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Introduction

The chromatic polynomial is an invariant for graphs that was introduced in 1912 by George
David Birkhoff. As a function of the number of colors it counts all possible distinct vertex
colorings of a given graph. Through edge deletion and contraction the chromatic polyno-
mial can be expressed as a sum of smaller graphs with less vertices or less edges. Therefore
it can be calculated recursively and many properties can be proven inductively. Birkhoff
originally introduced the chromatic polynomial in an attempt to prove the Four Color
Problem, which states that any map can be colored with four colors such that no two
adjacent regions have the same color. The link to Graph Theory is that any map can be
expressed as a planar graph. Birkhoff wanted to prove that 4 is not a chromatic root for
planar graphs. Especially the roots of the chromatic polynomial and its coefficients are
still subjects of research in Graph Theory today.
Abstract simplicial complexes are mathematical objects that are mainly studied in Topol-
ogy but in principle they can be viewed as a higher dimensional generalization of graphs.
Therefore it seems natural to try to generalize some ideas of Graph Theory to simplicial
complexes in order to possibly get new results on their underlying topological structures.
In the preprint, Vertex Colorings of Simplicial Complexes [5], Dobrinskaya, Møller and
Notbohm started to develop some theoretical ideas based on special vertex colorings for
abstract simplicial complexes. This vertex colorings raise the question if a similar invariant
as the chromatic polynomial can be found for simplicial complexes.
In the following we will show that there exists a s-chromatic polynomial for simplicial
complexes and generalize some properties of the graph chromatic polynomial to the s-
chromatic polynomials.
Chapter 1 gives an overview of some of the most important results for graph colorings and
the chromatic polynomial for graphs.
The second chapter is an introduction to the vertex colorings of simplicial complexes as
defined by by Dobrinskaya/Møller/Notbohm and is mainly based on [5]. We will also in-
troduce a generalization of uniquely colorability of graphs to the colorings of simplicial
complexes.
The third chapter is based on personal investigations. We will prove the existence of the
s-chromatic polynomials for finite abstract simplicial complexes, based on the vertex col-
orings introduced in Chapter 2. We will also show that the s-chromatic polynomials can
be expressed as a sum of graph chromatic polynomials and prove some generalizations of
the results for graph chromatic polynomials.
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Chapter 1

Vertex Colorings and the Chromatic
Polynomial for Graphs

The structure of a graph is defined by its vertices and their pairwise relations indicated
by edges. A vertex coloring assigns colors to the vertices of a graph and thereby defines a
partition of its vertex set. Therefore, in order to learn more about the possible structures
that graphs can have, it is often useful to study vertex colorings.

Definition 1.1. Let G = (V,E) be a finite graph, with vertex set V and edge set E. A
vertex coloring (or simply coloring) of G is a map f : V → P from the vertex set V of G
to a palette P of colors. The map f is called a proper coloring if |f−1(c) ∩ e| ≤ 1, for all
c ∈ P and e ∈ E.
A coloring f using at most r colors is called a (proper) r-coloring. A graph that admits a
proper r-coloring is r-colorable.

If we want to learn more about the underlying structure of a graph only proper vertex
colorings will be of greater interest, therefore all colorings in the following are assumed
to be proper colorings and we will often drop the term “proper”. It is easy to see, that
a graph is 1-colorable if and only if its edge set is empty and 2-colorable if and only if
it is bipartite. Since only loopless graphs admit proper colorings and a loopless graph is
r-colorable if and only if its underlying simple graph1 is r-colorable, all graphs we consider
in the following are assumed to be simple graphs.
An independent set (or stable set) of a graph G is a subset V ′ of its vertex set, such that
non of the vertices in V ′ are adjacent. Thus a vertex coloring is in fact a partition of
the vertex set into independent subsets. The blocks of a partition induced by a proper
r-coloring f are also called the color classes of f .

Example 1.2. The graph G, defined by the edges [1, 2], [1, 3], [1, 4], [2, 3], [3, 4], [3, 5], [4, 5]
is 4-colorable. Consider for instance the two 4-colorings f1, f2 : V −→ {c1, c2, c3, c4}, given

1A simple graph is a graph without loops and parallel edges
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by

f1(1) = f1(5) = f2(2) = f2(5) = c1,

f1(2) = f2(1) = c2,

f1(3) = f2(3) = c3,

f1(4) = f2(4) = c4.

Figure 1.1: Two 4-colorings and of the graph G of Example 1.2.

The map f3 : V −→ {c1, c2, c3}, given by

f3(1) = f3(5) = c1,

f3(2) = f3(4) = c2,

f3(3) = c3

is a proper 3-coloring of G.

Figure 1.2: A 3-coloring of the graph G of Example 1.2.

Clearly, every simple graph is r-colorable, for r ≥ |V |. More difficult is the question how
many colors are minimally needed for a given graph G in order to be r-colorable. Such a
minimal r ∈ N is called the chromatic number of a graph.
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Definition 1.3. Let G = (V,E) be a finite graph. The chromatic number χ(G) of G is
the smallest natural number r such that G is r-colorable. If χ(G) = r we also say that G
is r-chromatic.

The graph of Example 1.2 is 3-chromatic. The chromatic number is a graph invariant.
That means that isomorphic graphs always have the same chromatic number. The opposite
is obviously not true - there are many examples of graphs that are not isomorphic, having
the same chromatic number. For instance every bipartite graph is 2-chromatic. In fact, by
definition a graph is 2-chromatic if and only if it is bipartite.
A lot of research has been done in order to find good bounds on the chromatic number
of a graph. For example, if γ(G) is the cardinality of a maximal stable subset of V and
|V | = n, then clearly

χ(G) ≥ n

γ(G)
,

for every graph G = (V,E). Furthermore, a graph G that has a subgraph isomorphic to
a complete graph Kl obviously has chromatic number χ(G) ≥ l. A subset C ⊆ V that
induces a complete subgraph of a graph is called a clique of G. Therefore we find that

χ(G) ≥ ω(G),

where ω(G) = maxclique C⊆V |C|.
Since every χ(G)-coloring induces a partition of the vertex set such that there is at least
one edge between every two blocks, it is not difficult to see that |E| ≥ 1

2
χ(G)(χ(G) − 1).

Thus

χ(G) ≤ 1

2
+

√
2|E|+ 1

4
,

for every graph G = (V,E).
Another upper bound for the chromatic number is

χ(G) ≤ ∆(G) + 1,

where ∆(G) := maxv∈V d(v) := maxv∈V |{u ∈ V | [u, v] ∈ E}| is the maximum degree of
G and d(v) := |{u ∈ V | [u, v] ∈ E}| is the degree of v ∈ V . To see that χ(G) ≤ ∆(G) + 1
consider the following algorithm, called greedy algorithm:
We start by enumerating the vertices of G in some way, so V = {v1, v2, ..., vn}. Then we
consider the vertices one by one in this order and assign to each vertex the“smallest” color
of some linearly sorted color pallet (or the smallest positive integer) that is still available,
so the smallest color that is not used yet on any of the neighbors of vi among v1, v2, ..., vi−1.
In this way, we never use more then ∆(G) + 1 colors [4].
From this upper bound of χ(G) it easily follows, that every r-chromatic graph has a vertex
of degree at least r − 1. In fact every r-chromatic graph has at least r vertices of degree
at least r − 1:

Lemma 1.4. If G = (V,E) is a r-chromatic graph, then G has at least r vertices of degree
at least r − 1.

11



Proof. Let f : V −→ P := {c1, c2, ..., cr} be a proper r-coloring of G. If Vi := f−1(ci) is
a color class of f , then clearly Vi must contain a vertex v that is adjacent to at least one
vertex in every color class Vj 6= Vi of f , since if such a vertex would not exist, we could
easily give every vertex in Vi one of the other r − 1 colors and thus χ(G) 6= r. Therefore
there is at least one vertex in every of the r color classes that has degree at least r− 1.

It is obvious, that the bound χ(G) ≤ ∆(G) + 1 is quite generous. For example, a
complete bipartite graph Kn1,n2 has maximum degree ∆(G) = max{n1, n2}. Odd cycles,
on the other hand, have chromatic number 3 and maximum degree 2. Also every complete
graph has chromatic number ∆(Kn) + 1. For all other graphs, however, the upper bound
χ(G) ≤ ∆(G) + 1 can be slightly improved.

Theorem 1.5 (Brooks, 1941). Let G be a connected graph. If G is neither an odd cycle
nor a complete graph, then

χ(G) ≤ ∆(G).

For a prove of this theorem see for example Graph Theory, by Bondy and Murty [3].

Uniquely Colorability

Let G = (V,E) be a graph, Si the symmetric group on i elements and

Aut(G) = {ρ ∈ S|V | | [u, v] ∈ E ⇔ [ρ(u), ρ(v)] ∈ E,∀ u, v ∈ V }

the automorphism group of G.

Definition 1.6. Two r-colorings f, f ′ of G are said to be equivalent (write f ∼ f ′) if there
exist σ ∈ Sr and ρ ∈ Aut(G), such that f ◦ ρ = σ ◦ f ′.

Definition 1.7. A graph G is called equivalently r-colorable if all proper surjective r-
colorings of G are equivalent.

It is obvious, that every graph G is equivalently |V |-colorable and that every connected
bipartite graph is equivalently 2-colorable. Here are some more examples.

Example 1.8. The graph G, defined by the edges [1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4],
[2, 5] is 3-chromatic and equivalently i-colorable for i ∈ {3, 4, 5} (Figure 1.3).

Example 1.9. The graph G, defined by the edge-set E := {[1, 2], [2, 3], [4, 5], [5, 6]} (Figure
1.4) is an example of a bipartite graph, that is not equivalently 2-colorable: Consider the
two surjective 2-colorings f1, f2 : V → {c1, c2}, given by

f1(1) = f1(3) = f1(5) = f2(2) = f2(5) = c1,

f1(2) = f1(4) = f1(6) = f2(1) = f2(3) = f2(4) = f2(6) = c2.

12



Figure 1.3: A 3-coloring and a 4-coloring of the graph G of Example 1.8.

Figure 1.4: Two non-equivalent 2-colorings of the graph G of Example 1.9.

Example 1.10. The graph G of Example 1.2 is equivalently i-colorable, for i = 3 and
i = 5 but not for i = 4: Consider for instance the two surjective 4-colorings f1, f2 as
defined in Example 1.2.

If f is a r-coloring of G, then clearly σ ◦ f is also a r-coloring, for any σ ∈ Sr. In
fact f and σ ◦ f are two r-colorings, that induce the same partition of V into i ≤ r
independent subsets. Write [f ] = {σ ◦ f | σ ∈ Sr} for the coloring class of f . For every
r ∈ N, Aut(G) acts on the set F r(G) := {[f ] | f is a r-coloring of G} and on the subset
F rS(G) := {[f ] | f is a surjective r-coloring of G} by composition. Thus equivalently r-
colorability means nothing else but that the action of Aut(G) on F rS(G) is transitive and
it follows that G is equivalently r-colorable if and only if

|F rS(G)| = |Aut(G)f | = |Aut(G)|
|Aut(G)f |

,

for f ∈ F rS(G), where Aut(G)f is the orbit of f and Aut(G)f its stabilizer.

Definition 1.11. Let G = (V,E). For any partition P = {V1, V2, ..., Vk} of V , we call
the graph GP := (P,EP ), with vertex set P and edge set EP := {[Vi, Vj] | ∃v ∈ Vi,∃u ∈
Vj such that [v, u] ∈ E} the partition-graph of G induced by P .
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Theorem 1.12. Let G be an equivalently r-colorable graph, f, f ′ : V −→ {c1, ..., cr}
two surjective r-colorings and σ ∈ Sr and ρ ∈ Aut(G), such that σ ◦ f = f ′ ◦ ρ. Then
|f−1(ci)| = |f ′−1 ◦ σ(ci)|, for all 1 ≤ i ≤ r. Furthermore, if P respectively P ′ are the
corresponding partitions of the vertex set V , then ρ defines a graph isomorphism between
GP and GP ′.

Proof. Let ci, cj ∈ {c1, ..., cr}, such that σ(ci) = cj and define Vi := f−1(ci) and V ′j :=
f ′−1(cj). Since ρ is a graph automorphism it clearly follows, that |f−1(ci)| = |Vi| = |ρ(Vi)|
and since

f ′ ◦ ρ(Vi) = σ ◦ f(Vi) = σ(ci) = cj,

we find that ρ(Vi) ⊆ V ′j . For the same reasons we have that |f ′−1(cj)| = |V ′j | = |ρ−1(V ′j )|
and that

f ◦ ρ−1(V ′j ) = σ−1 ◦ f ′(V ′j ) = σ−1(cj) = ci.

Thus ρ−1(V ′j ) ⊆ Vi. It follows therefore that

|f−1(ci)| = |Vi| = |V ′j | = |f ′−1 ◦ σ(ci)|.

Now, for every 1 ≤ i ≤ r, ρ(Vi) = ρ ◦ f−1(ci) = f ′−1 ◦ σ(ci) = V ′j , for some 1 ≤ j ≤ r and
since ρ is an automorphism of G, ρ defines a bijection between GP and GP ′ . Furthermore,

[Vi, Vj] ∈ EP ⇐⇒∃vi ∈ Vi, vj ∈ Vj, s.th. [vi, vj] ∈ E
⇐⇒[ρ(vi), ρ(vj)] ∈ E
=⇒[ρ(Vi), ρ(Vj)] ∈ EP ′ .

The other direction follows trivially, since ρ is an automorphism. Therefore GP and GP ′

are isomorphic.

If there is just one partition of V into r independent sets, then |F rS(G)| = 1 and G is

equivalently r-colorable. Clearly |F |V |S (G)| = 1 for every graph G. The next lemma shows
that if |F rS(G)| = 1, such that r 6= |V |, then r = χ(G).

Lemma 1.13. Let G = (V,E) be a graph and χ(G) ≤ r < |V |. If there exists a permutation
σ ∈ Sr, for every two surjective r-colorings f, f ′, such that f ′ = σ ◦ f , then r = χ(G).

Proof. Assume that |V | − 1 ≥ r 6= χ(G), then χ(G) ≤ |V | − 2 and so there exists either
an independent set V ′ ⊆ V , such that |V ′| ≥ 3 or there are (at least) two independent sets
V ′, V ′′ ⊆ V , such that V ′ ∩ V ′′ = ∅ and |V ′| = |V ′′| = 2.
In the first case let v1, v2, v3 ∈ V ′ be three distinct vertices. Note that there must exist a
surjective (r + 1)-coloring h : V −→ P := {c1, ..., cr+1}, such that h(v1) 6= h(v2) 6= h(v3),
since r+ 1 ≥ χ(X) + 2 (simply “change” a χ(G)-coloring into a surjective (r+ 1)-coloring,
such that v1, v2, v3 are colored distinctively).
Now consider the two maps f, f ′ : V −→ P := {c1, ..., cr}, given by

f(v) =

{
h(v1) for v ∈ {v1, v2},
h(v) for v ∈ V \{v1, v2}

14



and

f ′(v) =

{
h(v1) for v ∈ {v1, v3},
h(v) for v ∈ V \{v1, v3}.

Clearly f, f ′ are surjective r-colorings, but there is no σ ∈ Sr, such that f = σ ◦ f ′.

In the second case let V ′ = {v1, v2} and V ′′ = {v3, v4}. Again there must exist a sur-
jective (r + 1)-coloring h, such that h(v1) 6= h(v2) and h(v3) 6= h(v4), since r 6= χ(G).
Therefore the two maps f, f ′ : V −→ P := {c1, ..., cr}, given by

f(v) =

{
h(v1) for v ∈ {v1, v2},
h(v) for v ∈ V \{v1, v2}

and

f ′(v) =

{
h(v3) for v ∈ {v3, v4},
h(v) for v ∈ V \{v3, v4}

are surjective r-colorings. But then again there is no σ ∈ Sr, such that f = σ ◦ f ′.

⇒ r = χ(G).

Definition 1.14. A graph G is called uniquely colorable if G has only one (proper) χ(G)-
coloring up to permutation of the colors. In that case a χ(G)-coloring f is called a unique
coloring of G.

The graphs in Example 1.8 and 1.10 are both uniquely colorable. Every connected
bipartite graph is uniquely colorable.

Example 1.15. The bipartite graph G, defined by the edge-set E := {[1, 2], [3, 4], [4, 5]}
(Figure 1.5) is equivalently 2-colorable, but not uniquely colorable. To see this, consider
the two 2-colorings f1, f2 : V −→ {a, b}, defined by

f1(1) = f1(4) = f2(1) = f2(3) = f2(5) = a

f1(2) = f1(3) = f1(5) = f2(2) = f2(4) = b.

If G is uniquely colorable then there exists just one possible partition of V into r = χ(G)
independent sets. Therefore, if f is a r-coloring, every vertex in any color class Vi of f
must have at least one edge to any other color class. Thus

|E| ≥ (r − 1)|V |
2

.

In fact

|E| ≥ (r − 1)|V | − r(r − 1)

2
,

as shown by Shaoji Xu in 1990.
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Figure 1.5: The graph G of Example 1.15 is equivalently 2-colorable but not uniquely colorable.

Theorem 1.16 (Xu, 1990 [18]). Let G = (V,E) be a finite graph and r = χ(G). If G is
uniquely colorable then

|E| ≥ (r − 1)|V | − r(r − 1)

2
.

Proof. Let P := {V1, V2, ..., Vr} be the only partition of V into r independent subsets and
note that every subgraph G(Vi ∪ Vj) induced by any two color classes Vi and Vj must be
connected:
Suppose, by contradiction, that there are Vi, Vj ∈ P , such that G(Vi ∪Vj) is not connected
and let C1, C2 be two connected components of G(Vi ∪ Vj). Define the independent sets
V ′i := (C1∩Vi)∪(C2∩Vj) and V ′j = (C1∩Vj)∪(C2∩Vi). Then P ′ := (P\{Vi, Vj})∪{V ′i , V ′j }
is a second partition of V into r independent subsets, in contradiction to the assumption
that G is uniquely colorable. Therefore G(Vi ∪ Vj) is connected, for all 1 ≤ i < j ≤ r.

Now, if we write Ei,j := E(G(Vi ∪ Vj)) for the edge set of G(Vi ∪ Vj), then it follows
from the previous, that

|Ei,j| ≥ |Vi ∪ Vj| − 1,

and so

|E| =
∑

1≤i<j≤r

|Ei,j|

≥
∑

1≤i<j≤r

|Vi ∪ Vj| −
r(r − 1)

2

= (r − 1)
r∑
i=1

|Vi| −
r(r − 1)

2

= (r − 1)|V | − r(r − 1)

2
.
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The Chromatic Polynomial for Graphs

Definition 1.17. Let G be a graph. We write Cr(G) to denote the number of different
r-colorings of G.

It is not difficult to see, that for any r, n ∈ N the number of distinct r-colorings of
the empty graph Kn on n vertices equals Cr(Kn) = rn and the number of distinct r-
colorings of the complete graph Kn equals Cr(Kn) = [r]n, where [r]n denotes the product
r(r−1)(r−1) · · · (r−(n−1)). Moreover for every graph G we easily see that Cr(G) = [r]|V |,
for r ≥ |V |, and Cr(G) = 0, for χ(G) > r. Furthermore, if G is uniquely colorable, then
clearly Cχ(G)(G) = [χ(G)]χ(G). As the chromatic number, the number Cr(G) is a graph
invariant for every r ∈ N. For graphs with large numbers of vertices and edges it is a
difficult task to find the number Cr(G). However, since Cr(G) satisfies a property called
the deletion-contraction property, it is possible to compute the number of r-colorings of G
recursively. Before we can state the deletion-contraction property we first need to define
the two graphs G\e and G/e associated to a given graph G = (V,E):
For any edge e = [u, v] ∈ E, G\e is simply the subgraph G\e := (V,E\{e}) and G/e is the
graph we obtain by contracting the edge e in G. So, if Pe is the partition of V defined as
Pe := {{u, v}} ∪ {{v′} | v′ ∈ V \{u, v}}, then G/e ∼= GPe .

Lemma 1.18 (Deletion-Contraction Property). Let G = (V,E) be a finite simple graph
and let Cr(G) denote the number of possible r-colorings of G. Then

Cr(G) = Cr(G\e)− Cr(G/e),

for every e ∈ E and r ∈ N.

Proof. Choose e = [u, v] ∈ E and r ∈ N. Clearly every proper r-coloring of G is a proper
r-coloring of G\e.
On the other hand, every r-coloring f of G\e is a r-coloring of G if and only if f(u) 6= f(v).
Since every coloring f of G\e, with f(u) = f(v) corresponds uniquely with a coloring f ′

of G/e, such that f ′({v′}) = f(v′), for all v′ ∈ V \{u, v} and f ′({u, v}) = f(u) = f(v), the
lemma follows.

The formula in Lemma 1.18 can be rewritten as

Cr(G) = Cr(G+ e) + Cr((G+ e)/e).

By applying one of the two formulas recursively, we can now calculate Cr(G) for any finite
graph G = (V,E); either we start with K|V | and add edges or we start with K|V | and delete
edges. Even more interesting is the fact that, since Cr(Kn) = rn and Cr(Kn) = [r]n are
polynomials in r, the deletion-contraction formula leads us to the following conclusion:

Theorem/Definition 1.19. For every finite simple graph G = (V,E) there exists a poly-
nomial P (G, x) in x, such that P (G, r) = Cr(G), for all r ∈ Z≥0.
Furthermore

P (G, x) = P (G\e, x)− P (G/e, x),

for all x ∈ R and e ∈ E. P (G, x) is called the chromatic polynomial of G.
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Proof. Let |V | = n and |E| = m. We prove by induction on m. Clearly, if E = ∅, then
Cr(G) = rn and thus P (G, x) := xn is a polynomial satisfying the conditions.
Assume now, that the theorem holds for all graphs with less then m edges and let G be a
graph with m edges. For every edge e ∈ E, the two graphs G\e and G/e have m− 1 edges
and so it follows by induction, that there exist polynomials P (G\e, x) and P (G/e, x), such
that P (G\e, r) = Cr(G\e) and P (G/e, r) = Cr(G/e), for all r ∈ N. Furthermore, from
Lemma 1.18 it follows that

Cr(G) = Cr(G\e)− Cr(G/e) = P (G\e, r)− P (G/e, r),

for all e ∈ E and r ∈ N. Therefore the polynomial P (G, x) := P (G\e, x) − P (G/e, x)
satisfies the conditions and the theorem follows.

Again we can rewrite this to get a second formula:

P (G, x) = P (G+ e, x) + P ((G+ e)/e, x).

Theorem 1.19 shows that for every finite graph G there exists a single invariant, that
combines the invariants χ(G) and Cr(G), we had already associated to colarability. Fur-
thermore this invariant is a polynomial and we even know how to calculate it without
specifically looking at any coloring.

Example 1.20. The graph G from Example 1.2 is isomorphic to the graph

K5\{[1, 5], [2, 4], [2, 5]}.

Since P (Kn, x) = [x]n, for all n ∈ N, the chromatic polynomial of G is equal to

P (G, x) = P ((K5\{[1, 5], [2, 4]}), x) + P ((K5\{[1, 5], [2, 4]})/[2, 5], x)

= P (K5\[1, 5], x) + P ((K5\[1, 5])/[2, 4], x) + P ((K5\{[1, 5], [2, 4]})/[2, 5], x)

= P (K5, x) + P (K5/[1, 5], x) + P ((K5\[1, 5])/[2, 4], x)

+ P ((K5\{[1, 5], [2, 4]})/[2, 5], x)

= P (K5, x) + P (K4, x) + (P (K4, x) + P (K3, x)) + P (K4, x)

= [x]5 + 3[x]4 + [x]3

= x5 − 7x4 + 18x3 − 20x2 + 8x.

Example 1.21. The graph G with six vertices and edges [1, 2], [2, 3] is isomorphic to the
graph K6 + {[1, 2], [2, 3]}. Since P (Kn, x) = xn, for all n ∈ N, the chromatic polynomial of
G is equal to

P (G, x) = P (G\[1, 2]), x)− P (G/[1, 2], x)

= P (K6, x)− P ((G\[1, 2])/[2, 3], x)− P (G/[1, 2], x)

= P (K6, x)− P (K5, x)− P (K5 + [2, 3], x)
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= P (K6, x)− P (K5, x)− (P (K5, x)− P ((K5 + [2, 3])/[2, 3], x))

= P (K6, x)− 2 · P (K5, x) + P (K4, x)

= x6 − 2x5 + x4

= [x]5 + 13[x]5 + 46[x]4 + 46[x]3 + 8[x]2.

Even though, for any finite simple graph, this two versions of the deletion-contraction
formula will eventually lead to a chromatic polynomial it is also clear that the computation
time will be very high for big graphs. However, since the deletion-contraction formula is a
recursive formula it has the advantage, that it can easily be used for induction. It can, for
instance, be shown inductively that every tree T with n vertices has the same chromatic
polynomial. In order to prove this note first that if G is the disjoint union of k connected
components G1, G2, ..., Gk we can color each component independently. Therefore the
number of r-colorings is Cr(G) = Cr(G1) · · ·Cr(Gk), for every r ∈ N and thus

P (G1 tG2 t ... tGk, x) = P (G1, x) · · · P (Gk, x).

Lemma 1.22. Let T be a tree with n vertices, then

P (T, x) = x(x− 1)n−1.

Proof. We prove by induction on the number |V | of vertices. Clearly if |V | = 1 then the
claim is true. Assume now that the lemma holds for |V | < n and let T be a tree with n
vertices. Let e be an edge of T such that one of its vertices has degree 1, then T/e is a
tree with n− 1 vertices and so it follows by induction that

P (T/e, x) = x(x− 1)n−2.

Furthermore, we find that T\e = G1tG2 is the disjoint union of two connected subgraphs,
where G1 is a single point and G2 is a tree with n − 1 vertices. Now induction and the
previous remark give that

P (T\e, x) = P (G1, x) · P (G2, x) = x2(x− 1)n−2.

Therefore, by Theorem 1.19

P (T, x) = P (T\e, x)− P (T/e, x)

= x2(x− 1)n−2 − x(x− 1)n−2

= x(x(x− 1)n−2 − (x− 1)n−2)

= x(x− 1)n−1.

This proves the claim.

Clearly all isomorphic graphs have the same chromatic polynomial. On the other hand
we have just proven, that all trees with the same number of vertices have the same chro-
matic polynomial also when they are not isomorphic. Therefore all trees with the same
number of vertices are chromatic equivalents:
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Definition 1.23. Two graphs G,H are called chromatically equivalent if

P (G, x) = P (H, x).

It is not hard to see, that each of the three graphs defined by the edge-sets

E1 := {[1, 2], [1, 3], [2, 3], [1, 4], [1, 5]},

E2 := {[1, 2], [1, 3], [2, 3], [1, 4], [4, 5]}
and

E3 := {[1, 2], [1, 3], [2, 3], [1, 4], [2, 5]}
of Figure 1.5 have chromatic polynomial equal to x(x − 1)3(x − 2). Thus they are chro-
matically equivalent.

Figure 1.6: Three chromatically equivalent graphs.

The graph of Example 1.8 has chromatic polynomial

x(x− 1)(x− 2)3 = x5 − 7x4 + 18x3 − 20x2 + 8x

and is therefore chromatically equivalent to the graph of Example 1.2, as follows from 1.20.
The next two lemmas show that we can easily construct chromatically equivalent graphs.

Theorem 1.24. Let G = (V,E), H = (V ′, E ′) be two graphs, such that |V ∩ V ′| = 1, then

P (G ∪H, x) =
P (G, x) · P (H, x)

x
.

Proof. Let pi ∈ {p1, ..., pr} be a fixed color. Note that for every vertex v in a graph G there

are exactly Cr(G)
r

r-colorings, that color v with the color pi. Therefore, if G and H share

one vertex v, any given r-coloring of H leaves Cr(G)
r

ways to properly color the vertices
V \{v} in G ∪H. Thus

Cr(G ∪H) = Cr(H) · Cr(G)

r

=⇒ P (G ∪H, x) =
P (G, x) · P (H, x)

x
.
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Theorem 1.25. Let G = (V,E), H = (V ′, E ′) be two graphs, such that G ∩H = Kn, for
some n ≤ min{|V |, |V ′|} then

P (G ∪H, x) =
P (G, x) · P (H, x)

[x]n
.

Proof. Since G ∩H = Kn is a subgraph of G every r-coloring of G must color Kn with n
different colors. Therefore there are exactly Cr(G)

Cr(Kn)
= Cr(G)

[r]n
r-colorings of G, for every fixed

coloring of Kn. Now every r-coloring of H leaves Cr(G)
[r]n

ways to properly color the vertices

V \{V (Kn)} in G ∪H. Thus

Cr(G ∪H) = Cr(H) · Cr(G)

[r]n

=⇒ P (G ∪H, x) =
P (G, x) · P (H, x)

[x]n
.

It is in general not true that P (G ∪ H, x) = P (G,x)·P (H,x)
P (G∩H,x)

. Take as a counter example

a cycle C5 of length five, induced by the edges [1, 2], [2, 3], [3, 4], [4, 5], [5, 1] and let H be
the subgraph with the edges [1, 2], [2, 3] and G the subgraph consisting of the edges [3, 4],
[4, 5], [5, 1]. Then

P (G ∪H, x) = P (C5, x) = (x− 1)5 − (x− 1),

as we will see in Lemma 1.27, while

P (G, x) · P (H, x)

P (G ∩H, x)
=
x(x− 1)2 · x(x− 1)3

x2
= (x− 1)5,

according to Lemma 1.22.

Remark. To prove Lemma 1.22 we could have also applied Lemma 1.24 repeatedly: It is
obvious that a path Pn with n vertices has chromatic polynomial P (Pn, x) = x(x− 1)n−1.
Therefore, since every tree is constructed by repeatedly “gluing” edges or paths together
in one vertex, Lemma 1.22 is simply a result of 1.24.

Since the chromatic polynomial of a graph G with n vertices is obtained recursively
from either P (Kn, x) = [x]n or P (Kn, x) = xn it is not hard to see, that the coefficient of
xk in P (G, x) is zero for every k > n and the coefficient of xn is equal to one. Therefore
we can improve Lemma 1.22 to the following result:

Lemma 1.26. A graph G, with n vertices is a tree if and only if

P (G, x) = x(x− 1)n−1.
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Proof. We already proved in Lemma 1.22 that P (T, x) = x(x − 1)n−1, for every tree T
with n vertices. Assume therefore that G is a graph with P (G, x) = x(x − 1)n−1 and let
T be a spanning tree of G, then T = G\{e1, e2, ..., ek} for some e1, e2, ..., ek ∈ E. The
deletion-contraction property of the chromatic polynomial gives, that

P (T, x) = P (G\{e1, e2, ..., ek}+ ek, x) + P ((T + ek)/ek, x)

= P (G\{e1, e2, ..., ek−1}, x) + P ((T + ek)/ek, x)

= (P (G\{e1, e2, ..., ek−2}, x) + P (G\{e1, e2, ..., ek−2}/ek−1, x)) + P ((T + ek)/ek, x)

= ...

= P (G, x) + P (G/e1, x) +
k∑
i=2

P (G\{e1, e2, ..., ei−1}/ei, x).

Since T is a tree with n vertices we know that P (T, x) = x(x− 1)n−1. Therefore we find,
that

P (G/e1, x) = −
k∑
i=2

P (G\{e1, e2, ..., ei−1}/ei, x).

Because G/e1 is a graph with n − 1 vertices the highest power of P (G/e1, x) is n − 1
and its coefficient is 1. The same is true for every G\{e1, e2, ..., ei−1}/ei, for all 2 ≤ i ≤ k.
Therefore

∑k
i=2−P (G\{e1, e2, ..., ei−1}/ei, x) = −(k−1)xn−1±... = xn−1±... = P (G/e1, x).

It follows that k = 0 and so G = T is a tree.

Here is another example how the deletion-contraction property of the chromatic poly-
nomial can be used for finding the chromatic polynomial for a certain group of graphs.

Lemma 1.27. Let Cn be the cycle of length n, then

P (Cn, x) = (x− 1)n + (−1)n(x− 1).

Proof. We prove by induction on the number n of vertices. If n = 3, C3 = K3 and so

P (C3, x) = x(x− 1)(x− 2)

= (x− 1)((x− 1)2 − 1)

= (x− 1)3 + (−1)3(x− 1).

Now assume the lemma is true for cycles of length less than n. Note that for any edge e,
Cn\e is a tree with n vertices and so Lemma 1.22 gives that P (Cn\e, x) = x(x − 1)n−1.
Furthermore, since Cn/e ∼= Cn−1, induction and the deletion-contraction property of the
chromatic polynomial give:

P (Cn, x) = P (Cn\e, x)− P (Cn/e, x)

= x(x− 1)n−1 − (x− 1)n−1 − (−1)n−1(x− 1)

= (x− 1)(x− 1)n−1 + (−1)n(x− 1)

= (x− 1)n + (−1)n(x− 1).
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There do exist graphs that are uniquely determined by their chromatic polynomials.
The most simple examples are Kn and its complement the empty graph Kn, therefore Kn

and Kn are chromatically unique:

Definition 1.28. A graph G is called chromatically unique if

P (H, x) = P (G, x)⇐⇒ G ∼= H,

for every graph H.

We saw that all trees with n vertices are chromatically equivalent. In particular no tree
with more then three vertices is chromatically unique. In the next section we will see that
cycles of length n are chromatically unique. In order to prove this we need to learn a bit
more about the coefficients of the chromatic polynomial first.

The Coefficients of the Chromatic Polynomial

For every finite graph G = (V,E) we can write its chromatic polynomial in two ways:

P (G, x) =
k∑
i=0

aix
i =

k∑
j=0

bj[x]j.

Let S1 and S2 denote the Stirling numbers of the first and second kind, respectively. Recall
that the Stirling numbers of the first kind are equal to S1(n, k) = (−1)n−kc(n, k), where
c(n, k) is the number of permutations of n elements with k disjoint cycles. Furthermore,
the Stirling numbers of the second kind S2(n, k) count the number of distinct partitions
of n elements into k non-empty blocks. It is a well-known fact that xk =

∑k
j=0 S2(k, j)[x]j

and [x]k =
∑k

i=0 S1(k, i)xi (see for instance [1]). We know therefore, that

ai =
k∑
j=i

bjS1(j, i) and bj =
k∑
i=j

aiS2(i, j).

Clearly a0 = b0 = 0, as C0(G) = 0 for any G. Furthermore, we already noted that
ak = bk = 0, for all k > n and that an = bn = 1, since the chromatic polynomial of a graph
with n vertices is obtained recursively from either P (Kn, x) = [x]n or P (Kn, x) = xn.
Before we will try to give an interpretation of the coefficients ai and bi of P (G, x) we first
prove a couple of facts that follow directly from the deletion-contraction property of the
chromatic polynomial.

Lemma 1.29. Let G be a graph with n vertices, m edges and chromatic polynomial
P (G, x) =

∑n
i=1 aix

i. Then an−1 = −m.
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Proof. We prove by induction on the number of edges m. Clearly the claim is true for
G = Kn. Assume therefore the lemma is true for all graphs with n vertices and less then m
edges. For any e ∈ E the associated graph G\e is a graph with n vertices and m− 1 edges
and so P (G\e, x) = xn− (m− 1)xn−1± ..., by induction. Furthermore G/e is a graph with
n − 1 vertices, and so P (G/e, x) = xn−1 ± .... Therefore the deletion-contraction formula
gives, that an−1 = −m.

Lemma 1.30. Let G be a graph with n vertices, that is the disjoint union of k connected
components and let P (G, x) =

∑n
i=1 aix

i be its chromatic polynomial. Then ak 6= 0 and
ai = 0 for all i < k.

Proof. We already saw that the chromatic polynomial of a graph is the product of the
chromatic polynomials of its connected components. Since the constant in every of those
k polynomials is zero it follows that P (G, x) is divisible by xk and thus ai = 0, for all i < k.

In order to prove that ak 6= 0 assume first that k = 1 and G is connected. We will
prove by induction on the number m of edges that a1 = (−1)n−1l, for some l ∈ N>0. For
m = 1 the claim is clearly true. Since G is connected it is either a tree, and a1 = (−1)n−1,
or we can choose an edge e ∈ E such that G\e and G/e are both connected and have
less than m edges. Therefore the claim follows by induction and the deletion-contraction
formula.
For k > 1 the result follows directly from the fact that the chromatic polynomial of a graph
is the product of the chromatic polynomials of its connected components.

Lemma 1.31. Let G be a graph with n vertices and let P (G, x) =
∑n

i=1 aix
i. Then, for all

i ≥ k, where k is the number of disjoint connected components of G, we have that ai > 0,
for i ≡ n(mod 2) and ai < 0 otherwise.

Proof. For any graph with just one edge the statement is obviously true. Now assume
that it is true for all graphs with less then m edges. Let G be a graph with m edges,
then the coefficients a′i of P (G\e, x) alternate in sign, with a′i > 0, for i ≡ n(mod 2) and
a′i < 0 otherwise and the coefficients a′′i of P (G/e, x) alternate in sign, with a′′i > 0, for
i ≡ n−1(mod 2) and a′′i < 0 otherwise, for all n−1 ≥ i ≥ k. Therefore the lemma follows
from the deletion-contraction formula.
Note that if G\e has k + 1 connected components, then a′k = 0, but since a′′k 6= 0, by the
previous lemma this does not change the result.

We can prove now that all cycles are chromatically unique.

Lemma 1.32. Every cycle Cn of length n is chromatically unique, with polynomial

P (Cn, x) = (x− 1)n + (−1)n(x− 1).
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Proof. Lemma 1.27 showed, that P (Cn, x) = (x − 1)n + (−1)n(x − 1). Now let G be a
graph with n ≥ 3 vertices and

P (G, x) = (x− 1)n + (−1)n(x− 1)

= xn − nxn−1 + ...+ (−1)n−1

((
n

n− 1

)
− 1

)
x.

From Lemma 1.29 and 1.30 it follows, that |E| = n = |V | and that G is connected.
Therefore we conclude that G has exactly one cycle C and so every spanning tree T is
equal to G\e, for some e ∈ C ⊆ E.
Now we prove by induction on n. If n = 3 then G must be a cycle, because of the above
observations. Assume that the claim holds for all graphs with less then n vertices and let
e ∈ E, such that T = G\e is a spanning tree (thus e is part of the only cycle C of G).
Then G/e is a graph with n − 1 vertices and the deletion-contraction formula, together
with Lemma 1.22, gives that

P (G/e) = P (T, x)− P (G, x)

= x(x− 1)n−1 − (x− 1)n − (−1)n(x− 1)

= (x− 1)n−1(x− (x− 1)) + (−1)n−1(x− 1)

= (x− 1)n−1 + (−1)n−1(x− 1).

By induction we find that G/e must be a cycle and since e was an edge from the cycle C,
it follows that G also must be a cycle.

A sequence k1, k2, ..., kn of integers is called unimodal if there exists an index i ∈
{1, ..., n}, such that

≤ k1 ≤ k2 ≤ ... ≤ ki1 ≤ ki ≥ ki+1 ≥ ... ≥ kn.

In 1968 Read observed that for any graph G the absolute values of the coefficients ai of
the chromatic polynomial appeared to form a unimodal sequence. This became known as
the Unimodal Conjecture [12]. Although this conjecture has been proven for many classes
of graphs, for a long time the best possible result for general G was the following lemma:

Lemma 1.33. Let G be a connected graph, with n vertices. If n is odd, then

1 < |an| < |an−1| < ... < |an+1
2
|,

and if n is even, then

1 < |an| < |an−1| < ... < |an
2

+1| ≤ |an
2
|,

where an
2

+1 = an
2

if and only if G is a tree.
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A proof of Lemma 1.33 can be found in [6].
In 1974 Hoggar proposed the so-called (Strong) Logarithmic Concavity Conjecture. A
sequence k1, k2, ..., kn of integers is called logarithmically concave (or log-concave), if

k2
i ≥ ki−1ki+1

holds for all 2 ≤ i ≤ n− 1, and strongly logarithmically concave (or strongly log-concave),
if

k2
i > ki−1ki+1,

for all 2 ≤ i ≤ n− 1. Hoggar conjectured that the coefficients ai of the chromatic polyno-
mial of any graph G form a strongly log-concave sequence. Clearly log-concavity implies
unimodality. The research has been concentrated on the Log-Concavity Conjecture rather
than on the Unimodal Conjecture ever since and with success. After several results for
different classes of graphs in the 1970’s and 1980’s a report of Lundow and Markström in
2002 showed that the Strong Logarithmic Concavity Conjecture holds for all graphs with
V (G) ≤ 11 and for all graphs with V (G) = 12 and either E(G) < 20 or E(G) > 45 [11].
Recently, in 2010, June Huh proved the Log-Concavity Conjecture and thus the Unimodal
Conjecture in the paper Milnor Numbers of Projective Hypersurfaces and the Chromatic
Polynomial of Graphs, that has been published in an improved version in the beginning of
2012 [9].

Interpretation of the Coefficients of P (G, x)

Every proper r-coloring of a graph G corresponds with a partition of the vertex set V of
G into j ≤ r independent subsets. So if βj(G) is the number of all distinct proper coloring
partitions of V into j blocks, then permutations of the r colors give that there are exactly
βj(G)[r]j proper r-colorings that use j of the r colors. Since βj(G) = 0, for j < χ(G) and
[r]j = 0, for j > r this simply means, that

Cr(G) =
n∑

j=χ(G)

βj(G)[r]j

and so

P (G, x) =
n∑

j=χ(G)

βj(G)[x]j.

Thus the coefficient bj in the factorial form of the chromatic polynomial of a graph G is
exactly the number of partitions of V into j independent subsets.

Theorem 1.34. For every finite graph G the chromatic polynomial is equal to

P (G, x) =
n∑

j=χ(G)

βj(G)[x]j,

where βj(G) is the number of partitions of V into j independent subsets.
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An easy consequence of this is now:

Corollary 1.35. Let G = (V,E) be a graph with P (G, x) =
∑n

j=χ(G) bj[x]j. Then

G is uniquely colorable ⇐⇒ bχ(G) = 1.

Proof. Uniquely colorability means that there is exactly one partition of V into χ(G)
independent subset, thus the claim follows from the interpretation of the coefficients bj of
the factorial form of P (G).

To give an interpretation of the coefficients ai of the normal form of P (G, x) is a
bit less obvious and we will need to understand what happens in the process of dele-
tion/contraction.
Let G = (V,E) be a graph with n points and m edges, and let e1, e2, ..., em be a fixed order
of the edge set E. Then the deletion-contraction property gives, that

P (G, x) = P (G\e1, x)− P (G/e1, x)

= P (G\{e1, e2}, x)− P ((G\e1)/e2, x)− P (G/e1, x)

= ...

= P (G\{e1, e2, ..., em}, x)

−
(
P (G/e1, x) +

m∑
i=2

P ((G\{e1, e2, ..., ei−1})/ei, x)
)

= P (Kn, x)−
(
P (G/e1, x) +

m∑
i=2

P ((G\{e1, e2, ..., ei−1})/ei, x)
)

= xn −
(
P (G/e1, x) +

m∑
i=2

P ((G\{e1, e2, ..., ei−1})/ei, x)
)
.

If an edge ei ∈ E is contained in a triangle {ei, ej1 , ej2} in G\{e1, e2, ..., ei−1}, then con-
tracting ei = [a, b] means that we ’melt’ ej1 = [a, x] and ej2 = [b, x] together and obtain
the edge [ei, x] ∈ E((G\{e1, e2, ..., ei−1})/ei). Therefore, if we identify [ei, x] with the edge
ek ∈ E, where k = max{j1, j2}, then E((G\{e1, e2, ..., ei−1})/ei) corresponds with a sub-
set E ′ of E. We can now again use the deletion-contraction formula on the polynomial
P ((G\{e1, ..., ei−1})/ei, x) and find that

P ((G\{e1, ..., ei−1})/ei, x) = P ((G\{e1, ..., ei−1, ei+1, ..., em})/ei, x)

−
(
P (((G\{e1, ..., ei−1})/ei)/ei+1, x)

+
∑

i+2≤j≤m

P ((G\{e1, ..., ei−1, ei+1, ..., ej−1}/ei)/ej, x)
)
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= P (Kn−1, x)−
(
P (((G\{e1, ..., ei−1})/ei)/ei+1, x)

+
∑

i+2≤j≤m

P ((G\{e1, ..., ei−1, ei+1, ..., ej−1}/ei)/ej, x)
)

= xn−1 −
(
P (((G\{e1, ..., ei−1})/ei)/ei+1, x)

+
∑

i+2≤j≤m

P ((G\{e1, ..., ei−1, ei+1, ..., ej−1}/ei)/ej, x)
)
.

We assume here, that the sum

P (((G\{e1, ..., ei−1})/ei)/ei+1, x) +
∑

i+2≤j≤m

P ((G\{e1, ..., ei−1, ei+1, ..., ej−1}/ei)/ej, x)

is taken over all edges in E ′. Repeatedly deleting and contracting edges with the formula
will always lead to a graph

G({i1,i2, ..., ik})
:= (...((G\{e1, ..., ei1−1, ei1+1, ..., ei2−1, ei2+1, ..., eik−1, eik+1, ..., em}/ei1)/ei2)/...)/eik ,

for certain 1 ≤ i1 ≤ i2 ≤ ... ≤ ik ≤ m. Note that

G({i1, i2, ..., ik}) ∼= Kn−k

is the empty graph on n − k vertices and that every vertex in G({i1, i2, ..., ik}) is either
a vertex of G or obtained by contracting edges. Therefore G({i1, i2, ..., ik}) corresponds
uniquely with a spanning subgraph of G, having n−k connected components and k edges.
Observe further, that if we contract edges of a cycle C = {ei1 , ei2 , ..., eil} in G, then
(...((C/ei1)/ei2)/...)/eil−3

is a triangle and thus (...((C/ei1)/ei2)/...)/eil−2
is equal to eil ∼

eil−1
and will be denoted as eil , by the earlier made convention. Therefore, if we repeatedly

delete and contract edges from G we will never contract all but the last edge of a cycle
(the edge with the highest index). Thus, for any graph

((G\{e1, ..., ei1−1, ei1+1, ..., ei2−1, ei2+1, ..., eik−1, eik+1, ..., em}/ei1)/ei2)/...)/eik

that we obtain by deletion/contraction the set {ei1 , ei2 , ..., eik} is a so called broken cycle-
free subset of E.

Definition 1.36. Let C = {e1, e2, ..., ek} be a cycle and e1, e2, ..., ek be some fixed order of
its edges. The subset {e1, e2, ..., ek−1}, that misses the edge with the highest index is called
a broken cycle. If G = (V,E) is a finite graph with a fixed linear ordering of the edge
set, then a subset E ′ ⊆ E, that contains no broken cycles (as subsets) is called a broken
cycle-free subset of E.
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Now we see that any graph G({i1, i2, ..., ik}) that we obtain by deletion/contraction
corresponds with a broken cycle-free spanning subgraph of G, having n − k connected
components and k edges. Let αi(G) denote the number of all spanning subgraphs of G
with n− i connected components (or equivalently i edges), that contain no broken cycles,
then recursion gives, that

P (G, x) = P (Kn, x)−
(
P (G/e1, x) +

m∑
i=2

P ((G\{e1, e2, ..., ei−1})/ei, x)
)

= xn −
(
P (G/e1, x) +

m∑
i=2

P ((G\{e1, e2, ..., ei−1})/ei, x)
)

= ...

= α0(G)xn − α1(G)xn−1 + α2(G)xn−2 − ...

=
n−1∑
i=0

(−1)iαi(G)xn−i.

Note that a spanning subgraph is uniquely defined by its edge set, thus αi(G) is also
equal to the number of all broken cycle-free subsets of E(G) of size i. It follows a formal
proof of the observations we made above.

Theorem 1.37 (Whitney, 1932 [17]). For every finite graph G the chromatic polynomial
is equal to

P (G, x) =
n−1∑
i=0

(−1)iαi(G)xn−i,

where αi(G) denotes the number of all broken cycle-free subsets of E(G) of size i.

Proof. We proof by induction on the number of edges |E| = m. For m = 0 the claim is
certainly true. Assume therefore that it is true for all graphs with less than m edges, and
let G be a graph with m edges. Fix an order e1, e2, ..., em of the edges of G. The graph
G\e1 has the edge set E ′ = {e2, ..., em}, which is a subset of E. The edge set of G/e1 is
not a subset of E, but we can identify the edge set of the graph G/e1 with a subset E ′′ of
E as follows:
If e1 is contained in a triangle {e1, ei, ej}, then contracting e1 means ’melting’ ei and ej
together. Thus ei ∼ ej in G/e1. Now, if e1 = [v1, v2] and ei = [v1, x], ej = [v2, x] ∈ E, we
identify the edge [e1, x] in E(G/e1) with ek in E, where k = max{i, j}.
Now induction and the deletion-contraction property of the chromatic polynomial gives,
that

P (G, x) = P (G\e1, x)− P (G/e1)

=
n−1∑
i=0

(−1)iαi(G\e1)xn−i −
n−2∑
i=0

(−1)iαi(G/e1)xn−1−i
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=
n−1∑
i=0

((−1)iαi(G\e1)− (−1)i−1αi−1(G/e1))xn−i

=
n−1∑
i=0

(−1)i(αi(G\e1) + αi−1(G/e1))xn−i,

and so, if an−i is the (n− i)’th coefficient of the chromatic polynomial of G, then

an−i = (−1)i(αi(G\e1) + αi−1(G/e1)),

for every 0 ≤ i ≤ n− 1.
It remains to proof that αi(G) = αi(G\e1) + αi−1(G/e1). Consider first any subset F ⊆ E
of size i that does not contain e1 and observe that F contains broken cycles in G if and only
if F contains broken cycles in G\e1. Therefore, the number αi(G\e1) is equal to all broken
cycle-free subsets of size i of E that do not contain e1. Now suppose, that e1 ∈ F ⊆ E,
then F\{e1} is a subset of E ′′ if and only if there are no broken triangles in F that contain
e1. Thus, a subset F ⊆ E of size i, that does contain e1 is broken cycle-free if and only if
F\{e1} ⊂ E ′′ and F\{e1} is broken cycle-free in G/e1. Therefore the number αi−1(G/e1)
is equal to all broken cycle-free subsets of size i of E that contain e1. And so the theorem
follows.

The Roots of the Chromatic Polynomial

Much research has been done concerning the roots of chromatic polynomials. In fact when
George David Birkhoff originally defined the chromatic polynomial he hoped to be able to
prove that 4 can never be a root of the chromatic polynomial of any planar graph.2

Conjecture 1.38 (Birkhoff-Lewis). If G is a planar graph, then P (G, x) has no real roots
in [4,∞).

Birkhoff and Lewis were able to prove that planar graphs have no chromatic roots in
[5,∞), but were unsuccessful with the interval [4, 5). The ultimate goal of formulating
this conjecture was to establish the Four Color Conjecture,3 but instead Apple and Haken
proved the Four Color Conjecture with the help of computers and through this established
that no planar graph has a chromatic root at x = 4. The Birkhoff-Lewis Conjecture, how-
ever remains unsolved for the interval (4, 5).

In general, for any graph G, it is obvious that every non-negative integer k < χ(G) is
a root of P (G, x) and that there are no integer roots k ≥ χ(G). From the falling factorial
form of the chromatic polynomial it follows that P (G, x) has no real roots greater than
n− 1 = |V | − 1, since every term bi[x]i is clearly greater than 0, for all x > n− 1 ≥ i− 1.

2A planar graph is a graph that can be embedded in the plane.
3The Four Color Conjecture states that, given any map, which is simply a separation of a plane into

contiguous regions, no more than four colors are needed to color the regions, such that no two adjacent
regions have the same color. It was proven in 1989 by Apple and Haken and is since then known as the
Four Color Theorem.
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Lemma 1.39. The chromatic polynomial of a graph has no negative real roots.

Proof. From Lemma 1.31 we know that the coefficient ai in the normal form of the chro-
matic polynomial is greater than 0 whenever i is equal to n(mod 2) and smaller than 0
otherwise. Therefore (−1)naix

i > 0 for any x < 0 and so

(−1)nP (G, x) =
n∑
i=1

(−1)naix
i > 0,

for any negative x ∈ R. It follows that P (G, x) has no negative real roots.

Thus all real roots of P (G, x) lie in the interval [0, |V |).

Lemma 1.40. There exists no chromatic polynomial that has real roots between 0 and 1.

Proof. Since the chromatic polynomial of any disconnected graph is the product of the
polynomials of the connected components it is enough to proof the claim only for connected
graphs.
We proof by induction on the number of edges. Clearly the claim holds for any empty
graph. Assume the claim is true for all graphs with less than m edges. Let G be a graph
with m edges. If G is a tree the lemma follows from 1.26. If G is not a tree then n := |V | > 2
and we can choose an edge e ∈ E, such that G\e and G/e are both connected. Assume
that G has a real root x′ ∈ (0, 1), then it follows from the deletion-contraction property,
that

P (G\e, x′) = P (G/e, x′).

Since G\e is a connected graph with n ≥ 3 and G/e is a connected graph with n− 1 ≥ 2
vertices, both graphs have a root at 0 and 1. From the previous lemma it follows, that the
derivatives P ′(G\e, x) and P ′(G/e, x) have opposite sign at x = 0. Therefore induction
gives, that they cannot meet in the interval (0, 1) and so G has no real root in (0, 1).

From Lemma 1.30 it follows, that the root x = 0 of P (G, x) has multiplicity equal
to the number of connected components. The chromatic polynomial of any graph has
a root at x = 1 with multiplicity bigger or equal to the number of blocks4 of G: If
G = G1 ∪ G2 ∪ ... ∪ Gk, where G1, ..., Gk are the blocks of G, then repeatedly applying
Lemma 1.24 gives, that

P (G, x) =
P (G1, x) · P (G2, x) · · · P (Gk, x)

xk−1
.

Since every Gi is nonempty it follows that each P (Gi, x) has at least one root at 1. There-
fore P (G, x) has a root at 1 with multiplicity at least k.
In fact the multiplicity of the root 1 of P (G, x) is equal to the number of blocks but we
will not prove this here.

4A block of a graph is a maximal biconnected subgraph. Any connected graph decomposes uniquely
into the sum of its blocks.
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In 1993 Bill Jackson showed that there exists no graph with real chromatic roots in the
interval (1, 32

27
] [10]. Which leads us to the following conclusion:

Lemma 1.41. For any graph G the chromatic polynomial P (G, x) has no real roots in
(−∞, 32

27
] except for 0 and 1.

Thomassen proved in 1997, that the real roots of all chromatic polynomials are dense in
the interval [32

27
,∞) [15], which shows that (−∞, 0], (0, 1) and (1, 32

27
] are the only intervals

that are free from any real chromatic roots. However, for certain classes these intervals
can be extended. Thomassen showed, for instance, that graphs with a Hamiltonian path5

have no real chromatic roots in the interval (1, 1
3
(2 +

3
√

26 + 6
√

33 +
3
√

26− 6
√

33)) ≈
(1, 1.29559...) [16] and of course we already saw that planar graphs have no real chromatic
roots in x = 4 and [5,∞).
For complex chromatic roots a result of Sokal [14] showed that the roots of all chromatic
polynomials are dense in C. Sokal showed further, that:

Theorem 1.42 (Sokal, 2001 [13]). For any r ∈ N there exists a universal constant C(r) <
∞, such that, for all simple graphs, with maximum degree ∆(G) ≤ r all chromatic roots
lie in the disc |x| < C(r). For all graphs of second-largest degree ≤ r the chromatic roots
lie in the disc |x| < C(r) + 1. Furthermore, C(r) ≤ 7.963907 · r.

Fernández and Procacci improved Sokals result to C(r) ≤ 6.91 · r in 2007 [8] and Dong
and Koh showed in their paper Bounds for the Real Zeros of Chromatic Polynomials [7]
that all real zeros of P (G, x) lie in the interval [0 , 5.664 ·∆(G)). Furthermore, as a special
case, they showed that for ∆(G) = 3 all real roots of P (G, x) lie in [0 , 4.765 ·∆(G)).

5A Hamiltonian path is a path that visits every vertex in a graph exactly once.
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Chapter 2

Vertex Colorings for Simplicial
Complexes

In the previous chapter we explained how vertex colorings are used in Graph Theory to
study the structure of graphs. Similarly as in Graph Theory we can define colorings of
the vertex set of finite abstract simplicial complexes (ASC). Since the 1-skeleton X1 of a
finite ASC X has the structure of a graph it is sometimes called the underlying graph of
the complex X. Therefore the colorings as defined in Definition 1.1 can certainly describe
some of the structure of a finite ASC. However, in order to take the higher dimensional
structures of simplicial complexes into account we obviously need to make some other
restrictions to the vertex colorings as in Chapter 1. Dobrinskaya/Møller/Notbohm defined
vertex colorings for simplicial complexes in Vertex Colorings of Simplicial Complexes [5]
as follows:

Definition 2.1. Let X be a finite abstract simplicial complex and let s ∈ N. A (proper)
(r, s)-coloring of X is a map f : V → P from the vertex set V ∼= X0 of X to a palette
P of r colors, such that |f−1(c) ∩ σ| ≤ s, for every c ∈ P and every σ ∈ X. A simplicial
complex that admits a (r, s)-coloring is (r, s)-colorable.

Clearly, a (r, 1)-coloring is just a normal coloring of the underlying graph G(X) := X1

of X as defined in the previous chapter.1 It is also obvious, that all (r, s)-colorings, with
s > dim(X) are proper. Here are some examples for 1 < s ≤ dim(X):

Example 2.2. Consider the 3-dimensional simplicial complex X defined by the two 3-
simplices, [1,2,3,4] and [2,3,4,5]. The map f : V −→ {c1, c2}, defined by

f(1) = f(2) = f(5) = c1 and f(3) = f(4) = c2

is a proper (2, 2)-coloring of X and the map h : V −→ {c1, c2}, defined by

h(1) = h(5) = c1 and h(2) = h(3) = h(4) = c2

is a proper (2, 3)-coloring of X (Figure 2.1).

1Unless it leads to confusion we will simply write G instead of G(X) or X1.
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Figure 2.1: A (2, 2)-coloring and a (2, 3)-coloring of the simplicial complex X of Example 2.2.

Example 2.3. The triangulation T2 of the torus, defined by the fourteen 2-simplices
[1, 2, 4], [1, 2, 6], [1, 3, 4], [1, 3, 7], [1, 5, 6], [1, 5, 7], [2, 3, 5], [2, 3, 7], [2, 4, 5], [2, 6, 7], [3, 4, 6],
[3, 5, 6], [4, 5, 7] and [4, 6, 7] is (3, 2)-colorable. Consider for instance the (3, 2)-coloring
f : V −→ {c1, c2, c3}, defined by

f(1) = f(2) = f(3) = c1, f(4) = f(5) = f(6) = c2 and f(7) = c3.

Figure 2.2: A (3, 2)-coloring of the simplicial complex T2 of Example 2.3.

Example 2.4. The 3-dimensional complex M3−6−1, defined by the eight 3-simplices

[1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 4, 6], [1, 2, 5, 6], [1, 3, 4, 5], [1, 4, 5, 6], [2, 3, 4, 5] and [2, 4, 5, 6]
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is (2, 3)-colorable. Take as an example the (2, 3)-coloring f : V −→ {c1, c2}, defined by

f(1) = f(2) = f(3) = f(6) = c1 and f(4) = f(5) = c2.

Unlike graph vertex-colorings (r, s)-colorings do not necessarily induce partitions of V
into independent sets. A map f : V −→ P is a (|P |, s)-coloring of X if and only if
|f(σ)| > 1 for every s-dimensional simplex σ ∈ X. Thus every (r, s)-coloring induces a
partition of the vertex set into sets that do not contain any s-simplices, we will call these
sets s-simplex-independent sets, or simply s-independent sets.
It is not very hard to see, that every (r, s)-coloring of a simplex X only depends on its
s-skeleton Xs:

Lemma 2.5 (Dobrinskaya/Møller/Notbohm, [5]). Let X be a finite ASC, then f is a
(r, s)-coloring of X if and only if f is a (r, s)-coloring of the s-skeleton Xs.

Proof. If f is a (r, s)-coloring of X it is obvious that it is also a (r, s)-coloring of Xs. On
the other hand, if f is a proper (r, s)-coloring of Xs and σ := [v1, v2, ..., vn+1] ∈ X is any n-
simplex, with n > s, then all s-faces of σ are in Xs and thus are properly colored. Therefore
σ must also be properly colored, otherwise, if there would exist vertices vi1 , vi2 , ..., vis+1 ∈ σ
colored with the same color, then the s-simplex [vi1 , vi2 , ..., vis+1 ] would not be properly
colored by f . Thus the lemma follows.

Similarly as for graphs it can be interesting to ask how many colors are minimally
necessary in order to color a finite ASC with a s-coloring. Therefore we define the s-
chromatic number:

Definition 2.6. Let X be an ASC. The s-chromatic number χs(X) of X is the smallest
natural number r such that X is (r, s)-colorable. If χs(X) = r we also say that X is
(r, s)-chromatic.

Example 2.7. The 3-dimensional complex from Example 2.2 is obviously (2, 2) and (2, 3)-
chromatic.

Example 2.8. The complex T2 and M3−6−1 from Example 2.3 and 2.4 are both (3, 2)-
chromatic, furthermore M3−6−1 is (2, 3)-chromatic.

For every s ∈ N the s-chromatic number is an invariant for finite ASC’s. Clearly, every
finite ASC X is (r,

⌈ |V |
r

⌉
)-colorable. Furthermore, since every 1-skeleton of a (complete)

n-simplex is isomorphic to a complete graph Kn+1 it clearly follows, that

m(X) := max{|σ| | σ ∈ X} ≤ χ1(X) = χ(X1) ≤ |X0| = |V |,

and so
1 = χm(X)(X) ≤ ... ≤ χ2(X) ≤ χ1(X) ≤ |V |,

since every (r, s)-coloring is also a (r, s+ 1)-coloring of X.
We can improve this bounds a little bit, depending on s. Note first, that for every complete
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n-simplex χs(∆n) =
⌈
n+1
s

⌉
, and that χs(X ′) ≤ χs(X), for every subcomplex X ′ of X. In

particular we find that⌈
|σ|
s

⌉
= χs(∆|σ|−1) = χs(σ) ≤ χs(X) ≤ χs(∆|V |−1) =

⌈
|V |
s

⌉
,

for every σ ∈ X, so that⌈
dim(X) + 1

s

⌉
=

⌈
max{|σ| | σ ∈ X}

s

⌉
≤ χs(X) ≤

⌈
|V |
s

⌉
,

for every finite ASCX [5]. Therefore any finite ASC with vertex set V is (
⌈ |V |
s

⌉
, s)-colorable.

These bounds are the best we can get, since for every (complete) simplex equality holds.

Uniquely s-Colorability

Let X be a finite ASC and

Aut(X) = {ρ ∈ S|V | | [v1, v2, ...., vk] ∈ X ⇔ [ρ(v1), ρ(v2), ..., ρ(vk)] ∈ X, ∀ v1, v2, ..., vk ∈ V }

the automorphism group of X.

Definition 2.9. Two (r, s)-colorings f, f ′ of X are called equivalent (write f ∼ f ′) if there
exist σ ∈ Sr and ρ ∈ Aut(X), such that f ◦ ρ = σ ◦ f ′.

Definition 2.10. A finite ASC X is called equivalently (r, s)-colorable if all proper sur-
jective (r, s)-colorings of X are equivalent.

Every finite ASC X, with vertex set V is equivalently (|V |, 1)-colorable and equivalently
(1, |V |)-colorable. Complete n-simplices ∆n are equivalently (n, 2)-colorable. Here are some
more examples.

Example 2.11. Let X be the 2-dimensional simplicial complex, defined by the 2-simplices
[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4], [2, 3, 5], [2, 4, 5] and [3, 4, 5] then there are only three
possible partitions of the vertex set V into two 2-independent sets:

P1 := {{1, 2, 5}, {3, 4}}, P2 := {{1, 3, 5}, {2, 4}} and P3 := {{1, 4, 5}, {2, 3}}.

Clearly the map ρi,j := (i j) ∈ S5 is an automorphism of X, for i, j ∈ {2, 3, 4}. Fur-
thermore, ρ2,3(P1) = P2, ρ2,4(P1) = P3 and ρ3,4(P2) = P3. Thus, X is equivalently (2, 2)-
colorable (Figure 2.3).

Example 2.12. The subcomplex X of the 3-skeleton (∆6)3 of the complete 6-simplex,
missing the two 3-simplices [1, 2, 3, 4] and [1, 5, 6, 7] is equivalently (2, 3)-colorable: the
only possible partitions of the vertex set into two 3-independent sets are

P1 := {{1, 2, 3, 4}, {5, 6, 7}} and P2 := {{1, 5, 6, 7}, {2, 3, 4}}.

The map ρ := (2 5 3 6 4 7) ∈ S7 is an automorphism of X. Furthermore, ρ(P1) = P2,
therefore X is equivalently (2, 3)-colorable.
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Figure 2.3: Three equivalent (2, 2)-colorings of the simplicial complex X of Example 2.11.

If f is a (r, s)-coloring of a finite ASC X, then, similarly as for graphs, f and σ ◦ f are
two (r, s)-colorings that induce the same partition of V into i ≤ r s-independent subsets,
for every σ ∈ Sr. So if we write [f ] := {σ ◦ f | σ ∈ Sr} for the (r, s)-coloring class of
f , then, as with graph-colorings, equivalently (r, s)-colorability means that the action of

Aut(X) on F (r,s)
S (X) := {[f ] | f is a surjective (r, s)-coloring of X} is transitive. Thus X

is equivalently (r, s)-colorable if and only if

|F (r,s)
S (X)| = |Aut(X)f | = |Aut(X)|

|Aut(X)f |
,

for f ∈ F (r,s)
S (X), where Aut(X)f is the orbit of f and Aut(X)f its stabilizer.

It is not hard to see, that Theorem 1.12 translates directly into the simplicial case. If
P := {V1, ..., Vr} is a partition of the vertex set of a finite ASC X, define

XP := {[Vi1 , Vi2 , ..., Vik ] | ∃vij ∈ Vij , such that [vi1 , vi2 , ..., vik ] ∈ X, 1 ≤ k ≤ r}.

Now we find:

Theorem 2.13. Let X be an equivalently (r, s)-colorable finite abstract simplicial complex,
f, f ′ : V −→ {c1, ..., cr} two surjective (r, s)-colorings and σ ∈ Sr and ρ ∈ Aut(X), such
that σ ◦ f = f ′ ◦ ρ. Then |f−1(ci)| = |f ′−1 ◦ σ(ci)|, for all 1 ≤ i ≤ r. Furthermore, if
P respectively P ′ are the corresponding partitions of the vertex set V , then ρ defines a
simplicial isomorphism between XP and XP ′.

The proof of this theorem is nearly identical to the proof of 1.12 and will therefore be
left out.

If there is just one partition of V into r s-independent sets, then |F (r,s)
S (X)| = 1 and

X is equivalently (r, s)-colorable. Clearly |F (|V |,s)
S (X)| = 1 for every finite ASC X. As for

graphs we find, that if |F (r,s)
S (X)| = 1 then r = χs(X) or r = |V |.
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Lemma 2.14. Let X be a finite ASC and χs(X) ≤ r < |V |. If there exists a permutation
σ ∈ Sr for every two surjective (r, s)-colorings f, f ′, such that f ′ = σ ◦ f , then r = χs(X).

The proof of this lemma is very similar to the proof of Lemma 1.13.

Definition 2.15. A finite ASC X is called uniquely s-colorable if X has only one (proper)
χs(X)-coloring up to permutation of the colors. In that case a χs(X)-coloring f is called
a unique s-coloring of X.

Example 2.16. Let X be the 2-dimensional simplicial complex, defined by the 2-simplices
[1, 2, 3], [1, 2, 4], [1, 3, 4], [1, 3, 5], [1, 4, 5], [2, 3, 4], [2, 3, 5], [2, 4, 5] and [3, 4, 5], then X is
uniquely 2-colorable, since the only possible partition of the vertex set V into two 2-
independent sets is {{1, 2, 5}, {3, 4}}.

Figure 2.4: The uniquely 2-colorable simplicial complex X of Example 2.16.

Example 2.17. Consider the 3-skeleton (∆7)3 of the complete 7-simplex and let X be the
subcomplex missing the two 3-simplices [1, 2, 3, 4] and [5, 6, 7, 8]. X is (2, 3)-chromatic and
uniquely 3-colorable: the only possible partition of the vertex set into two 3-independent
sets is clearly {{1, 2, 3, 4}, {5, 6, 7, 8}}.
The subcomplex Y of the 2-skeleton (∆7)2 of the complete 7-simplex, missing the two 2-
simplices [1, 2, 3] and [4, 5, 6] is (3, 2)-chromatic and uniquely 2-colorable: the only possible
partition of the vertex set into three 2-independent sets is {{1, 2, 3}, {4, 5, 6}, {7, 8}}.

Let X be an uniquely s-colorable finite ASC and f a χs(X)-coloring. If Vi and Vj are
two distinct color classes of f , then every vertex v ∈ Vi must be part of at least one s-
simplex [v, u1, ..., us], such that u1, u2, ..., us ∈ Vj and every vertex u ∈ Vj must be part of
at least one s-simplex [u, v1, ..., vs], such that v1, v2, ..., vs ∈ Vi. Thus, if X(s) is the subset
of all s-simplices, then:

|X(s)| ≥ (χs(X)− 1)|V |,
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for s > 1.

Example 2.16 and 2.17 show, that the bound given above is very generous. For instance,
complex X in 2.17 has 68 3-simplices, that is quite a lot more than (χ3(X) − 1) · 8 = 8.
Certainly that there is a lot more to say about uniquely s-colorability, but to find out if
this is the best possible bound or to find better ones needs some further investigations.
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Chapter 3

The s-Chromatic Polynomial

In Chapter 1 we proved the existence of a chromatic polynomial for vertex colorings of
graphs and we showed that this polynomial can be calculated recursively for every finite
graph. In this chapter we want to find similar polynomials associated to the s-colorings of
finite abstract simplicial complexes. Equivalently as the chromatic polynomial for graphs, a
“s-chromatic” polynomial for an ASC should return the number of distinct (r, s)-colorings
for all r ∈ N.

Definition 3.1. If X is a finite ASC, then we write C(r,s)(X) to denote the number of all
possible (r, s)-colorings of X.

Any s-coloring of a given abstract simplicial complex X corresponds with a partition
of the vertex set V into s-simplex-independent sets. Define the following sub-class of
s-simplex-independent partitions:

Definition 3.2. Let X be a finite ASC, s ∈ N and let P := {V1, V2, ..., Vk} be a partition of
the vertex set V of X into s-independent sets, such that each block Vi induces a connected
subgraph of the underlying graph G of X. Then the partition P is called a block-connected
s-partition or simply a s-partition of V.

If f is a (r, s)-coloring that induces a s-partition P of the vertex set V of X, then f is in
fact an injective graph-vertex coloring of the partition-graph GP . Now let f ′ be any (r, s)-
coloring of X and P the partition of V induced by f ′. Observe, that if P ′ is the coarsest
block-connected refinement of P , then it is a s-partition of V and f ′ is a graph-vertex
coloring of the partition-graph GP ′ , using r colors.

Theorem 3.3. Let X be a finite abstract simplicial complex, r, s ∈ N and Bs the collection
of all block-connected s-partitions of V, then

C(r,s)(X) =
∑
D∈Bs

Cr(GD).

Proof. We want to show, that every (r, s)-coloring f of X corresponds uniquely with a pair
(D, f ′), where D ∈ Bs is a s-partition of the vertex set V and f ′ is a graph-vertex coloring
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of GD.
If f : V −→ P is a (r, s)-coloring of X, then f−1(P ) defines a partition of V. Let V1 :=
f−1(c1), V2 := f−1(c2), ..., Vr := f−1(cr) be the corresponding color classes. For each 1 ≤
i ≤ r let further Vi1 , Vi2 , .., Vin(i)

be the maximal subsets of Vi, such that each Vij induces a
connected subgraph of G. Then Df := {V11 , V12 , .., V1n(1)

, V21 , V22 , ..., Vrn(r)
} is the coarsest

block-connected refinement of f−1(P ) and therefore Df is a s-partition of V . The map
f ′ : Df −→ P , defined as f ′(Vij) := ci for all 1 ≤ j ≤ n(i), is a graph-vertex coloring of
GDf

. From this construction it follows, that the map

ϕ : {(r, s)-colorings of X} −→ {(D, f ′) | D ∈ Bs, f ′ is a r-coloring of GD} :

f 7→ (Df , f
′)

is injective: if h : V −→ P is another (r, s)-coloring of X, h 6= f , then there is a color
ci ∈ P , such that V ′i := h−1(ci) 6= f−1(ci) =: Vi. Therefore, if Dh = Df it must follow that
h′ 6= f ′.
For the surjectivity of the map ϕ let D = {V1, ..., Vk} ∈ Bs and let g : D −→ P be a r-
coloring of GD. Now define the map f : V −→ P as f(x) := g(Vi), for all x ∈ Vi, 1 ≤ i ≤ r,
then f is a (r, s)-coloring of X. Since for all Vi, Vj ∈ D, Vi 6= Vj, with g(Vi) = g(Vj) clearly
[Vi, Vj] can not be an edge in GD and every Vi induces a connected subgraph of G it follows
that Df = D and f ′ = g, therefore ϕ(f) = (D, g).
It follows that ϕ is a bijection and so C(r,s)(X) =

∑
D∈Bs Cr(GD).

Corollary/Definition 3.4. For every finite abstract simplicial complex X and every s ∈ N
the polynomial

Ps(X, x) :=
∑
D∈Bs

P (GD, x)

is equal to C(r,s)(X) for every r ∈ Z≥0. Ps(X, x) is therefore called the s-chromatic poly-
nomial of X.

Proof. From 1.19 it follows that P (GD, r) = Cr(GD), for every s-partition D of V and
every r ∈ Z≥0. Therefore Theorem 3.3 gives that

Ps(X, r) =
∑
D∈Bs

Cr(GD) = C(r,s)(X).

Corollary/Definition 3.4 not only establishes the existence of a s-chromatic polynomial,
it also shows how to calculate it. However, since the computation of the chromatic poly-
nomial for graphs is not particularly easy, it is clear that the s-chromatic polynomials of
big simplicial complexes must have very high computation times.
Before we will try to find out more about the s-chromatic polynomial we look at some
examples.
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Example 3.5. The block-connected 2-partitions B2 of the 2-simplex ∆2 are equal to

D1 = {{1}, {2}, {3}}, D2 = {{1, 2}, {3}}, D3 = {{1, 3}, {2}}, D4 = {{2, 3}, {1}}.

Thus, if G := G(∆2), then GD1 = K3 and GDi
= K2, for i = 2, 3, 4. We find that

P2(∆2, x) =
∑
D∈B2

P (GD, x)

= P (K3, x) + 3 P (K2, x)

= [x]3 + 3[x]2

= x3 − x.

Example 3.6. The underlying graph G of the 3-dimensional simplicial complex X from
Example 2.2, defined by the two 3-simplices, [1, 2, 3, 4] and [2, 3, 4, 5] is isomorphic to the
complete graph on five vertices missing the edge [1, 5], K5\[1, 5]. The 2-partitions B2 of X
are equal to

D1 = {{1}, {2}, {3}, {4}, {5}},
D2i = {{1}, {5}, {i /∈ {1, 5}}, {j, k /∈ {1, 5, i}}} (i = 2, 3, 4),
D31i = {{1, i}, {5}, {j}, {k}} (i = 2, 3, 4),
D35i = {{5, i}, {1}, {j}, {k}} (i = 2, 3, 4),
D4i = {{1, i, 5}, {j}, {k}} (i = 2, 3, 4),
D5in = {{i}, {j, k ([j, k] ∈ X)}, {l,m ([l,m] ∈ X)}} (i=1,..,5; n=1,2,(3)),
D6i = {{1, i, 5}, {j, k}} (i = 2, 3, 4)

and so

GD1 = K5\[1, 5]
GD2i

= K4\[1, 5] (i = 2, 3, 4),
GD31i

= GD35i
= K4 (i = 2, 3, 4),

GD4i
= K3 (i = 2, 3, 4),

GD5in
= K3 (i = 1, .., 5;n = 1, 2, (3)),

GD6i
= K2 (i = 2, 3, 4).

We find, that

P2(X, x) =
∑
D∈B2

P (GD, x)

= P (K5\[1, 5], x) + 6 P (K4, x) + 3 P (K4\[1, 5], x) + 15 P (K3, x) + 3 P (K2, x)

= (x− 3)[x]4 + 6[x]4 + 3(x− 2)[x]3 + 15[x]3 + 3[x]2

= [x]5 + 10[x]4 + 18[x]3 + 3[x]2

= x5 − 7x3 + 9x2 − 3x.
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To write down the 3-partitions in an understandable way is quite complicated, nevertheless,
the 3-chromatic polynomial of X is given by:

P3(X) =
∑
D∈B2

P (GD, x)

= [x]5 + 10[x]4 + 25[x]3 + 13[x]2

= x5 − 2x2 + x.

Since the s-chromatic polynomial for simplicial complexes is a sum of chromatic poly-
nomials some properties follow directly from the properties of the chromatic polynomial
for graphs. We easily see for instance, that the constant term of Ps(X, x) must be zero
for all ASC X, and since the sum of the coefficients of the chromatic polynomial equals
zero for every graph with at least one edge, this is certainly also true for the s-chromatic
polynomial of any simplicial complex X, whenever s ≤ dim(X). Furthermore, the highest
power of x in the s-chromatic polynomial of any complex X equals the number of vertices
n = |V |, since X0 ∈ Bs, and, as X0 is clearly the only s-partition with n blocks, it fol-
lows that the coefficient of xn equals 1. Another easy observation is, that the s-chromatic
polynomial of the disjoint union of k connected ASC’s X1 tX2 t ... tXk is equal to

Ps(X1 tX2 t ... tXk, x) = Ps(X1, x) · Ps(X2, x) · · · Ps(Xk, x).

If X := X1 t X2 t ... t Xk, then also every partition-graph of the underlying graph, in-
duced by a s-partition, is a disjoint union of k components. Thus, if we write Ps(X, x) =∑n

i=1 aix
i, it follows from Lemma 1.30, that ai = 0, for all i < k. However, we can clearly

not conclude that ak 6= 0, since the sign of the coefficient of xk in each polynomial P (GD, x)
depends on the number of vertices of the partition-graph GD. In fact we will come across
some examples of connected simplicial complexes, where a1 = 0 (see Example 3.9 or 3.11)
.

Lemma 3.7. Let X, Y be two finite abstract simplicial complexes, such that |X0∩Y 0| = 1,
then

Ps(X ∪ Y, x) =
Ps(X, x) · Ps(Y, x)

x
,

for all s ∈ N

Proof. Let s ∈ N, X0 ∩ Y 0 = {v} and D ∈ Bs(X ∪ Y ). If C ∈ D is the block that contains
v, then, since D is a block-connected s-partition and v is the only connection between
X and Y, this is the only block of D that contains vertices of X and vertices of Y. Let
C|X := C ∩ X0 and C|Y := C ∩ Y 0 and define DX := {Ci ∈ D | Ci ⊂ X0} ∪ {C|X} and
DY := {Ci ∈ D | Ci ⊂ Y 0} ∪ {C|Y }. It is not difficult to see that DX ∈ Bs(X) and
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DY ∈ Bs(Y ). Since G(X ∪Y )D ∼= G(X)DX
∪G(Y )DY

and V (G(X)DX
)∩V (G(Y )DY

) = C,
we know from Chapter 1 that

P (G(X ∪ Y )D, x) =
P (G(X)DX

, x) · P (G(Y )DY
, x)

x
,

for every D ∈ Bs.
On the other hand, if D′X ∈ Bs(X), D′Y ∈ Bs(Y ) and CX ∈ D′X , CY ∈ D′Y are the blocks
that contain v then there are no vertices in C := CX ∪ CY that span a s-simplex (for
s > 1) and C induces a connected subgraph of G(X ∪Y ). Therefore every two s-partitions
D′X ∈ Bs(X), D′Y ∈ Bs(Y ) define a unique s-partition D := D′X\{CX}∪D′Y \{CY }∪{C} ∈
Bs(X ∪ Y ) and so

Ps(X ∪ Y, x) =
∑

D∈Bs(X∪Y )

P (G(X ∪ Y )D, x)

=
∑

DX∈Bs(X)

∑
DY ∈Bs(Y )

P (G(X)DX
, x) · P (G(Y )DY

, x)

x

=
Ps(X, x) · Ps(Y, x)

x
.

Definition 3.8. Two finite abstract simplicial complexes, X and Y are called s-chromatically
equivalent if

Ps(X, x) = Ps(Y, x).

Example 3.9. In Example 3.5 and 3.6 we calculated the s-chromatic polynomials of the 2-
simplex ∆2 and the simplicial complexX defined by the two 3-simplices [1, 2, 3, 4], [2, 3, 4, 5].
Let X ′ be the simplicial complex defined by the simplices [1, 2, 3, 4], [2, 3, 4, 5], [5, 6, 7] and
X ′′ the simplicial complex defined by the simplices [1, 2, 3, 4], [2, 3, 4, 5], [4, 6, 7] (Figure 3.1).
Then Lemma 3.7 gives that X ′ and X ′′ are s-chromatically equivalent, for all s ∈ N:

P2(X ′, x) = P2(X ′′, x) =
P2(X, x) · P2(∆2, x)

x

=
(x5 − 7x3 + 9x2 − 3x)(x3 − x)

x
= x7 − 8x5 + 9x4 + 4x3 − 9x2 + 3x

= [x]7 + 21[x]6 + 132[x]5 + 279[x]4 + 159[x]3 + 9[x]2,
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P3(X ′, x) = P3(X ′′, x) =
P3(X, x) · P3(∆2, x)

x

=
(x5 − 2x2 + x)x3

x
= x7 − 2x4 + x2

= [x]7 + 21[x]6 + 140[x]5 + 348[x]4 + 289[x]3 + 50[x]2.

Figure 3.1: The chromatically equivalent simplicial complexes X ′ and X ′′ of Example 3.9.

Here are a couple of more examples of chromatic polynomials of some of the complexes
of Chapter 2:

Example 3.10. The 2-chromatic polynomial of the simplicial complex T2, of Example 2.3
is given by:

P2(T2, x) = x7 − 14x5 + 21x4 + 7x3 − 21x2 + 6x

= [x]7 + 21[x]6 + 126[x]5 + 231[x]4 + 84[x]3.

Example 3.11. The 3-dimensional complex M3−6−1 from Example 2.4 has the following
chromatic polynomials:

P (M3−6−1, x) = x6 − 14x5 + 75x4 − 190x3 + 224x2 − 96x

= [x]6 + [x]5,

P2(M3−6−1, x) = x6 − 16x4 + 33x3 − 18x2

= [x]6 + 15[x]5 + 49[x]4 + 27[x]3,

P3(M3−6−1, x) = x6 − 8x3 + 10x2 − 3x

= [x]6 + 15[x]5 + 65[x]4 + 82[x]3 + 17[x]2.
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The s-Chromatic Polynomial of ∆n

Every finite abstract simplicial complex with n vertices can be obtained by deleting certain
simplices of the n-simplex ∆n and every finite ASC is uniquely defined by its maximal
simplices. Therefore we want to find out more about the s-chromatic polynomials of ∆n.
Since the underlying graph G of ∆n is equal to the complete graph Kn+1 on n+ 1 vertices,
every partition-graph GD is a complete graph on |D| vertices. It follows therefore that
Ps(∆n, x) =

∑
D∈Bs P (K|D|, x) =

∑n+1
j=1 bj[x]j, where bj = |{D ∈ Bs | |D| = j}|.

Theorem 3.12. Let S ′(n+ 1, j, s) denote the number of partitions of n+ 1 elements into
j blocks, such that no block contains more than s elements, then

Ps(∆n, x) =
n+1∑

j=dn+1
s
e

S ′(n+ 1, j, s)[x]j.

Proof. Note that if V ′ is a subset of the vertex set V such that |V ′| = s + 1, then the
vertices of V ′ span a s-simplex in ∆n. Furthermore, every subset of the vertex set induces
a connected subgraph of the underlying graph G(∆n). Thus, for every 1 ≤ j ≤ n+ 1, the
number of s-partitions, with j blocks is exactly S ′(n+ 1, j, s). Since S ′(n+ 1, j, s) = 0, for
n+1
s
> j the theorem follows.

If j − 1 ≥ n + 1 − s then S ′(n + 1, j, s) is equal to the Stirling number of the second
kind S2(n+ 1, j) and so it follows, that

Ps(∆n, x) =
n+1∑

j=n+2−s

S2(n+ 1, j)[x]j +
n+1−s∑
j=dn+1

s
e

S ′(n+ 1, j, s)[x]j,

for n+ 1− s ≥ dn+1
s
e and

Ps(∆n, x) =
n+1∑

j=n+2−s

S2(n+ 1, j)[x]j,

for n+1−s < dn+1
s
e. Note, that for n+1−s < dn+1

s
e it follows, that n+1 < s2

s−1
= s+1+rest

and thus, that s ≥ n = dim ∆n.

Lemma 3.13. Let I(n,r,s) := {̂i = (i1, i2, ..., ir) ∈ Nr | 0 < i1 ≤ i2... ≤ ir ≤ s ;
∑r

j=1 ij = n}
and let ηj : Nr → N be the map, defined as ηj (̂i) := |{i ∈ {i1, i2, ..., ir} | i = j}|, for
î = (i1, i2, .., ir) and j, r ∈ N, then

S ′(n, r, s) =
1

r!

∑
î∈I(n,r,s)

(
r

η1(̂i), η2(̂i), ..., ηs(̂i)

)(
n

i1, i2, ..., ir

)
.
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Proof. Clearly, if P := {P1, P2, .., Pr} is a partition of n elements into r blocks, such
that no block contains more than s elements, and we sort the the blocks of P such that
|Pi1| ≤ |Pi2| ≤ ... ≤ |Pir |, then (|Pi1|, |Pi2 |, ..., |Pir |) ∈ I(n,r,s). Thus every such partition

corresponds with a vector î ∈ I(n,r,s).

Given a vector î ∈ I(n,r,s) we want to count how many different partitions of a set V of

n elements exist that correspond with î. Assume first, that î = (i1, i2, ..., ir), such that
0 < i1 < i2 < ... < ir ≤ s. Then, starting with the first block, there are

(
n
i1

)
possibilities to

choose i1 elements from V . For the next block there are
(
n−i1
i2

)
possibilities left and so on.

Thus there are a total of(
n

i1

)(
n− i1
i2

)
· · ·
(
n−

∑r−1
k=1 ik

ir

)
=

n!

i1! · i2! · · · ir!
=

(
n

i1, i2, ..., ir

)
partitions of V that correspond with î.
The multinomial coefficient

(
n

i1,i2,...,ir

)
gives the number of ways how to distribute n elements

into r distinct ’boxes’, such that in the jth box there are ij elements. Therefore, if î ∈
I(n, r, s), such that there are 1 ≤ j1 ≤ j2 ≤ ... ≤ jk ≤ r, with ij1 = ij2 = ... = ijk , then the
multinomial coefficient

(
n

i1,i2,...,ir

)
will count every partition corresponding with î, k! times.

Thus, for every î ∈ I(n, r, s) there are

1

η1(̂i)! · η2(̂i)! · · · ηs(̂i)!

(
n

i1, i2, ..., ir

)
=

1

r!

(
r

η1(̂i), η2(̂i), ..., ηs(̂i)

)(
n

i1, i2, ..., ir

)
corresponding partitions of V .
It follows, that

S ′(n, r, s) =
1

r!

∑
î∈I(n,r,s)

(
r

η1(̂i), η2(̂i), ..., ηs(̂i)

)(
n

i1, i2, ..., ir

)
.

Example 3.14. We want to calculate the 4-chromatic polynomial of ∆6. Therefore we need
to find the numbers S ′(7, 2, 4) and S ′(7, 3, 4). Since I(7,3,4) = {(3, 2, 2), (3, 3, 1), (4, 2, 1)}
and I(7,2,4) = {(4, 3)}, it follows that

S ′(7, 2, 4) =
1

2!

(
2

1, 1

)(
7

4, 3

)
= 35

S ′(7, 3, 4) =
1

3!

((
3

2, 1

)(
7

3, 2, 2

)
+

(
3

1, 2

)(
7

3, 3, 1

)
+

(
3

1, 1, 1

)(
7

4, 2, 1

))
=

7!

2!3!2!2!
+

7!

2!3!3!
+

7!

4!2!
= 280.

48



Thus the 4-chromatic polynomial of ∆6 is equal to:

P4(∆6, x) =
7∑
i=4

S2(7, i)[x]i +
3∑
i=2

S ′(7, i, 4)[x]i

= [x]7 + 21[x]6 + 140[x]5 + 350[x]4 + 280[x]3 + 35[x]2

= x7 − 21x3 + 35x2 − 15x.

In Appendix A is a list of the s-chromatic polynomials of ∆n, for 3 ≤ n ≤ 9.

The Coefficients of the s-Chromatic Polynomial

We already saw earlier that some properties of the coefficients of the s-chromatic poly-
nomial for higher s are equivalent to those of s = 1. For instance that the constant of
every s-chromatic polynomial must be zero and that the highest power of the s-chromatic
polynomial is always equal to the number of vertices of the simplicial complex. On the
other hand we can see in Example 3.9 that Lemma 1.31 is not true for higher s and that
the coefficients of the s-chromatic polynomial in general do not form a log-concave or uni-
modal sequence. Furthermore, the 3-chromatic polynomial of the complexes in Example
3.9 and the 2-chromatic polynomial of the complex M3−6−1 in Example 3.11 show that also
Lemma 1.30 is not (entirely) true for s > 1. Nevertheless we want to try to find out more
about the coefficients of the s-chromatic polynomials for simplicial complexes.
As for the chromatic polynomial for graphs we can write every s-chromatic polynomial in
two ways:

Ps(X, x) =
n∑
i=1

aix
i =

n∑
j=1

bj[x]j.

where

ai =
n∑
j=i

bjS1(j, i) and bj =
n∑
i=j

aiS2(i, j).

In Chapter 1 we saw that

P (G, x) =
n∑

j=χ(G)

βj(G)[x]j,

where n is the number of vertices of G and βj(G) is the number of ways of coloring G in
exactly j colors with color indifference. That means that βj(G) is equal to the number
of proper coloring partitions of the vertex set V of G, namely the partitions of V into j
blocks, such that each block is an independent vertex-set.
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Definition 3.15. If X is a finite abstract simplicial complex, let S∆(X, r, s) denote the
number of partitions of the vertex set V of X into r blocks, such that no block contains
vertices that span a s-simplex in X.

With this definition βj(G) equals S∆(G, j, 1) and so we see that if X has n vertices

Ps(X, x) =
∑
D∈Bs

n∑
j=1

S∆(G(X)D, j, 1)[x]j.

If D ∈ Bs then no block of D contains vertices that span a s-simplex in X and so it follows,
that

Ps(X, x) =
n∑
j=1

S∆(X, j, s)[x]j.

Since all non-negative integer roots of Ps(X, x) must lay in the interval (0, χs(X)) it follows
that

Theorem 3.16. Let X be a finite abstract simplicial complex with n ∈ N vertices, then

Ps(X, x) =
n∑

j=χs(X)

S∆(X, j, s)[x]j.

We see now that, for every n ∈ N, S∆(∆n, r, s) = S ′(n+ 1, r, s), for all r, s ∈ N and that
Theorem 3.12 is just a special case of Theorem 3.16. In fact, for every simplicial complex
X with n vertices we find that

S ′(n, r, s) ≤ S∆(X, r, s),

and whenever r − 1 < n− s then S ′(n, r, s) = S∆(X, r, s) if and only if every subset of V
consisting of s+ 1 vertices spans a s-simplex in X. It is also easy to see, that

S∆(X, r, s) ≤ S2(n, r),

and that equality holds if r − 1 ≥ n− s. So, as before we find that

Ps(X, x) =
n∑

j=n+1−s

S2(n, j)[x]j +
n−s∑

j=χs(X)

S∆(X, j, s)[x]j.
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Example 3.17. Consider the triangulation MB of the Möbius band, defined by the five
2-simplices [1, 2, 4], [1, 3, 5], [1, 4, 5], [2, 3, 4] and [2, 3, 5] (Figure 3.3). S∆(MB, 4, 2) is equal
to S2(5, 4) = 10. If D is a partition of the vertex set V into three blocks, then D contains
either one 3-element-block and two 1-element-blocks or two 2-element-blocks and one 1-
element-block. Since there are

(
5
3

)
−5 = 5 subsets of three elements of V , that do not span

a 2-simplex in MB there are clearly five distinct partitions of the first kind. Furthermore
there are 1

2!

(
5
2

)(
3
2

)
= 15 distinct partitions of the second kind. Therefore S∆(MB, 3, 2) = 20.

There are two different kind of partitions of V into two blocks: either a partition contains
one 4-element-block and one 1-element-block or one 3-element-block and one 2-element-
block. Since every subset of four elements of V spans a 2-simplex in M there are no
partitions of the first kind, but there are five distinct partitions of the second kind, therefore
S∆(MB, 2, 2) = 5. It follows now that

P2(MB,x) = [x]5 + 10[x]4 + 20[x]3 + 5[x]2

= x5 − 5x3 + 5x2 − x.

Figure 3.2: The triangulation MB of the Möbius band of Example 3.17.

Example 3.18. The simplicial complex X of Example 2.16 has four 2-simplices more than
the triangulation MB of the Möbius band, therefore S∆(X, 3, 2) = 16 and S∆(X, 2, 2) = 1.
We have:

P2(X, x) = [x]5 + 10[x]4 + 16[x]3 + [x]2

= x5 − 9x3 + 13x2 − 5x.

We see that S∆(X, 2, 2) = 1 for the uniquely 2-colorable simplicial complex of Example
3.18. Of course this follows, as for the chromatic polynomial, directly from the interpreta-
tion of the coefficients of the s-chromatic polynomial.

Corollary 3.19. Let X be a finite abstract simplicial complex with s-chromatic polynomial
Ps(X, x) =

∑n
j=χs(G) S∆(X, j, s)[x]j. Then

X is uniquely s-colorable⇐⇒ S∆(X, j, s) = 1.
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Another consequence of Theorem 3.16 is the following:

Lemma 3.20. If X is a finite abstract simplicial complex, then

Ps(X, x) = Ps(∆n, x), for some s ≤ n⇐⇒ Xs ∼= (∆n)s.

Proof. Clearly Ps(X, x) = Ps(∆n, x), whenever Xs = (∆n)s.
If X is a finite simplicial complex, such that Ps(X, x) = Ps(∆n, x) for some s ≤ n, then
|V (X)| = n+ 1 and we know from Theorem 3.12 and Theorem 3.16, that

Ps(X, x) =
n+1∑

j=χs(X)

S∆(X, j, s)[x]j

=
n+1∑

j=χs(∆n)

S ′(n+ 1, j, s)[x]j

= Ps(∆n, x).

Therefore S∆(X, j, s) = S ′(n + 1, j, s), for all χs(X) = χs(∆n) ≤ j ≤ n + 1. As remarked
earlier this means that every subset of V that contains s+1 vertices must span a s-simplex
in X and so Xs = (∆n)s.

In correspondence with Definition 1.28 we make the following definition:

Definition 3.21. A finite abstract simplicial complex X is called s-chromatically unique
if

Ps(X, x) = Ps(Y, x)⇐⇒ Xs ∼= Y s,

for every simplicial complex Y .

In the preceding examples it sticks out that, like for the chromatic polynomial of graphs,
the coefficient of the second highest power in the normal form of Ps always equals the
number of s-simplices of the simplicial complex. This is not a coincidence as the following
theorem shows.

Theorem 3.22. Let X be a finite abstract simplicial complex with n vertices and let m be
the number of s-simplices. If Ps(X, x) =

∑n
i=1 aix

i, ai ∈ Z, is the s-chromatic polynomial
of X, then ai = 0, for n > i > n− s and an−s = −m.

Proof. Theorem 3.16 gives that

Ps(X, x) =
n∑

j=χs(X)

S∆(X, j, s)[x]j =
n∑

j=n+1−s

S2(n, j)[x]j +
n−s∑

j=χs(X)

S∆(X, j, s)[x]j,
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and so

ai =
n∑
j=i

S∆(X, j, s)S1(j, i) =
n∑

j=n+1−s

S2(n, j)S1(j, i) +
n−s∑
j=i

S∆(X, j, s)S1(j, i),

for 1 ≤ i ≤ n.

Claim 1 :
For every i < n

n∑
j=i

S2(n, j)S1(j, i) = 0

proof of Claim 1: Since xk =
∑k

j=0 S2(k, j)[x]j and [x]k =
∑k

i=0 S1(k, i)xi for any k ≤ n,
the matrices A = [S1(i, j)]n×n and B = [S2(i, j)]n×n are each others inverse. Therefore it
follows, that

k∑
j=i

S2(k, j)S1(j, i) = δik

and thus
n∑
j=i

S2(n, j)S1(j, i) = 0,

for every i < n.

Claim 2 :

S∆(X,n− s, s) = S2(n, n− s)−m
proof of Claim 2: If D is a partition of the n vertices of X into n− s blocks, then no block
of D contains more then s+ 1 vertices and if C ∈ D is a block that contains s+ 1 vertices
then all other blocks of D contain exactly one vertex. Therefore there are exactly

(
n
s+1

)
partitions of this form. Since X has m s-simplices the claim follows.

From Claim 1 and Claim 2 it follows now that

ai =
n∑
j=i

S2(n, j)S1(j, i) = 0,

for all n− s < i < n and

an−s =
n∑

j=n+1−s

S2(n, j)S1(j, n− s) + S∆(X,n− s, s)S1(n− s, n− s)

=
n∑

j=n+1−s

S2(n, j)S1(j, n− s) + (S2(n, n− s)−m)S1(n− s, n− s)
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=
n∑

j=n−s

S2(n, j)S1(j, n− s)−m

= −m.

This proof also provides an alternative to the proof of Lemma 1.29, purely based on
combinatorial observations.
Unfortunately this is about all, what can be said about the coefficients of the normal form
of Ps, for s > 1 at this point. All attempts to give a good interpretation of the coefficients
ai of the s-chromatic polynomial failed until now and will need more research. However,
since the Sterling numbers of the first and second kind form log-concave sequences (see for
example [1]) and considering the close connection between the numbers S∆ and S2, it is
reasonable to believe that the coefficients of the falling factorial form of the s-chromatic
polynomial are log-concave:

Conjecture 3.23. For every abstract simplicial complex X the coefficients S∆(X, j, s)
of the s-chromatic polynomial Ps(X, x) =

∑n
j=χs(X) S∆(X, j, s)[x]j form a log-concave se-

quence.

The Roots of the s-Chromatic Polynomial

The roots of the s-chromatic polynomial, as the coefficients of the normal form will need
more research. What can be said is that the interval (0, 1) is not always a zero-free
interval. The 2-chromatic polynomial P2(∆4, x) of the 4-simplex for instance, has a root
at x → 0.791288. Also negative roots can obviously occur in s-chromatic polynomials,
for s > 1, since Pn(∆n, x) = xn+1 − x and so x = −1 is always a root for even n. Both
is not very surprising, since the s-chromatic polynomial is the positive sum of chromatic
polynomials with both, odd and even number of vertices. Therefore it seems quite unlikely
that there exist intervals in R that are free of s-chromatic roots for some s ∈ N. However,
it might be possible and it is surly possible that there are classes of simplicial complexes
that have no s-chromatic roots in certain intervals or points of R. Furthermore, it would
be interesting to find similar bounds on the real and complex roots of the s-chromatic
polynomial, for s > 1, as Sokal, Fernández/Procacci and Dong/Koh have found for s = 1.
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Appendix A: The s-Chromatic
Polynomials of ∆n, for 3 ≤ n ≤ 9

P (∆3, x) = [x]4

= x4 − 6x3 + 11x2 − 6x

P2(∆3, x) = [x]4 + 6[x]3 + 3[x]2

= x4 − 4x2 + 3x

P3(∆3, x) = [x]4 + 6[x]3 + 7[x]2

= x4 − x.

P (∆4, x) = [x]5

= x5 − 10x4 + 35x3 − 50x2 + 24x

P2(∆4, x) = [x]5 + 10[x]4 + 15[x]3

= x5 − 10x3 + 15x2 − 6x

P3(∆4, x) = [x]5 + 10[x]4 + 25[x]3 + 10[x]2

= x5 − 5x2 + 4x

P4(∆4, x) = [x]5 + 10[x]4 + 25[x]3 + 15[x]2

= x5 − x.

P (∆5, x) = [x]6

= x6 − 15x5 + 85x4 − 225x3 + 274x2 − 120x

P2(∆5, x) = [x]6 + 15[x]5 + 45[x]4 + 15[x]3

= x6 − 20x4 + 45x3 − 26x2

P3(∆5, x) = [x]6 + 15[x]5 + 65[x]4 + 75[x]3 + 10[x]2

= x6 − 15x3 + 24x2 − 10x

P4(∆5, x) = [x]6 + 15[x]5 + 65[x]4 + 90[x]3 + 25[x]2

= x6 − 6x2 + 5x

P5(∆5, x) = [x]6 + 15[x]5 + 65[x]4 + 90[x]3 + 31[x]2

= x6 − x.

56



Figure 3.3: The six s-chromatic polynomials of the 6-simplex ∆6. s = 1 (black), s = 2 (red), s = 4

(blue), s = 5 (green), s = 6 (purple).

P (∆6, x) = [x]7

= x7 − 21x6 + 175x5 − 735x4 + 1624x3 − 1764x2 + 720x

P2(∆6, x) = [x]7 + 21[x]6 + 105[x]5 + 105[x]4

= x7 − 35x5 + 105x4 − 56x3 − 105x2 + 90x

P3(∆6, x) = [x]7 + 21[x]6 + 140[x]5 + 315[x]4 + 175[x]3

= x7 − 35x4 + 84x3 − 70x2 + 20x

P4(∆6, x) = [x]7 + 21[x]6 + 140[x]5 + 350[x]4 + 280[x]3 + 35[x]2

= x7 − 21x3 + 35x2 − 15x

P5(∆6, x) = [x]7 + 21[x]6 + 140[x]5 + 350[x]4 + 301[x]3 + 56[x]2

= x7 − 7x2 + 6x

P6(∆6, x) = [x]7 + 21[x]6 + 140[x]5 + 350[x]4 + 301[x]3 + 63[x]2

= x7 − x.

P (∆7, x) = [x]8

= x8 − 28x7 + 322x6 − 1960x5 + 6769x4 − 13132x3 + 13068x2 − 5040x

P2(∆7, x) = [x]8 + 28[x]7 + 210[x]6 + 420[x]5 + 105[x]4

= x8 − 56x6 + 210x5 − 56x4 − 840x3 + 1371x2 − 630x

P3(∆7, x) = [x]8 + 28[x]7 + 266[x]6 + 980[x]5 + 1225[x]4 + 280[x]3

= x8 − 70x5 + 224x4 − 280x3 + 195x2 − 70x
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Figure 3.4: The seven s-chromatic polynomials of the 7-simplex ∆7. s = 1 (black), s = 2 (red), s = 4

(blue), s = 5 (green), s = 6 (purple), s = 7 (turquoise).

P4(∆7, x) = [x]8 + 28[x]7 + 266[x]6 + 1050[x]5 + 1645[x]4 + 770[x]3 + 35[x]2

= x8 − 56x4 + 140x3 − 120x2 + 35x

P5(∆7, x) = [x]8 + 28[x]7 + 266[x]6 + 1050[x]5 + 1701[x]4 + 938[x]3 + 91[x]2

= x8 − 28x3 + 48x2 − 21x

P6(∆7, x) = [x]8 + 28[x]7 + 266[x]6 + 1050[x]5 + 1701[x]4 + 966[x]3 + 119[x]2

= x8 − 8x2 + 7x

P7(∆7, x) = [x]8 + 28[x]7 + 266[x]6 + 1050[x]5 + 1701[x]4 + 966[x]3 + 127[x]2

= x8 − x.

P (∆8, x) = [x]9

= x9 − 36x8 + 546x7 − 4536x6 + 22449x5 − 67284x4 + 118124x3 − 109584x2

+ 40320x

P2(∆8, x) = [x]9 + 36[x]8 + 378[x]7 + 1260[x]6 + 945[x]5

= x9 − 84x7 + 378x6 + 84x5 − 3780x4 + 8819x3 − 7938x2 + 2520x

P3(∆8, x) = [x]9 + 36[x]8 + 462[x]7 + 2520[x]6 + 5565[x]5 + 3780[x]4 + 280[x]3

= x9 − 126x6 + 504x5 − 840x4 + 1035x3 − 1134x2 + 560x

P4(∆8, x) = [x]9 + 36[x]8 + 462[x]7 + 2646[x]6 + 6825[x]5 + 6930[x]4 + 1855[x]3

= x9 − 126x5 + 420x4 − 540x3 + 315x2 − 70x
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P5(∆8, x) = [x]9 + 36[x]8 + 462[x]7 + 2646[x]6 + 6951[x]5 + 7686[x]4 + 2737[x]3 + 126[x]2

= x9 − 84x4 + 216x3 − 189x2 + 56x

P6(∆8, x) = [x]9 + 36[x]8 + 462[x]7 + 2646[x]6 + 6951[x]5 + 7770[x]4 + 2989[x]3 + 210[x]2

= x9 − 36x3 + 63x2 − 28x

P7(∆8, x) = [x]9 + 36[x]8 + 462[x]7 + 2646[x]6 + 6951[x]5 + 7770[x]4 + 3025[x]3 + 246[x]2

= x9 − 9x2 + 8x

P8(∆8, x) = [x]9 + 36[x]8 + 462[x]7 + 2646[x]6 + 6951[x]5 + 7770[x]4 + 3025[x]3 + 255[x]2

= x9 − x.

P (∆9, x) = [x]10

= x10 − 45x9 + 870x8 − 9450x7 + 63273x6 − 269325x5 + 723680x4

− 1172700x3 + 1026576x2 − 362880x

P2(∆9, x) = [x]10 + 45[x]9 + 630[x]8 + 3150[x]7 + 4725[x]6 + 945[x]5

= x10 − 120x8 + 630x7 + 588x6 − 12600x5 + 37295x4 − 44730x3 + 18936x2

P3(∆9, x) = [x]10 + 45[x]9 + 750[x]8 + 5670[x]7 + 19425[x]6 + 26145[x]5 + 9100[x]4

= x10 − 210x7 + 1008x6 − 2100x5 + 3975x4 − 8190x3 + 9716x2 − 4200x

P4(∆9, x) = [x]10 + 45[x]9 + 750[x]8 + 5880[x]7 + 22575[x]6 + 39795[x]5 + 25750[x]4

+ 3675[x]3

= x10 − 252x6 + 1050x5 − 2475x4 + 5625x3 − 7999x2 + 4050x

P5(∆9, x) = [x]10 + 45[x]9 + 750[x]8 + 5880[x]7 + 22827[x]6 + 42315[x]5 + 32050[x]4

+ 7455[x]3 + 126[x]2

= x10 − 210x5 + 45x4 + 3105x3 − 6865x2 + 3924x

P6(∆9, x) = [x]10 + 45[x]9 + 750[x]8 + 5880[x]7 + 22827[x]6 + 42525[x]5 + 33310[x]4

+ 8925[x]3 + 336[x]2

= x10 − 795x4 + 4365x3 − 7705x2 + 4134x

P7(∆9, x) = [x]10 + 45[x]9 + 750[x]8 + 5880[x]7 + 22827[x]6 + 42525[x]5 + 34105[x]4

+ 9285[x]3 + 456[x]2

= x10 − 45x3 + 80x2 − 36x

P8(∆9, x) = [x]10 + 45[x]9 + 750[x]8 + 5880[x]7 + 22827[x]6 + 42525[x]5 + 34105[x]4

+ 9330[x]3 + 501[x]2

= x10 − 10x2 + 9x

P9(∆9, x) = [x]10 + 45[x]9 + 750[x]8 + 5880[x]7 + 22827[x]6 + 42525[x]5 + 34105[x]4

+ 9330[x]3 + 511[x]2

= x10 − x.
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Populaire Samenvatting

Een graaf is een wiskundig object dat bestaat uit een verzameling punten en een verzamel-
ing lijnen, die sommige punten met elkaar verbinden enop die manier relaties tussen twee
punten aangeven. In de Grafentheorie worden de verschillende structuren die grafen kun-
nen hebben bestudeerd. Een manier om dit te doen is door de punten van een graaf in te
kleuren, waarbij elk tweetal punten die een lijn delen verschillende kleuren moeten hebben.
Het aantal kleuren die nodig zijn om een graaf in te kleuren en het aantal van kleuringen
met een bepaald aantal kleuren zegt iets over de structuur van een graaf. George David
Birkhoff heeft in 1912 het chromatisch polynoom ingevoerd. Het chromatisch polynoom
telt het aantal verschillende kleuringen van een gegeven graaf als functie van het aantal
kleuren. Dat wil zeggen, dat als men het chromatisch polynoom van een graaf weet men
het aantal verschillende kleuringen met een bepaald aantal kleuren gewoon af kan lezen.
Het chromatisch polynoom wordt tot vandaag bestudeerd en heeft vele interessante eigen-
schappen.
Simpliciale complexen zijn wiskundige objecten die vornamelijk bestudeerd worden in de
Topologie. Het zijn in principe hoger dimensionale grafen. Zoals grafen bestaan simpliciale
complexen uit punten en lijnen, maar daarnaast hebben ze ook vlakken en hypervlakken
(hoger dimensionale vlakken). Net als een lijn wordt opgespannen door twee punten, wordt
een vlak in een simpliciaal complex opgespannen door drie lijnen en één 3-dimensionaal
hypervlak door vier vlakken. Ook zijn simpliciale complexen iets ingewikkelder, zo hebben
ze toch veel gemeen met grafen en het is daarom interessant sommige ideeën uit de Grafen-
theorie te gebruiken om een soortgelijke theorie voor simpliciale complexen te ontwikkelen.
Men kan bij voorbeeld een kleuring voor de punten verzameling van simpliciale complexen
defineren, die de hoger dimensionale structuren van een complex mee betrekken.
In dit scriptie wordt een overzicht gegeven over belangrijke resultaten uit de Grafentheorie
met betrekking tot kleuringen en het chromatisch polynoom voor grafen. Daarnaast wordt
een chromatisch polynoom voor simpliciale complexen gedefinieerd, het s-chromatisch poly-
noom. Bovendien worden enkele eigenschappen van het chromatisch polynoom voor grafen
gegeneraliseerd tot het s-chromatisch polynoom voor simpliciale complexen.
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