b)| kb

=
∑

a∈Ob(C)

∑
b∈Ob(C)

ka |C(a, b)| kb =
∑

a∈Ob(C)

ka
∑

b∈Ob(C)

|C(a, b)| kb =
∑

a∈Ob(C)

ka

Hence the sum of the values of every weighting and coweighting of C is the same. This leads to
the following definition:
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Definition. If a finite category C has both a weighting k• and a coweighting k•, C is said to
have Euler characteristic, in which case its Euler characteristic is defined as the sum

χ(C) =
∑

b∈Ob(C)

kb =
∑

a∈Ob(C)

ka

Note that a finite category need not have Euler characteristic, let alone weightings or coweight-
ings. If ζ(C) is invertible (11) defines a unique weighting and coweighting of C, so C has Euler
characteristic, and the Euler characteristic equals the sum of all entries of ζ(C)−1. (In our defini-
tion of ζ(C) we implicitly assumed that we were given a total order of the objects of C. However,
the definitions of weightings, coweightings, and (consequently) Euler characteritics are defined
independently os such an order).

When computing the Euler characteristic of a category C, it may be easier to work with the
category ’up to of isomorphism objects’: Define [C] as the category whose objects are the iso-
morphism classes of objects of C. Then fix representatives c1, . . . , cn of the isomorphism classes
and set [C]([ci], [cj ]) = C(ci, cj). One can think of [C] as the full subcategory of C generated by
c1, . . . , cn; that category is isomorphic to [C]. The next proposition relates weightings, coweight-
ins and Euler characteristics of C and [C].

Proposition 14. [JM, 2.13]. Let C be a finite category for which ζ([C]) is invertible, and let
k[•] and k[•] denote the unique weighting and coweighting of [C]. Then C has a weighting k• and
a coweighting k• given by

kb =
1

|[b]|
k[b], respectively ka =

1

|[a]|
k[a]

Furthermore C has Euler characteristic and χ(C) = χ([C]).

Proof. Let a ∈ Ob(C) be given. The computation

1 =
∑

[b]∈Ob([C])

|[C]([a], [b])| k[b] =
∑

b∈Ob(C)

1

|[b]|
|C(a, b)| k[b] =

∑
b∈Ob(C)

|C(a, b)| kb

shows that k• is a weighting of C. A similar computation shows that k• is a coweighting of C.
Hence C has Euler characteristic and clearly χ(C) = χ([C]).

Proposition 15. Every fusion system has Euler characteristic.

Proof. Let S be a finite p-group, and F a fusion system over S. We prove that ζ([F ]) is
invertible. Let {1} = P1, P2, . . . , Pn = S be representatives of the F-conjugacy classes such that
|P1| 6 |P2| 6 . . . 6 |Pn|. Consider ζ([F ]) with respect to this order of the objects of [F ]. There
are clearly no F-morphisms Pj → Pi when j > i, which means that all entries of ζ([F ]) below
the diagonal are 0. The diagonal entries are |AutF (Pi)|, i = 1, . . . , n, none of which are 0. Hence
det(ζ([F ])) 6= 0.

If C has an initial object 1, the Kroenecker delta δ(·, 1) defines a coweighting of C, since the sum
10 reduces to the single term |C(1, b)| which equals 1 for all b ∈ ob(C). In particular, χ(F) = 1
for a fusion system F , since the trivial group is an initial object. We therefore define F∗ as the
full subcategory generated by all subgroups of S except the trivial group. Our interest lies in the
Euler characteristic of F∗. In the proof of Proposition 15, ignoring the trivial group just elimi-
nates the first row and column of ζ([F ]), so ζ([F∗]) is also invertible, and then χ(F∗) = χ([F∗])
by Proposition 14. With a slight abuse of language we shall from now on refer to χ(F∗) when
speaking of the Euler characteristic of F .

From F we also derive another category.
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Definition. Let S be a finite p-group and let F be a fusion system over S. The exterior quotient
of F∗, denoted F̃∗, is the category with objects Ob(F̃∗) = Ob(F∗), and whose morphisms are
defined as follows: Given a pair of objects 1 6= P,Q 6 S, Q acts on F∗(P,Q) by composing with
cq, q ∈ Q, on the left. We define F̃∗(P,Q) as the orbits under this action, i.e.

F̃∗(P,Q) = Q\HomF (P,Q).

Composition of morphisms in F induces the composition of morphisms in F̃∗.

It is straightforward to check that composition of morphisms in F̃∗ is well-defined. If φ1, φ2 ∈
HomF (P,Q) and ψ1, ψ2 ∈ HomF (Q,R) such that [φ1] = [φ2] and [ψ1] = [ψ2] in F̃∗, there is
q ∈ Q and r ∈ R such that cqφ1φ2 and crψ1 = ψ2. But then

ψ2ψ1 = crφ2cqφ1 = crφ2(q)φ2φ1,

hence [ψ2ψ1] = [φ2φ1]. The argument in the proof of Proposition 15 works for [F̃∗] as well,
showing that F̃∗ has Euler characteristic.

Theorem 16. [JM, 3.6]. Let G be a finite group and S a Sylow-p-subgroup of G. Then

χ(FS(G)∗) = χ(F̃S(G)∗)

The proof makes use of the underlying group G. In general it was not known whether χ(F∗) =
χ(F̃∗) for all fusion systems. Using the method provided by Proposition 14 to compute χ(F∗)
for a concrete example of a fusion system can be somewhat tedious. [JM, 7.3] provides a formula
for computing χ(F∗) once one knows the F-morphisms of the elementary abelian subgroups of
S. The formula contains the Möbius function µ defined on all finite groups by setting µ(1) = 1
and recursively 0

∑
16H6G µ(H) = 0 for every finite group G 6= 1. The key property of µ that

we need is the following: If P is a p-group, then µ(P ) = 0 unless P is elementary abelian; if

P ∼= (Z/pZ)n, then µ(P ) = (−1)np(
n
2).

Theorem 17. [JM, 7.3]. Let S be a finite p-group and F a fusion system over S. F∗ has a
coweighting k• defined by

kP =
−µ(P )

|F∗(P, S)|
=

−µ(P )

|AutF (P )| |PF |
, for all 1 6= P 6 S.

The Euler characteristic of F∗ is therefore

χ(F∗) =
∑

1 6=P6S

−µ(P )

|AutF (P )| |PF |
=

∑
[P ]∈Ob([F∗])

−µ(P )

|AutF (P )|

Proof. Every F-homomorphism can be factored as an isomorphism followed by an inclusion.
Consequently

|HomF (P,Q)| =
∑

P ′∈PF , P ′6Q

∣∣IsoF (P, P ′)
∣∣ = |AutF (P )|

∣∣{P ′ ∈ PF | P ′ 6 Q}
∣∣

for all pairs P,Q ∈ F∗. We can now verify that k• is a coweighting of F∗; given Q ∈ F∗ we see
that ∑

P∈F∗

−µ(P )

|AutF (P )| |PF |
|HomF (P,Q)| =

∑
P∈F∗

−µ(P )

∣∣{P ′ ∈ PF | P ′ 6 Q}
∣∣

|PF |

=
∑

[P ]∈[F∗]

−µ(P )
∣∣{P ′ ∈ PF | P ′ 6 Q}

∣∣
=

∑
1 6=P6Q

−µ(P ) = 1

where the last equality follows from the definition of µ.
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It turns out that k• is a coweighting for the exterior quotient F̃∗ as well. To prove this we need
a few lemmas

Lemma 18. Let C and D are categories with Euler characteristics. If there is an adjunction

C
L←−−→
R
D, then χ(C) = χ(D).

Proof. Choose a coweighting k• of C and a weighting k• of D. Then

∑
a∈C

ka =
∑
a∈C

ka

(∑
b∈D
|D(R(a), b)| kb

)
=
∑
a∈C

∑
b∈D

ka |D(R(a), b)| kb

=
∑
b∈D

(∑
a∈C

ka |C(a, L(b))|

)
kb =

∑
b∈D

kb

We need a little more terminology for the next lemma. If H and K are subgroups of a group
G, we define the transporter set as NG(H,K) = {g ∈ G | gH 6 K}. The elements of NG(H,K)
are exactly the elements of G that induce the homomorphisms HomG(H,K). CG(H) acts on
NG(H,K) by right multiplication, and it is easily seen that two elements of NG(H,K) are in the
same orbit exactly if they induce the same homomorphism H → K. This provides a bijection
HomG(H,K)↔ NG(H,K)/CG(H), and we write HomG(H,K) ≈ NG(H,K)/CG(H)

Lemma 19. [JM, 5.1]. Suppose S is a non-trivial finite p-group. Then χ(FS(S)∗) = 1.

Proof. Let Z+ denote the full subcateogry of FS(S)∗ generated by all nonidentity subgroups of
S that contain Z(S). Since S is a non-trivial p-group, its center is not the trivial group, i.e.
Z(S) ∈ Z+. Let R : Z+ → FS(S)∗ denote the inclusion functor.
If P and Q are subgroups of S, then so are PZ(S) and QZ(S), and every FS(S)-homomorphism
φ : P → Q has the form cs|P,Q for some s ∈ S. Define a functor L : FS(S)∗ → Z+ by L(P ) =
PZ(S), and L(cs|P,Q) = cs|PZ(S),QZ(S)

, for all P,Q ∈ FS(S)∗ and all s ∈ NS(P,Q). We claim
that L is left adjoint to R. Let P,Q 6 S be such that Q 6= 1, and Z(S) 6 P . Then

Z+(L(Q), P ) = Z+(QZ(S), P ) = FS(S)∗(QZ(S), P )

≈ NS(QZ(S), P )/CS(QZ(S)) = NS(Q,R(P ))/CS(Q)

≈ FS(S)∗(Q,R(P ))

It is not hard to see that the bijection is natural in both P and Q; all morphisms are restrictions
of inner automorphisms of S. (And strictly speaking, we do not need naturality to apply the
above lemma). Now χ(FS(S)∗) = χ(Z+) by Lemma 19. But Z(S) is an initial object of Z+, so
χ(Z+) = 1.

The next lemma is purely group theoretical in its appearance, but its proof make use of Theorem
17.

Lemma 20. Let S be a non-trivial finite p-group. Then∑
16=P6S

−µ(P ) |CS(P )| = |S|

Proof. Theorem 17 tells us that

kP =
−µ(P )∣∣AutFS(S)(P )

∣∣ ∣∣PFS(S)
∣∣ , P ∈ FS(S)∗
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is a coweighting of FS(S)∗. In general
∣∣AutFS(S)(P )

∣∣ ∣∣PFS(S)
∣∣ =

∣∣HomFS(S)(P, S)
∣∣, and since

FS(S) is a group fusion system

HomFS(S)(P, S) ≈ NS(P, S)/CS(P ) = S/CS(P )

We can therefore compute the Euler characteristic of FS(S)∗ as

χ(FS(S)∗) =
∑

16=P6S

−µ(P ) |CS(P )|
|S|

Applying Lemma 19 yields the desired result.

We are now able to prove that F̃∗ has the same coweighting as F∗ defined in Theorem 17.

Theorem 21. Let S be a finite p-group, and F a fusion system over S. F̃∗ has a coweighting
k• defined by

kP =
−µ(P )

|F∗(P, S)|
, for all 1 6= P 6 S.

The Euler characteristic of F̃∗ is therefore

χ(F̃∗) =
∑

16=P6S

−µ(P )

|F∗(P, S)|
=

∑
[P ]∈Ob([F∗])

−µ(P )

|AutF (P )|

Proof. To verify that k• is a coweighting we need to determine the order of F̃∗(P,Q) = Q\F∗(P,Q).
We can use Burnside’s counting lemma to do so:

|F̃∗(P,Q)| = 1

|Q|
∑

φ∈F∗(P,Q)

φQ (12)

where φQ is the isotropy subgroup of φ for the action of Q. We see that

φQ = {q ∈ Q | cq ◦ φ = φ} = CQ(φ(P ))

Therefore, the terms in the sum above only depend on φ(P ). The possibilities for φ(P )
are exactly the elements of X := {P ′ ∈ [P ] | P ′ 6 Q}, and if P ′ ∈ X there are exactly
|F∗(P, P ′)| = |IsoF (P, P ′)| = |AutF (P )| F∗-morphisms φ : P → Q with φ(P ) = P ′. Combining
these observations with (12) we get

|F̃∗(P,Q)| = 1

|Q|
∑

P ′∈[P ], P ′6Q

|AutF (P )|
∣∣CQ(P ′)

∣∣
We now verify that k• is a coweighting. Let Q ∈ F̃∗ be given. Then∑

P∈F̃∗
kP |F̃∗(P, S)| =

∑
1 6=P6S

−µ(P )

F∗(P, S)

1

|Q|
∑

P ′∈[P ], P ′6Q

|AutF (P )|
∣∣CQ(P ′)

∣∣
=

∑
1 6=P6S

−µ(P )

|[P ]|
1

|Q|
∑

P ′∈[P ], P ′6Q

∣∣CQ(P ′)
∣∣

=
1

|Q|
∑

[P ]∈[F∗]

∑
P ′∈[P ], P ′6Q

−µ(P )
∣∣CQ(P ′)

∣∣
=

1

|Q|
∑

1 6=P ′6Q
−µ(P ′)

∣∣CQ(P ′)
∣∣ = 1

The last equality follows from Lemma 20.
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As a corollary to Theorem 17 and Theorem 21 we get a generalization of Theorem 16:

Corollary 22. Let F be a fusion system. Then χ(F∗) = χ(F̃∗).

Example. We compute the Euler characteristics of the three exotic fusion systems F48:2, F24:2,
and F62:2 over 71+2

+ . These fusion systems are described in section 4. In the proof of Proposition
12 we saw that every non-identity element of 71+2

+ is F-conjugate to c, for F = F48:2,F24:2,F62:2.
This implies that all subgroups of 71+2

+ of order 7 are F-conjugate and that every possible
isomorphism between such groups is an F-morphism, i.e. IsoF (〈x〉, 〈y〉) = Iso(〈x〉, 〈y〉), for all
1 6= x, y ∈ 71+2

+ .
The Euler characteristic is

χ(F∗) =
∑

[P ]∈Ob([F∗])

−µ(P )

|AutF (P )|

We now know that AutF (P ) = 6 and µ(P ) = −1 when |P | = 7. There are 1+7+72 = 57 distinct
subgroups of 71+2

+ of order 7. Because 71+2
+ is not elementary abelian, the term corresponding

to 71+2
+ is 0. If P ∈ V, i.e. elementary abelian of rank two, then µ(P ) = 7. (Recall that

µ((Z/pZ)n) = (−1)np(
n
2)). The remaining data needed to compute χ(F∗) is provided in the

table of Lemma 13. We get that

χ(F∗48:2) =
1

6
+

−7

2 · 6 · 7 · 8
=

5

32

χ(F∗24:2) =
1

6
+

−7

2 · 6 · 7 · 8
+

−7

2 · 6 · 7 · 8
=

7

48

χ(F∗62:2) =
1

6
+

−7

62 · 7 · 8
+

−7

2 · 6 · 7 · 8
=

11

72

Prior to proving Theorem 21, the Euler characteristics of F̃∗48:2, F̃∗24:2, and F̃∗62:2 had been

computed separately from the matrices of [F̃∗48:2], [F̃∗24:2], and [F̃∗62:2]. They turned out to have
the same coweightings as [F∗48:2], [F∗24:2], and [F∗62:2], which motivated the search for a proof the
generalization of Theorem 16.

6 Quadratic spaces

In this section, we describe the concept of quadratic spaces and some of their most basic proper-
ties. Quadratic spaces play a fundamental role in the construction of the Solomon fusion systems
FSol(q).
Throughtout this section fix a field F of characteristic 6= 2 and a finite dimensional vector space
V over F .

Definition. A quadratic form (or map) on V is a map Q : V → F which satisfies the following
two conditions:

1. Q(λv) = λ2Q(v) for all v ∈ V and all λ ∈ F .

2. The map BQ : V × V → F given by BQ(v, w) = 1
2(Q(v +w)−Q(v)−Q(w)) is symmetric

and bilinear.

When Q is a quadratic form on V , we call the pair (V,Q) a quadratic space.
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Note that BQ(v, v) = Q(v) for all v ∈ V , when (V,Q) is a quadratic space. One can think of
BQ as an inner product and Q as the sqaure of the associated norm. There are similarities, but
for instance, Q(v) = 0 does not imply v = 0.
Given a basis {v1, . . . , vn}, we define an n×n-matrix BQ, by BQ(i, j) = BQ(vi, vj) for 1 ≤ i, j ≤
n. If det(BQ) 6= 0, Q and (V,Q) are called nonsingular or regular. The determinant of BQ is
called the discriminant of Q. It is only defined modulo squares of F.

Definition. Let (V,Q) be a quadratic space.

1. Two vectors v, w ∈ V are said to be orthogonal if BQ(v, w) = 0, in which case we write
v ⊥ w. v is called isotropic if BQ(v) = 0, and nonisotropic otherwise.

2. A subspace U ⊆ V is called isotropic if all its vectors are isotropic.

3. An orthogonal basis of V is a basis {v1, . . . , vk} which satisfies vi ⊥ vj for all i 6= j.

4. Two subspaces W1,W2 ⊆ V are said to be orthogonal, written W1 ⊥ W2, if w1 ⊥ w2 for
all w1 ∈W1 and all w2 ∈W2.

5. To a subset W ⊆ V , we define the orthogonal complement of W as W⊥ = {v ∈ V | ∀w ∈
W : v ⊥ w}. We write v⊥ instead of {w}⊥ for v ∈ V .

It is not hard to see that (V,Q) is nonsingular if and only if V ⊥ = {0}.

Proposition 23. Let (V,Q) be a nonsingular quadratic space. Then V has an orthogonal basis
of nonisotropic vectors.

Proof. If dimV = 1 there is nothing to show. In general we can find v ∈ V such that Q(v) 6= 0;
if not, then BQ(v, w) = 0 for all v, w ∈ V by definition of BQ and (V,Q) would be singular.
The subspace v⊥ of V is the kernel of the the surjective linear map B(v, ·) : V → F . Therefore
dim(v⊥) = dim(V )− 1. Since v /∈ v⊥ (as BQ(v, v) = Q(v) 6= 0), V decomposes as V = v⊥⊕Fv.
We claim that the quadratic space (v⊥, Q|

v⊥
) is nonsingular. Assume that it is singular. Then

there is a w ∈ v⊥, w 6= 0, such that BQ(u,w) = 0 for all u ∈ v⊥. But since w ⊥ v and
V = v⊥ ⊕ Fv, we would have w ⊥ u for all u ∈ V by linearity of BQ. Thus (v⊥, Q|

v⊥
) is

nonsingular.
Inductively, v⊥ has an orthogonal basis {v1, . . . , vn−1} of nonisotropic elements, and then
{v1, . . . , vn−1, v} is an orthogonal basis of V consisting of nonisotropic elements.

If g ∈ GL(V ) satisfies Q(g(v)) = Q(v) for all v ∈ V , we say that g is an isometry of the space
(V,Q). The set of all isometries is a subgroup of GL(V ) denoted O(V,Q). The subgroup of
isometries of determinant 1 is denoted SO(V,Q). We have a special interest in the so-called
hyperplane reflections.

Definition. Let (V,Q) be a quadratic space and suppose v ∈ V is nonisotropic; as in the proof
of Proposition 23, V = v⊥ ⊕ Fv. The map linear map V → V given by v 7→ −v and w 7→ w,
for all w ∈ V ⊥, is an isometry of (V,Q). We refer to this isometry as the reflection in the
hyperplane v⊥, and in general we refer to such isometries as hyperplane reflections. Clearly, any
hyperplane reflection has determinant −1.

Theorem 24 (Cartan–Dieudonné). [Ar, p. 129]. Every isometry of a nonsingular quadratic
space (V,Q) is a composition of at most dimV hyperplane reflections.

In particular, an isometry of a nonsingular quadratic space has determinant ±1.
We also need a description of SO(V,Q). Let U ⊆ V be a subspace of dimension 2 and assume it
has a basis of nonisotropic vectors {v2, v2}. We wish to see that we can even find an orthogonal
basis of nonisotropic vectors. If U has no isotropic elements save 0, then (U,Q|U ) is nonsingular
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and we just apply Proposition 23. If U has an isotropic element v 6= 0, one can find another
isotropic element w ∈ U such that {v, w} is a basis of U and BQ(v, w) = 1 (see [Ar, p. 118]).
But then {v + w, v − w} is an orthogonal basis and v + w and v − w are both nonisotropic. As
in the proof of 23 we get that V = U ⊕U⊥ (by considering the linear map V → F ×F given by
u 7→ (BQ(v+w, u), BQ(v−w, u)) which is surjective and has kernel (v+w)⊥ ∩ (v−w)⊥ = U⊥).
This allows us to define an isometry of V by u 7→ −u for all u ∈ U , and w 7→ w for all w ∈ U⊥.
We call this isometry the rotation with respect to U . Its determinant is clearly (−1)2 = 1. In
general we will refer to such isometries as codimension 2 rotations.

Corollary 25. Let n = dimV . Every element of SO(V,Q) is the composition of at most n
codimension 2 rotations when n ≥ 3.

Proof. Let g ∈ SO(V,Q). From Theorem 24 we know that g = s1 · · · sk where s1, . . . , sk ∈
O(V,Q) are hyperplane reflections and k ≤ n. Let v⊥1 , . . . , v

⊥
k be the associated hyperplanes.

We may assume that vi and vi+1 are linearly independent over F for i = 1, . . . , k − 1. Set
U = span(v1, v2). From the discussion above we have that V = U ⊕ U⊥, and we can find a
nonisotropic element v1,2 ∈ U⊥, since (V,Q) is nonsingular and dimV ≥ 3. Let s1,2 be the
reflection in the hyperplane s⊥1,2. Then since s1 ⊥ s1,2, the composition s1s1,2 is the rotation
with respect to span(v1, v1,2). In the same manner, s1,2s2 is a codimension 2 rotation. Since k
must be even (g has determinant (−1)k), we can continue in this fashion and get

g = (s1s1,2)(s1,2s2)(s3s3,4)(s3,4s4) · · · (sk−1sk−1,k)(sk−1,ksk)

7 Spin groups

Throughout this section F will be a field of prime characteristic 6= 2, V a finite vector space
over F , and Q : V → F a nonsingular quadratic form on V . We shall see how to construct the
spin group Spin(V,Q); the fusion system FSol(q) is defined over a Sylow-2-subgroups of a certain
spin group.

For each i ∈ N, the nth tensor power of V is

T i(V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
i

i.e. the tensor product over F of i copies of V . We set T 0(V ) = F . The tensor algebra is the
direct sum of all tensor powers of V :

T (V ) =
⊕
i∈N0

T i(V )

T (V ) has an obvious product structure given by the tensor product T i(V )⊗ T j(V )→ T i+j(V ),
so T (V ) is a graded algebra over F . We may view F = T 0(V ) as a subalgebra of T (V ), and
V = T 1(V ) as a an F -submodule.
The Clifford algebra is defined as the quotient C(V,Q) = T (V )/〈v ⊗ v −Q(v) | v ∈ V 〉. We can
still view F as a subring of C(V,Q) and V as an F -submodule; the relation v⊗ v = Q(v) makes
no identifications in F or in V . To ease the notation, we will write v1 · · · vi to indicate the class
of v1 ⊗ · · · ⊗ vi ∈ T i(V ).
V has an orthogonal basis {v1, . . . , vn} of nonisotropic elements by Proposition 23. The set
{1} ∪ {vi1 · · · vik | 1 ≤ i1 < . . . < ik ≤ n} then constitutes an F -basis for C(V,Q). To see this,
we note that given v, w ∈ V , we have v ⊥ w ⇔ wv = −vw:

vw + wv = (v + w)2 − v2 − w2 = Q(v + w)−Q(v)−Q(w) = 2BQ(w, v)
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Every element of C(V,Q) is a sum of products of elements of V . Writing each element as an
F -linear combination of the elements v1, . . . , vn and rearranging using the relations vjvi = −vivj
for j 6= i, and v2

i = Q(vi), the claim follows.
The grading of T (V ) is only preserved modulo 2 when passing to the quotient C(V,Q), so we
can write C(V,Q) = C0 ⊕ C1, where C0 (or C1) is the subalgebra consisting of all elements of
even (or odd) degrees. In other words

C0 =
⊕
i∈N0

T 2i/〈v ⊗ v −Q(V ) | v ∈ V 〉, and

C0 =
⊕
i∈N0

T 2i+1/〈v ⊗ v −Q(V ) | v ∈ V 〉

The Clifford group is defined as G(V,Q) = {u ∈ C(V,Q)∗ | uV u−1 = V } where, as usual,
C(V,Q)∗ denotes the multiplicative group of invertible elements of C(V,Q). One can show that
if u ∈ G(V,Q) then either u ∈ C0 or u ∈ C1. This leads to the definition of a homomorphism
π : G(V,Q) → O(V,Q) defined by letting π(u) be the isometry of V given by v 7→ (−1)iuvu−1,
with u ∈ Ci. It is easy to check that π(u) is an isometry:

Q(±uvu−1) = (uvu−1)2 = uQ(v)u−1 = Q(v)

Every nonisotropic element w ∈ V is an element of G(V,Q): Its inverse is clearly Q(w)−1w,
and if we extend {w} to an orthogonal basis {w1 = w,w2, . . . , wn} of V we see that π(w) is the
reflection in hyperplane w⊥.
By Theorem 24, every isometry of V is a composition of hyperplane reflections. This shows that
π is surjective. Clearly F ∗ ⊆ kerπ, and we claim that equality holds. To see this let u ∈ G(V,Q)
have even degree and assume π(u) is the identity V → V . We can write u = u0 + v1u1 such
that u0 ∈ C0, u1 ∈ C1, and neither u0 nor u1 contain a factor v1 when written in the basis
{1} ∪ {vi1 · · · vik | 1 ≤ i1 < . . . < ik ≤ n} of C(V,Q). Now uv1u

−1 = π(u)(v1) = v1, and so

(u0 + v1u1)v1 = v1(u0 + v1u1) = (u0 − v1u1)v1,

hence u0 + v1u1 = u0 − v1u1, i.e. u = u0. This means that when u can be written as a linear
combination the basis vectors 1 and vi1 · · · vik with 1 < i1 < . . . < ik ≤ n. A similar argument
for each of the other basis vectors v2, . . . , vn of V , shows that u0 ∈ F ∗. Likewise, if u′ ∈ G(V,Q)
has odd degree and π(u′) is the identity, then u′ ∈ F ∗, which is a contradiction. This implies
that G(V,Q) is exactly the set of elements of C(V,Q) of the form λw1 · · ·wk with λ ∈ F ∗, and
w1, . . . , wk ∈ V nonisotropic.
C(V,Q) has a canonical anti-automorphism t given by t(w1 · · ·wi) = wi · · ·w1 for all w1, . . . , wi ∈
V and then extended linearly to all of C(V,Q). We obtain a map θ̃V,Q : G(V,Q)→ F ∗ given by

θ̃V,Q(u) = u · t(u). It maps into F ∗ (and is thus a homomorphism) since every u ∈ G(V,Q) has
the form λw1 · · ·wk as described above and

θ̃V,Q(λw1 · · ·wk) = λw1 · · ·wkλwk · · ·w1 = λ2Q(w1) · · ·Q(wk)

θ̃V,Q maps kerπ = F ∗ to F ∗2, so we obtain an induced homomorphism θV,Q : O(V,Q)→ F ∗/F ∗2,

called the spinor norm. We will drop the subscripts and write θ̃ and θ when the space (V,Q) is
clear from the context.
Given u = λw1 · · ·wk ∈ G(V,Q), π(u) is the composition of k hyperplane reflections, so π(u)
has determinant 1 if and only if k is even. The preimage of SO(V,Q) under π therefore equals
G(V,Q) ∩ C0 =: G+(V,Q). We now define two subgroups

• Spin(V,Q) = ker(θ̃V,Q|G+(V,Q)
), called the spin group.

• Ω(V,Q) = ker(θV,Q|SO(V,Q)
).
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The groups and homomorphisms introduced in the above paragraphs can be summarized in a
commutative diagram:

1

��

1

��

1

��
1 // {±1} //

��

F ∗
·2

//

��

F ∗2 //

��

1

1 // Spin(V,Q) //

��

G+(V,Q)
θ̃V,Q

//

π

��

F ∗

��
1 // Ω(V,Q) //

��

SO(V,Q)
θV,Q

//

��

F ∗/F ∗2

��
1 1 1

(13)

where all rows and columns are exact. (In general, θ and θ̃ need not be surjective. For the
spaces we study later they will be, but we don’t need that fact). Every nonsingular quadratic
space gives rise to such a diagram. We need to see how such diagrams are compatible when the
base field F is extended.

If the field E is an extension of F we obtain a vector space VE by replacing the field of scalars of
V by E. Formally, we set VE = E⊗F V , and then {1⊗ v1, . . . , 1⊗ vn} is an E-basis of VE . Next
we define a quadratic form QE on VE by setting QE = (λ 7→ λ2)⊗Q, where λ 7→ λ2 : E → E is
the square map. Then QE |V = Q and we may view C(V,Q) as a subring of C(VE , QE). However,
this formalism is quite awkward, especially when one needs to consider the compatibility of the
Clifford groups, spin groups, etc. Ultimately we just need to understand what happens when F
is replaced by its algebraic closure F . Informally, we let the vector space V consist of all (formal)
F -linear combinations of the basis elements v1, . . . , vn of V . (In this sense, one can think of V
as some sort of lattice of V ). We extend the bilinear form BQ of V by linearity to a bilinear
form BQ of V , and thus obtain a quadratic form Q of V which extends Q. G+(V,Q) is clearly a
subgroup of G+(V ,Q), and the image of u ∈ G+(V,Q) under π : G(V ,Q) → SO(V ,Q) has the
same matrix as π(u) ∈ SO(V,Q). All in all, we can combine the diagrams (13) of the spaces
C(V,Q) and C(V ,Q) by mapping the groups in the diagram of C(V,Q) to their counterparts in
the diagram of C(V ,Q) via inclusions.
The Glaois group Gal(F/F ) acts on V by ψ.(λ1v1 + . . . + λnvn) = ψ(a1)v1 + . . . ψ(an)vn, thus
a vector is fixed if and only if all its coordinates are. This action induces an action on each of
the groups in the diagram of C(V ,Q). Taking the subgroups fixed by the action on each of the
groups derived from C(V ,Q) recovers their counterparts with respect to C(V,Q), since F/F is
a Galois extension ([Mi, §7]). In particular Spin(V,Q) is the subgroup of all elements fixed by
each ψ ∈ Gal(F/F ). For any intermediate field F ⊆ E ⊆ F , Spin(VE , QE) is just the subgroup
of Spin(V ,Q) fixed by all ψ ∈ Gal(F/E).

Before we turn our attention to a specific quadratic space, we state two results of general
character. These will be used extensively in section 9.

Lemma 26. Let E 6 O(V,Q) be an elementary abelian 2-subgroup. To each homomorphism
χ : E → {±1}, associate the subspace

Vχ
def
= {v ∈ V | ∀g ∈ E, v ∈ V : g(v) = χ(g) · v}

Then Q|Vχ is nonsingular for each χ, and V is the direct, orthogonal sum the all the Vχ.
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We shall refer to the subspaces Vχ as the eigenspaces of E. It is worth noting that Vχ is contained
in an eigenspace (in the usual sense) of each g ∈ E, with eigenvalue is χ(g). The lemma is stated
without proof in [LO].

Proof. Let χ1, χ2 ∈ Hom(E, {±1}) be given such that χ1 6= χ2. There is g ∈ E such that
χ1(g) 6= χ2(g); without loss of generality, assume χ1(g) = 1, χ2(g) = −1. Then given v1 ∈ Vχ1

and v2 ∈ Vχ2 one has

BQ(v1, v2) = BQ(g(v1), g(v2)) = BQ(v1,−v2) = −BQ(v1, v2)

hence BQ(v1, v2) = 0, i.e. v1 ⊥ v2. This shows that the eigenspaces are orthogonal to one
another. In addition, given v ∈ Vχ1 ∩ Vχ2 , we have

v = χ1(g) · v = g(v) = χ2(g) · v = −v

so v = 0, and each pair of eigenspaces has trivial intersection. The sum of the eigenspaces is
therefore a direct, orthogonal sum. We next show that the sum is all of V . This is somewhat
technical, first we introduce some notation: E has the form (Z/2Z)k for some k ∈ N (if E is
the trivial group, there is nothing to show). Let gi, i = 1, . . . , k, be the generators of the k
factors, that is E = 〈g1〉 × . . . × 〈gk〉. Each homomorphism χ : E → {±1} is determined by its
values on the gi, and these can be chosen however one pleases, i.e. |Hom(E, {±1})| = 2k. Given
χ : E → {±1}, it is clear that

∀v ∈ V : v ∈ Vχ ⇔ ∀i ∈ {1, . . . , k} : gi(v) = χ(gi) · v

For each subset S ⊆ {1, . . . , k}, let gS denote the element
∏
s∈S gs, and let g∅ be the identity

element of E, i.e. g∅ = idV . Every element of E has the form gS for some S ⊆ {1, . . . , k}. To
each v ∈ V and χ ∈ Hom(E, {±1}), set

vχ =
∑

S⊆{1,...,k}

χ(gS)gS(v)

We claim that vχ ∈ Vχ. It is enough to show that gi(vχ) = χ(vi) · v for all i ∈ {1, . . . , k}.

gi(vχ) = gi

 ∑
S⊆{1,...,k}

χ(gS)gS(v)


=

∑
S⊆{1,...,k}

i/∈S

χ(gS)(gSgi)(v) +
∑

S⊆{1,...,k}
i∈S

χ(gS)(gSgi)(v)

= χ(gi)

 ∑
S⊆{1,...,k}

i/∈S

χ(gSgi)(gSgi)(v)

+ χ(gi)

 ∑
S⊆{1,...,k}

i∈S

χ(gSgi)(gSgi)(v)


=

∑
S⊆{1,...,k}

i∈S

χ(gS)gS(v) +
∑

S⊆{1,...,k}
i/∈S

χ(gS)gS(v)

= χ(gi)vχ

We need two more results before we can prove that the sum of all the eigenspaces Vχ equals
V . Let S ⊆ {1, . . . , k} be given. If S = ∅, then clearly

∑
χ χ(gS) = 2k, where the sum is taken

over all χ ∈ Hom(E, {±1}). If S 6= ∅, we claim that
∑

χ χ(gS) = 0: Let i ∈ S and define
χ− : E → {±1} by

χ−(gj) =

{
1 when j 6= i

−1 when j = i
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In particular, χ−(gS) = −1. Let H+ denote the subgroup of Hom(E, {±1}) consisting of those
homomorphisms that map gi to 1. (Hom(E, {±1}) has the group structure given by (χ1χ2)(g) =
χ1(g)χ2(g)). Then Hom(E, {±1}) = H+ ∪χ−H+ is the coset decomposition with respect to the
subgroup H+, and ∑

χ

χ(gS) =
∑
χ∈H+

χ(gS) +
∑
χ∈H+

(χ−χ)(gS) = 0

Let v ∈ V be given. We can now show that v ∈
⊕

χ Vχ:

1

2k

∑
χ

vχ =
1

2k

∑
χ

∑
S

χ(gS)gS(v)

=
1

2k

∑
S

gS(v)
∑
χ

χ(gS)

=
1

2k
g∅(v)2k = v

Finally we show that Q|Vχ is nonsingular for each χ ∈ Hom(E, {±1}). Choose a basis of
each eigenspace; their union is a basis of V with the property that basis vectors belonging to
different eigenspaces are orthogonal. The matrix associated to BQ with respect to this basis is
therefore a block diagonal matrix and its determinant is nonzero since Q is nonsingular. The
determinant is also equal to the product of the determinants of the blocks of the diagonal.
But these blocks are exactly the matrices associated to the restrictions of Q to each of the
eigenspaces Vχ. These matrices must all have nonzero determinant, i.e. Q|Vχ is nonsingular for
all χ ∈ Hom(E, {±1}).

Lemma 27. [LO, A.4]. Let x be an involution of SO(V,Q), and let V− ⊕ V+ be its eigenspace
decomposition as given by Lemma 26. (V+ corresponds to the constant homomorphism 〈x〉 →
{±1} and V− corresponds to the other one, i.e. the one given by x 7→ −1).
x satisfies the following three properties

1. x ∈ Ω(V,Q) if and only if the discriminant of Q|V− is a square in F ∗.

2. If x ∈ Ω(V,Q), then a lifting of x in Spin(V,Q) has order 2 if and only if 4 | dim(V−).

3. If x ∈ Ω(V,Q) and α ∈ CΩ(V,Q)(x), there is an α− ∈ O(V−, Q|V− ) and an α+ ∈ O(V+, Q|V+ )

such that α decomposes as α = α− ⊕ α+. Futhermore, if x̃, α̃ ∈ Spin(V,Q) are liftings of
x and α respectively, then x̃α̃ = α̃x̃ if and only if α− ∈ SO(V−, Q|V− ).

Proof. ad 1. Q|V− is nonsingular, by Lemma 26. We can therefore choose an orthogonal basis

{v1, . . . , vk} of V− of nonisotropic elements, and then x(vi) = −vi for i = 1, . . . , k. Since x|V+ is

the identity, the determinant of x equals the determinant of x|V− , and this determinant is (−1)k.

As x ∈ SO(V,Q), k must be even.
For all w ∈ V+ we have x(w) = w. x is therefore the composition of all the hyperplane reflections
π(vi), i = 1, . . . , k, i.e. x = π(v1 · · · vk). This mean that

θV,Q(x) = θ̃V,Q(v1 · · · vk) mod F ∗2

But θ̃(v1 · · · vk) = Q(v1) · · ·Q(vk) is the discriminant of Q|V− , hence θV,Q(x) = 1 if and only if

Q|V− ∈ F
∗2.

ad 2. Assume x ∈ Ω(V,Q). SinceQ(v1) · · ·Q(vk) is a square, we may assume thatQ(v1) · · ·Q(vk) =
1 by replacing v1 with λv1 for a suitable λ ∈ F ∗, and π(v1 · · · vk) = π(λv1 · · · vk), so x is un-
changed under such a substitution. As k is even, x̃ = v1 · · · vk ∈ G+ (with inverse vk · · · v1) is
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a lifting of x, and since θ̃V,Q(x̃) = Q(v1) · · ·Q(vk) = 1, we get that x̃ ∈ Spin(V,Q). From the
relations v ⊥ w ⇔ wv = −vw and v2 = Q(v) of the Clifford algebra we see that

x̃2 = v1 · · · vkv1 · · · vk = (−1)
1
2k(k−1)v1

2 · · · vk2 = (−1)
1
2k(k−1)

I.e. x̃2 = 1 if and only if 4 | k = dim(V−). The order of x̃ cannot be 1, since x is not the identity.

ad 3. Assume that x ∈ Ω(V,Q) and let α ∈ CΩ(V,Q)(x) be given. Set α− = α|V− , α+ = α|V+ .
For all v− ∈ V− and v+ ∈ V+

x(α−(v−)) = α(x(v−)) = −α(v−) = −α−(v−) and x(α+(v+)) = α(x(v+)) = α(v+) = α+(v+)

Hence α−(V−) = V− and α+(V+) = V+. So α± is an isometry of (V,Q|V± ). This proves the first
part.
Now let α̃, x̃ ∈ Spin(V,Q) be lifitngs of α and x, respectively. Both α̃x̃ and x̃α̃ are liftings of
xα = αx, but then α̃x̃ = ±x̃α̃ since there are only these two liftings of xα. We wish to determine
exactly when α̃x̃ = x̃α̃ holds. Let α̃− ∈ G(V−, Q|V− ) and α̃+ ∈ G(V+, Q|V+ ) be liftings under
π of α− and α+, respectively. We know that α̃− = λ−u1 · · ·us for some nonisotropic elements
u1, . . . , us ∈ V− and a λ− ∈ F ∗. Likewise α̃+ = λ+w1 · · ·wt for some nonisotropic elements
w1, . . . , wt ∈ V+ and a λ+ ∈ F ∗. α̃− and α̃+ are also elements of C(V,Q)∗; we wish to see that
they belong to G(V,Q). Given v+ ∈ V+ we have that

α̃−v+(α̃−)−1 = λ−w1 · · ·wtv+wt · · ·w1
1

λ−Q(w1) · · ·Q(wt)
= (−1)tv+ (14)

Thus conjugation by α̃− maps V+, and thereby also V , to itself, that is α̃− ∈ G(V,Q). From
(14) and the definition of α̃− we see that π(α̃−) = α− ⊕ idV + . A similar argument shows
that α̃+ ∈ G(V,Q) and that π(α̃+) = idV− ⊕ α+. Thus the product α̃−α̃+ in G(V,Q) is a
lifting of α, i.e. λα̃−α̃+ = α̃ for some λ ∈ F ∗. In particular, α̃−α̃+ ∈ G+(V,Q), and then
α̃−α̃+ = (−1)stα̃+α̃− = α̃+α̃−, since st must be even. Let x̃ = v1 · · · vk, v1, . . . , vk ∈ V−, just
like above. Since k is even and V+ ⊥ V−, it is clear that x̃ and α̃+ commute. Now

x̃−1α̃−1x̃α̃ = x̃−1λ−1α̃−1
− α̃−1

+ x̃λα̃+α̃− = x̃−1α̃−1
− x̃α̃−

Which proves the last part.

8 The group Spin7(q)

We now set F = Fqn where q is a given odd prime power, and consider a 7-dimensional vector
space V over Fqn . [As, (21.4) p. 87] describes the nonsingular quadratic forms over V ; they
are all similar under appropriate scalar transformations and all have square discriminants. In
particular they all have the same group of isometries. As mentioned in the section on spin
groups, we will need to consider extensions of Fq.
It turns out to be advantegeous to work with the 7-dimensional vector spaces Vn := M2(Fqn)⊕
M0

2 (Fqn), where M2(Fqn) denotes the vector space of 2 × 2-matrices over Fqn and M0
2 (Fqn) its

subspace consisting of the matrices of trace 0. To be precise, Vn is the external direct sum of
the two vector spaces, i.e., as a set, it is the Cartesian product. If we set

e1 =

(
1 0
0 1

)
, e2 =

(
1 0
0 −1

)
, e3 =

(
0 1
1 0

)
, e4 =

(
0 1
−1 0

)
,

then the set {(e1, 0), (e2, 0), (e3, 0), (e4, 0), (0, e2), (0, e3), (0, e4)} is an Fqn-basis of Vn. With
Fq∞ = Fq we also allow n = ∞. It is a routine exercise to check that (M2(Fqn), det) and



8. The group Spin7(q) 35

(M0
2 (Fqn),det) are nonsingular quadratic spaces with {e1, e2, e3, e4} and {e2, e3, e4} as orthogonal

bases of nonisotropic elements and that both spaces have square discriminants. We define a
nonsingular quadratic form on Vn by Q(A1, A2) = detA1 + detA2, for all A1 ∈ M2(Fqn), A2 ∈
M0

2 (Fqn). The basis already mentioned is orthogonal and the basis elements are nonisotropic.
We see that the discriminant of Q is a square.
We write Spin7(qn) = Spin(Vn, Q), Spin7(q∞) = Spin(V∞, Q). Likewise Ω7(qn) = Ω(Vn, Q). The
groups are nested inside one another in the same way the fields Fqn are.

Proposition 28. Z(Spin7(qn)) = {±1} for n = 1, 2 . . . ,∞.

Proof. We set G+ = G+(Vn, Q) and show that CG+(Spin7(qn)) = F∗qn . Let {v1, . . . , v7} be
the orthogonal basis of nonisotropic elements of Vn described above. Let S denote the set of
subsequences of (1, . . . , 7), and for each s = (i1, . . . , ik) ∈ S define vs = vi1 · · · vik , and vs = 1 ∈ F
when s is the empty sequence. Hence {vs | s ∈ S} is a basis of C(Vn, Q). Let S0 ⊆ S denote the
sequences of even length. Clearly vs ∈ G+ when s ∈ S0, and every element u ∈ Spin7(qn) has
the form u =

∑
s∈S0

λsvs for some λs ∈ Fqn not all zero. If u ∈ F∗qn , then u ∈ CG+(Spin7(qn)).
Assume λs′ 6= 0 for some s′ ∈ S0 of positive length. Given t ∈ S0 we see that∑

s∈S0

λsvs

 vt = vt

∑
s∈S0

±λsvs


where the signs depends on s and t. We see that u and vt commute exactly if vsvt = vtvs for all
s ∈ S0 for which λs 6= 0. Since s′ has positive and even length, we can find 1 ≤ i < j ≤ 7 such
that i ∈ s′ but j /∈ s′ (or vice versa). Then

vs′(vivj) = −(vivj)vs′

hence u and vivj ∈ G+ do not commute, and so CG+(Spin7(qn)) ⊆ F∗qn . The reverse inclusion
has already been shown to hold. Now

Z(Spin7(qn)) = Spin7(qn) ∩ CG+(Spin7(qn)) = {±1}

We write Spin4(qn) = Spin(M2(Fqn), det) and Spin3(qn) = Spin(M0
2 (Fqn), det). We will use the

same notation with Ω in place of Spin. To avoid confusing matrix multiplication and multipli-
cation in the Clifford algebra, we will use ’*’ to denote the latter.
The embeddings of M2(Fqn) and M0

2 (Fqn) into Vn induce embeddings

ι4 : Spin4(qn) ↪→ Spin7(qn), and ι3 : Spin3(qn) ↪→ Spin7(qn)

where Spin7(qn) = Spin7(M2(Fqn)⊕M0
2 (Fqn), Q). It is clear that Spini(q

n) embeds in C0(Vn, Q),
and to see that the images of the embeddings are in Spin7(qn), we just need to note that
M2(Fqn) ⊥ M0

2 (Fqn) as subspaces of Vn, and that θ̃Vn,Q equals θ̃M2(Fqn ),det and θ̃M0
2 (Fqn ),det

when restricted to G(M2(Fqn), det) and G(M0
2 (Fqn), det) respectively. The fact that M2(Fqn) ⊥

M0
2 (Fqn) and that elements of Spini(q

n) have even degree implies that Spin3(qn) and Spin4(qn)
centralize each other as subgroups of Spin7(qn). Thus we obtain a homomorphism

ι4,3 : Spin4(qn)× Spin3(qn)→ Spin7(qn), ι4,3(x, y) = x ∗ y

The idea is that Spin3(qn) and Spin3(qn) can be related to well-known groups.

Proposition 29. [LO, A.5]. For n = 1, 2, . . . ,∞ there are homomorphisms

ρ̄4,n : {(A,B) ∈ GL2(qn)×GL2(qn) | detA = detB} → SO4(qn),

ρ̄3,n : GL2(qn)→ SO3(qn)
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given by

ρ̄4,n(A,B)(X) = AXB−1, for all A,B ∈ GL2(qn) with detA = detB, X ∈M2(Fqn),

ρ̄3,n(A)(X) = AXA−1, for all A ∈ GL2(qn), X ∈M0
2 (Fqn).

ρ̄4,n and ρ̄3,n restrict to sujective homomorphisms

ρ4,n : SL2(qn)× SL2(qn)→ Ω4(qn),

ρ3,n : SL2(qn)→ Ω3(qn)

ρ4,n and ρ3,n lift to isomorphisms

ρ̃4 : SL2(qn)× SL2(qn)→ Spin4(qn),

ρ̃3 : SL2(qn)→ Spin3(qn)

i.e. πρ̃i,n = ρi,n, i = 4, 3. Additionally, these liftings are unique.

Proof. It is elementary to check that ρ̄i,n, i = 4, 3, as defined are homorphisms with images in
Oi(q

n). Basic (but lengthy) calculations show that det(ρ̄3,n(A)) = det(ρ̄4,n(A,B)) = 1 for all
A,B ∈ GL2(Fqn) with detA = detB. SOi(q

n)/Ωi(q
n) is abelian, so the commutator subgroup

of SOi(q
n) is contained in Ωi(q

n). Assume qn 6= 3 (this case must be treated separately). Since
SL2(qn) is perfect, the image of ρi,n is contained in Ωi(q

n). We wish to see that ρ4,n and ρ3,n

are surjective when n <∞. To do so we describe how values of ρi and π can be related.

Let g ∈ Ω3(qn) be given. From Corollary 25, we know g = rU1 · · · rUk where rUi is the ro-
tation with respect to the 2-dimensional subspace Ui. Furthermore θ(g) = 1 ∈ F∗qn/(F∗qn)2.
For i = 1, . . . , k, fix an orthogonal basis {Bi, Ci} of Ui with det(Bi), det(Ci) 6= 0, and choose
Ai ∈ U⊥i , Ai 6= 0. Then det(Ai) 6= 0 and {Ai, Bi, Ci} is an orthogonal basis of M0

2 (Fqn). We see
that

π(Bi ∗ Ci)(Ai) = Ai, π(Bi ∗ Ci)(Bi) = −Bi, π(Bi ∗ Ci)(Ci) = −Ci,

which means that π(Bi ∗ Ci) = rUi . Now

g = π(B1 ∗ C1 ∗ · · · ∗Bk ∗ Ck)

and in particular det(B1) det(C1) · · · det(Bk) det(Ck) is a sqaure in F∗qn . We know that
det(Ai) det(Bi) det(Ci) is a square as well since {Ai, Bi, Ci} is an orthogonal basis of M0

2 (Fqn).
Thus det(A1 · · ·Ak) is also a square, i.e. det(A1 · · ·Ak) = λ2 for some λ ∈ F∗qn . Set A1 :=
λ−1A1. Then det(A1 · · ·Ak) = 1. For each i ∈ {1, . . . , k}, since Ai has trace zero, A2

i =
diag (−detAi,−detAi). The kernel of ρ̄3,n is clearly the matrices {diag (λ, λ) | λ ∈ F∗qn}, none
of which have trace zero. Therefore ρ̄3,n(Ai) has order 2. Its restriction to span(Ai) is clearly the
identity. Its restriction to A⊥i = span(Bi, Ci) = Ui must therefore be an isometry of order 2 and
determinant 1. There is only one such isometry; multiplication by −1. Hence ρ3,n(Ai) = rUi .
Now

g = ρ̄3,n(A1) · · · ρ̄3,n(Ak) = ρ̄3,n(A1 · · ·Ak) = ρ3,n(A1 · · ·Ak)

Hence ρ3,n is surjective.

Showing that ρ4,n is surjective can be done in a similar way. With g ∈ Ω4(qn) we have the
exact same setup until the choice of the Ai ∈ U⊥i . This time U⊥i is 2-dimensional and for each
i ∈ {1, . . . , k} we choose an orthogonal basis {Yi, Zi} of U⊥i with det(Yi), det(Zi) 6= 0. In the
same way as above, we can conlude that det(Y1Z1 · · ·YkZk) is a square. But then

det(Z1Y
−1

1 · · ·ZkY −1
k ) = det(Y −1

1 Z1 · · ·Y −1
k Zk)
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is also a square, and by replacing Y1 with a scalar multiple, we may assume the determinants
equal 1. I.e. (Z1Y

−1
1 · · ·ZkY −1

k , Y −1Z1 · · ·Y −1
k Zk) ∈ SL2(qn) × SL2(qn). We still have the

identity

g = π(B1 ∗ C1 ∗ · · · ∗Bk ∗ Ck)

We claim that π(Bi ∗Ci) = ρ̄4,n(ZiY
−1
i , Y −1

i Zi) for all i ∈ {1, . . . , k}, which will prove that ρ4,n

is surjective.
As Zi ⊥ Yi we get that

0 = det(Yi + Zi)− det(Yi)− det(Zi) = det(Yi)(det(Y −1
i Zi + I)− det(I)− det(Y −1

i Zi))

which shows that Y −1
i Zi ⊥ I. Similarly ZiY

−1
i ⊥ I. A 2 × 2-matrix is orthogonal to I exactly

if its trace is zero. The square of a 2× 2-matrix X of trace zero equals diag (−detX,−detX).
Thus ρ4,n(ZiY

−1
i , Y −1

i Zi) has order 2. In addition, it fixes both Yi and Zi, and thereby Ui. By
the same argument as above, we conclude that rUi = ρ̄4,n(ZiY

−1
i , Y −1

i Zi).

We now know that Ω3(qn) ∼= SL2(Fqn/{±I} = PSL2(Fqn). It is well known that SL2(qn) is the
universal central extension of PSL2(qn) (we have assumed qn 6= 3). Since Spin3(qn) is another
central extension of Ω3(qn) there is a unique homomorphism ρ̃3,n : SL2(qn)→ Spin3(qn) such that
πρ̃3,n = ρ3,n. We show that ρ̃3,n is an isomorphism by showing that it is surjective. Ω3(qn) is per-
fect, since PSL2(qn) is. Thus Spin3(qn) decomposes as Spin3(qn) = {±1}[Spin3(qn), Spin3(qn)].
If we let {A1, A2, A3} be an orthogonal basis of M0

2 (Fqn) with detA1, detA2,detA3 6= 0, then
at least two of the elements ±A1 ∗A2,±A1 ∗A3,±A2 ∗A3 ∈ G+(M0

2 (Fqn), det) map to squares
in F∗qn under θ. Without loss of generality we may assume that θ(A1 ∗ A2) and θ(A1 ∗ A3) are
squares. After multiplying A1 by some scalar, we may even assume θ(A1 ∗A2) = θ(A1 ∗A3) = 1,
i.e. A1 ∗A2, A1 ∗A3 ∈ Spin3(qn). Now

[A1 ∗A2, A1 ∗A3] = A2 ∗A1 ∗A3 ∗A1 ∗A1 ∗A2 ∗A1 ∗A3

= −A1 ∗A2 ∗A2 ∗A1 ∗A1 ∗A3 ∗A3 ∗A1 = −1

Hence Spin3(qn) is perfect. By [As, (33.6), p. 168] ρ̃3,n is surjective. Whenever m | n, the
inclusion of fields Fqm ⊆ Fqn gives us inclusions of groups SL2(qm) 6 SL2(qn), and Spin3(qm) 6
Spin3(qn). The isomorphism ρ̃3,n : SL2(qn)→ Spin3(qn) restricts to an isomorphism SL2(qm)→
Spin3(qm) which is also a lift of π. By uniqueness, this ismorphism is ρ̃3,m. We can now obtain
an isomorphism ρ3,∞ : SL2(q∞)→ Spin3(q∞) as the direct limit of the ρ̃3,n.
A similar argument shows that there are unique isomorphisms ρ̃4,n : SL2(qn) × SL2(qn) →
Spin4(qn) for all n <∞. ρ4,∞ is constructed in the same way as ρ3,∞.
In case q = 3, the isomorphisms ρi,1, i = 4, 3, can be obtained by restriction. Uniqueness can be
shown by considering central extensions of PSL2(F3) by {±1}.

9 The fusion system FSol(q)

In this section we will construct the fusion systems FSol(q
n), n ∈ N, as fusion system over certain

Sylow-2-subgroups of Spin7(qn). (The construction is as in [LO], modified by its corrections
[LOc]).
The isomorphisms

ρ̃4 : SL2(Fqn)× SL2(Fqn)→ Spin4(qn), ρ̃3 : SL2(Fqn)→ Spin3(qn)

combine with the homomorphism

ι4,3 : Spin4(qn)× Spin3(qn)→ Spin7(qn)
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resulting in a homomorphism

ω : SL2(qn)3 → Spin7(qn)

The kernel of ι4,3 is {±(1, 1)} because Spin4(qn) ∩ Spin3(qn) = {±1} (we view Spin4(qn) and
Spin3(qn) as subgroups of Spin7(qn)). Therefore the kernel of ω is {±(I, I, I)}. By Proposition
28, Spini(q

n) has center {±1} for i = 4, 3, 7. I.e. the centers are the kernels of π : Spini(q
n) →

Ωi(q
n). Let z denote the generator of Z(Spin7(q)). Given A,B,C ∈ SL2(qn) we see that

ω(A,B,C) = ρ̃4(A,B) ∗ ρ̃3(C) ∈ Z(Spin7(qn)) ⇔
π(ρ̃4(A,B))⊕ π(ρ̃3(C)) = idV ⇔
(A,B) = ±(I, I) and C = ±I

The elements of SL2(qn)3 that map to z under ω are therefore precisely (−I,−I, I) and (I, I,−I).
Set z1 = ω(−I, I, I); it is some other element of Spin7(qn) of order 2. Define U = 〈z, z1〉. We
introduce the notation [A1, A2, A3] = ω(A1, A2, A3). With this notation U = [±I,±I,±I],
z = [−I,−I, I] = [I, I,−I], and z1 = [−I, I, I]. U is isomorphic to the Klein four-group;
[A1, A2, A3] = [B1, B2, B3] exactly if (A1, A2, A3) = ±(B1, B2, B3), and multiplication of ele-
ments is performed coordinatewise.
A lot of quantities are needed to define FSol(q

n). The next lemma introduces another one.

Lemma 30. [LO, 2.3]. NSpin7(q)(U) contains an element τ of order 2 which satisfies

τ [A1, A2, A3]τ = [A2, A1, A3], for all A1, A2, A3 ∈ SL2(q∞).

Proof. Let θ : M2(Fq)→M2(Fq) be the linear map given by

θ(

(
a b
c d

)
) =

(
d −b
−c a

)
and note that θ(X) = X−1 if det(X) = −1. Let τ̃ be the endomorphism of M2(Fq)⊕M0

2 (Fq) =
V∞ given by

τ̃(X,Y ) = (−θ(X),−Y ) for all (X,Y ) ∈M2(Fq)⊕M0
2 (Fq).

Note that τ̃ has order 2. We claim that τ̃ ∈ SO7(q∞). Given (X,Y ) ∈M2(Fq)⊕M0
2 (Fq),

Q(τ̃(X,Y )) = det(−θ(X)) + det(−Y ) = det(X) + det(Y ) = Q(X,Y )

The matrix of τ̃ with respect to our orthogonal basis of V∞ is diag (−1, 1, 1, 1,−1,−1,−1), hence
τ̃ is an isometry of (V∞, Q) of determinant 1. As all entries of the matrix of τ̃ are in Fq, we may
also view τ̃ as an isometry of V1. Its (−1)-eigenspace is clearly the 4-dimensional subspace V−
with orthogonal basis {(e1, 0), (0, e2), (0, e3), (0, e4)}, and the discriminant of Q|V− is (−1)4 = 1

in this basis. By property 1. of Lemma 27, τ̃ ∈ Ω7(q). Choose a lifting τ ∈ Spin7(q∞) of τ̃ . By
property 2. of Lemma 27, τ has order 2.
The elements of H(q∞) act on V∞ by

[A1, A2, A3].(X,Y ) = π([A1, A2, A3])(X,Y ) = (ρ4(A1, A2), ρ3(A3))(X,Y ) = (A1XA
−1
2 , A3XA

−1
3 )

for all A1, A2, A3 ∈ SL2(q∞) and all (X,Y ) ∈M2(Fq)⊕M0
2 (Fq). The action is well-defined, since

the only other choice of (A1, A2, A3) that produces the element [A1, A2, A3] is (−A1,−A2,−A3).
Matrix computations show that θ(XY ) = θ(Y )θ(X) for all X,Y ∈M2(Fq). Given A1, A2, A3 ∈
SL2(q∞) and (X,Y ) ∈M2(Fq)⊕M0

2 (Fq) we see that

(τ [A1, A2, A3]τ).(X,Y ) = (τ̃ ◦ (ρ4(A1, A2), ρ3(A3)) ◦ τ̃)(X,Y )

= τ̃(−A1θ(X)A−1
2 ,−A3Y A

−1
3 )

= (θ(A−1
2 )θ(θ(X))θ(A1), A3Y A

−1
3 )

= (A2XA
−1
1 , A3Y A

−1
3 ) = [A2, A1, A3].(X,Y )
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This means that

τ [A1, A2, A3]τ ≡ [A2, A1, A3] (mod 〈z〉) (15)

The assignments [A1, A2, A3] 7→ τ [A1, A2, A3]τ and [A1, A2, A3] 7→ [A2, A1, A3] both define au-
tomorphisms of H(q∞). (The first one is conjugation by τ ; it maps into H(q∞) by (15) since
z ∈ H(q∞)). Both automorphisms map z to z, so they induce automorphisms of H(q∞)/〈z〉,
and these automorphisms are equal by (15). It is well known that SL2(q∞) is perfect, and then
so is H(q∞) being a quotient of SL2(q∞)3. Hence any lifting of an automorphism of H(q∞)/〈z〉
to an automorphism of H(q∞) is unique, since any two liftings must agree on all commutators of
H(q∞). We conclude that τ [A1, A2, A3]τ = [A2, A1, A3] for all A1, A2, A3 ∈ SL2(q∞). Finally, it
is clear that τ ∈ NSpin7(q)(U), since U = {[±I,±I,±I]} with all eight combinations of signs.

We introduce a few more subgroups of Spin7(qn):

H(q∞) = ω(SL2(q∞)3)

And for n <∞:

H(qn) = H(q∞) ∩ Spin7(qn)

H0(qn) = ω(SL2(qn)3)

Note that H0(qn) 6 H(qn)

Lemma 31. [LO, 2.5]. Let n ∈ N or let n =∞. Then

1. CSpin7(qn)(U) = H(qn).

2. NSpin7(qn)(U) = H(qn) · 〈τ〉.

When n <∞, H(qn) · 〈τ〉 contains a Sylow-2-subgroup of Spin7(qn).

Proof. ad 1. We first show the equality in case n =∞. As U = 〈z, z1〉, clearly CSpin7(q∞)(U) =
CSpin7(q∞)(z1). Recall that z1 = ω(−I, I, I). We see that ρ4(−I, I)⊕ ρ3(I) = π(z1) ∈ Ω7(q∞) =
SO7(q∞) has order 2, and with the notation of Lemma 27, V− = M2(Fq∞) and V+ = M0

2 (Fq∞).
Given α̃ ∈ Spin7(q∞), the lemma tells us that there are α± ∈ O(V±,det) such that π(α̃) =
α+⊕α− and that α̃ ∈ CSpin7(q∞)(z1) if and only if α− ∈ SO(V−, det). Since α+⊕α− ∈ SO7(q∞)
we see that α− ∈ SO(V−, det) if and only if α+ ∈ SO(V+,det). Hence α̃ ∈ CSpin7(q∞)(z1) if and
only if

π(α̃) ∈ (SO(V−, det)⊕ {idV +}) ◦ ({idV −} ⊕ SO(V+,det)) (16)

But since π : Spin7(q∞)→ SO7(q∞) is surjective, (16) holds exactly when

α̃ ∈ (Spin4(q∞)× {±1}) ({±1} × Spin3(q∞))

i.e.

CSpin7(q∞)(U) = CSpin7(q∞)(z1) = ι4,3(Spin4(q∞)× Spin4(q∞)) = H(q∞)

And then

CSpin7(qn)(U) = CSpin7(q∞)(z1) ∩ Spin7(qn) = H(qn)

ad 2. U = 〈z, z1〉 and z is central in Spin7(q∞). It follows that AutSpin(q∞)(U) has order
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at most 2. The potential non-identity automorphism is the one given by z1 7→ zz1. But that
one is in fact a Spin7(q∞)-automorphism of U : With τ as defined in Lemma 30 we see that

τz1τ = τ [−I, I, I]τ = [I,−I, I] = [−I,−I, I][−I, I, I] = zz1

Thus τ /∈ CSpin7(q∞)(U) and

NSpin7(qn)(U) = CSpin7(q∞)(U)〈τ〉 = H(q∞)〈τ〉

Consequently

NSpin7(qn)(U) = NSpin7(q∞)(z1) ∩ Spin7(qn) = H(qn)〈τ〉

because τ ∈ NSpin7(q)(U) by definition.
ad 3. This can be shown by comparing the orders of Spin7(qn) and H(qn)〈τ〉. See [LO, p. 932].

It is well known that every element of Fq can be written as a sum of two squares (the squares
make up more than half the elements of Fqn). Let α, β ∈ Fq satisfy α2 + β2 = −1, and define

A =

(
α β
β −α

)
, B =

(
0 −1
1 0

)
Then A,B ∈ SL2(q) and 〈A,B〉 ∼= Q8, the quaternion group. The characteristic polynomial
of A is x2 + 1, so A has two distinct eigenvalues ±λ ∈ SL2(q2) and is conjugate in SL2(q2)
to the diagonal matrix diag (λ,−λ). One can explicitly determine an L ∈ SL2(q2) such that
L−1AL = diag (λ,−λ). Then CSL2(q∞)(A) = LDL−1, where D denotes the subgroup of diagonal
matrices of SL2(q∞). Direct computations show that every element C ∈ CSL2(q∞)(A) satisfies
CBC = −B−1 = B.
Define C(q∞) = {X ∈ CSL2(q∞)(A) | ∃k ∈ N : A2k = I}. We see that C(q∞) ∩ SL2(qn) is
conjugate to the subgroup of all diagonal matrices of SL2(qn) whose orders are powers of 2.
Since the group diagonal matrices of SL2(qn) is isomorphic to F∗qn , C(q∞) ∩ SL2(qn) is a cyclic
2-group, and so C(q∞) is a union of cyclic 2-groups. We say that C(q∞) is the infinite cyclic
2-group. It is isomorphic to Z[1

2 ]/Z.
We define the following groups:

Q(q∞) = 〈C(Q∞), B〉 6 SL2(q∞),

C(qn) = C(q∞) ∩ SL2(qn),

Q(qn) = Q(q∞) ∩ SL2(qn),

and

A(q∞) = ω(C(q∞)3), A(qn) = A(q∞) ∩ Spin7(qn),

S0(q∞) = ω(Q(q∞)3) 6 H(q∞), S0(qn) = S0(q∞) ∩ Spin7(qn),

S(q∞) = S0(q∞)〈τ〉 6 H(q∞)〈τ〉, S(qn) = S(q∞) ∩ Spin7(qn).

We also set Â = [A,A,A] ∈ A(q) 6 S0(q), and B̂ = [B,B,B] ∈ S0(q). Note that Â and B̂ both
have order 2, and that Â 6= B̂.

Lemma 32. [LO, Lemma 2.7]. For all n < ∞, S(qn) is a Sylow-2-subgroup of H(qn)〈τ〉, and
thereby also of Spin7(qn).
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In general, given a finite p-group S0 and a subgroup Γ 6 Aut(S0) we will let FS0(Γ) denote
the fusion system over S0 whose morphisms are all possible restrictions of elements of Γ to
homomorphisms P → Q, P,Q 6 S0.
The fusion systems FSol(q

n) will be constructed as the smallest fusion system containing the
group fusion system FS(qn)(Spin7(qn)) and the fusion system FS0(qn)(Γn) for some specific
Γn 6 Aut(S0(qn)). We will use the notation 〈FS(qn)(Spin7(qn)),FS0(qn)(Γn)〉 for this fusion
system. In the following, we describe how to choose Γn.

Given X ∈ C(q∞) of order 2k, we have Xu+2k
′

= Xu for all k′ ≥ k. If we let Z2 denote
the 2-adic integers, it therefore makes sense to write Xu for u ∈ Z2. For each u ∈ (Z2)∗, define
δu ∈ Aut(A(q∞)) by δu([X1, X2, X3]) = [X1, X2, X

u
3 ] (it is clearly a homomorphism with δu−1

as inverse). Define γ ∈ Aut(A(q∞)) by γ([X1, X2, X3]) = [X3, X1, X2], i.e. γ permutes the
coordinates cyclically. Finally set γu = δuγδ

−1
u .

Lemma 33. [LOc, 1.5]. There is an element u′ ∈ (Z2)∗ with u′ ≡ 1 (mod 4), such that

〈AutSpin7(q∞)(A(q∞)), γu′〉 ∼= C2 ×GL3(F2)

If X ∈ Q(q∞) = 〈C(q∞), B〉, then since CBC = B for all C ∈ C(q∞), X can be given the form
X = A′Bj for some A′ ∈ C(q∞). As B has order 4, Xu′ = (A′)u

′
Bj . We now define extensions

of δu′ , γ, and γu′ to automorphisms of S0(qn) as follows:

δ̃u′([X1, X2, A
′Bj ]) = [X1, X2, (A

′)u
′
Bj ]

γ̃([X1, X2, X3]) = [X3, X1, X2]

γ̃u′ = δ̃u′ γ̃δ̃
−1
u′

Note that conjugation by τ also defines an automorphism of S0(qn) since it just permutes the
first two coordinates; let cτ ∈ S0(qn) denote this automorphism. For all n ∈ N, we choose
Γn 6 Aut(S0(qn)) as follows:

Γn = 〈Inn(S0(qn)), cτ , γ̃u′〉

And we define

Fn = FSol(q
n) = 〈FS(qn)(Spin7(qn)),FS0(qn)(Γn)〉

Theorem 34. [LO, 2.11]. The fusion system Fn over S(qn) defined above is saturated. In
addition it satisfies

1. CFn(z) = FS(qn)(Spin7(qn)).

2. All elements of order 2 of S(qn) are Fn-conjugate.

Fn is also exotic, see [LO, 3.4].

10 The Euler characteristic of FSol(q)

We wish to compute the Euler characteristic of FSol(q). This requires an in-depth study of the
structure and relations of the elementary abelian subgroups of S(q). We refer to the appendix
of [LO].
Let E be the set of all elementary abelian 2-subgroups of Spin7(q) that contain z, and for each
n ∈ N, let En ⊆ E be those of rank n. In general given E ∈ E , we will let E denote the
image of E in SO7(q), i.e. E = π(E). Similarly, g = π(g) when g ∈ Spin7(q). If E ∈ E and

h ∈ Spin7(q), then hEh−1 = h · E · h−1
, and χ 7→ χ ◦ c

h
−1 defines a bijection of characters
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Hom(E, {±1})→ Hom(h ·E ·h−1
, {±1}). If we let V =

⊕
χ Vχ be the eigenspace decomposition

of E as given in Lemma 26, then
⊕

χ hVχ is the eigenspace decomposition of h · E · h−1
. This

implies that if E and E′ are conjugate elementary abelian 2-subgroups of Spin7(q), then E and

E
′

act similarly on V = M2(Fq)⊕M0
2 (Fq), and it is enough to understand one of them.

Let E ∈ E be of rank n ≥ 2, and let V1 denote the eigenspace of the trivial character E → {±1}.
If n = 2, then E ∼= C2; let 1 6= χ ∈ Hom(E, {±1}) be the nontrivial character. Vχ is then
the (−1)-eigenspace which is not trivial. Since dimV = 7, we get that dimVχ = 4 by applying
Lemma 27, and so dimV1 = 3.
Now assume that n > 2. We claim that dimV1 only depends on n. We prove this inductively:
Assume the eigenspace of the trivial character of E

′
has dimension r for all E′ ∈ En−1. Let

1 6= χ ∈ Hom(E, {±1}). Then kerχ has index 2 in E, so there is an E′ ∈ En−1 such that

E
′

= kerχ. By construction, the trivial character of kerχ has eigenspace V1 ⊕ Vχ. Thus
dimVχ = r−dimV1. This shows that all eigenspaces except V1 in the eigenspace decomposition
V =

⊕
χ Vχ have the same dimension. There are |E| − 1 = 2n−1 − 1 nontrivial characters of

E, so we get the formula dimV1 + dimVχ · (2n−1 − 1) = 7. The two formulas show that dimV1

only depends on r and n, which proves our claim. We can now compute the dimensions of the
eigenspaces of all characters of E for all E ∈ E recursively; we have already dealt with the rank
2 case. If n = 3, then dimV1 = 1 and dimVχ = 2 for each of the three nontrivial characters of
E. If n = 4, then dimV1 = 0 and dimVχ = 1 for each of the seven nontrivial characters of E.
The formula dimV1 + dimVχ · (2n−1 − 1) = 7 shows that if n ≥ 5, then Vχ = 0 for all nontrivial
characters. This means that each element of E is the identity of V , but E has rank at least 4,
which is a contradiction. Hence E contains no subgroups of rank 5 or greater that contain z. In
particular En = ∅ for all n ≥ 5, and every elementary abelian 2-subgroup of Spin7(q) of rank 4
contains z.
In the continued study of E2, E3, and E4, it turns out to be useful to introduce the following
notion: Given E ∈ E we say that E and E are of type I if the eigenspaces of E all have square
discriminants. Otherwise we say that E and E are of type II. We write EIn for the set of elements
of En of type I, and EIIn for the set of elements of En of type II; En equals the disjoint union
of EIn and EIIn . If E and E′ are conjugate in Spin7(q) they have the same type. We first show
that EII2 = ∅. If E ∈ E2, then E = 〈z, α〉 for some element z 6= α ∈ Spin7(q) of order 2. Now
E = 〈α〉, and by Lemma 27 the eigenspace of the character E → {±1} given by α 7→ −1 has
square discriminant. The trivial character is the only other character, and its eigenspace must
therefore also have square discriminant since V does.
We can summarize many of the results in the following table:

EI2 EI3 EII3 EI4 EII4

dimV1 3 1 1 0 0

dimVχ 4 2 2 1 1

discV1 sq. sq. nonsq. - -

discV1 sq. sq. nonsq. sq. sq./nonsq.

Here dimV1 is the dimension of the eigenspace of the trivial character, and dimVχ is the di-
mension of the eigenspaces of each of the other characters. Whether these subspaces (with the
restriction of the quadratic form Q) have square or nonsquare discriminants is listed in the last
two rows. We have yet to prove that these discriminants are as in the table in the rank 3 and 4
cases:
If E ∈ E3, then E = {id, g1, g2, g3 := g1g2}. We can define the three nontrivial characters by χi,
i = 1, 2, 3 by χi(gi) = 1 and χi(gj) = −1 when j 6= i. We see that Vχ1 ⊕ Vχ2 is the eigenspace of

g3 of eigenvalue −1. But Vχ1 ⊕ Vχ2 is the eigenspace of the nontrivial character of 〈z, g3〉 which
we know has square discriminant. Thus Vχ1 and Vχ2 have the same discriminant modulo squares.
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Similarly, Vχ2 and Vχ3 have the same determinant modulo squares. So the discriminants of the
eigenspaces of E are as presented in the table.
If E ∈ EII4 , then there are seven 1-dimensional eigenspaces of E. As V has square discriminant,
not all of them can have nonsquare discriminants.

Next we examine how many conjugacy classes of subgroups of Spin7(q) each of the sets EI2 ,
EI3 , EII3 , EI4 , and EII4 contain. At the same time we determine AutSpin7(q)(E) when E /∈ EII4 . z is
of course fixed under conjugation by every element of Spin7(q); define Aut(E, z) as the subgroup
of automorphisms of E that map z to itself.

Lemma 35. Let E ∈ E. Then

1. If E ∈ E4, then CSpin7(q)(E) = E.

2. If E ∈ EII , then there is a unique element x(E) ∈ E such that for every nontrivial character
χ of E, disc(Vχ) is a square if and only if χ(x(E)) = 1.

3. If E /∈ EII4 , then AutSpin7(q)(E) = Aut(E, z).

4. If E ∈ EII4 and if X 6 E denotes the preimage of 〈x(E)〉, then

AutSpin7(q)(E) > {α ∈ Aut(E) | α|X = idX , α ≡ id mod 〈z〉}

Proof. ad 1. Let E ∈ E4, let a ∈ CSpin7(q)(E), and let 1 6= χ ∈ Hom(E, {±1}). Applying
Lemma 27.3 with α = a to each x of E, we see that a(Vχ) = Vχ. Since Vχ is 1-dimensional
a is plus or minus the identity on Vχ, hence a has order 2. Let V− be the sum of the Vχ on
which a acts as −id and let V+ be the sum of the other ones, i.e. the ones on which a acts as
id. Because a ∈ Spin7(q), we have a ∈ Ω7(q) and in particular det(a) = 1, so dimV− is even.
By applying Lemma 27 to a we also get that V− has square discriminant. If dimV− = 2, then
there are χ1, χ2 ∈ Hom(E, {±1}), χ1 6= χ2, such that V− = Vχ1 ⊕ Vχ2 . Choose g ∈ E such
that χ1(g) 6= χ2(g). Then det(g|V− ) = −1, and point 3. of Lemma 27 tells us that g and a do

not commute, which contradicts that a ∈ CSpin7(q)(E). If dimV− = 4, then by Lemma 27.2, a
has order 2. But then a ∈ E since otherwise 〈E, a〉 has rank 5. If dimV− = 6 one obtains a
contradiction like in the case dimV− = 2. We conclude that CSpin7(q)(E) = E.

ad 2. Let E ∈ EII4 , and define x(E) as the isometry of V which is −id on eigenspaces Vχ
of nonsquare discriminant, and id on eigenspaces Vχ of square discriminant. As there is an even
number of eigenspaces of nonsquare dimension, x(E) ∈ Ω7(q) by Lemma 27.1. Let x ∈ Spin7(q)
be a lifting of x(E). To show that x ∈ E, let g ∈ E be given. As g ∈ Ω7(q), Lemma 27.1 says
that the (−1)-eigenspace of g has square discriminant, and so it must contain an even number
of the eigenspaces of E that have nonsqaure discriminant. By Lemma 27.3, g and x commute.
Thus x ∈ CSpin7(q)(E) = E.
It is clear that there is at most one element with the stated property, since there are no two
distinct elements of E on which all the nontrivial characters agree.

ad 3.+4. Assume E /∈ EII4 and letE′ ∈ E have the same rank and type as E. Given α ∈ Iso(E,E
′
)

and χ ∈ Hom(E
′
, {±1}), χ ◦ α defines a character of E, which is the trivial character if and

only if χ is. Therefore Vχ and Vχ◦α have the same dimension and their discriminants are equal

modulo squares. We can therefore define an isometry Vχ → Vχ◦α for each χ ∈ Hom(E
′
, {±1}),

and this defines an isometry g ∈ O7(q) which satisfies cg = α as isomorphisms E → E
′
. Since

c−g = cg we may assume g ∈ SO7(q). If E,E′ ∈ EII4 and we also require α(x(E)) = x(E′), the
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same line of arguments work. Thus we have shown that if E,E′ ∈ E have the same rank and
type, then E and E

′
are conjugate by an element of SO7(q), and furthermore that

Aut(E) = AutSO7(q)(E), if E /∈ EII4 , and

{α ∈ Aut(E) | α(x(E)) = x(E)} = AutSO7(q)(E), if E ∈ EII4

We claim that

CSO7(q)(E) 6 Ω7(q)⇔ E ∈ EI4 (17)

Assume E /∈ EI4 . If E ∈ EI2 or if E ∈ EI3 choose w ∈ V1 such that Q(w) is a square. Let χ be
a nontrivial character of E; then dimVχ ≥ 2. Choose an orthogonal basis {vi} of nonisotropic
elements of Vχ. If Q(vi) is a square for all i, then there is a linear combination w′ of two of them
such that Q(w′) is not a square. If E ∈ EII3 or if E ∈ EII4 choose an orthogonal basis of each
eigenspace of E. Their union is an orthogonal basis {v1, . . . , v7} of V , but Q(vi) cannot be a
square for all i, since E has eigenspaces of nonsquare discriminants. In this case we can therefore
also choose w and w′ from different eigenspaces, such that Q(w) is a square while Q(w′) is not.
Let W and W ′ be the 1-dimensional subspaces spanned by w and w′, respectively. Then W ⊥W ′
are 1-dimensional subspaces of distinct eigenspaces of E, W has square discriminant, and W ′

has nonsquare discriminant. Define γ ∈ SO7(q) as the involution which is −id on W ⊕W ′ and id
on (W ⊕W ′)⊥. Then W ⊕W ′ is the (−1)-eigenspace of γ, and it has nonsquare discriminant by
construction. Hence γ /∈ Ω7(q) by Lemma 27.1. But γ(Vχ) = Vχ for each χ ∈ Hom(E, {±1}), so
γ commutes with every element of E. This proves ’⇒’ of (17). Assume conversely that E ∈ EI4 ,
and let g ∈ CSO7(q)(E) be given. Then g(Vχ) = Vχ for each of the 1-dimensional eigenspaces of

E, and g must be multiplication by +1 or −1 on each of them. As det(g) = 1, V− must have
even dimension, hence g ∈ Ω7(q) by Lemma 27.1.
Next we show that NSO7(q)(E) 6 Ω7(q) when E ∈ EI4 . We know that

NSO7(q)(E)/CΩ7(q)(E) = NSO7(q)(E)/CSO7(q)(E) ∼= AutSO7(q)(E) = Aut(E) ∼= GL3(F2) = SL3(F2)

and that SL3(F2) is simple. As Ω7(q) has index 2 in SO7(q), NΩ7(q)(E)/CΩ7(q)(E) has index 1

or 2 in NSO7(q)(E)/CΩ7(q)(E). The index can’t be 2, hence NSO7(q)(E) = NΩ7(q)(E).
We can now determine the number of conjugacy classes among subgroups of the same rank
and type. Obviously E,E′ ∈ E are conjugate in Spin7(q) if and only if E and E

′
are Ω7(q)-

conjugate. If E and E′ have the same rank and type, then E = gE
′
g−1 for some g ∈ SO7(q).

Assume g /∈ Ω7(q).

• If E,E′ /∈ EI4 , then by (17) there is a γ ∈ SO7(q) \ Ω7(q) such that γ ∈ CSO7(q)(E). But
then cg|

E,E
′ = cgγ |

E,E
′ , and gγ ∈ Ω7(q). This shows that E is conjugate to every other

subgroup of the same rank and type, and that AutSO7(q)(E) = AutΩ7(q)(E).

• If E ∈ EI4 , then E and gEg−1 represent different Ω7(q)-conjugacy classes, since otherwise
g ∈ Ω7(q) ·NSO7(q)(E) = Ω7(q). If h ∈ SO7(q) \ Ω7(q), then hEh−1 and gEg−1 represent

the same Ω7(q)-conjugacy class, because h−1g ∈ Ω7(q). We also note that AutSO7(q)(E) =

AutΩ7(q)(E) since NSO7(q)(E) 6 Ω7(q).

We have now shown that there are six conjugacy classes of elementary abelian subgroups of
Spin7(q): The sets EI2 , EI3 , EII3 , and EII4 are four of them, and the union of the last two equals
EI4 .
We now turn to the question of determining AutSpin7(q)(E) for E /∈ EII4 . Every element of

Aut(E, z) induces an automorphism of E by composition with π. This defines a homomorphism
Ψ: Aut(E, z)→ Aut(E). We have shown that Aut(E) = AutΩ7(q)(E), and so Ψ is an extension
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of the surjective homomorphism AutSpin7(q)(E)→ AutΩ7(q)(E) induced by π : Spin7(q)→ Ω7(q).
The kernel of Ψ is

ker(Ψ) = {α ∈ Aut(E, z) | ∀x ∈ E : α(x) ≡ x (mod 〈z〉)}

If we can show that ker(Ψ) 6 AutSpin7(q)(E) it will follow that AutSpin7(q)(E) = Aut(E, z).

Let α ∈ ker(Ψ) be given. Define χ : E → {±1} by χ(x) = 1 if α(x) = x and χ(x) = −1 if
α(x) = zx. χ is well-defined and a homomorphism since α is. We may assume that χ is not
the trivial character, since otherwise α = id. Choose ψ ∈ Hom(E, {±1}) such that Vψ 6= 0 and
Vψχ 6= 0, and note that Vψ 6= Vψχ. By an argument similar to one used to prove (17), there
are 1-dimensional, non-isotropic 1-dimensional subspaces W ⊆ Vψ and W ′ ⊆ Vψχ such that W
and W ′ have the same discriminant modulo squares. Define g ∈ O7(q) as the involution with
(−1)-eigenspace W ⊕W ′. By Lemma 27.1, g ∈ Ω7(q); let g ∈ Spin7(q) be a lifting of g. We
claim that cg = α. Given x ∈ Spin7(q), g and x commute because g maps each eigenspace of E
to itself. Thus cg(x) = gxg−1 ∈ {zx, x}. By use of Lemma 27.3,

cg(x) =

{
x when det(x|

W⊕W ′ ) = 1

zx when det(x|
W⊕W ′ ) 6= 1

x|
W⊕W ′ is multiplication by ψ(x) on W and multiplication by ψχ(x) on W ′. This shows that

det(x|
W⊕W ′ ) = χ(x). We conclude that cg(x) = α(x).

By a similar argument, one can show that

AutSpin7(q)(E) > {α ∈ Aut(E) | α|X = idX , α ≡ id (mod 〈z〉)}

The extra requirement of α (i.e. that α|X = idX) implies χ(x(E)) = x(E), which ensures that
Vψχ and Vψ have the same discriminant. We choose ψ 6= χ, since otherwise Vχψ = V1 = 0. Then
set W = Vψ, W ′ = Vψχ. The rest of the argument is the same.

Determining AutSpin7(q)(E) when E ∈ EII4 is slightly more technical. Let fn denote the Frobenius

automorphism of Fqn for each n ∈ N. Then f
n/m
n = fm whenever m | n; let f denote the

automorphism of Fq they define. Then f acts on Spin7(q∞) as described earlier, and the action
defines an automorphism of Spin7(q∞) which we denote ψ. Spin7(q) is exactly the subgroup
fixed by ψq.

Lemma 36. Let C and C′ denote the two conjugacy of subgroups of Spin7(q) whose union is EI4 ,
and let E ∈ E4. Then

1. There is an a ∈ Spin7(q∞) such that aEa−1 ∈ C. For such an a, the element a−1ψq(a) ∈
Spin7(q∞) depends only on E; we denote it by xC(E).

2. xC(E) ∈ E.

3. E ∈ C if and only xC(E) = 1, and E ∈ C′ if and only xC(E) = z.

4. If E has type II (such that xC(E) /∈ 〈z〉 by 3.), then

AutSpin7(q)(E) = {α ∈ Aut(E, z) | α(xC(E)) = xC(E)}

Proof. ad 1. The results proved so far for Spin7(q) obviously hold with qn in place of q, since
qn is just another odd prime power. Viewing E as a subgroup of Spin7(q2), E has type I, since
Fq is precisely the subfield of squares of Fq2 . So if E′ ∈ C, then E,E′ 6 Spin7(q2) have the

same rank and type, and there is an a ∈ SO7(q2) such that aEa−1 = E
′
. As Fq2 is the subfield
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of squares in Fq4 , the image under θ of SO7(q2) equals 1 in F∗q4/(F
∗
q4)2, i.e. SO7(q2) 6 Ω7(q4).

Thus a lifts to an element a ∈ Spin7(q4) 6 Spin7(q∞), and aEa−1 = E′.
Now assume b ∈ Spin7(q∞) is another element which satisfies bEb−1 ∈ C. Then aEa−1 and
bEb−1 are conjugate in Spin7(q); choose g ∈ Spin7(q) such that gbE(gb)−1 = aEa−1. Then
gba−1 ∈ NSpin7(q∞)(E

′). Let x ∈ NSpin7(q∞)(E
′) be given, then x ∈ NSpin7(qk)(E

′) for some

sufficiently large k. We know that CSpin7(qk)(E
′) = E′ (Lemma 35.1 with q = qk), and that

AutSpin7(q)(E
′) = Aut(E′, z). As cx ∈ Aut(E′, z) we conclude that x ∈ NSpin7(q)(E

′). This
argument shows that NSpin7(q∞)(E

′) = NSpin7(q)(E
′). Hence gba−1 and thereby also ba−1 are

elements of Spin7(q). In particular ψq(ba−1) = ba−1, and

b−1ψq(b) = b−1ψq(ba−1a) = a−1ψq(a)

ad 2. Let g ∈ E be given, and let a ∈ Spin7(q∞) be such that aEa−1 ∈ C. Then aga−1 ∈
Spin7(q), so

aga−1 = ψq(aga−1) = ψq(a)gψq(a)−1,

and then g conjugated by xC(E) is

xC(E)gxC(E)−1 = a−1ψq(a)gψq(a)−1a = g

Hence xC(E) ∈ CSpin7(q∞)(E). But then xC(E) ∈ CSpin7(qk)(E) for some k ∈ N, and CSpin7(qk)(E) =
E.

ad 3. If E ∈ C, choose a = 1. Then clearly xC(E) = 1. If E ∈ C′ and E′ ∈ C, then E

and E′ have the same rank and type, and we can find a ∈ SO7 \ Ω7(q) such that aEa−1 = E
′
.

As in the proof of 1., a ∈ Ω7(q2), so a has a lifting a ∈ Spin7(q2). Now aEa−1 ∈ C, but
a /∈ Spin7(q) since E /∈ C. Hence xC(E) 6= 1. But a ∈ SO7(q), so ψq(a) = a. Thus xC(E) = id,
and this forces xC(E) = z.
To complete this part of the proof we need to see that xC(E) ∈ 〈z〉 implies that E has type I. Let
a ∈ Spin7(q∞) be such that aEa−1 ∈ C, and assume that xC(E) ∈ 〈z〉. Then either ψq(a) = a
or ψq(a) = za. In both cases we have ψq(a) = a, i.e. a ∈ SO7(q). We have already seen that
if
⊕

χ Vχ is the eigenspace decomposition of E, then
⊕

χ aVχ is the eigenspace decomposition

of aEa−1. As a is an isometry, Vχ and aVχ have the same discriminants modulo squares. As
a−1Ea−1 has type I, so does E.

ad 4. Let E ∈ EII4 . Then by 3., xC(E) /∈ 〈z〉. If g ∈ NSpin7(q)(E), then

gxC(E)g−1 = (ag−1)−1ψq(ag−1) = xC(E)

where a ∈ Spin7(q∞) is such that aEa−1 ∈ C. This provides one inclusion. In the proof of
Lemma 35 we saw that

AutΩ7(q)(E) = AutSO7(q)(E) = {α ∈ Aut(E) | α(x(E)) = x(E)}

We also have a surjective homomorphism AutSpin7(q)(E)→ AutΩ7(q)(E) induced by π : Spin7(q)→
Ω7(q). Since every α ∈ AutSpin7(q)(E) maps xC(E) to itself and xC(E) 6= id, we conclude that

xC(E) = x(E). This implies that every element of

Aut(E, z, xC(E))
def
= {α ∈ Aut(E, z) | α(xC(E)) = xC(E)}

induces an automorphism of E which maps x(E) to itself, and clearly Aut(E, z, xC(E)) >
AutSpin7(q)(E). I.e. we have a surjective homomorphism Ψ: Aut(E, z, xC(E)) → AutΩ7(q)(E).
Lemma 35.4 states that

AutSpin7(q)(E) > {α ∈ Aut(E) | α|X = idX ; α ≡ id (mod 〈z〉)}
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where X was defined as the preimage in E of 〈x(E)〉 6 E. But the right hand side is precisely
the kernel of Ψ. This finishes the proof.

The results presented so far tell us what we need to know about every elementary abelian sub-
groups E of S(q) ∈ Syl2(Spin7(q)): We know what the FS(q)(Spin7(q))-automorphisms of E are,
and how the elementary abelian subgroups of S(q) are FS(q)(Spin7(q))-conjugate. Adding the
morphisms of Γ1 to FS(q)(Spin7(q)) to construct FSol(q) may cause some of the FS(q)(Spin7(q))-
conjugacy classes to be FSol(q)-conjugate, and the automorphism groups may become larger. In
the following we investigate what the effects are.

Lemma 37. [LOc, 1.8]. Let X be a generator of the cyclic group C(q), and let Y ∈ C(q2) be
such that Y 2 = X. Define E000 = 〈z, z1, Â, B̂〉 6 S0(q). Then E000 is elementary abelian of rank
4 and type I. Furthermore the following holds:

1. The subgroups

E001
def
= 〈z, z1, Â, [B,B,XB]〉, and E100

def
= 〈z, z1, Â, [XB,B,B]〉

are both elements of E4.

2. E001 represents the other Spin7(q) conjugacy class of subgroups of type I, and E100 repre-
sents the class of subgroups of type II.

3. φ(xC(E)) = xC(φ(E)), for all φ ∈ Γ1, and E = E000, E001, E100.

Proof. One checks that AB has trace 0, and that

{(I, 0), (A, 0), (B, 0), (AB, 0), (0, A), (0, B), (0, AB)}

is a basis corresponding to the eigenspace decomposition

V1 = M2(Fq)⊕M0
2 (Fq) =

⊕
χ

Vχ

of E000. Since detA = detB = detAB = 1, all the eigenspaces have discriminant 1 in this basis,
hence E000 has type I.
In greater generality, define Eijk = 〈z, z1, Â, [X

iB,XjB,XkB]〉. To see that Eijk is elementary
abelian, we just need to check that (XmB)2 = −I. However, we know that XBX = B, i.e.
BX = X−1B, and then clearly XmBXmB = B2 = −I. It is clear that Eijk has rank 4.
Next we compute xC(Eijk). Note that

Y −m(XiB)Y m = Y −mXiY −mB = Y −2mXmB = B

where we have used that Y and X commute (they are both elements of C(q2) which is abelian)
and that Y 2 = X. Y −m clearly centralizes z, z1 and Â. Thus

[Y i, Y j , Y k]−1Eijk[Y
i, Y j , Y k] = E000

As Y ∈ SL2(q2) we have that ψq(Y m) = (−Y )m. Now

xC(Eijk) = [Y i, Y j , Y k] ∗ ψq([Y i, Y j , Y k]−1) = [(−I)i, (−I)j , (−I)k]

In particular, xC(E001) = [I, I,−I] = z, and xC(E100) = [−I, I, I] = z1. This proves that E001

has type I, but that E001 /∈ C, and that E100 has type II, by use of Lemma 36.

When E ∈ E4, we already know that gxC(E)g−1 = xC(gEg
−1) for all g ∈ Spin7(q). As

Γ1 = 〈Inn(S0(qn)), cτ , γ̃u′〉, we just need to check that γ̃u′(xC(E)) = xC(γ̃u′(E)). As u′ ≡ 1
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(mod 4) and A has order 4, we see that γ̃u′(Â) = Â. Furthermore, it is clear that γ̃u′ maps z
and z1 to themselves. By definition of γ̃u′ we get that

γ̃u′([X
iB,XjB,XkB]) = [X−ku

′
B,XiB,Xju′B], and

γ̃u′(xF (Eijk)) = γ̃u′([(−I)i, (−I)j , (−I)k]) = [(−I)k, (−I)i, (−I)−j ].

And then

xC(γ̃u′(Eijk)) = [(−I)−ku
′
, (−I)i, (−I)ju

′
] = [(−I)−k, (−I)i, (−I)j ]

which proves that γ̃u′(xC(Eijk)) = xC(γ̃u′(Eijk)) as desired.

We can now determine the FSol(q)-automorphisms of E000, E001 and E100 and whether or not
they are FSol(q)-conjugate. (The results presented below are more or less what Lemma 3.1 of
[LO] states. However, the corrections [LOc] to [LO] invalidate the proof, and the proof did not
even treat elementary abelian subgroups that do not contain z).
As noted in the proof of Lemma 37, if cg, g ∈ Spin7(q), is an FSol(q)-isomorphism with source
E ∈ E4, then cg(xC(E)) = xC(cg(E)). The FSol(q)-homomorphism are all possible compositions
of restrictions of elements of Γ1 and of FS(q)(Spin7(q))-homomorphisms. By repeated use of
part 3. of the above lemma and the identity cg(xC(E)) = xC(cg(E)), we see that if E ∈ C, then
φ(E) ∈ C for all φ ∈ IsoFSol(q)(E, φ(E)), since xC(E) = 1. Therefore E000 is not FSol(q)-conjugate
to E001 or E100. On the other hand

γ̃u′(xC(E001)) = γ̃u′(z) = γ̃(z) = z1

and we get that γ̃u′(E001) has type II, i.e. is in the Spin7(q)-conjugacy class of E100. Thus E001

and E100 are FSol(q)-conjugate.
If α ∈ AutFSol(q)(E001), then α has the form α = φ ◦ φ′, where φ = cg for some g ∈ Spin7(q)
or φ ∈ Γ1, and φ′ is a composition of elements of Γ1 and FS(q)(Spin7(q))-homomorphisms. If
φ = cg, then xC(α(E001)) = φ(xC(φ

′(E001))). If φ ∈ Γ1, then

xC(α(E001)) = φφ−1(xC(E001)) = φ(xC(φ
−1(E001))) = φ(xC(φ

′(E001)))

In either case, we get inductively that α(xC(E001)) = xC(α(E001)) = xC(E001). As xC(E001) = z,
this shows that every FSol(q)-automophism of E001 maps z to itself. But then AutFSol(q)(E001) =
Aut(E001, z), since AutSpin7(q)(E001) = Aut(E, z).
We also know that AutSpin7(q)(E000) = Aut(E, z), and we see that γ̃u′ and cτ map E000 to itself;

they both fix Â and B̂, and they define automorphisms of 〈z, z1〉. There are six automorphisms
of 〈z, z1〉, and these can all be realized by crτ ◦ γ̃su′ , r = 0, 1, s = 0, 1, 2. This shows that
AutFSol(q)(E000) = Aut(E001).
We now turn to the elementary abelian subgroups E of S(q) of rank 3. We claim that they are all
FSol(q)-conjugate. Note that if z /∈ E, then 〈E, z〉 has rank 4 and is Spin7(q)-conjugate to either
E000, E001, or E100. This implies that E is Spin7(q) conjugate to 〈z1, Â, B̂〉, 〈z1, Â, [B,B,XB]〉,
or 〈z1, Â, [B,B,XB]〉. But γ̃2

u′(z1) = z, which shows that each of these groups are FSol(q)-
conjugate to an elementary abelian subgroup of rank 3 that contains z. It is therefore enough to
show that the two Spin7(q)-conjugacy classes of elementary abelian subgroups of S(q) of rank 3
that contain z are FSol(q)-conjugate.
A subgroups E of E001 of rank 3 that contains z has type I, since every eigenspace of E001 is
contained in an eigenspace of E. A subgroup E of E100 of rank 3 that contains z may have
type I or type II, but it is possible to choose an E of type II. Now let φ ∈ AutFSol(q)(E001, E100),
then φ(z) = z1. Choose α ∈ AutFSol(q)(E100) = Aut(E100, z) such that z1 ∈ α(E). Then
z ∈ φ−1(α(E)), and φ−1(α(E)) 6 E001 has type I. This finishes the proof of the claim.
If E 6 E000 has rank 3, then AutFSol(q)(E) = Aut(E). All in all we have shown that all ele-
mentary abelian subgroups E 6 S(q) of rank 3 are FSol(q)-conjugate, and that AutFSol(q)(E) =
Aut(E).
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In particular all elementary abelian subgroups of rank 1 or 2 are FSol(q)-conjugate, and AutFSol(q)(E) =
Aut(E) for any such subgroup.

We can now determine the Euler characteristic of FSol(q)
∗. For r = 1, 2, 3, choose Er 6 S(q)

such that Er is elementary abelian of rank r. The number of FSol(q)-automorphisms of Er is

∣∣AutFSol(q)(Er)
∣∣ = |Aut(Er)| = |GLr(F2)| =

r∏
i=0

(2r − 2i)

Thus

|AutFSol(q)(E1)| = 1,

|AutFSol(q)(E2)| = 6,

|AutFSol(q)(E3)| = 168,

|AutFSol(q)(E000)| = 20160

To obtain the number of AutFSol(q)-automorphisms of E001, we just divide |AutFSol(q)(E000)| by
24 − 1 = 15. I.e.

|AutFSol(q)(E001)| = 1344

The values of the Möbius function are

µ(E1) = −1, µ(E2) = 2, µ(E3) = −8, µ(E000) = µ(E001) = 64

And the Euler characteristic is

χ(FSol(q)) =
1

1
+
−2

6
+

8

168
+
−64

20160
+
−64

1244
=

209

315

Note that χ(FSol(q)) does not depend on q at all; it depends on neither the characteristic of Fq
nor its order.
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