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Abstract

Let G be a finite group and let k be a field of prime character-
istic p. The purpose of this thesis is to examine the ring structure
of the cohomology ring H∗(G, k) by relating it via restriction maps
to the cohomology rings of the elementary abelian p-subgroups of G.
We prove that H∗(G, k) is a finitely generated graded commutative
k-algebra, so one can apply concepts from commutative algebra, such
as Krull dimension and nilpotency, to H∗(G, k) and ask for a group
theoretic interpretation. We prove that the Krull dimension of the co-
homology ring H∗(G, k) is the maximal rank of the elementary abelian
p-subgroups of G. We then turn our attention to Quillen’s Strati-
fication Theorems, which state that the maximal ideal spectrum of
H∗(G, k) decomposes into disjoint pieces corresponding to the elemen-
tary abelian p-subgoups of G. We conclude the thesis by reinterpreting
the result achieved about maximal ideals spectra in order to show that
the cohomology ring H∗(G,Fp) can be described up to nilpotency phe-
nomena as a ring cooked up from the elementary abelian p-subgroups
of G and inner monomorphisms between them.

Resumé

Lad G være en endelig gruppe, og lad k være et legeme af prim-
talskarakteristik p. Form̊alet med dette speciale er at undersøge rings-
trukturen af gruppekohomologiringen H∗(G, k) ved at relatere den via
restriktionsafbildninger til de elementære abelske p-undergruppers ko-
homologiringe. Vi viser at H∗(G, k) er en endelig frembragt gradueret
kommutativ ring, s̊a man kan anvende begreber fra kommutativ alge-
bra s̊asom Krull-dimension og nilpotens p̊a H∗(G, k) og spørge efter en
gruppeteoretisk fortolkning. Vi viser, at Krull-dimensionen af gruppe-
kohomologiringen H∗(G, k) er den maksimale rang blandt de elemen-
tære abelske p-undergrupper. Dernæst vender vi vores opmærksomhed
mod Quillen’s Stratification Sætninger, som garanterer, at maksimali-
dealspektret af H∗(G, k) tillader en dekomposition i disjunkte dele sva-
rende til de elementære abelske p-undergrupper i G. Vi afslutter dette
speciale med at genfortolke resultaterne om maksimalidealspektret for
at vise, at kohomologiringen H∗(G,Fp) kan beskrives op til nilpotens
som en ring konstrueret af de elementære abelske p-undergrupper i G
og indre monomorfier mellem dem.
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Introduction

In 1971 Quillen published two important articles [16] which describes the
mod p group cohomology ring of a compact Lie group for a fixed prime
p. Quillen’s approach was to investigate the cohomology ring H∗(G,Fp)
in terms of the elementary abelian p-subgroups of G, that is subgroups
isomorphic to (Zp)d for some d ≥ 0. This thesis evolves around the results
of Quillen in the case of a finite group.

Given a finite group G and a fixed prime p, there are two equivalent
approaches to defining the mod p cohomology ring of G. The algebraic
approach, which applies to discrete groups, defines the cohomology ring to
be Ext∗FpG(Fp,Fp). The topological approach, which applies to topological
groups in general, uses the notion of a classifying space. If G is finite, this
is an Eilenberg-Maclane space K(G, 1), and the group cohomology ring of
G is defined as H∗(K(G, 1),Fp).

A fundamental result in group cohomology is the Evens-Venkov theo-
rem which states that H∗(G,Fp) is a finitely generated graded commutative
Fp-algebra. In 1959 Venkov [19] proved the theorem for all compact Lie
groups using topological methods. A few years later, in 1961, Evens [5] gave
a purely algebraic proof for all finite groups. The result suggests that one
may use methods from commutative algebra in order to study H∗(G,Fp).
Of course one would like to understand the result in terms of the group
theory of G. With his 1971 articles [16] Quillen took a substantial step in
this direction. He proved that the Krull dimension of the cohomology ring
H∗(G,Fp) equals the maximal rank of the elementary abelian p-subgroups
of G which was conjectured by Atiyah and Swan. Moreover, Quillen de-
scribed H∗(G,Fp) up to nilpotency phenomena via the elementary abelian
p-subgroups. More precisely, Quillen considered the category CG whose ob-
jects are the elementary abelian p-subgroups of G and whose morphisms
are inclusions of one subgroup into another followed by conjugations by an
element in G. Then E 7→ H∗(E,Fp) defines a functor from CopG to graded
commutative Fp-algebras, and the restriction maps induce a homomorphism

qG : H∗(G,Fp)→ lim
E
H∗(E,Fp).

Quillen proved that the map is an F -isomorphism i.e., the kernel is nilpotent
and there is some a ≥ 0 such that for all x ∈ limE H

∗(E,Fp), xp
a ∈ Im(qG).

The inverse limit is reasonably accessible since the cohomology rings of ele-
mentary abelian p-groups are well-known and, as we shall see, the homomor-
phism contains a great deal of information about the structure of H∗(G,Fp).

Quillen’s articles take on a topological approach and use G-spaces and
equivariant cohomology. His results hold for compact Lie groups in general,
and if one is only interested in the finite case the results are obtained as
corollaries of the general case. In this thesis we shall stay in an algebraic
setting and thus limiting our results to finite groups.
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Structure of the Thesis

The first section of this thesis contains an introduction to group cohomology
via classifying spaces. We follow Venkov’s topological proof of the finite
generation of the cohomology ring H∗(G, k), which exploits the fact that
any finite group embeds in the unitary group U(n).

Throughout the rest of the thesis our approach to group cohomology will
be strictly algebraic. Section two is dedicated to setting up the basic machin-
ery of algebraic group cohomology, and we will determine the cohomology
rings of elementary abelian p-groups.

Let H be a subgroup of G of finite index n. The purpose of the third
section is to introduce a transfer-like map, called Evens’ norm map,

NH,G : Hr(H,R)→ Hrn(G,R),

as constructed by Evens [6]. We will use the norm map to prove a theorem
of Serre which states that if G is a finite p-group which is not elementary
abelian then there exist non-zero elements x1, . . . , xr ∈ H1(G,Fp) for some
r ≥ 1, such that the product of the Bocksteins is zero.

The fourth section is dedicated to determine the Krull dimension of
H∗(G,Fp). We use algebraic methods, as done by Quillen and Venkov [15],
to prove that if u ∈ H∗(G,Fp) restricts to zero on every elementary abelian
p-subgroup, u is in fact nilpotent. It now follows easily that the Krull dimen-
sion of H∗(G,Fp) is the maximal rank of the elementary abelian p-subgroups
of G. This approach differs completely from Quillen’s original approach that
uses G-spaces and equivariant cohomology.

In section five, we turn our attention to the maximal ideal spectrum of G
and prove the Quillen Stratification Theorems. The first theorem provides
a decomposition of the maximal ideal spectrum of G into disjoint pieces
corresponding to the conjugacy classes of elementary abelian p-subgroups of
G while the second theorem gives a more detailed description of the pieces
going into the decomposition.

We conclude this thesis (section six) by proving that the map

qG : H(G,Fp)→ lim
E
H(E,Fp).

is an F -isomorphism. It turns out that this statement is equivalent to the
results proven in the previous section. This equivalence was established by
Quillen [16].

Appendix A provides the necessary background from commutative algebra,
and appendix B contains some very basic facts about finite p-groups that
we shall use in section three.
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In order to fully comprehend this text, the reader should be familiar with
basic homological algebra such as the derived functor Ext, the universal
coefficient theorem, and the Künneth formula. A reference for this is [9].
Furthermore the first section requires a basic background in algebraic topol-
ogy. We will assume that the reader is familiar with the basic results in
homotopy theory, Serre fibrations, and the Serre spectral sequence. Two
references here are [8] and [13].
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1 Topological Group Cohomology

This section contains an introduction to group cohomology via classifying
spaces. Let R be a Noetherian ring. The main result of this section is
Theorem 1.13 which states that the cohomology ring of a finite group G
with coefficients in R is a finitely generated graded commutative R-algebra.
Throughout this section a map between topological spaces will always mean
a continuous map, and all topologies are assumed to be Hausdorff.

1.1 Classifying Spaces

If G is a topological group, a principal G-bundle p : E → B is roughly speak-
ing a locally trivial free G-space E with orbit space B. Under mild hypothe-
ses, there exists a classifying space BG, such that isomorphism classes of
principal G-bundles over B are in natural bijective correspondence with ho-
motopy classes of maps [B,BG]. This section will contain no actual proofs,
the reader may consult [14] for details. Instead we will emphasize a work-
ing understanding of the concepts, allowing us to apply the theory right
away. To that end, we have made some simplifying adjustments regarding
the functorial properties of the classifying space.

Definition 1.1. A topological group G is a set G equipped with a topology
and a group structure such that the functions G×G→ G given by (s, t) 7→ st
and G→ G given by s 7→ s−1 are continuous. A map of topological groups
φ : G→ G′ is a continuous group homomorphism.

For simplicity, we assume that all topological groups are CW-complexes.
Any group G can be made into a topological group by equipping G with
the discrete topology. The general linear group GLn(C), consisting of all
invertible n× n matrices with complex entries, is a topological group when
equipped with the topology obtained by identifying GLn(C) with a subspace
of the Euclidean space Cn

2
in the obvious way. Likewise, the unitary group

U(n), consisting of all n × n matrices with complex entries whose columns
form orthonormal bases of Cn with the usual inner product, is a topological
group. Note that any finite topological group must be discrete in order for
the topology to be Hausdorff.

Definition 1.2. A right G-space is a topological space X equipped with a
continuous right G-action X×G→ X. A G-map is a map of right G-spaces
f : X → Y satisfying f(xg) = f(x)g for all g ∈ G and x ∈ X. We let X/G
denote the orbit space, which is the set of G-orbits in X equipped with the
quotient topology with respect to the canonical surjection π : X → X/G.

Definition 1.3. Let B be a topological space and let E be a right G-space.
Let p : E → B be a G-map, where G acts trivially on B. We call E

p−→ B
a principal G-bundle over B if there exist an open cover {Uα} of B and
G-homeomorphisms hα such that the following diagram commutes
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p−1(Uα) Uα ×G

Uα.

hα

p π

Here, Uα × G is equipped with the G-action (u, g)h = (u, gh) and π is the
projection map onto the first coordinate. We call E the total space and B
the base space of the bundle. Note that G must act freely on E. Each fibre
p−1(b) is carried homeomorphically onto {b} × G by a G-map, hence the
fibre is isomorphic as a G-space to G. Furthermore p induces a bijection
E/G→ B, which is in fact a homeomorphism. Locally the map

Uα
id×1G−−−−→ Uα ×G

h−1
α−−→ p−1(Uα)

is an inverse. Let p : E → B and p′ : E′ → B be principal G-bundles over
B. A map of principal G-bundles over B is a G-map µ : E → E′ such that
p′µ = p.

Example 1.4. Given a topological space B and a topological group G, we
may form the product bundle B×G→ B, which is referred to as the trivial
bundle.

For a more interesting example, let G be a discrete group. Then a principal
G-bundle with path-connected total space is the same thing as a regular
covering map with G as the group of deck transformations. We assume
that covering maps have path-connected total space by definition. Indeed,
if p : E → B is a principal G-bundle, then it is a local product with discrete
fibre hence a covering map. Any element g ∈ G gives rise to a deck transfor-
mation E → E by e 7→ eg, hence G ⊂ G(E), where G(E) denotes the group
of deck transformations. Let f ∈ G(E) and e ∈ E. Then e and f(e) is in
the same fibre, hence there is a g ∈ G such that eg = f(e). Since a deck
transformation is determined by its action on a single point, f = g hence
G = G(E). Since G acts transitively on each fibre the covering is regular.
Conversely, if π : E → B is a regular covering with G as the group of deck
transformations, it is easy to see that it is a principal G-bundle.

The above characterization leads to another class of examples. If G is a
finite group, then any path-connected Hausdorff space X on which G acts
freely gives rise to a principal G-bundle. Letting x ∈ X, we may find disjoint
open neighbourhoods Ug around xg and define an open neighbourhood of x
by Ux =

⋂
g∈G Ugg

−1. Clearly Uxg ∩ Uxh = ∅ for any g 6= h, so the action
is properly discontinuous and thus X → X/G is a normal covering with G
acting as the deck transformations.
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Given a principal G-bundle E
p−→ B and a map f : B′ → B we can form the

pull-back bundle f∗(p) fitting in the ordinary pull-back diagram

Ef E

B′ B.

f∗(p) p

f

One may verify that f∗(p) inherits a canonical principal G-bundle structure
from p such that Ef → E becomes a G-map.

Theorem 1.5. Let E
p−→ B be a principal G-bundle, and let B′ be a CW -

complex. If f, g : B′ → B are homotopic maps then f∗(p) and g∗(p) are
isomorphic as principal G-bundles over B′.

The proof is omitted, but can be found in [14, Prop. 7.1].

Definition 1.6. A universal G-bundle is a principal G-bundle pG : EG →
BG such that for all CW -complexes B, the map

[B;BG]→ PrincG(B) given by f 7→ f∗(pG)

from homotopy classes of maps B → BG to isomorphism classes of principal
G-bundles over B, is a bijection.

The following theorem states that a CW base space BG of a universal G-
bundle is in fact unique up to homotopy equivalence. We will refer to such
a CW-complex as the classifying space of G.

Theorem 1.7. Let p : EG → BG and p′ : EG′ → BG′ be universal G-
bundles with BG and BG′ CW-complexes. Then BG and BG′ are canoni-
cally homotopy equivalent.

Proof. Let f : BG → BG′ represent the homotopy class corresponding to
the isomorphism class containing p, hence f∗(p′) = p. Likewise, let f ′ :
BG′ → BG correspond to p′, hence (f ′)∗(p) = p′. We have the following
commutative diagram

EG EG′ EG

BG BG′ BG,

p p′ p

f f ′

3



where the two squares are pull-back squares. But then the outer rectangle
is also a pull-back square, hence (f ′ ◦f)∗(p) = p. Since id∗(p) = p, it follows
from the bijection [BG;BG] ∼= PrincG(BG) that f ′ ◦ f ∼= idBG. Likewise,
we see that f ◦ f ′ ∼= idBG′ , hence f : BG → BG′ is the desired homotopy
equivalence.

A principal G-bundle is in particular a Serre fibration. Since the pull-back of
a Serre fibration along a homotopy equivalence is a weak homotopy equiva-
lence, it follows from the proof above that EG and EG′ are weakly homotopy
equivalent. Before we can make use of the theory of classifying spaces we
need the following theorem, which is due to Milnor. Given a topological
group G, Milnor provides an explicit functorial construction of a classifying
space.

Theorem 1.8. Let G be a topological group. Then there exists a classifying
space BG. The total space EG in Milnor’s construction is a contractible
CW-complex.

Sketch of Milnor’s construction. Recall that ifX and Y are topological spaces,
then the join X ∗ Y is the quotient of the product space X × I × Y by the
equivalence relation

(x, 0, y) ∼ (x′, 0, y) for all x, x′ ∈ X, y ∈ Y,
(x, 1, y) ∼ (x, 1, y′) for all x ∈ X, y, y′ ∈ Y.

Intuitively X ∗ Y is formed by taking the disjoint union of the two spaces
and attaching a line segment joining every point in X to every point in Y .

We define EG to be the union of all finite joins with the colimit topology
topology, i.e.

EG :=
⋃
n∈N

G ∗ · · · ∗G︸ ︷︷ ︸
n

.

Since G is a CW-complex, so is EG. The underlying set of EG consists
of formal elements (t1g1, t2g2, . . . ) with each ti ∈ [0, 1], ti = 0 for all but
finitely many i and

∑
ti = 1, modulo the equivalence relation given by

(t1g1, t2g2, . . . ) ∼ (t1g
′
1, t2g

′
2, . . . )

provided gi = g′i whenever ti 6= 0. A free right G-action on EG is given by

(t1g1, t2g2, . . . )g = (t1g1g, t2g2g, . . . ),

and we take BG to be the orbit space BG = EG/G. One may consult [3,
Thm. 2.4.6] for a proof that EG → BG is universal. It is easily seen that
EG is contractible. Since Sn is compact any map f : Sn → EG has image
in some finite subjoin G ∗ · · · ∗G (r times). The join of (r + 1) copies of G
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contains the join G ∗ · · · ∗G ∗ (1G) which is a cone, thus contractible. Hence
f factors through a contractible subspace and is therefore homotopic to the
constant map. Thus EG is weakly contractible and therefore contractible
by the Whitehead theorem.

If G is a topological group we let EGM and BGM denote the total space
and the base space of Milnor’s construction. Let φ : G → G′ be a map of
topological groups. We obtain an induced continuous map EGM → EG′M
by mapping

(t1g1, t2g2, . . . ) 7→ (t1φ(g1), t2φ(g2), . . . ).

Since (t1g1, t2g2, . . . )g 7→ (t1φ(g1), t2φ(g2), . . . )φ(g) we get an induced map
of classifying spaces φ∗ : BGM → BG′M . Hence G 7→ BGM defines a functor
from the category of topological groups to the category of topological spaces.

If E → B is a universal G bundle with B a CW-complex, then E is weakly
equivalent to the space EG in Milnor’s construction, hence it is weakly con-
tractible. The converse statement is also true, see [14, Thm. 7.4], leading
to the following useful characterization.

Theorem 1.9. Suppose p : E → B is a principal G-bundle with B a CW-
complex. Then E → B is a universal G-bundle if and only if E is weakly
contractible.

If G be a discrete group, then the classifying space of G is an Eilenberg-
MacLane space K(G, 1). Indeed, let p : EG → K(G, 1) be the universal
cover of K(G, 1). This is a regular covering space with G as the group
of deck transformations, hence a principal G-bundle. Since EG is simply
connected and p induces an isomorphism on the n’th homotopy group when
n ≥ 2, EG is indeed weakly contractible.

The classifying space of U(n) The Steifel manifold V n(Ck) is the set
of ordered n-tuples of orthonormal vectors in Ck, topologized as a subset of
(Ck)n. The elements of V n(Ck) are called n-frames in Ck. The Grassmann
manifold Gn(Ck) is the set of n-dimensional subspaces of Ck and there is a
surjection

p : V n(Ck)→ Gn(Ck)

sending an n-frame to the subspace it spans. The set Gn(Ck) is topolo-
gized as a quotient space of V n(Ck). The fibres of the map are the spaces
of n-frames in a fixed n-plane in Ck, and so they are homeomorphic to
V n(Cn). Since an n-frame in Cn is the same as a unitary n × n matrix,
viewing the columns of the matrix as an n-frame, the fibres can also be
identified with the unitary group U(n). We note that there is no problem in
allowing k = ∞ in these definitions, and in fact V n(C∞) = ∪kV n(Ck) and
Gn(C∞) = ∪kGn(Ck) with the colimit topologies.
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The projection p : V n(Ck) → Gn(Ck) is a fibre bundle. Indeed, fix an
n-plane P ∈ Gn(Ck) and pick an orthonormal basis for P . We obtain con-
tinuously varying orthonormal bases for all n-planes P ′ in a neighbourhood
U of P by projecting the basis for P orthogonally onto P ′ and then applying
the Gram-Schmidt process. Now we may identify an n-plane P ′ in U with
Cn according to the orthonormal basis, hence n-frames in these n-planes are
identified with n-planes in Cn such that p−1(U) is identified with U×Vn(Cn).

There is a right action of the unitary group U(n) on V n(Ck). Given an
n × n unitary matrix W and an n-frame in Ck, we obtain a new n-frame
by linear substitutions according to the matrix W . The orbits of U(n) are
exactly the fibres of p, thus V n(C∞)→ Gn(C∞) is a principal U(n)-bundle.
Since Gn(C∞) admits a CW-structure, it follows from Theorem 1.9 that the
bundle is universal if V n(C∞) is weakly contractible. To this end define a
homotopy H : C∞ × I → C∞ by

Ht(x1, x2, . . . ) = (1− t)(x1, x2, . . . ) + t(0, x1, x2, . . . ).

For a fixed t, this is a linear injective map C∞ → C∞. Thus if we apply
Ht to an n-tuple of orthonormal vectors in C∞ we obtain an n-tuple of
linear independent vectors in C∞. Applying the Gram-Schmidt process to
this tuple makes it orthonormal. Thus we have a deformation retract of
V n(C∞) onto the subspace of n-frames with first coordinate zero. If we
repeat the procedure n-times we deform into the subspace of n-frames with
first n-coordinates zero. For such an n-frame, we define a homotopy by

Ft(v1, . . . , vn) = (1− t)(v1, . . . , vn) + t(e1, . . . , en),

where ei is the i’th standard basis vector in C∞. The homotopy preserves
linear independence since vi has the first n-coordinates zero, so after apply-
ing Gram-Schmidt we have a deformation through n-frames onto a fixed n-
frame, hence V n(C∞) is contractible. We conclude that BU(n) ∼= Gn(C∞).

The cohomology of the infinite complex Grassmanian with coefficients in
a commutative Noetherian ring is well-known and we state the result in the
following theorem. See [11, section 20.3].

Theorem 1.10. Let R be a commutative Noetherian ring. Then

H∗(BU(n), R) ∼= R[c1, . . . , cn]

with deg(ci) = 2i.
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1.2 Group Cohomology

Definition 1.11. Let G be a topological group, let BG be a classifying
space of G and let R be a commutative ring. The cohomology ring of G with
coefficients in R is the cohomology ring H∗(BG,R) with the cup product
structure, thus H∗(BG,R) is a graded commutative ring.

We note that H∗(BG,R) is only defined up to canonical isomorphism. If
BG and B̃G are both classifying spaces of G, then they are canonically
homotopy equivalent via a map f : BG −→ B̃G determined up to homotopy.
Since homotopic maps induces the same map in cohomology, we obtain a
canonical isomorphism f∗ : H∗(B̃G,R) −→ H∗(BG,R).

Functorial Properties Let φ : G → G′ be a map of topological groups
and let BG and BG′ be classifying spaces of G and G′ respectively. Let
φM : BGM → BG′M denote the induced map on Milnor’s classifying spaces.
Composing with the canonical homotopy equivalences we obtain a map

f : BG
f−→ BGM

φM−−→ BG′M
f ′−→ BG′,

which induces a unique ring homomorphism f∗ : H(BG′, R)→ H∗(BG,R).
The induced map f∗ is easily seen to be compatible with the canonical iso-
morphisms by drawing up the appropriate pull-back diagrams. Let H ≤ G
be a subgroup. The inclusion H ↪→ G induces a map in cohomology called
the restriction map, resG,H : H∗(BG,R)→ H∗(BH,R).

Given a finite group G fix an inclusion G ↪→ U(n). If we choose the classi-
fying spaces cleverly it will be easy to verify that we have a choice of map
BG→ BU(n) inducing the restriction map in cohomology which is a Serre
fibration whose fibre is the orbit space U(n)/G. This fibration will be the
key to the proof of the finite generation of the cohomology ring. We state
this in the following theorem.

Theorem 1.12. Let G be a finite group. There exist a choice of classifying
spaces BG and BU(n), and a map i : BG→ BU(n) inducing the restriction
map in cohomology, such that

U(N)/G→ BG
i−→ BU(n)

is a fibre sequence.

Proof. The inclusion i : G ↪→ U(n) induces a map on Milnor’s classifying
spaces, which is the bottom row in the commutative diagram
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(G ∗G ∗ · · · ) (U(n) ∗ U(n) ∗ · · · ) (U(n) ∗ U(n) ∗ · · · )

(G ∗G ∗ · · · )/G (U(n) ∗ U(n) ∗ · · · )/G (U(n) ∗ U(n) ∗ · · · )/U(n).
i i′

Since U(n) acts freely on the contractible CW-complex EU(n)M , so does
G. Since G is finite, we may choose the CW-structure on EU(n)M such
that G acts cellularly ensuring that the coset space EU(n)M/G is again
a CW-complex. Hence the middle column EU(n)M → EU(n)M/G is a
universal G-bundle by Theorem 1.9. The left square is easily seen to be a
pull back diagram. Indeed, let y ∈ (U(n)∗U(n)∗· · · ) such y ·g = x for some
x ∈ (G∗G∗· · · ). By definition of the G-action we must have y ∈ (G∗G∗· · · ).
Hence the map i is the canonical homotopy equivalence between the two G-
classifying spaces BGM and EU(n)M/G. Let j : EU(n)M/G → BGM
denote a homotpy inverse, giving us homotopic maps

EU(n)M/G
i′−→ BU(n)M and EU(n)M/G

j−→ BGM
i′◦i−−→ BU(n)M .

The right hand map induces the restriction map in cohomology, hence so
does the left hand map. It is clear that i′ : EU(n)M/G→ EU(n)M/U(n) is
a local product with fibre the coset space U(n)/G. Since local products are
Serre fibrations, the theorem follows.

1.3 Finite Generation of the Cohomology Ring

Let G be a finite group and let R be commutative Noetherian ring. In this
section we will prove that the cohomology ring H∗(BG,R) is a finitely gen-
erated R-algebra following a proof of Venkov as reformulated in [3, Section
3.10]. The restriction map

resU(n),G : H∗(BU(n), R)→ H∗(BG,R)

gives H∗(BG,R) the structure of a H∗(BU(n), R)-module. We prove that
H∗(BG,R) is finitely generated as a H∗(BU(n), R)-module and obtain the
desired statement as a corollary.

Theorem 1.13. Suppose G is a finite group and R is a commutative Noethe-
rian ring. Then H∗(BG,R) is a finitely generated H∗(BU(n), R)-module.

Proof. It follows from Theorem 1.12 that we have a fibre sequence of the
form

U(N)/G→ BG
i−→ BU(n),

where i induces the restriction map in cohomology. We have a map of
fibrations as illustrated in the commutative diagram
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∗ BU(n) BU(n)

U(n)/G BG BU(n).

=

i

i =

Both rows give rise to Serre spectral sequences. Since the Serre spectral
sequence is natural with respect to maps of fibrations as in the diagram
above, we obtain maps between the spectral sequences as in the diagram
below:

H∗(BU(n), R)) H∗(BU(n), R)

H∗(BU(n), H∗(U(n)/G,R)) H∗(BG,R).

resU(n),G

The diagram turns the spectral sequence arising from the bottom fibration
into a spectral sequence of H∗(BU(n), R)-modules, and the H∗(BU(n), R)-
module structure on H∗(BG,R) is induced by the module structure on filtra-
tion quotients on the E∞ page. So in order to determine the desired module
structure, we start by investigating the module structure on the E2 page and
then, since R is Noetherian, we will be able to work our way to the E∞ page.

Recall that
H∗(BU(n), R) = R[c1, . . . , cn]

with deg(ci) = 2i. Since R is Noetherian it follows from Hilbert’s Basis
Theorem that H∗(BU(n), R) is Noetherian as well. The E2 page of the
lower spectral sequence is of the form H∗(BU(n), H∗(U(n)/G,R)). There
are no local coefficients involved since BU(n) is simply connected. Moreover,
we have isomorphisms

H∗(BU(n);H∗(U(n)/G;R)) ∼= H∗(BU(n);R)⊗R H∗(U(n)/G,R)
∼= H∗(U(n)/G,R)[c1, . . . , cn],

since the cohomology of BU(n) is a finitely generated free R-module in each
dimension. The H∗(BU(n), R)-module structure on the E2-page is induced
by the identity map BU(n)→ BU(n) and the map U(n)/G→ ∗, hence we
view H∗(U(n)/G,R)[c1, . . . , cn] as a module over the subring R[c1, . . . , cn].
It is well known that U(n) has the structure of a finite CW-complex, i.e., a
CW-complex with finitely many cells. Since G is finite, we can choose the
finite CW-structure such that G acts cellularly, ensuring that the orbit space
U(n)/G has the structure of a finite CW-complex. Hence H∗(U(n)/G,R) is
finitely generated as an R-module. It follows that the E2 page of the lower

9



spectral sequence is a finitely generated Noetherian H∗(BU(n), R)-module.

The E∞ page is a sub-quotient of the E2-page. Since H∗(BU(n), R) is
Noetherian it follows that E∞ is a finitely generated H∗(BU(n), R)-module.
Hence H∗(BG,R) has a finite filtration of finitely generated H∗(BU(n), R)-
modules and is therefore finitely generated over H∗(BU(n), R).

Corollary 1.14. H∗(BG,R) is a finitely generated graded commutative R-
algebra.

Proof. This is clear since H∗(BG,R) is finitely generated as a module over
H∗(BU(n), R) and H∗(BU(n), R) ∼= R[c1, . . . , cn].

Definition 1.15. A ring homomorphism R→ S is called finite if S is finitely
generated as a module over the image of R.

Theorem 1.13 yields the following important corollary that will play an im-
portant role throughout the rest of this thesis.

Corollary 1.16. Let H be a subgroup of G and let R be a commutative
Noetherian ring. Then the restriction map

resG,H : H∗(BG,R)→ H∗(BH,R)

is finite.

Proof. We have an embedding of H into U(n) via H ↪→ G ↪→ U(n). Hence
the restriction resU(n),G : H∗(BU(n), R) → H∗(BG,R) factors as the com-
position

H∗(BU(n), R)
resU(n),G−−−−−−→ H∗(BG,R)

resG,H−−−−→ H∗(BH,R).

Since H∗(BH,R) is finitely generated as a module over H∗(BU(n), R) it is
in particular finitely generated as a module over H∗(BG,R).
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2 Algebraic Group Cohomology

Throughout the rest of this thesis our approach to group cohomology will
be strictly algebraic, and G will denote a discrete group which we write
multiplicatively. The element 1 ∈ G will denote the identity element. Let p
be a fixed prime. An elementary abelian p-group is a group isomorphic to
(Zp)d for some d ≥ 0. The purpose of this section is to introduce algebraic
group cohomology and present the basic tools of this theory. We will present
examples along the way enabling us to determine the group cohomology
rings of elementary abelian p-groups. We will end this section with a brief
indication on how to connect the two different notions of group cohomology.

2.1 Basic Definitions

Let G be a group and let R be a commutative ring. We will always assume
that R is a PID. The most important examples are when R = Z or when
R a field. Let RG denote the group ring of G over R. All RG-modules are
assumed to be left RG-modules. Note that an RG-module is nothing more
than an R-module on which G acts R-linearly. We will call a RG-module
trivial if G acts as the identity. When the ring R is implicitly understood
we will refer to an RG-module as a G-module. Likewise we will refer to a
morphism of RG-module as a G-module map.

Let G1 and G2 be groups, let M a be a G1-module and let N be a G2-module.
We turn the R-modules HomR(M,N) and M ⊗RN into (G1×G2)-modules
by defining a R-linear action as follows

((g1, g2)f)(m) = g2f(g−11 m),

(g1, g2)(m⊗ n) = g1m⊗ g2n,

for m ∈ M , n ∈ N , f ∈ HomR(M,N), and (g1, g2) ∈ G1 × G2. Let
d : G → G × G denote the diagonal map g 7→ g × g. Given G-modules M
and N , we may regard HomR(M,N) and M ⊗R N as G-modules via d.

Let X be a chain complex of abelian groups

X : · · ·Xn
∂−→ Xn−1

∂−→ · · · ∂−→ X1
∂−→ X0 → 0.

We refer to X as a G-chain complex (or some times just G-complex) if the
Xi’s are G-modules and the differential ∂ is a G-module map. We will refer
to a morphism of G-chain complexes as a G-chain map. If X is a G-chain
complex, M is a G-module and we have an augmentation map ε0 : X0 →M
we simple write X → M , and call it a G-resolution of M . We say that
X → M is a free/projective G-resolution if all the Xi’s are free/projective
G-modules. Let A be a ring which is also a G-module. If the multiplication
A⊗R A→ A is a G-module map we call A a G-ring.

11



Definition 2.1. Let G be a group and let M be a G-module. We define
the n’th cohomology group of G with coefficient in M by

Hn(G,M) = ExtnRG(R,M),

where R is thought of as a trivial G-module.

The definition may seem to depend on the base ring R, but the ring homo-
morphism Z→ R given by 1 7→ 1 induces an isomorphism

ExtnRG(R,M) ∼= ExtnZG(Z,M)

where we view M as a ZG-module via Z→ R. See [7, Section 1.1] for details.

Example 2.2. Let G = 〈x〉 be a cyclic group of order t with generator x,
and let N denote the element 1 + x+ · · ·+ xt−1 ∈ RG. Define ε : RG→ R
by ε(x) = 1. Then

F : · · · ·N−→ RG
·(x−1)−−−−→ RG

·N−→ RG
·(x−1)−−−−→ RG

ε−→ R→ 0

is a free G-resolution of R. For a G-module M , HomRG(RG,M) ∼= M ,
hence the complex HomRG(F,M) is isomorphic to the complex

0→M
·(x−1)−−−−→M

·N−→M
·(x−1)−−−−→M

·N−→ · · · .

Now we may calculate the cohomology of G with coefficients in M to be

Hn(G,M) =


MG if n = 0,
ker(·N)/Im(·(x− 1)) if n > 0, n odd,
ker(·(x− 1))/Im(·N) if n > 0, n even,

where MG = {m ∈M | gm = m for all g ∈ G}. If M = Z we obtain

Hn(G,Z) =


Z if n = 0,
0 if n > 0, n odd,
Zt if n > 0, n even.

If P is a cyclic group of prime order p and M = k is a field of characteristic
p, then both maps ·(x − 1) and ·N are zero. Hence Hn(P, k) = k (as an
additive group) for all n ≥ 0.

Functorial Properties We may view H∗(−,−) as a functor from the
following category: An object in C is a pair (G,M) where G is a group
and M is a G-module. A morphism in C, (G,M) → (G′,M ′), is a pair of
compatible maps (φ : G→ G′, f : M ′ →M), i.e., φ is a map of groups and f
is a G-module map when we view M ′ as a G-module via φ. Given projective
resolutions F and F ′ of R over G and G′ respectively, we may regard F ′
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as a G-complex via φ. In this case F ′ is acyclic though not necessarily
projective. It is a fundamental result in introductory homological algebra
that there exists an augmentation preserving G-chain map Φ : F → F ′, and
that such is map is unique up to homotopy. We thus obtain a chain map

Hom(Φ, f) : HomRG′(F
′,M ′)→ HomRG(F,M)

which is also unique up to homotopy. Since homotopic chain maps induce
the same maps in cohomology, we get a well-defined morphism (α, f)∗ :
H∗(G′,M ′)→ H∗(G,M) making H∗(−,−) into a contravariant functor on
C. If M ′ = M and f = id we simply write α∗ for the induced map. Note
that for a trivial G-module A, we may regard Hn(−, A) as a contravariant
functor on the category of groups.

Low Degree Cohomology We refer a few result from [7, Section 2.3] to
give some intuition about low degree group cohomology. If M is a G-module,
then H0(G,M) = MG and if M is a trivial G-module then H1(G,M) =
Hom(G,M). It is easily verified that if φ : G→ G′ is a group homomorphism
then the induced map in cohomological dimension 1 can be identified with
pre-composition by φ.

Remark 2.3. We recall a useful result from homological algebra known as
the Künneth formula. Let A and B be free R-chain complexes. The tensor
product A⊗R B is an R-chain complex with differential

d(a⊗ b) = da⊗ b+ (−1)degaa⊗ db.

The Künneth formula tells us that there is an exact sequence

0→ H∗(A)⊗R H∗(B)→ H∗(A⊗R B)→ TorR1 (H∗(A), H∗(B))→ 0.

The left hand map is defined as follows. Let a and b represent homogeneous
elements in H∗(A) and H∗(B) respectively. Then the image is represented
by a⊗ b. We will refer to this map as the Künneth map.

The Ring Structure of H∗(G,R) The cohomology complex H∗(G,R)
may be endowed with a multiplicative structure, turning it into a graded
commutative ring. Here graded commutative means that the multiplication
satisfies the commutation rule

αβ = (−1)pqβα

for α ∈ Hp(G,R) and β ∈ Hq(G,R). We introduce the product, often
referred to as the cup-product, in a slightly more general setting. Given G-
modules M and N the cup-product will be a collection of homomorphsims

Hr(G,M)⊗R Hs(G,N)→ Hr+s(G,M ⊗R N).
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If we in addition are given a G-module L and a map of G-modules M⊗RN →
L, then we may compose the cup-product with the induced map and obtain
a collection of pairings

Hr(G,M)⊗R Hs(G,N)→ Hr+s(G,L).

In particular if M = N = L is a G-ring, then the cup-product gives
H∗(G,M) the structure of a graded ring. More generally, if A is a G-ring
and M is a G-module, which is also an A-module in a compatible way, i.e.,
the action A⊗RM → A is a map of G-modules, then H∗(G,M) is a module
over H∗(G,A). We will only sketch the construction of the cup-product.
Verification of the various properties of the cup-product may be found in
[7, Chapter 3].

Let G and H be groups and let M be a G-module and N an H-module.
Also let X → R be a projective G-resolution and let Y → R be an pro-
jective H-resolution. One may verify that X ⊗R Y → R ⊗R R ∼= R is a
projective resolution of R as a G×H-module. Define the cross product

HomRG(X,M)⊗R HomRH(Y,N)
×−→ HomR(G×H)(X ⊗R Y,M ⊗R N).

by
(f × g)(x⊗ y) = f(x)⊗ g(y).

This induces a map in cohomology when composed with the Künneth map
gives rise to a degree preserving homomorphism

× : H∗(G,M)⊗R H∗(H,N)→ H∗(G×H,M ⊗R N).

We will call this map the cross product. If α ∈ Hr(G,M) and β ∈ Hs(H,N)
we will denote the image of α⊗ β in Hr+s(G×H,M ⊗R N) by α× β. Let
d : G → G × G denote the diagonal map. The cup-product is defined as
the composition of d∗ with the cross product. Hence if α ∈ Hr(G,M) and
β ∈ Hs(G,N) then the cup-product αβ ∈ Hr+s(G,M ⊗R N) is given by
αβ := d∗(α × β). We state the following theorem describing the properties
of the cup-product.

Theorem 2.4. If A is a commutative G-ring, then H∗(G,A) is an asso-
ciative commutative graded ring with identity 1 ∈ H0(G,A) = AG, i.e.,
αβ = (−1)pqβα for α ∈ Hp(G,A) and β ∈ Hq(G,A). If M is an A-module,
which is also a G-module with consistent action, then H∗(G,M) is a graded
H∗(G,A)-module with 1 acting as the identity. All maps induced in coho-
mology are graded ring homomorphisms (or module homomorphism in the
module case).

Describing the cup product on the level of cochains boils down to describing
the map d∗ at cochain level. Let X → R be a projective G-resolution.
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Then X ⊗R X → R is a projective G ×G-resolution. Thus to describe the
map d∗ : H∗(G × G,M ⊗R N) → H∗(G,M ⊗R N), we need a chain map
D : X → X ⊗R X such that D(gx) = d(x)D(x). Such a map is unique up
to homotopy and will be called a diagonal map.

Example 2.5. Let G = 〈x〉 be a cyclic group of order t with generator x.
We have a projective G-resolution of R given by Xn = RGxn, ε(x0) = 1,
dn(xn) = (x− 1) · xn−1 for n odd and dn(xn) = N · xn−1 for n even, n > 0,
as in Example 2.2. The following map is a diagonal map:

D =
∑

Dr,s where Dr,s : Xr+s → Xr ⊗R Xs is given by

Dr,s(xr+s) =


xr ⊗ xs r even,
xr ⊗ xxs s even, r odd,∑

0≤i<j<t x
ixr ⊗ xjxs r, s odd.

The verification is rather long and tedious and will be omitted here. Let M
and N be G-modules, let m ∈ M represent a cohomology class in degree
r and let n ∈ N represent a cohomology class in degree s. Then the cup
product of these classes is represented by

m⊗ n if r or s is even,∑
0≤i<j<t

xim⊗ xjn if r and s are odd,

because n ∈ ker(·(x − 1)) if s is even. Let M be a trivial G-ring and let
m,n ∈ M represent cohomology classes of degree r and s respectively. It
follows that the cup product of these classes is represented by

mn, if r or s is even,

t(t− 1)

2
mn, if r and s are odd.

If we combine this information with Example 2.2 we obtain

H∗(P,Z) = Z[χ | pχ = 0, degχ = 2],

if P is cyclic of prime order p. If k is a field of characteristic p then

H∗(P, k) =

{
k[ν, ε | degν = 1,degε = 2, ν2 = 0] if p > 2,
k[ν | degν = 1] if p = 2,

Since H1(P, k) = Hom(P, k) we may choose ν as the homomorphism given
by ν(x) = 1. Given a G-module M , H∗(G,M) is a graded module over
H∗(G, k). If p > 2 then multiplication by ε is an isomorphism Hq(G,M)→
Hq+2(G,M) for q > 0 and an epimorphism for q = 0. Likewise, for p = 2
multiplication by ν is an isomorphism Hq(G,M) → Hq+1(G,M) for q > 0
and an epimorphism for q = 0.
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Restriction, Corestriction and Inflation Maps Let H ≤ G be a sub-
group and let M be a G-module. The inclusion H ↪→ G induces a map in
cohomology, called the restriction map,

resG,H : H∗(G,M)→ H∗(H,M).

If X → R is a free G-resolution, then X → R is also an free H-resolution
since RG is RH-free. On cochain level the restriction map is induced by the
inclusion

HomRG(X,M) ⊆ HomRH(X,M).

Assume that H is a subgroup of finite index n. In this case we may
construct a map going in the other direction called the corestriction. If
f ∈ HomRH(Xi,M) we define co(f) ∈ HomRG(Xi,M) by

co(f)(x) =
∑

gi∈G/H

gif(g−1i x), x ∈ Xi,

where G/H denotes a set of left coset representatives. Let (G/H)′ denote
another set of representatives, hence for g′i ∈ (G/H)′ we have g′i = gjh for a
unique gj ∈ G/H and h ∈ H. Then

gjα(g−1j x) = gjα(hg′−1i x) = gjhα(g′−1i x) = g′iα(g′−1i x),

so summing over all representatives we see that co(f) is independent of
the choice of coset representatives. To see that co(f) is a map of G-modules
consider a term of the form giα(g−1i gx). For gi ∈ G/H we have g−1i g = hg−1j
for a unique gj ∈ G/H and h ∈ H. Then

gif(g−1i gx) = gif(hg−1j x) = gihf(g−1j x) = ggjf(g−1j x),

thus summing over all cosets yields the linearity. Thus co : HomH(X,M)→
HomG(X,M) induces a map in cohomology

corH,G : H∗(H,M)→ H∗(G,M),

which is easily seen to be independent of resolution X. If we have subgroups
of finite index K ≤ H ≤ G then corK,H ◦ corH,G = corK,G, which is verified
by using the fact that if S is a set of left coset representatives of K in H and
T is a set of left coset representatives of H in G, then the set of products
TS is a set of left coset representatives of K in G. The next theorem follows
directly from the definitions on cochain level.

Theorem 2.6. Let H ≤ G be a subgroup of finite index. Then the compo-
sition

corH,G ◦ resG,H : H∗(G,M)→ H∗(G,M)

is multiplication by [G : H].
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Corollary 2.7. Let p be a prime dividing |G| and let H be a subgroup of
finite index such that p does not divide [G : H]. Then the restriction map

resG,H : H∗(G,Fp)→ H∗(H,Fp)

is injective.

Proof. Since the element [G : H] ∈ H0(G,Fp) = Fp is invertible, it follows
that the composition corH,G◦resG,H is injective, hence resG,H is injective.

In particular if |G| <∞ the restriction to any non-trivial Sylow-p-subgroup
is injective. Finally, we obtain another useful corollary.

Corollary 2.8. If G is a finite group and M is a G-module, then

|G|Hn(G,M) = {0}

for all n > 0.

Proof. By Theorem 2.6 multiplication by |G| = [G : {1}] factors through
Hn({1},M) = {0} .

Theorem 2.9. Let H ≤ G be a subgroup of finite index and let M be a
G-module. Then

corH,G(resG,H(α)β) = αcorH,G(β).

for α ∈ H∗(G,M) and β ∈ H∗(H,M).

Proof. Let X → R be a projective G-resolution, let g ∈ HomRH(H,M) rep-
resent β and let f ∈ HomRG(X,M) represent α, then f ∈ HomRH(X,M)
represents resG,H(α). We may view X ⊗R X → R as a projective G-
resolution via d : G→ G×G. We can use the identity X⊗RX → X⊗RX to
compute products, where the complex on the left is viewed as a G-complex
and the complex on the right is viewed as a G×G-complex (and similar for
H). With these identifications f × g ∈ HomRH(X ⊗R X,M ⊗R M) repre-
sents resG,H(α)β, hence co(f × g) ∈ HomRG(X ⊗R X,M ⊗RM) represents
corH,G(resG,H(α)β), while f×co(g) ∈ HomRG(X⊗RX,M⊗RM) represents
αcorH,G(β). By comparing the two maps on an element x ⊗ y ∈ X ⊗R X,
the statement follows.

Finally, we are left with only one more useful map to introduce. Let N be
a normal subgroup of G and let M be a G-module. If f : G→ G/N denote
the quotient map and if ι : MG →M is the inclusion, then the induced map
(f, ι)∗ = infG/N,G : H(G/N,MG)→ H(G,M) is called the inflation map.
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Conjugation Maps Fix g ∈ G, let H be a subgroup of G and let M be
a G-module. Define a morphism (f : gHg−1 → H,α : M →M) by

f(h) = g−1hg, h ∈ gHg−1; α(m) = gm, m ∈M.

It induces an isomorphism in cohomology g∗ : H∗(H,M)→ H∗(gHg−1,M).
On the level of cochains, g∗ is induced by the map

g′ : HomRH(X,M)→ HomR(gHg−1)(X,M)

given by (g′f)(x) = gf(g−1x),

where X → R denotes a projective G-resolution. It is easy to check that
(g1g2)

∗ = g∗1g
∗
2, so if H is a normal subgroup we obtain a R-linear action of

G on H∗(H,M). Clearly h∗ = id for h ∈ H, so if H is a normal subgroup
of G, this actually defines a G/H-action on H∗(H,M) giving H∗(H,M) the
structure of a G/H-module. If G = H we get the following theorem.

Theorem 2.10. G acts trivially on H∗(G,M).

Bockstein Homomorphisms Let 0 → M ′ → M → M ′′ → 0 be a short
exact sequence of G-modules. This gives rise to a long exact sequence in
cohomology with boundary maps

δ : Hn(G,M ′′)→ Hn+1(G,M ′),

which are referred to as Bockstein homomorphisms. The most important
ones are β : Hn(G,Zp)→ Hn+1(G,Zp) arising from the short exact sequence

0→ Zp
·p−→ Zp2 → Zp → 0

and β̂ : Hn(G,Zp)→ Hn+1(G,Z) arising from the short exact sequence

0→ Z
·p−→ Z→ Zp → 0.

Note that β is obtained by composing β̂ with the map induced by the projec-
tion Z→ Zp. Another useful Bockstein arises from the short exact sequence

0→ Z→ Q→ Q/Z→ 0.

If G is a finite group, then by Corollary 2.8 |G|Hn(G,Q) = {0} for n > 0.
Since Hn(G,Q) is a vector space over Q, Hn(G,Q) = {0} for all n > 0, the
connecting homomorphism

δ : Hn(G,Q/Z)→ Hn+1(G,Z)

is an isomorphism for n > 0. In particular

H2(G,Z) ∼= H1(G,Q/Z) ∼= Hom(G,Q/Z).
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Remark 2.11. The following useful observation is an application of the
universal coefficient theorem in homology. Let k be a field, let X be a k-
complex and let M be a k-module. The universal coefficient theorem then
provides an isomorphism

H∗(X)⊗kM ∼= H∗(X ⊗kM),

since the Tor part vanishes. Next, letG be a group, let Y → k be a projective
kG-resolution and let M be a trivial kG-module. One may easily verify that
we have an isomorphism of co-chain complexes

HomkG(Y, k)⊗kM ∼= HomkG(Y,M).

Setting X = HomkG(Y, k) we obtain an isomorphism H∗(G, k) ⊗ M ∼=
H∗(G,M) which is easy to describe. Let f : P → k be a cocycle representing
a class α ∈ H∗(G, k) and let m ∈M . Define F : P →M by F (p) = f(p)m.
Then F is a again a cocycle and we map α⊗m to the class represented by F .

If k is a field of characteristic p, it is an Fp-algebra and the universal coeffi-
cient theorem provides an isomorphism H∗(G,Fp)⊗Fp k

∼= H∗(G, k), which
is easily seen to be an isomorphism of k-algebras. Thus hence we have an
embedding H∗(G,Fp) ↪→ H∗(G, k) given by x 7→ x⊗ 1. We abuse notation
slightly and let β denote the composition

H1(E,Fp)
β−→ H2(E,Fp) ↪→ H2(E, k),

where β : H1(E,Fp) −→ H2(E,Fp) is the Bockstein. If φ : G→ G′ is a group
homomorphism, then it is straight forward to verify that the induced map
φ∗⊗ id on the left hand side corresponds to the induced map φ∗ on the right
hand side.

2.2 The Cohomology Ring of Elementary Abelian p-Groups

Let G and H be finite groups. Then H∗(G,R) ⊗ H∗(H,R) becomes an
R-algebra when equipped with the multiplication

(a⊗ b)(c⊗ d) = (−1)deg(b)deg(c)ac⊗ bd.

Recall that we have the external product

H∗(G,R)⊗R H∗(H,R) −→ H∗(G×H,R),

which is easily seen to be a map of R-algebras. Using the Künneth formula,
one may verify that the map is injective. If R = k is a field, then it is actu-
ally an isomorphism, see [7, p.17]. The restriction to finite groups appears
because we want to ensure the existence of a free resolution of R over G and
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H respectively in which each module is finitely generated. The observation
allows us to determine the cohomology ring of any finite abelian group with
field coefficients, since we have calculated the cohomology of cyclic groups.

Let P = 〈x〉 be a cyclic group of prime order p with generator x. Since
we know the cohomology groups of P with Z and Zp coefficients we are able

to compute a segment of the long exact sequence arising from Z
·p−→ Z→ Zp

· · · 0→ H1(P,Zp)
β̂−→ H2(P,Z)

p=0−−→ H2(P,Z)→ H2(P,Zp)
β̂−→ 0 · · ·

We see that β̂ : H1(P,Zp)→ H2(P,Z) and the projection map H2(P,Z)→
H2(P,Zp) are isomorphisms. Since β is the composition of these two maps,
β : H1(P,Zp) → H2(P,Zp) is an isomorphism as well. Now, a generator
ν ∈ H1(P,Zp) = Hom(P,Zp) may be characterized by ν(x) = 1, thus β(ν)
generates H2(P,Zp).

Let E = P d, for P a cyclic group of prime order p, let k be a field of char-
acteristic p and define (E)∗ = Hom(E, k). The above discussion combined
with Example 2.5 tell us that for p > 2

H∗(E, k) ∼= H∗(P, k)⊗d ∼= Λ[ν1, . . . , νd]⊗ k[ε1, . . . , εd],

where deg(νi) = 1 and deg(εi) = 2, and {ν1, . . . , νd} forms a basis for (E)∗.
Let pi : E → Pi be the projection onto the i’th factor. Since the long exact
sequence in cohomology is natural the following diagram commutes

Hom(Pi,Fp) Hom(E,Fp)

H2(Pi,Fp) H2(E,Fp),

◦pi

ββ

p∗i

hence εi = β(νi) just as in the cyclic case. For p = 2

H∗(E, k) ∼= H∗(P, k)⊗d ∼= k[ν1, . . . , νd].

To summarize we may write

H∗(E, k) ∼=
{
Sk(E

∗, 1) if p = 2,
Λk(E

∗, 1)⊗k Sk(E∗, 2) if p > 2,

where Sk(E
∗, i) is a symmetric graded algebra over k with E∗ in degree i

and similarly Λk(E
∗, i) is a graded exterior algebra over k with E∗ in degree

i.
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If we consider integral coefficients, we only obtain a ring monomorphism

H∗(P,Z)⊗d ↪→ H∗(E,Z).

Thus H∗(E,Z) contains a subring of the form Z[χ1, . . . , χd | pχi = 0] where
{χ1, . . . , χd} form a basis for H2(E,Z) = Hom(E,Q/Z). This subring may
be described as the symmetric graded algebra over Z with Ê = Hom(E,Q/Z)
in degree 2. Thus we have a monomorphism

SZ(Ê, 2) ↪→ H∗(E,Z).

2.3 Equivalence with the Topological Definition

Given a discrete group G, we have two different definitions of group co-
homology. Luckily, they are equivalent. We will briefly sketch how this
equivalence arises and show that the n’th cohomology group defined via
classifying spaces is isomorphic to the n’th cohomology group defined alge-
braically. The equivalence is of course far more comprehensive, the product
structure and the induced maps are compatible, so the results achieved via
topological methods apply in the algebraic setting.

Before we can exhibit the equivalent nature of the two approaches we recall
the definition of cohomology with local coefficients which is a generalization
of ordinary cohomology. Let X be a path-connected space having a universal
cover X̃ and fundamental group π. The group π acts on X̃ as deck transfor-
mations and this induces an action on the chains of X sending an n-simplex
σ : 4n → X̃ to the composition 4n σ−→ X̃

γ−→ X̃ for γ ∈ π. This makes
C∗(X̃) into a chain-complex of Zπ-modules. Let M be a left Zπ-module.
The cohomology groups of X with local coefficients in M is defined as the
cohomology of the cochain-complex HomZπ(C∗(X̃),M), i.e.,

Hn(X,M) := Hn(HomZπ(C∗(X̃),M)).

When M is a trivial Zπ-module, Hn(X,M) is just ordinary cohomology
with coefficients in the abelian group M . The basic properties of ordinary
cohomology extend to cohomology with local coefficients.

Let X be a free G-set and turn the free abelian group ZX into a ZG-module
by extending the action of G on X to a Z-linear action on ZX. We may
write X as the disjoint union of orbits X =

∐
x∈I Gx, where I is a set of rep-

resentatives for the orbits. Since the action is free, each orbit is isomorphic
to G, and so as a G-set X ∼=

∐
I G. In this way we obtain an isomorphism

of ZG-modules ZX ∼= ⊕IZG. To summarize, we have proven the following
theorem.

21



Theorem 2.12. Let X be a free G-set and let E be a set of representatives
of the G-orbits in X. Then ZX is a free ZG-modules with basis E.

Now, let Ỹ
p−→ Y be a regular covering map with G as the group of deck

transformations. If Y is a CW-complex then Ỹ naturally inherits a CW-
structure. The open cells of Ỹ lying over an open cell σ ∈ Y are simply
the connected components of p−1(σ). The cells are permuted freely and
transitively by G and each is mapped homeomorphically onto σ by p. Hence
G permutes the cells of the same dimension, so C∗(Ỹ ) becomes a chain
complex of ZG-modules and by Theorem 2.12 each Cn(Ỹ ) is a free ZG-
modules with one basis element for each n-cell of Y . Define an augmentation
map C0(Ỹ )→ Z by v 7→ 1 for every 0-cell v of Ỹ . We obtain a chain complex
of ZG-modules

· · · → Cn(Ỹ )→ Cn−1(Ỹ )→ · · · → C0(Ỹ ) −→ Z→ 0.

If Ỹ is contractible then H̃∗(Ỹ ) = H̃∗(∗) and the chain-complex is exact.

Now it should be clear how we should compare the two definitions of group
cohomology. We know that K(G, 1) is a classifying space of G and we let
X̃ → K(G, 1) be the universal cover. This is a regular covering map with
G as the group of deck transformations and X̃ is contractible. Hence the
cellular chain-complex C∗(X̃) is a free resolution of Z over ZG.

Theorem 2.13. Let M be a G-module. Then we have an isomorphisms of
abelian groups Hn(G,M) ∼= Hn(BG,M).

Proof. Let X̃ → K(G, 1) be the universal cover. By definition the coho-
mology of G with coefficients in M is the cohomology of the chain complex
HomG(C∗(X̃),M). But since the chain-complex C∗(X̃) is a free resolution
of Z over ZG this is the exact same chain complex as the one used for the
algebraic definition of group cohomology.
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3 Evens’ Norm Map

Let G be a group and let H a subgroup of finite index n. The purpose of
this section is to introduce a map called Evens’ norm map

NH,G : Hr(H,R)→ Hrn(G,R),

as done by Evens in [7, section 5 and 6]. The norm was originally constructed
by Evens in [6]. We will sketch the construction of the norm map and state its
properties. First we will take some time to investigate how Evens’ norm map
acts on elementary abelian p-groups. Afterwards we will prove a theorem
of Serre, Theorem 3.8, that provides a rings structural difference between
the cohomology ring of an elementary abelian p-groups and the cohomology
ring of a p-group which is not elementary abelian. The understanding of the
norm map on elementary abelian p-groups will be crucial to the proof.

3.1 Wreath Products and the Monomial Embedding

Let Sn denote the permutation group on n letters. Then Sn acts from the
left on H×n by permuting the factors

(h1, . . . , hn)σ = (hσ(1), · · · , hσ(n)),

and we define the wreath product Sn
∫
H to be the semi-direct product

SnH×n. Thus Sn
∫
H consists of tuples (σ, h1, . . . , hn) with σ ∈ Sn, hi ∈ H

and multiplication is given by

(σ, h1, . . . , hn)(σ′, h′1, . . . , h
′
n) = (σ ◦ σ′, hσ′(1)h′1, . . . , hσ′(n)h′n).

We want to embed G into the wreath product Sn
∫
H. Fix a set T =

{t1, . . . , tn} of left coset representatives and an element g ∈ G. Then for
ti ∈ T

gti = tjhg,i

for a unique representative tj ∈ T and an element hg,i ∈ H. Thus g gives rise
to a permutation π(g) ∈ Sn by setting π(g)(i) = j. Define φ : G → Sn

∫
H

by
Φ(g) = (π(g), hg,1, . . . hg,n) .

It is easy to verify that Φ is a group monomorphism, called the monomial
embedding. If we choose another set of left coset representatives, we obtain
a conjugate embedding. Indeed, let T ′ = {t′1, . . . , t′n} denote another set of
let coset representatives. The equations

t′i = tα(i)hi,
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gives rise to a permutation α ∈ Sn and elements hi ∈ H. Consider the
element u = (α, h1, . . . , hn) ∈ Sn

∫
H. For g ∈ G the following rather

cumbersome calculations yields the desired result. First

u−1Φ(g)u =
(
α−1, h−1

α−1(1)
, . . . , h−1

α−1(n)

)(
π(g), hg,1, . . . hg,n

)(
α, h1, . . . , hn

)
=
(
α−1 ◦ π(g) ◦ α, h−1

α−1◦π(g)◦α(1)hg,α(1)h1, . . . , h
−1
α−1◦π(g)◦α(n)hg,α(n)hn

)
and since

gt′i = gtα(i)hi = tπ(g)(α(i))hg,α(i)hi = t′α−1◦π(g)◦α(i)h
−1
α−1◦π(g)◦α(i)hg,α(i)hi

we conclude that uΦu−1 = Φ′. The inclusion Φ : G → Sn
∫
H associated

to a specific choice of coset representatives gives rise to a restriction map
H∗(Sn

∫
H, k)→ H∗(G, k). If we change the set of coset representatives we

obtain an inclusion of the form Φ′ = u ◦ Φ, where u : Sn
∫
H → Sn

∫
H

is conjugation by u. By Theorem 2.10, u∗ = id in cohomology, hence the
restriction map is independent of the choice of coset representatives.

3.2 Evens’ Norm Map

We may now define Evens’ norm map NH,G : Hr(H,R)→ Hrn(G,R). There
is some sign twist involved when r is odd, which we will ignore completely
by assuming that r is even. Given a cohomology class α ∈ Hr(H,Z) we
will first map it to a cohomology class in Hrn(Sn

∫
H,R), which we may

roughly describe as the product of α with itself n times. By restricting this
cohomology class along the monomial embedding, we obtain a cohomology
class in Hrn(G,R).

Let ν : U → R be a projective H-resolution. Then ν⊗n : U⊗n → R⊗n ∼= R
is a projective resolution of R as an H×n-module. Let ε : W → R be a
projective Sn-resolution. They fit together

ε⊗ ν⊗n : W ⊗R U⊗n → R⊗R R⊗n ∼= R

as a projective resolution of R as a (Sn
∫
H)-module, see [7, prop. 2.5.1].

Let f : Ur → R be a cocycle representing α ∈ Hr(H,R). Then the map

ε⊗ f⊗n : W ⊗R U⊗n → R⊗R R⊗n ∼= R

is a cocycle and thus defines a cohomology class in Hrn(Sn
∫
H,R). Let

1
∫
α denote this class. One needs to verify that the cohomology class 1

∫
α

is independent of resolutions U and W and the map f representing α. The
independence of f will follow from the following lemma. The reader may
consult [7, section 5.3] for an argument concerning independence of resolu-
tions.

24



Lemma 3.1. Let F,G : U → L be chain homotopic maps of H-complexes.
Then

id⊗ F⊗n, id⊗G⊗n : W ⊗R U⊗n →W ⊗R L⊗n

are chain homotopic maps of Sn
∫
H-complexes.

Proof. Let I denote the chain complex of R-modules with I0 = Ra ⊕ Rb,
I1 = Rc and In = 0 for all other n. Define a differential by ∂(c) = a − b.
Then I ⊗R U is a chain complex of H-modules. A chain homotopy from F
to G is the same as a map of H-chain complexes P : I ⊗R U → L such that
P (a ⊗ u) = F (u) and P (b ⊗ u) = G(u). First, assume that we are given P
as above and define a H-chain map p : U → L by p(u) = P (c⊗ u). Then

F (u)−G(u) = P (a⊗ u)− P (b⊗ u)

= P (∂I(c)⊗ u)

= P (∂(c⊗ u) + c⊗ ∂U (u))

= ∂L(P (c⊗ u)) + P (c⊗ ∂U (u))

= ∂L(p(u))− p(∂U (u)),

hence p is a chain homotopy from F to G. Likewise, if p : U → L is a chain
homotopy from F to G we may define a chain map P : I ⊗R U → L with
the desired properties in the following way. Since

(I ⊗R U)n = (Ra⊗R Un)⊕ (Rb⊗R Un)⊕ (Rc⊗R Un−1),

we define P to be F ⊕ G ⊕ p. One may verify that the chain-homotopy
relation is equivalent to saying that P commutes with the differentials.

By assumption, we have a map of H-chain complexes P : I ⊗R U → L
such that P (a ⊗ u) = F (u) and P (b ⊗ u) = G(u). The above argument is
general, hence to prove that id ⊗ F⊗n and id ⊗G⊗n are chain-homotopic,
it suffices to construct an Sn

∫
H-chain map

Q : I ⊗RW ⊗R U⊗n →W ⊗R L⊗n,

which on a⊗W ⊗U⊗n is id⊗F⊗n and on b⊗W ⊗U⊗n is id⊗G⊗n. Assume
that we had constructed an Sn-map J : I ⊗RW → I⊗n ⊗RW such that

J(a⊗ w) = a⊗n ⊗ w and J(b⊗ w) = b⊗n ⊗ w.

Then we could take Q to be the composition

I ⊗k W ⊗R U⊗n
J⊗id−−−→ I⊗n ⊗RW ⊗R U⊗n ∼= W ⊗R I⊗n ⊗R U⊗n

∼= W ⊗R (I ⊗R U)⊗n
id⊗P⊗n−−−−−→W ⊗R L⊗n,
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where the two middle maps are change of order. The composition takes
a ⊗ w ⊗ (⊗ui) to a⊗n ⊗ w ⊗ (⊗ui), then to w ⊗ (⊗(a ⊗ ui)) and finally to
w⊗(⊗F (ui)). Similar equalities hold for b. We are able to ignore signs since
each twisting involves an element of even degree.

To construct J , we proceed as follows. I0⊗RW is a subcomplex of I ⊗RW ,
and J is already defined here by the given conditions. The idea is to show
that we can extend J to all of I ⊗RW degree by degree. Let A = I ⊗RW ,
hence A = A′ ⊕ A′′ where A′ = I0 ⊗R W and A′′ = I1 ⊗R W . Let
B = I⊗n ⊗R W . In degree 0, A0 = A′0 so no extension is needed. If J
has been defined up to degree s, then we have the following commutative
diagram

A′′s+1 As As−1

Bs+1 Bs Bs−1.

∂A ∂A

∂B ∂B

J ′′s+1 Js Js−1

The composition A′′s+1 → As → As−1 is trivial, so the same is true for
∂B ◦ Js ◦ ∂A, thus

Js(∂
A(A′′s+1)) ⊆ ker∂B = ∂B(Bs+1).

SinceA′′s+1 is a projective Sn-module, we may define a Sn-map J ′′s+1 : A′′s+1 →
Bs+1 making the diagram commute. Setting Js+1 = J ′s+1 ⊕ J ′′s+1 extends
the map J one degree further.

We apply the lemma as follows. Assume that the cocycles f, g : Ur → R
both represent the class α. Define a chain complex L by letting Ln = R and
Li = 0 for all i 6= n. Then f and g may be viewed as chain homotopic maps
of H-complexes U → L. It follows from the lemma that id⊗ f⊗n, id⊗ g⊗n :
W ⊗R U⊗n → W ⊗R L⊗n are chain homotopic maps of Sn

∫
H-complexes.

Composing with ε ⊗ id, we see that ε ⊗ f⊗n, ε ⊗ g⊗n : W ⊗R U⊗n → L⊗n

are chain homotopic maps of Sn
∫
H-complexes. Since L⊗n only has one

non-trivial component, namely R in degree rn, we may identify these maps
with ε

∫
f and ε

∫
g. To say that they are chain homotopic is simply saying

that they are cohomologous since the differential in L is trivial.

Non-homogeneous elements If α ∈ H∗(H,R) is non-homogeneous but
instead a sum of homogeneous elements of even degree, we can use es-
sentially the same method to construct an inhomogeneous class 1

∫
α ∈

H∗(Sn
∫
H,R). Let α, β ∈ H∗(H,R) be homogeneous elements of even de-

grees and suppose f is a cocyle representing α and g is a cocycle representing
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β. Define the cohomology class 1
∫

(α+ β) to be the class represented by

ε⊗ (f + g)⊗n.

This is a sum of terms of the form

ε⊗ (h1 ⊗ · · · ⊗ hn),

where each hi is either f or g. The term with all hi = f represents the class
1
∫
α, while term with all hi = g represents the class 1

∫
β.

Definition 3.2. Let G be a group, let H a subgroup a finite index n and
let Φ : G ↪→ Sn

∫
H be the monomial embedding. If α ∈ H∗(H,R) is an

element of even degree, i.e., α is a sum of homogeneous elements of even
degree, we define the norm map NH,G : H∗(H,R)→ H∗(G,R) by

NH,G(α) = Φ∗(1
∫
α).

It is clear from the definition that NG,G = id, and if α ∈ H0(H, k) then
NH,G(α) = αn.

Theorem 3.3. Evens’ norm map has the following properties

1. If H is a subgroup of K and K is a subgroup of G, then for α ∈
H∗(H,R) of even degree

NK,G(NH,K(α)) = NH,G(α).

2. Let H be a subgroup of G. If α, β ∈ H∗(H,R) are of even degree, then

NH,G(αβ) = NH,G(α)NH,G(β).

3. If G = ∪x∈DKxH is a double coset decomposition of G, then for
α ∈ H∗(H,R) of even degree

resG,K(NH,G(α)) =
∏
x∈D

NK∩xHx−1,K(resxHx−1,K∩xHx−1(x∗α)).

The order of the elements in the product is irrelevant since everything
is of even degree.

4. If H is normal in G, then for α ∈ H∗(H,R) of even degree

resG,H(NH,G(α)) =
∏

y∈G/H

y∗(α).

The order of the elements in the product is irrelevant since everything
is of even degree.
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5. Let H be a subgroup of G and let H ′ be a subgroup of G′. Let φ : G′ →
G be a homomorphism such that φ(H ′) ⊆ H, and φ induces a one-to-
one correspondence G′/H ′ ∼= G/H. Let φ′ denote the restriction of φ
to H ′. Then for α ∈ H∗(H,R) of even degree

NH′,G′(φ
′∗(α)) = φ∗(NH,G(α)).

The third property is often referred to as the double coset formula. A proof
can be found in [7, section 6.2]. The properties 1. and 2. follow from inves-
tigating the norm on the level of resolutions. To obtain the second property
one starts by proving the formula 1

∫
(αβ) = (1

∫
α)(1

∫
β) in H∗(Sn

∫
H, k).

Property 3. requires more work, while property 4. follows immediately af-
terwards when we note that for a normal subgroup H, a double coset de-
composition is the same as a single coset decomposition. Property 5. follows
from the fact that 1

∫
α is natural with respect to the group homomorphism

Sn
∫
H ′ → Sn

∫
H arising from φ′ : H ′ → H.

The norm map satisfies some additivity rules, which are useful when making
calculations. A proof may be found in [7, section 6.2].

Theorem 3.4. Let H ≤ G be a subgroup of finite index n, and let α, β ∈
H∗(H,R) be homogeneous of even degrees. Then

NH,G(1 + α) = 1 + corH,G(α) + · · ·+NH,G(α),

where the intermediate terms are elements of degrees between deg(α) and
deg(α)n. If H is normal in G of prime index p, then

NH,G(α+ β) = NH,G(α) + corH,G(ν) +NH,G(β)

for some ν ∈ H∗(H,R).

3.3 The Norm Map on Elementary Abelian p-Groups

Let p be a fixed prime. Let E = P × P , where P is a cyclic group of prime
order p. Recall that the Künneth formula provides a ring monomorphism

SZ(P̂ , 2)⊗k SZ(P̂ , 2) ∼= SZ(Ê, 2) ↪→ H∗(E,Z),

where P̂ = Hom(P,Q/Z) and Ê = Hom(E,Q/Z). Since the cohomology ring
H∗(P,Z) is trivial in odd degrees, the monomorphism is an isomorphism in
even degree, since every Tor term will involve an odd degree term, thus⊕

i+j=p

H2i(P,Z)⊗H2j(P,Z) ∼= H2p(E,Z).
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The element a ⊗ b on the left hand side corresponds to the element a × b
on the right hand side. Since H∗(P,Z) = Z[χ | pχ = 0] it follows that an
element in H2p(E,Z) can be written uniquely on the form∑

i+j=p

ai,jχ
i × χj ,

with aij ∈ Fp.

Theorem 3.5. Let F denote the subgroup {1} × P ⊂ P × P = E. Then

NF,E(χ) = 1× χp − χp−1 × χ.

Proof. Let ε = χ× 1 and let µ = 1× χ. Since E is elementary abelian, we
may view H2(E,Z) = Hom(E,Q/Z) as an Fp-vector space with basis {ε, µ}.
We think of ε and µ as homomorphisms E → Q/Z, hence ker ε = F . We
wish to determine the homogeneous polynomial of degree p

NF,E(χ) =

p∑
j=0

ajµ
jεp−j .

Let Fi = ker(µ − iε) for i = 1, . . . , p − 1. These are subgroups of degree p
and Fi ∩ F = {1} for all i. Since E = FiF , it follows by the double coset
formula, Theorem 3.3 part 3, that

resE,FiNF,E(χ) = N{1},FiresF,{1}(χ) = 1.

Recall that H∗(Fi,Z) = SZ(F̂i). Since NF,E(χ) is in the subring SZ(Ê),
we are interested in determining the kernel of the restriction map on this
subring, SZ(Ê)→ SZ(F̂i). Here, the restriction map is induced by the map
of dual spaces Ê → F̂i induced by the inclusion Fi ↪→ E, hence

SZ(Ê) ∩ ker(resE,Fi) = (µ− iε),

where (µ− iε) denotes the principal ideal generated by µ− iε. Thus NF,E(χ)
is divisible by µ− iε for all i and therefore also by their product, which is

p−1∏
i=0

(µ− iε) = µp − εp−1µ.

Hence NF,E(χ) is on the form c(µp−εp−1µ) for some c ∈ Fp. By Theorem 3.3
part 4, resE,FNF,E(χ) = χp since the conjugation action is trivial because

E is abelian. The restriction map resE,F on the subring SZ(Ê) is induced

by the map of dual spaces Ê → F̂ given by ε 7→ 0 and ν 7→ χ. Thus c = 1,
and we have the desired result.
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Corollary 3.6. Let E be an elementary abelian p-group and let F be a
subgroup. Then for each χ ∈ H2(F,Z), we have

NF,E(χ) =
∏

ν.

resE,F (ν)=χ

Proof. We start by reducing to the case [E : F ] = p. Suppose E ≥ E′ ≥ F ,
and that the corollary has been established for the pairs E,E′ and E′, F .
Then by Theorem 3.3 part 1 and part 3,

NF,E(χ) = NE′,E(NF,E′(χ))

= NE′,E

( ∏
ν ′

resE′,F (ν
′)=χ

)
=
∏

NE′,E(ν ′)

resE′,F (ν
′)=χ

=
∏

resE′,F (ν
′)=χ

∏
ν

resE,E′ (ν)=ν
′

=
∏

ν.

resE,F (ν)=χ

Thus we may assume that F has index p. If χ = 0, the corollary clearly
holds, so we may assume that χ is non-trivial. As before, we identify χ with
a non-trivial homomorphism χ : F → Q/Z, and, since F is an elementary
abelian p-group, χ has image 〈1/p〉Z/Z ∼= Zp. Let F1 denote the kernel
of χ. Since χ factors through F/F1, we have χ = infF/F1,F (χ1) for some
χ1 ∈ H2(F/F1,Z). Since [E : F ] = [E/F1 : F/F1] = p, it follows from
Theorem 3.3 part 5 that

NF,E(χ) = NF,E(infF/F1,F (χ1)) = infE/F1,E(NF/F1,E/F1
(χ1)).

If the theorem holds for the pair E/F1, F/F1, then

NF,E(χ) =
∏

infE/F1,E(ν1).

resE/F1,F/F1 (ν1)=χ1

There are p elements in H2(E/F1,Z) such that resE/F1,F/F1
(ν1) = χ1. Also,

there are p elements in H2(E,Z) such that resE,F (ν) = χ, and these are the
inflations of p elements in H2(E/F1,Z), clearly restricting to χ1 on F/F1.
Hence the p elements appearing in the product above equal the p elements
going into the product in the statement, thus proving the corollary.

It only remains to prove the corollary for the pair E/F1, F/F1. Since
|E/F1| = p2 and |F/F1| = p, it thus suffices to verify the corollary in the

30



case where |E| = p2 and |F | = p. This is exactly the case considered in
Theorem 3.5. Using the same notation, we saw that

NF,E(χ) =

p−1∏
i=0

(µ− iε).

The elements µ− iε are exactly the p elements of H2(E,Z) restricting to χ
on H2(F,Z), thus finishing the proof.

3.4 Serre’s Theorem

Let p be a fixed prime. A finite p-group is a group of order pa for some a ≥ 0.
Serre’s theorem states that if G is a finite p-group, which is not elementary
abelian, then there exist non-zero elements x1, . . . , xr ∈ H1(G,Fp) for some
r ≥ 1, such that the product of the Bocksteins is zero;

β(x1)β(x2) · · ·β(xr) = 0 ∈ H2r(G,Fp).

If G is elementary abelian, then the Bocksteins of the degree one generators
form a polynomial subring of H∗(G,Fp) and therefore no such relation exists.
Serre’s original proof [17] uses Steenrod operations. We shall instead follow
a proof by Evens as given in [7], which relies partly on work by Okuyama
and Sasake and uses Evens’ norm map. The idea behind the proof is to
reduce to the case where |G| = p3 and exploit that the cohomology rings of
such groups are fairly well-known.

Let G be a finite p-group. We say that a proper subgroup H ≤ G is max-
imal, if it is not contained in any proper subgroup of G different from H.
The following are equivalent for a subgroup H ≤ G.

1. H is maximal and normal.

2. H is maximal.

3. [G : H] = p.

See Corollary B.4. An element of order p in H2(G,Z) is a homomorphism
β : G → Q/Z with image 〈1/p〉Z/Z ∼= Zp, hence [G : kerβ] = p so the
kernel is a maximal subgroup of G. Likewise, any maximal subgroup of
G occurs as the kernel of an element of order p in H2(G,Z). Moreover, if
β, β′ ∈ H2(G,Z) of order p have the same kernel, then they must differ by
multiplication by an integer r with (r, p) = 1. We abuse notation slightly
and write βH for any β with kernel H. We will need the following result
concerning finite p-groups.

Lemma 3.7. Let N be a non-trivial normal subgroup of a finite p-group G.
Then [G,N ]Np is a normal subgroup of G, and N/([G,N ]Np) is non-trivial.
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A proof can be found in [10, Chapter III, Theorem 2.6]. Let G2 denote the
Frattini subgroup of G, i.e. the intersection of all maximal subgroups of G.
Since all maximal subgroups are normal, G2 is normal. If M is a maximal
subgroup, then G/M has order p, hence [G,G]Gp ≤ M so [G,G]Gp ≤ G2,
thus the Frattini quotient G/G2 is elementary abelian. Let H be a normal
subgroup of G such that the quotient group G/H is elementary abelian,
hence G/H is generated by n cosets xiH each of degree p

G/H = 〈x1H〉 × · · · × 〈xnH〉 .

Then H i = 〈xjH | j 6= i〉 are n maximal subgroups of G/H with ∩iHi = {1},
and their pre-images in G are n maximal subgroups Hi with ∩iHi = H.
Since the Frattini subgroup is the intersection of all maximal subgroups,
G2 ≤ H, thus the Frattini subgroup is the smallest normal subgroup such
that the factor group is elementary abelian. Since [G,G]Gp ≤ G2 and
G/([G,G]Gp) is elementary abelian, we thus have G2 = [G,G]Gp.

Let r : G → G/G2 be the quotient map. The inflation map in cohomo-
logical dimension 2 is pre-composition with r

infG/G2,G : Hom(G/G2,Q/Z)→ Hom(G,Q/Z),

which is clearly injective. Any α : G/G2 → Q/Z satisfies pα = 0 since G/G2

is elementary abelian. Likewise, any β : G → Q/Z of order p has kernel a
maximal subgroup of G, hence it factors trough G/G2, so the inflation map
surjects onto the subgroup of all β with pβ = 0.

Theorem 3.8. Let G be a finite p-group, which is not elementary abelian.
Then there exist maximal subgroups H1, · · · , Hk such that

βH1βH2 · · ·βHk = 0

in H∗(G,Z).

Proof. Since G is not elementary abelian, G2 6= {1}. We start by reducing to
the case where G2 is cyclic of order p. Let G3 = [G,G2]G

p
2. By Lemma 3.7,

G2/G3 is a non-trivial p-group, so we can find a subgroup M/G3 ≤ G2/G3

of index p. The pre-image M is a subgroup in G such that [G2 : M ] = p.
Since G2/G3 is central in G/G3 by construction, M is a normal subgroup
of G. The inflation map

infG/M,G : H2(G/M,Z) = Hom(G/M,Q/Z)→ H2(G,Z) = Hom(G,Q/Z)

is a monomorphism, so if there is non-trivial elements βi ∈ H2(G/M,Z) of
order p with product 0, their inflations βi ∈ H2(G,Z) are non-trivial ele-
ments of order p with product 0. G/M is not elementary abelian and since
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(G/M)/(G2/M) ∼= G/G2 is elementary abelian, the Frattini subgroup of
G/M must be contained in G2/M . Since G2/M is cyclic of order p, we must
have (G/M)2 = G2/M . Thus it suffices to verify the theorem for groups
with Frattini subgroups cyclic of order p.

Suppose that G contains a subgroup K, such that K is not elementary
abelian, K2 = G2, and the theorem is true for K. Then the theorem holds
for G. Indeed, choose non-trivial elements β1, . . . , βr of order p in H2(K,Z)
with product 0. Since K2 = G2 and the inflation map surjects onto the
elements of order p, we have βi = infK/G2→K(βi) for non-trivial elements

βi ∈ (K/G2,Z). Since [G : K] = [G/G2 : K/G2], it follows from Theorem
3.3 part 5 that

0 = NK,G

(∏
βi

)
= NK,G

(∏
infK/G2,K(βi)

)
= NK,G

(
infK/G2,K

(∏
βi

))
= infG/G2,G

(
NK/G2,G/G2

(∏
βi

))
= infG/G2,G

(∏
NK/G2,G/G2

(βi)
)
.

By Corollary 3.6, each NK/G2,G/G2
(βi) is a product of non-trivial elements

of H2(G/G2,Z), necessarily of order p. Inflating to G we obtain the desired
result.

It thus remains to prove the existence of the subgroup K. First assume
that G contains a cyclic subgroup K of order p2. Since K2 is a non-
trivial subgroup of G2, and G2 is cyclic of order p, K2 = G2. The group
H2(K,Z) = Hom(K,Q/Z) is generated by an element ξ of order p2, so
β = pξ is of order p and satisfies β2 = p2ξ2 = 0 as desired. If G does not
contain a cyclic subgroup of order p2, then every non-trivial element of G
has order p. Since G is not elementary abelian, G cannot be abelian. Let x
and y be non-commuting elements of G, and let K denote the non-abelian
subgroup they generate. As above, we must have K2 = G2 = [K,K], hence

|K/G2| ≤ p2 and |K| ≤ p3.

These inequalities are actually strict. The center of a non-trivial p-group is
non-trivial, hence K/Z(K) must be either of order 1, p or p2. In all cases
K/Z(K) is abelian, hence G2 = [K,K] ≤ Z(K). The elements 1, x, . . . , xp−1

represent different cosets in K/G2, for otherwise x ∈ Z(K), which is not the
case. But y represents yet another coset, otherwise yxi ∈ Z(K) for some
1 ≤ i ≤ p− 1. But then y2xi = yxiy, hence yxi = xiy. Since x has order p,
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this forces x and y to commute, which is not the case. Thus K/G2 has at
least p+ 1 elements, thus |K/G2| = p2 and |K| = p3. Proving the theorem
for the subgroup K finishes the proof.

We have reduced to the case |K| = p3, |K2| = p and every non-trivial
element of K has order p. Let H be a maximal subgroup of K, hence H
is elementary abelian of rank 2. Again, we view H2(H,Z) = Hom(H,Q/Z)
as an Fp-vector space with basis {µ, ε}, where µ and ε are homomorphisms
H → Q/Z. Let xH denote a generator of the cyclic p-group K/H, hence

K = H ∪ xH ∪ · · · ∪ xp−1H.

Conjugation by x gives rise to a non-trivial automorphism x : H → H, oth-
erwise K would be abelian. The element x acts on H∗(H,Z) via the map in-
duced by conjugation x∗ : H∗(H,Z)→ H∗(H,Z). The action in cohomolog-
ical dimension 2 is pre-composition with x, Hom(H,Q/Z)→ Hom(H,Q/Z),
hence x acts non-trivially. It follows from linear algebra that, up to change
of basis, there is only one way an element of order p can act non-trivially on
a rank 2 Fp-vector space, hence

x∗(µ) = µ,

x∗(ε) = µ+ ε.

Let yK2 denote a generator of the cyclic p-group H/K2. As noted earlier
K2 ≤ Z(K). Since

H = K2 ∪ yK2 ∪ · · · ∪ yp−1K2

and conjugation by x is non-trivial on H, [x, y] is a non-trivial element in
K2, thus it generates K2. We see that

µ([x, y]) = µ(x−1yxy−1) = µ(x−1yx)− µ(y) = x∗(µ(y))− µ(y) = 0

so µ(K2) = 0. Hence µ = infH/K2,H(µ), where µ ∈ H2(H/K2,Z). Since
[K : H] = [K/K2 : H/K2], it follows from Theorem 3.3 part 5 that

NH,K(µ) = NH,K(infH/K2,H(µ)) = infK/K2,K(NH/K2,K/K2
(µ)),

and by Corollary 3.6, NH/K2,K/K2
(µ) is a product of non-trivial elements of

H2(K/K2,Z). Thus NH,K(µ) is a product of non-trivial elements of order
p in H2(K,Z). Choose α ∈ H2(K,Z) with kernel H. If we can show that
αNH,K(µ) = 0, then the theorem holds for K. Since x acts trivially on
H∗(K,Z), it follows from Theorem 3.3 part 5 and the additivity formula 3.4
that

NH,K(ε) = x∗(NH,K(ε)) = NH,K(x∗(ε)) = NH,K(µ+ ε)

= NH,K(µ) + corH,K(ν) +NH,K(ε)
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for some ν ∈ H∗(H,Z). Hence NH,K(µ) = −corH,K(ν). By Theorem 2.9

αNH,K(µ) = −αcorH,K(ν) = −corH,K(resK,H(α)ν) = 0

since resK,H(α) = 0, which finishes the proof of Serre’s theorem.

Corollary 3.9. Let G be a finite p-group which is not elementary abelian.
Then there exist non-trivial elements α1, . . . , αr ∈ H1(G,Fp) such that

β(α1) · · ·β(αr) = 0.

Proof. We have the following commutative diagram

0 Z Z Zp 0

0 Z Q Q/Z 0,

·p

= ·1p

where we identify Zp ∼= 〈1/p〉Z/Z. By naturality of the long exact sequence
in cohomology, the diagram gives rise to a commutative square

Hom(G,Q/Z) H2(G,Z)

Hom(G,Fp) H2(G,Z)

∼=

β̂

◦i =

where i denotes the inclusion Fp ∼= 〈1/p〉Z/Z ↪→ Q/Z. By the above theorem
there exist non-trivial elements of degree p, γ1, . . . , γr ∈ H2(G,Z) such that
γ1 · · · γr = 0. Since γ1, . . . , γr have images contained in 〈1/p〉Z/Z, there
exist α1, . . . , αr ∈ H1(G,Fp) such that β̂(αi) = γi. Let r : Z → Zp denote

the reduction module p. Since β = r∗ ◦ β̂, and r∗ is a ring homomorphism,
it follows that β(α1) · · ·β(αr) = 0.
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4 The Quillen-Venkov Lemma

Let G be a finite group and let p be a fixed prime. Consider the product of
the restriction maps

ΠresG,E : H∗(G,Fp)→
∏
E≤G

H∗(E,Fp),

where E ranges over the elementary abelian p-subgroups ofG. The main the-
orem of this section is Theorem 4.5 which states that the kernel of this map
is nilpotent. We give an algebraic proof by Quillen and Venkov [15], which
uses the Lyndon-Hochschild-Serre spectral sequence and Serre’s theorem.
The approach distinguishes from Quillen’s original proof, which involved G-
spaces and equivariant cohomology. As a consequence of this theorem we
see the Krull dimension of H∗(G,Fp) is the maximal rank of the elementary
abelian p-subgroups of G.

4.1 The Lyndon-Hochschild-Serre Spectral Sequence

A spectral sequence is a strong algebraic tool allowing us to express relations
between certain cohomology groups. The Lyndon-Hochschild-Serre spectral
sequence relates the cohomology of a group to that of a normal subgroup
and that of the factor group. We will not go into details with the proof
but merely sketch the idea behind the construction. We assume that the
reader is familiar with the notion of a spectral sequence and how a spectral
sequence is associated with a filtered complex.

Definition 4.1. A double complex E is a collection of abelian groups and
maps arranged as in the following diagram

...
...

...

E0,2
0 E2,2

0 E2,2
0 · · ·

E0,1
0 E1,1

0 E2,1
0 · · ·

E0,0
0 E1,0

0 E2,0
0 · · ·

d1 d1

d1 d1

d1 d1

d0

d0

d0

d0

d0

d0

such that

1. each row satisfies d1 ◦ d1 = 0,
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2. each column satisfies d0 ◦ d0 = 0,

3. each square satisfies d0 ◦ d1 + d1 ◦ d0 = 0.

The total complex Tot(E) of the double complex is given by

Tot(E)n =
⊕
i+j=n

Eij0

with differential d0 + d1 : Tot(E)n → Tot(E)n+1.

The total complex is filtered as follows:

F pI Tot(E)n = ⊕r≥pEr,n−r, F pIITot(E)n = ⊕r≥pEn−r,r

F ∗I may be thought of as a ”column-wise”filtration, while F ∗II may be thought
of as a ”row-wise” filtration. Since Ep,q = 0 when p < 0 or q < 0, the
filtrations are bounded. The two filtrations then give rise to two spectral
sequences, both converging to H∗(Tot(E)). It is often a useful strategy to
compare the two spectral sequences, especially if one has a simple E2 with
a lot of trivial terms and the other does not. This is exactly what happens
in the proof of the Lyndon-Hochchilds-Serre spectral sequence. The above
construction and definitions are natural with respect to almost any property
involving a double complex. In particular, E could be a double graded
algebra such that d0 and d1 are both derivations with respect to the total
degree. Then the multiplicative structure is inherited at each stage of the
spectral sequence, the dr are derivations, and all the relevant morphisms are
consistent with the multiplicative structures.

Theorem 4.2 (The LHS Spectral Sequence). Let G be a group, N a nor-
mal subgroup and M an RG-module. There exists a spectral sequence with
E2-term H∗(G/N,H∗(N,M)), which converges to H∗(G,M). Explicitly we
have a spectral sequence {Ep,qr , dr} with

1. dr : Ep,qr → Ep+r,q−r+1 and Ep,qr+1 = kerdr/Imdr at Ep,qr ,

2. Ep,q2
∼= Hp(G/N,Hq(N,M)),

3. stable terms Ep,n−p∞ isomorphic to the successive quotients Fnp /F
n
p+1 in

a filtration 0 ⊂ Fnn ⊂ · · · ⊂ Fn0 = Hn(G,M) of Hn(G,M).

Rough sketch of proof. The spectral sequence will arise from a double com-

plex that we construct as follows. Let X
∂−→ R be a projective RG-resolution

and let Y
∂′−→ R be a projective R(G/N)-resolution. Then X → R is also

an projective RN -resolution. Recall that G acts on HomRN (X,M) by set-
ting (gf)(x) = g(f(g−1x)). Since N acts trivially, we obtain a R-linear
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action of G/N on HomRN (X,M), making HomRN (X,M) into a complex of
R(G/N)-modules. Form the double complex

Epq0 = HomR(G/H)(Yp,HomRN (Xq,M))

with

d0 = Hom(∂′p,Hom(id, id)),

d1 = (−1)pHom(id,Hom(∂q, id)).

The double complex gives rise to two spectral sequences. One may verify
that the first spectral sequence has E2 page H∗(G/H,H∗(H,M)). It turns
out that the second spectral sequence has a very simple form, most of the
E2 page is trivial, which makes it possible to identify the cohomology of the
total complex with H∗(G,M). See [7, Section 7.2].

As indicated the spectral sequence behaves well with respect to the cup-
product structure. A proof can be found in [7, Section 7.3].

Theorem 4.3. Let M = R. Then the spectral sequence can be endowed with
a bilinear product Ep,qr × Es,tr → Ep+s,q+tr such that

1. each dr is a derivation and the product on the Er+1 page is induced by
the product on the Er page,

2. the multiplicative structure on the E2 page agrees up to sign with the
cup-product in H∗(G/N,H∗(N,R)),

3. the cup-product in H∗(G,R) restrict to maps Fmp ×Fns → Fm+n
p+s . These

induce quotient maps Ep,m−p∞ × Es,n−s∞ → Ep+s,m+n−p−s
∞ which agree

with the product on the E∞ page.

We have a map

Hn(G/N,MN ) ∼= En,02 → En,03 → · · · → En,0∞
∼= Fnn ⊆ Hn(G,M)

since En,0i
∼= En,0i−1/Im(di−1). Likewise, we have a map

Hn(G,M)→ Hn(G,M)/Fn1
∼= E0,n

∞ ↪→ E0,2
2
∼= Hn(N,M)G/N ⊆ Hn(N,M)

since we have inclusions E0,n
i = ker(di−1) ⊆ E0,n

i−1. These maps are called
edge homomorphisms and the following theorem provides an identification
of theme. For a proof, see [7, Prop. 7.2.2].

Theorem 4.4. Let G be a group, let N be a normal subgroup and let M be
a G-module. The horizontal edge homomorphism

H∗(G/N,MN ) ∼= E∗,02 → E∗,0∞ ⊆ H∗(G,M)

is infG/N,G. The vertical edge homomorphism

H∗(G,M)→ E0,∗
2
∼= H∗(N,M)G/H ⊆ H∗(N,M)

is resG,N .
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4.2 The Quillen-Venkov Lemma

Let G be a finite group and let p be a fixed prime.

Theorem 4.5 (The Quillen-Venkov Lemma). Suppose α ∈ H∗(G,Fp) and
α restricts to zero on every elementary abelian p-subgroup of G. Then α is
nilpotent.

Let v be a non-zero element in H1(G,Fp) = Hom(G,Fp), hence v : G→ Fp
is surjective. Let G′ denote the kernel of v, thus G/G′ ∼= P , where P is a
cyclic group of order p. Before we can prove the Quillen-Venkov Lemma we
need the following result.

Lemma 4.6. If u ∈ H∗(G,Fp) restricts to zero on G′, then u2 ∈ H∗(G,Fp) ·
β(v), where β is the Bockstein homomorphism.

Proof of lemma. By Theorem 4.2, there exists a spectral sequence converg-
ing to H∗(G,Fp) with

Ep,q2 = Hp(P,Hq(G′,Fp)).

As usual let ν ∈ H1(P,Fp) = Hom(P,Fp) denote the generator characterized
by ν(x) = 1, where P = 〈x〉 and let ε = β(ν) ∈ H2(P,Fp). Since the long
exact sequence in cohomology is natural, the following diagram commutes

Hom(P,Fp) Hom(G,Fp)

H2(P,Fp) H2(G,Fp),

◦v

ββ

v∗

hence v∗(ε) = β(v). Since ε ∈ H2(P,Fp) = E2,0
2 and d2,0r = 0 for all r, the

element ε represents a residue class in E2,0
r which we will denote εr. The

multiplicative structure on the spectral sequence induces a map on each page

Ep,qr
·εr−−→ Ep+2,q

r .

Since dr(xεr) = xdr(εr) + (−1)2dr(x)εr = dr(x)εr for x ∈ Ep,qr , the map
commutes with the differentials. We claim that the map is surjective for
p ≥ 0 and injective for p ≥ r − 1 and in order to prove this we proceed by
induction on r. It is true for r = 2, since it is the map

Hp(P,Hq(G′,Fp))
·ε−→ Hp+2(P,Hq(G′,Fp)),

which we investigated in Example 2.5. Now assume that the statement holds
on the r− 1’th page. Given an element x ∈ Ep+2,q

r , choose an inverse image
x ∈ Ep+2,q

r−1 such that dr−1(x) = 0. By the inductive hypothesis x = yεr−1 for
some y ∈ Ep,qr−1. Then dr−1(y)εr−1 = dr−1(yεr−1) = 0 and since dr−1(y) ∈
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Ep+r−1,q−r+2
r−1 it follows from the inductive hypothesis about injectivity that

dr−1(y) = 0. Thus y ∈ Ep,qr is an element with yεr = x, so multiplication
by εr is indeed surjective. Next, let x ∈ Ep,qr with p ≥ r − 1 such that
xεr = 0. Choose an inverse image x ∈ Ep+2,q

r−1 such that dr−1(x) = 0. Then

xεr−1 = dr−1(y) for some y ∈ Ep−r+3,q+r
r−1 . Since p− r+ 3 ≥ 2, we may write

y = zεr−1 for some z ∈ Ep−r+1,q+r
r−1 by the inductive hypothesis. Then

(x− dr−1(z))εr−1 = dr−1(y)− dr−1(zεr−1) = 0

and by injectivity x = dr−1(z), hence x = 0 as desired.

By decreasing induction on s we see that Fns · β(v) = Fn+2
s+2 . Indeed, by

Theorem 4.3 multiplication by ε∞ on the E∞ page is induced by multipli-
cation by v∗(ε) = β(v) on the filtration coefficients, hence

Fn+2
n+2 = En+2,0

∞ = En,0∞ · ε∞ = Fnn · β(v).

Next, assume that the statement holds for s+ 1. Since

Fn+2
s+2 /F

n+2
s+3 = Es+2,n−s

∞ = Es,n−s∞ · ε∞ = Fns /F
n+1
s+1 · ε∞

the equality follows. Finally, if u ∈ H∗(G,Fp) restricts to zero on G′ then, by
Theorem 4.4, u ∈ F i1 for some i ≥ 0. Hence u2 ∈ F i2 = H i(G,Fp) · β(v).

Proof of theorem 4.5. We do induction on the order of G, hence we may as-
sume that the theorem is true for groups of smaller order. Let u ∈ H∗(G,Fp)
restrict to zero on any elementary abelian p-subgroup. By assumption the
restriction of u to any proper subgroup H < G is nilpotent. By raising u to a
power if necessary, we may assume that u restrict to zero on any proper sub-
group. If G is not a p-group, then u restrict to zero on a Sylow-p-subgroup
P , hence u = 0 by Corollary 2.7, and the theorem holds. Next assume
that G is a p-group. If G is elementary abelian the theorem trivially holds,
hence we assume further that G is not elementary abelian. For any non-zero
v ∈ H1(G,Fp) the restriction of u to the kernel of v is zero, hence by the
lemma, u2 is divisible by β(v). Thus for any sequence of non-zero elements
v1, . . . , vm ∈ H1(G,Fp), u2m is divisible by

∏
β(vi). By Serre’s Theorem 3.9

there exists such a sequence with
∏
β(vi) = 0, hence u is nilpotent.

Let k be a field of characteristic p. Since we have a k-algebra isomorphism
H∗(G,Fp) ⊗Fp k

∼= H∗(G, k), we are able to expand the previous result to
hold k-coefficients in general.

Corollary 4.7. Let k be a field of characteristic p. Then the product of the
restriction maps

ΠresG,E : H∗(G, k)→
∏
E≤G

H∗(E, k)

has nilpotent kernel.
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Proof. Let y ∈ H∗(G, k) be a homogeneous element with trivial image. We
may write y = x⊗ s with x ∈ H(G,Fp) and s ∈ k. If s = 0, then y = 0. If
s 6= 0, then the element (1 ⊗ s−1)(x ⊗ s) = x ⊗ 1 also restricts to zero. By
Theorem 4.5, x is nilpotent and therefore y is nilpotent as desired.

4.3 The Krull Dimension of H(G, k)

Let k denote a field of characteristic p. The cohomology ring H∗(G, k) is
graded commutative. The area of commutative ring theory provides a very
rich setting for investigating the cohomology rings, so we face the problem
of either reinterpreting the classical concepts in a graded setting or some-
how alternate our objects to obtain a strictly commutative structure. We
have chosen the last option. Let H(G, k) denote the usual cohomology ring
H∗(G, k) if p = 2, and the subring ring of elements of even degree Hev(G, k)
if p > 2. Then H(G, k) is a commutative k-algebra. Recall that if E is an
elementary abelian p-group, then

H∗(E, k) ∼=
{
S(E∗, 1) if p = 2,
Λ(E∗, 1)⊗k S(E∗, 2) if p > 2,

where E∗ = Hom(E, k). Hence

H(E, k) ∼=
{
S(E∗, 1) if p = 2,
S(E∗, 2)⊕ J if p > 2,

where J is the nilpotent ideal generated by H1(E, k)2 ⊂ H2(E, k).

Definition 4.8. Let A be a commutative ring. The Krull dimension of A,
denoted dimA, is the largest number of sharp inclusion appearing in a chain
of prime ideals

p1 ⊂ p2 ⊂ · · · ⊂ pn

in A. If no such upper bound exists, we set dimA =∞.

We have gathered some basic facts about Krull dimension in the appendix
section A.2. In particular dimk[x1, . . . , xn] = n, thus if E is an elementary
abelian p-group of rank n, then dimH(E, k) = n. Now we may prove the
first theorem relating the cohomology ring of G to the elementary abelian
p-subgroups of G.

Theorem 4.9. The Krull dimension of H(G, k) is equal to the maximal
rank of an elementary abelian p-subgroup in G.

Proof. The restriction map induces a map on subrings

ΠresG,E : H(G, k)→
∏
E≤G

H(E, k).
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By Corollary 4.7, the kernel is nilpotent. Since a prime ideal must contain
all nilpotent elements it follows that dimH(G, k) = dim (ΠresH(G, k)). By
Corollary, 1.16 H∗(E, k) is finitely generated as a module over ΠresH∗(G, k),
thus the same holds for the product ring. By Theorem A.16 in the appendix,
this still holds when we pass to the subrings of even degree elements, hence∏
E≤GH(E, k) is integral over Πres (H(G, k), so by Theorem A.11 the two

rings have the same dimension. Since the dimension of a product of rings is
the maximal dimension amongst the factors, the theorem follows.
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5 Quillen’s Stratification Theorems

In this section we prove Quillen’s Stratification Theorems, which states that
the maximal ideal spectrum of H∗(G, k) decomposes into disjoint pieces
corresponding to the elementary abelian p-subgroups of G and gives a very
nice description of the pieces going into the decomposition. We will start
this section with a brief introduction to algebraic geometry. Throughout
this section k will denote an algebraically closed field of characteristic p,
and all rings are assumed to be finitely generated commutative k-algebras.

5.1 A Brief Introduction to Algebraic Geometry

The maximal ideal spectrum Let A be a finitely generated commu-
tative k-algebra and let max(A) denote the set of maximal ideals in A. If
I ⊆ A is an ideal, let V (I) ⊆ max(A) be the set of maximal ideals contain-
ing I. The V (I)’s form the closed sets of a topology on max(A), called the
Zariski topology. The maximal ideal spectrum of A is the topological space
max(A) with the Zariski topology.

If f ∈ A we write V (f) for the closed set given by the principal ideal (f).
Let Xf = max(A)− V (f), hence Xf consists of all maximal ideals not con-
taining f . The sets Xf form an open basis for the topology on max(A).

Since A is a finitely generated commutative k-algebra, A has the form
k[x1, . . . , xn]/IA for some ideal IA in the polynomial ring k[x1, . . . , xn]. Thus
the maximal ideals in A are in one-to-one correspondence with the maximal
ideals in k[x1, . . . , xn] containing IA. Each point (a1, . . . , an) ∈ Ank , where
Ank denotes the affine space of dimension n over k, determines a surjective
k-algebra homomorphism

k[x1, . . . , xn]→ k given by xi 7→ ai,

and the kernel is a maximal ideal in k[x1, . . . , xn]. Since polynomial functions
separate points in Ank , distinct points give rise to distinct maximal ideals.
Moreover, it follows from Hilbert’s Nullstellensatz that every maximal ideal
in the polynomial ring k[x1, . . . , xn] is determined by a point (a1, . . . , an) ∈
Ank as above. The maximal ideal determined by φ : k[x1, . . . , xn] → k will
contain IA if and only if φ factors through k[x1, . . . , xn]/IA. Thus there is a
one-to-one correspondence

Homk-alg(A, k) ∼= max(A).

It is natural to view an element a ∈ A as a function on max(A) by evaluating
the corresponding algebra homomorphism at a. Let I be an ideal in A. With
this interpretation, the set V (I) corresponds to the subset of max(A) where
I vanishes.
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Induced Maps Let φ : A → B be a k-algebra homomorphism and let
m ∈ max(B). Then φ−1(m) is a maximal ideal in A, hence φ induces a map
of maximal ideal spectra

φ∗ : max(B)→ max(A).

It is clear that (φ∗)−1(Xf ) = Xφ(f) for all f ∈ A, hence φ∗ is continuous.

Remark 5.1. Let I ⊂ A be an ideal. The quotient map A→ A/I induces a
map on maximal ideal spectra max(A/I)→ max(A), which is easily seen to
be a homeomorphism onto the closed set V (I) ⊂ max(A). Let f ∈ A be non-
nilpotent. One may verify that the canonical map A → A[f−1] induces a
homeomorphism of max(A[f−1]) onto its image. The image of max(A[f−1])
is the open set Xf , so this gives a very nice description of the basis elements
of the Zariski topology.

Theorem 5.2. Let A ⊆ B with B integral over A. Then the map induced
by the inclusion i∗ : max(B)→ max(A) is a surjective, closed map.

Proof. The induced map i∗ : max(B)→ max(A) is given by

m 7→ m ∩A.

By Theorem A.7, this map is surjective. If I is an ideal in B we claim that
i∗(VB(I)) = VA(I∩A). If m ∈ VB(I) then by definition we have I ⊆ m, hence
I ∩A ⊆ m∩A, hence m∩A ∈ VA(I ∩A). Conversely, if m ∈ VA(I ∩A) then
m corresponds uniquely to a maximal ideal m/(I ∩ A) in A/(I ∩ A). Since
B/I is integral over A/(I ∩ A) there exists some maximal ideal m′ ∈ VB(I)
such that (m′/I) ∩ (A/(I ∩A)) = m/(I ∩A). Since

(m′ ∩A)/(I ∩A) =
(
m′/I

)
∩ (A/(I ∩A)) = m/(I ∩A),

the maximal ideals m′∩A and m correspond to the same ideal in the residue
ring, hence m′ ∩A = m. Thus m ∈ i∗(VB(I)) as desired.

Given a finitely generated commutative k-algebra A, we write A[pa] for the
subring consisting of the pa’th power of elements in A. We have the following
corollary to the above theorem.

Corollary 5.3. Let A ⊆ B such that B[pa] ⊆ A for some a ≥ 0. Then the
induced map i∗ : max(B)→ max(A) is a homeomorphism.

Proof. Clearly the inclusion B[pa] ⊆ A is integral, and in fact so is the inclu-
sion A ⊆ B. Indeed, if b ∈ B then b is root in the monic polynomial xp

a−bpa

which has coefficients in A. Thus the induced maps on maximal ideal spectra
are continuous, closed and surjective, hence so is the composition

max(B)→ max(A)→ max(B[pa]).
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The composition is induced by the inclusion B[pa] ↪→ B. Since k is an
algebraically closed field of characteristic p, it is perfect, hence the Fröbenius
map s 7→ sp

a
is an isomorphism on k. Let φ, ψ ∈ Homk-alg(B, k) such that

φ(b) 6= ψ(b) for some b ∈ B. Then φ(bp
a
) 6= φ(bp

a
), hence φ and ψ have

different images in max(B[pa]) as desired. Thus the induced map is a closed
bijection, hence a homeomorphism.

Suppose a finite group G acts as automorphisms on a finitely generated
commutative k-algebra A and let m ∈ max(A). By letting g · m = g(m) we
obtain a G-action on the maximal ideal spectra.

Theorem 5.4. Suppose a finite group G acts as automorphisms on a finitely
generated commutative k-algebra A. Then the fixed point subalgebra AG is a
finitely generated k-algebra over which A is integral. The variety max(AG)
is the quotient of max(A) by the action of G.

Proof. Let a ∈ A and consider the monic polynomial

fa(x) =
∏
g∈G

(x− g(a)),

which has coefficients in AG. Since fa(a) = 0, A is integral over AG. Choose
a finite set {a1, . . . , an} of k-algebra generators of A and consider the monic
polynomials {fa1 , . . . , fan}. Let B be the subalgebra of AG generated by
all coefficients appearing in the polynomials. Then B is a finitely generated
k-algebra, hence Noetherian. Since each generator ai is integral over B, it
follows from Corollary A.3 that A = k[a1, . . . , an] is a finitely generated B-
module. Then the sub-B-module AG is finitely generated as a B-module as
well and is therefore a finitely generated k-algebra.

By Theorem 5.2 the inclusion AG ↪→ A induces a surjective map max(A)→
max(AG). It is clear that if m and m′ are G-conjugate maximal ideals in A,
then m ∩AG = m′ ∩AG. Thus the map factors as

max(A)→ max(A)/G
i−→ max(AG)

with i surjective. Assume that m and m′ are maximal ideals in A, which
are not G-conjugate. Then there exists a ∈ m such that a /∈ g(m′) for any
g ∈ G. Otherwise, we would have m ⊆ ∪g∈Gg(m′), and since the union is
finite m ⊆ g(m′) for some g ∈ G. Hence

∏
g∈G g(a) is an element of AG lying

in m but not in m′. We conclude that i is a continuous closed bijection and
therefore a homeomorphism.

5.2 Quillen’s Stratification Theorems

Let G be a finite group and let k be an algebraically closed field of charac-
teristic p. Again, H(G, k) denotes H∗(G, k) if p = 2 and Hev(G, k) if p > 2.
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Recall that if E is an elementary abelian p-group, then

H(E, k) ∼=
{
S(E∗, 1) if p = 2,
S(E∗, 2)⊕ J if p > 2,

where J is the nilpotent ideal generated by H1(E, k)2 ⊂ H2(E, k).

Let VG denote the maximal ideal spectrum of H(G, k). If H is a subgroup
of G, we have a restriction map resG,H : H(G, k)→ H(H, k), which induces
a map of maximal ideal spectra res∗G,H : VH → VG.

Theorem 5.5. We have

VG =
⋃
E≤G

res∗G,EVE ,

where E ranges over all elementary abelian p-subgroups of G.

Proof. By Corollary 4.7, the product of the restriction maps

ΠresG,E : H(G, k)→ Πres (H(G, k) ↪→
∏
E≤G

H(E, k)

has nilpotent kernel, hence the left map induces a surjective map on spec-
tra. As noted in the proof of Theorem 4.9,

∏
E≤GH(E, k) is integral over

Πres (H(G, k), so the right map induces a surjective map on spectra by
Theorem 5.2, and the theorem follows.

The Quillen Stratification Theorems 5.9 and 5.10 are refinements of the
above theorem.

Remark 5.6. Let E ≤ G be an elementary abelian p-subgroup and consider
the image res∗G,E(VE) ⊆ VG. We claim that

res∗G,E(VE) = V (ker(resG,E)) ⊆ VG,

in particular res∗G,E(VE) is a closed subset of VG. It is clear that any max-
imal ideal in res∗G,E(VE) must contain the kernel of the restriction map.
Conversely, let m be a maximal ideal in H(G, k) such that ker(resG,E) ⊆ m.
We have the following commutative diagram, where the lower map is an
isomorphism

H(G, k) H(E, k).

H(G, k)/ker(resG,E) resG,E (H(G, k))

resG,E
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Thus m corresponds uniquely to a maximal ideal m in resG,E (H(G, k)).
Since H(E, k) is integral over resG,E (H(G, k)), it follows from Theorem A.7
and Theorem A.5, that there exists a maximal ideal m′ in H(E, k) such that
m′ ∩ resG,E (H(G, k)) = m. Hence res∗G,E(m′) = m.

Remark 5.7. Now it is easily seen why we must restrict our attention to
conjugacy classes of elementary abelian p-subgroups if we hope to use the
sets res∗G,E(VE) to construct a decomposition of VG. If g ∈ G then we have
an obvious commutative diagram

E gEg−1

G G,

g

g

where g is conjugation. Since g induces the identity onH(G, k), the following
two maps are identical

resG,E : H(G, k)→ H(E, k),

g∗ ◦ resG,gEg−1 : H(G, k)→ H(gEg−1, k)→ H(E, k).

In particular ker(resG,gEg−1) = ker(resG,E), so by the above discussion

res∗G,E(VE) = res∗G,gEg−1(VgEg−1).

Recall that β denotes the composition

H1(E,Fp)
β−→ H2(E,Fp) ↪→ H2(E, k).

Define an element in H(E, k) by

σE =

{ ∏
β(ε) if p > 2,∏
ε if p = 2,

where ε ranges over all non-trivial elements in H1(E,Fp) = Hom(E,Fp).
Clearly σE is invariant under any automorphism of E. Moreover, since
every proper subgroup F < E is contained in a subspace of codimension 1,
and all these subspaces occur as kernels of homomorphisms in Hom(E,Fp),
the restriction of σE to any proper subgroup is trivial.

Lemma 5.8. Suppose that E is an elementary abelian p-subgroup of G such
that |NG(E) : E| = pαh, where (p, h) = 1. Then the following hold:

1. If y ∈ H(E, k) is invariant under the action of NG(E), then there
exists an element y′ ∈ H(G, k) with resG,E(y′) = (σE · y)p

α
.
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2. There exists an element ρE ∈ H(G, k) such that resG,E(ρE) = (σE)p
α

,
and such that if E is not conjugate to a subgroup of an elementary
abelian p-group E′, then resG,E′(ρE) = 0.

Proof. To proof the first statement, let y ∈ H(E, k)NG(E). Without loss of
generality we may assume that y is homogeneous and we let

z = NE,G(1 + σEy).

By the double coset formula, Theorem 3.3 part 3,

resG,E(z) =
∏
g∈D

N(gEg−1∩E),E(resgEg−1,(gEg−1∩E)(1 + g∗(σEy))),

where G = ∪g∈DEgE is a double coset decomposition. Now g∗ carries
Hom(E,Fp) isomorphically onto Hom(gEg−1,Fp), hence g∗(σE) = σgEg−1 .
Since the restriction of σgEg−1 to any proper subgroup is zero, the only terms
in the product, which are not equal to 1, are those for which gEg−1 = E,
i.e., those indexed by g ∈ NG(E). Since y is invariant under the action of
NG(E), g∗(σEy) = σE · y for all g ∈ NG(E), hence

resG,E(z) = (1 + σEy)p
αh = (1 + (σEy)p

α
)h

= 1 + h(σEy)p
α

+ terms of higher degree.

Now take y′ as the homogeneous part of z of degree pαdeg(σEy) divided by h.

To prove the second statement, choose y = 1 and write ρE for the ele-
ment y′ obtained as above. Let E′ be an elementary abelian p-subgroup.
By the double coset formula, Theorem 3.3 part 3,

resG,E′(z) =
∏
g∈D

N(gEg−1∩E′),E′(resgEg−1→(gEg−1∩E′)(1 + g∗(σE))).

If E is not conjugate to any subgroup of E′ then for all g ∈ D

resgEg−1→gEg−1∩E′(g
∗(σE)) = 0,

hence resG,E′(z) = 1 and resG,E′(ρE) = 0 as desired.

Define
V +
E = VE −

⋃
F<E

res∗E,FVF ,

where F ranges over all proper subgroups of E. Since every proper subgroup
is contained in a subspace of codimension 1, we may restrict the above union
to Fp-hyperplanes. Let F denote such a hyperplane. There are exactly p−1
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homomorphisms in Hom(E,Fp) ⊂ Hom(E, k) = E∗ with kernel F . Now let
νF be such a homomorphism. Since

S(E∗) ∩ ker(resE,F ) = (νF ),

where (νF ) denotes the principal ideal generated by νF , res∗E,F (VF ) consists
of all maximal ideals in H(E, k) which contain νF . Thus

⋃
F<E res∗E,FVF

consists of all maximal ideals in H(E, k) containing the element∏
νF .

F is a Fp-hyperplane

If we for each F replace νF with the product of all p− 1 homomorphisms in
Hom(E,Fp) having F as kernel, we do not change the closed set, hence⋃

F<E

res∗E,FVF = V (σE) .

Thus V +
E corresponds to the maximal ideals of H(E, k) not containing σE ,

and the inclusion H(E, k) ↪→ H(E, k)[σ−1E ] induces a homeomorphism

max
(
H(E, k)[σ−1E ]

)
−→ V +

E .

Define

V +
G,E = res∗G,E(VE)−

⋃
F<E

res∗G,F (VF ).

Clearly V +
G,E ⊆ res∗G,E(V +

E ). Let U be the subset of all ideals in res∗G,E(VE)
not containing ρE . Note that all ideals in the union

⋃
F<E res∗G,F (VF ) contain

ρE . Indeed, since E is not conjugate to a subgroup of F , the second part of
Lemma 5.8 implies that resG,F (ρE) = 0, so U ⊆ V +

G,E . Since resG,E(ρE) =

σp
α

E , it is clear that resG,E(V +
E ) ⊆ U . Thus we may conclude that

V +
G,E = resG,E(V +

E ) = U.

Note that V +
G,E is locally closed since it is the intersection of the closed set

res∗G,E(VE) and the open set VG − V (ρE).

Theorem 5.9. The maximal ideal spectrum VG is the disjoint union of
the locally closed subsets V +

G,E, one for each conjugacy class of elementary

abelian p-subgroups E in G. Moreover, V +
G,E is itself homeomorphic to the

maximal ideal spectrum of a suitably chosen ring.

Proof. It is clear from Theorem 5.5 and the discussion above that

VG =
⋃
E∈I

V +
G,E ,
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where I denotes a family of elementary abelian p-subgroups, one from each
conjugacy class. To see that the sets V +

G,E are disjoint, let E,E′ ∈ I, hence
E and E′ are not conjugate. If E is conjugate to a subgroup F ′ < E′, then
res∗G,E(VE) = res∗G,F ′(V

′
F ), hence V +

G,E and V +
G,E′ are disjoint by definition. If

E is not conjugate to a subgroup of E′, then by the second part of Lemma
5.8, resG,E′(ρE) = 0, hence everywhere zero on V +

G,E′ . Since V +
G,E is the

intersection of res∗G,E(VE) and VG − V (ρE), ρE is everywhere non-zero on

V +
G,E , thus the sets are disjoint.

By the second part of Lemma 5.8, the restriction resG,E : H(G, k)→ H(E, k)
induces a map on fraction rings

resG,E : H(G, k)[ρ−1E ]→ H(E, k)[σ−1E ],

so resG,H induces an isomorphism of rings

(H(G, k)/ker(resG,E)) [ρ−1E ]
∼−→ resG,E

(
H(G, k)[ρ−1E ]

)
.

The composition

H(G, k)→ H(G, k)/ker(resG,E) ↪→ (H(G, k)/ker(resG,E)) [ρ−1E ]

induces a homeomorphism onto the set of maximal ideals in H(G, k) which
contain the kernel ker(resG,E) but do not contain ρE . This is exactly V +

G,E .
Hence we have a homeomorphism induced by the restriction map

V +
G,E −→ max

(
resG,E

(
H(G, k)[ρ−1E ]

))
.

Recall that g ∈ NG(E) acts on H(E, k) as an automorphism g∗ : H(E, k)→
H(E, k). An element in the centralizer CG(E) acts trivially, so we obtain
an action of WG(E) = NG(E)/CG(E) on H(E, k).

Theorem 5.10. The group WG(E) = NG(E)/CG(E) acts on V +
E and the

restriction map induces a homeomorphism

V +
E /WG(E)→ V +

G,E .

Proof. As before we have a map of fraction rings

resG,E : H(G, k)[ρ−1E ]→ H(E, k)[σ−1E ].

Since WG(E) acts trivially on H(G, k), we must have

resG,E
(
H(G, k)[ρ−1E ]

)
⊆
(
H(E, k)[σ−1E ]

)WG(E)
. (?)
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By the first part of Lemma 5.8, we have an inclusion((
H(E, k)[σ−1E ]

)WG(E)
)[pα]

⊆ resG,E
(
H(G, k)[ρ−1E ]

)
.

Hence by Theorem 5.3, the inclusion (?) induces a homeomorphism

max
((
H(E, k)[σ−1E ]

)WG(E)
)
−→ max

(
resG,E

(
H(G, k)[ρ−1E ]

))
.

By Theorem 5.4, the left hand side is homeomorphic to the quotient of V +
E

by the action of WG(E), and we saw in the proof of Theorem 5.9 that the
right hand side is homeomorphic to V +

G,E via the restriction map.

In order to further describe the maximal ideal spectrum of H(G, k), we
consider the following category.

Definition 5.11. Let CG denote the category whose objects are the elemen-
tary abelian p-subgroups of G and whose morphisms are all group homo-
morphisms which can be induced by conjugation by an element in G. Hence
a group homomorphism ϕ : E → E′ is a morphism in CG if there exists a
g ∈ G such that ϕ(e) = geg−1 for all e ∈ E.

Define a functor from CG to the category of topological spaces by

E 7→ VE , (E
ϕ−→ E′) 7→ (VE

ϕ∗−→ V ′E).

We saw in Remark 5.7 that for all elementary abelian p-subgoups E ≤ G
and g ∈ G, we have resG,E = g∗ ◦ resG,gEg−1 . Hence the restriction maps
res∗G,E : VE → VG induce a map colimEVE → VG.

Theorem 5.12. The map

colim
E

VE → VG

induced by the restriction maps is a homeomorphism.

Proof. By definition

colim
E

VE =
⊔
E≤G

VE/ ∼

where ∼ is the equivalence relation generated by the relation that identifies
xE ∈ VE and xE′ ∈ VE′ if there exists a morphism in CG, ϕ : E → E′, such
that ϕ∗(xE) = xE′ . If two subgroups are conjugated, they are identified by
that conjugation morphism in CG, hence we may restrict the disjoint union
to a family I of elementary abelian subgroups, one from each conjugacy
class. Likewise, we may replace VE by V +

E since this overlap arises from the
inclusions in CG. Hence

colim
E

VE =
⊔
E∈I

V +
E / ∼ .
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The only identifications left are those arising from conjugation of smaller
subgroups into bigger subgroups, hence

colim
E

VE =
⊔
E∈I

V +
E /WG(E).

Theorem 5.10 implies that the restriction map induces a homeomorphism
V +
E /WG(E) → V +

G,E , and since VG is the disjoint union of the pieces V +
G,E ,

the theorem follows.

52



6 Quillen’s F -Isomorphism

Consider the product of the restriction maps

ΠresG,E : H(G,Fp)→
∏
E≤G

H(E,Fp).

We have seen that the kernel of this map is nilpotent. It is clear that ele-
ments in the target of this map must satisfy certain compatibility conditions
related to inclusions and conjugations in G. Define a functor from CopG to
the category of graded Fp-algebras by

E 7→ H(E,Fp), α 7→ α∗.

We saw in Remark 5.7 that resG,E = g∗ ◦ resG,gEg−1 for all g ∈ G. Hence
the restriction maps induce a homomorphism

qG : H(G,Fp)→ lim
E
H(E,Fp),

which we shall call the Quillen homomorphism. The purpose of this section
is to show the following theorem.

Theorem 6.1. The Quillen homomorphism

qG : H(G,Fp)→ lim
E
H(E,Fp)

is an F -isomorphism.

Theorem 5.12 from the previous section is actually equivalent to the theorem
above. We reformulate Theorem 5.12 below and the rest of this section is oc-
cupied with showing the equivalence of the two statements. This equivalence
was established by Quillen in his paper [16, prop. B.8, B.9].

Theorem 6.2. The Quillen homomorphism qG : H(G,Fp) → lim
E
H(E,Fp)

induces a bijection

q∗G : HomFp-alg(lim
E
H(E,Fp), k)→ HomFp-alg(H(G,Fp), k)

for all algebraically closed fields k of characteristic p.

It is not true in general that the functor HomFp-alg(−, k) take limits to
colimits, but in this case the canonical map

colim
E

HomFp-alg(H(E,Fp), k)
∼=−→ HomFp-alg(lim

E
H(E,Fp), k)

is indeed a bijection. For a proof, see [16, Lemma 8.11]. The proof uses that
the category CG is finite and that all the rings in question are finite modules
over the Noetherian ring H(G,Fp).
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Proof of theorem 6.2. We have an isomorphism of k-algebras H(G, k) ∼=
H(G,Fp)⊗Fp k, giving us a bijection of sets

HomFp-alg(H(G,Fp), k) ∼= Homk-alg(H(G, k), k)
∼= VG.

Likewise, we have a bijection of sets

HomFp-alg(lim
E
H(E,Fp), k) ∼= colim

E
HomFp-alg(H(E,Fp), k)

∼= colim
E

Homk-alg(H(E, k), k)

∼= colim
E

VE .

Under these identifications the Quillen homomorphism qG : H(G,Fp) →
lim
E
H(E,Fp) corresponds to the map VG → colim

E
VE induced by the restric-

tion maps res∗G,E . This is a homeomorphism by Theorem 5.12, hence q∗G is
bijective.

We proceed to show the equivalence of the two theorems. For the rest of
this section we assume that all rings are Fp-algebras.

Theorem 6.3. Let A be a Noetherian ring and let f : A→ B be homomor-
phism such that B is finitely generated as a module over the image of A.
Then the induced map

f∗ : HomFp-alg(B, k)→ HomFp-alg(A, k)

is a bijection for all algebraically closed fields k of characteristic p, if and
only if f is an F -isomorphism.

If p be a prime ideal in A, then the integral domain A/p embeds in its field
of fractions Q(A/p). Fields of this form are referred to as residue fields of
A. Letting Q(A/p) denote the algebraic closure, the composition

φp : A→ A/p ↪→ Q(A/p) ↪→ Q(A/p)

is a ring homomorphism from A to an algebraically closed field of charac-
teristic p with kernel p.

Lemma 6.4. Let A ⊆ B with A Noetherian and B finitely generated as a
module over A. Suppose that the map induced by the inclusion

HomFp-alg(B, k)→ HomFp-alg(A, k)

is a bijection for all algebraically closed fields k of characteristic p. Then
for each prime ideal p in A, there exists a unique prime ideal q in B such
that q ∩ A = p. Moreover, for each such p and q, (B/q)[p

a] is contained in
the residue field of A/p for some a ≥ 0.
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Before we prove the lemma we recall some basic facts about field extensions.

Definition 6.5. Let L ⊆ K be a finite field extension of a field of char-
acteristic p. An element a ∈ K is said to be purely inseparable over L if
there is an integer m ≥ 0 such that ap

m ∈ L. We call the extension purely
inseparable, if every element in K is purely inseparable over L.

Given a finite normal extension L ⊆ K, we let G(K/L) be the set of all
L-automorphisms of K. The order of the group G(K/L) is closely related
to the separability of the extension L ⊆ K, in particular one may prove that
the extension is purely inseparable if and only if G(K/L) is trivial. The
relation between the two concepts that we shall need is contained in the
following theorem. A proof can be found in [12, Chapter I, Thm. 21].

Theorem 6.6. Let L ⊆ K be a finite normal extension. Let a ∈ K and
suppose that a is left fixed by each element of G(K/L). Then a is purely
inseparable over L.

Proof of Lemma 6.4. Let p be a prime ideal in A. Since B is finitely gener-
ated as an A-module, it follows from Theorem A.7 that there exists a prime
ideal q in B with q ∩ A = p. We want to show that q is unique with this
property. Let q1 and q2 be prime ideals in B such that

q1 ∩A = q2 ∩A = p.

Consider the commutative diagram

B Q(B/q1)

A Q(A/p)

B Q(B/q2).

φq1

φp

φq2

.

Since an algebraically closed field has no proper finite extensions,

Q(A/p) = Q(B/q1) = Q(B/q2).

By assumption, the map φp factors uniquely through B, hence φq1 = φq2
and therefore q1 = q2 as desired.

Let p be a prime ideal in A and let q be the unique prime ideal in B lying
over A. Consider the finite field extension Q(A/p) ⊆ Q(B/q). Let Q(B/q)N
denote the normal closure of Q(B/q) which is a finite field extension of
Q(A/p). We have the following commutative diagram
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A B

Q(A/p) Q(B/q) Q(B/q)N Q(A/p).

φp φq

Let x ∈ Q(B/p). If there exists a Q(A/p)-automorphism of Q(B/q)N which
does not fix x, then the map A→ Q(A/p) allows two distinct factorizations
through B. This is false by assumption, hence no such automorphism exists.
By Theorem 6.6 the extension Q(A/p) ⊆ Q(B/q) is purely inseparable,

hence for each x ∈ B/p there exists some b ≥ 0 such that xp
b ∈ Q(A/p).

Since B/p is finitely generated as a module over A/p, there exists some a ≥ 0
such that (B/p)[p

a] ⊆ Q(A/p).

Proof of Theorem 6.3. Let a ∈ A be non-nilpotent. Since the intersection
of all prime ideals in A equals the ideal of nilpotent elements, there exists
some prime ideal p in A such that a /∈ p. By assumption there exists some
ψ : B → Q(A/p) such that ψ ◦ f = φp, thus a is not in the kernel of f .

We may divide out by the nil-radicals and reduce to the case where f is
an inclusion. Consider the ideals in A given by

Id =
{
a ∈ A | a

(
B[pd]

)
⊆ A

}
.

Let a ∈ Id. Then for all b ∈ B, abp
d+1

= a(bp)p
d ∈ A, hence Id ⊆ Id+1, so

the ideals form an ascending chain. Since A is Noetherian there exists some
d such that Id′ = Id for all d′ ≥ d. Our claim is that Id = A. Assume for
contradiction that Id is a proper ideal in A. Since A is Noetherian, Id allows
a primary decomposition, so we may choose a minimal prime ideal p in A
containing Id. It is clear that (Id)p = (Id′)p for all d′ ≥ d. One may verify
that for each d′

(Id′)p =
{
a ∈ Ap | a

(
B

[pd]
p

)
⊆ Ap

}
.

The localization of Id is a proper ideal in Ap. If 1 ∈ (Id)p, then 1 = a
τ for

some a ∈ Id and τ ∈ A − p, hence τ ′τ = τ ′a for some τ ′ ∈ A − p. But this
is impossible since the left hand side is in A − p, while the right hand side
is in p. Because of the minimality of p, there are no prime ideals strictly
contained in p that contain Id. Hence the only prime ideal in the localization
Ap which contains (Id)p is the maximal ideal pp. Since the radical of (Id)p is
the intersection of all prime ideals containing it, we must have

√
(Id)p = pp.

The localization Ap is Noetherian and Bp is certainly finitely generated as a
module over Ap. It is easy to verify that the inclusion Ap ⊆ Bp still induces
a bijection

HomFp-alg(Bp, k)→ HomFp-alg(Ap, k)
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for all algebraically closed fields k of characteristic p. If B
[ps]
p ⊆ Ap for some

s, then Id′ would not be proper for sufficiently large d′, which would give
us the desired contradiction. Thus we may reduce to the case where A is a
local ring with maximal ideal p, which is the radical of Id.

By Theorem A.5 in the appendix, an ideal in B is maximal if and only
if its contraction to A is maximal. By Lemma 6.4, there is a unique prime
ideal q in B lying over p, hence B is a local ring with maximal ideal q.
Any prime ideal in B containing pB must contract to p, hence q is the only
prime ideal containing pB, so

√
pB = q. Since B is a finite module over a

Noetherian ring, B is itself Noetherian as a ring. In a Noetherian ring, any
ideal contains a power of its radical, thus there is some p-power n1 such that
q[n1] ⊆ pB. Similarly, since A is Noetherian, there is some p-power n2 such
that p[n2] ⊆ Id, which implies p[n2]B[pd] ⊆ A. Let n3 = max(n2, p

d). Then

(pB)[n3] = p[n3]B[n3] ⊆ p[n2]B[pd] ⊆ A.

By Lemma 6.4, (B/q)[m] is contained in A/p for some p-power m. Hence
B[m] ⊆ A+ q. Putting all this together we see that

B[mn1n3] ⊆ A[n1n3] + q[n1n3] ⊆ A,

which is the desired contradiction. Hence f is an F -isomorphism.

Conversely let f : A→ B be an F -isomorphism and let k be an algebraically
closed field of characteristic p. To establish surjectivity of the induced map,
let φ : A → k be a ring homomorphism. Since all nilpotent elements must
have trivial image, φ factors as

A→ A/ker(f)
φ−→ k.

Now f induces an isomorphism A/ker(f) ∼= f(A), so to prove that the in-
duced map f∗ is surjective, we need to extend φ : f(A) → k to all of B.
The kernel of φ is a prime ideal p in f(A). Since B is a finite f(A)-module,
it follows from Theorem A.7 that there exists a prime ideal q in B lying
over p and the field extension Q(f(A)/p) ⊆ Q(B/q) is finite. We have the
following commutative diagram

f(A) f(A)/p Q(f(A)/p) k

B B/q Q(B/q).

Since an algebraically closed field has no proper finite extension, it follows
that Q(f(A)/p) = Q(B/q), hence φ extends to all of B. To establish injec-
tivity let φ, ψ : B → k such that φ(b) 6= ψ(b) for some b ∈ B. Since k is
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algebraically closed, the Fröbenius map s → sp
n

is an isomorphism, hence
φ(bp

n
) 6= ψ(bp

n
). By assumption there exists an a ∈ A such that f(a) = bp

n
.

But then φ ◦ f(a) 6= ψ ◦ f(a) as desired.

Having established equivalence between the Theorems 6.1 and 6.3, it follows
that the Quillen homomorphisms is indeed an F -isomorphism. This is still
the case if we replace the ring H(G,Fp) with H∗(G,Fp) since all odd degree
elements are nilpotent.

Example 6.7. Let G = 〈x〉 be a cyclic group of order p2 with generator
x, hence G has only one elementary abelian p-subgroup, namely a cyclic
subgroup P = 〈xp〉 of order p. The Quillen homomorphism is then

resG,P : H∗(G,Fp)→ H∗(P,Fp).

In cohomological dimension 1 this is pre-composition by the inclusion

Hom(G,Fp)
◦i−→ Hom(P,Fp),

which is the zero-map, showing that the Quillen homomorphism is neither
injective nor surjective in general.
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A Commutative Algebra

The appendix contains various results from commutative algebra. Through-
out this section all rings are associative, commutative, unital rings.

A.1 Integral Dependence

Definition A.1. Let A ⊆ B be rings. An element x ∈ B is called integral
over A if it is a root of a monic polynomial with coefficients in A, hence
satisfies an equation of the form

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0, ai ∈ A.

Theorem A.2. Let A ⊆ B be rings. The following are equivalent

1. x ∈ B is integral over A.

2. A[x] is a finitely generated A-module.

3. A[x] is contained in a subring C of B such that C is finitely generated
as an A-module.

A proof of the above theorem can be found in [1, Prop. 5.1]. An easy
consequence of the above theorem is the following.

Corollary A.3. Let x1, . . . , xn be elements of B, each of which is integral
over A. Then A[x1, . . . , xn] is a finitely generated A-module.

Let C denote the elements of B which are integral over A. If x, y ∈ C then
A[x, y] is finitely generated as an A-module, hence x±y and xy are elements
of C by Theorem A.2 part 3, and we conclude that C is a subring of B. The
subring C is called the integral closure of A in B. If C = A then A is called
integrally closed, and if C = B, we say that B is integral over A. Let A ⊆ B
be commutative rings. The above theorems combine to the following two
statements:

• If B is a finitely generated A-module, then B is integral over A.

• If B is integral over A and B is a finitely generated A-algebra, then B
is a finitely generated A-module.

If I is an ideal in B, then I ∩ A is an ideal in A. If B is integral over A,
then clearly B/a is integral over A/(I ∩A) since we may just reduce a given
equation modulo I. Likewise, one may verify that if B is integral over A
and S is a multiplicatively closed subset of A, then S−1B is integral over
S−1A.

Theorem A.4. Let A ⊆ B be integral domains, B integral over A. Then
B is a field if and only if A is a field.
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Proof. Assume that A is a field and let b ∈ B, b 6= 0. Let

bn + an−1b
n−1 + · · ·+ a1b+ a0 = 0

be an equation of integral dependence of minimal degree, in particular bn−1+
an−1b

n−2 + · · ·+ a1 6= 0. Since

b(bn−1 + an−1b
n−2 + · · ·+ a1) = −a0

and B is an integral domain, we must have a0 6= 0. But then −a−10 (bn−1 +
an−1b

n−2 + · · ·+a1) is an inverse of b, hence B is a field. Conversely assume
that B is a field and let a ∈ A, a 6= 0. Then a−1 ∈ B, hence we have an
equation

a−n = an−1a
1−n + · · ·+ a1a

−1 + a0.

Multiplying the equation by an−1, we see that a−1 = an−1 + · · ·+ a1a
n−2 +

a0a
n−1 ∈ A, hence A is a field.

Corollary A.5. Let A ⊆ B be rings, B integral over A. Let p be a prime
ideal in B. Then p is a maximal ideal in B if and only if p∩A is a maximal
ideal in A.

Proof. Since B/p and A/(p ∩ A) are both integral domains, and B/p is
integral over A/(p∩A), the corollary follows immediately from the theorem.

Theorem A.6. Let A ⊆ B be rings, B integral over A. Let p, p′ be a prime
ideals in B such that p ⊆ p′. If p ∩A = p′ ∩A then p = p′.

Proof. Let q denote the ideal p∩A = p′∩A. Since the contraction of a prime
ideal is prime, S = A − q is a multiplicatively closed subset of A. Hence
Bq is integral over Aq. Let m be the extension of q in Aq and let n, n′ be
the extensions of p, p′ in Bq. Then m is a maximal ideal of Aq, n ⊆ n′ and
n∩Aq = n′ ∩Aq = m. By Theorem A.5, n ⊆ n′ are both maximal so n = n′.
We conclude that p = p′.

Theorem A.7. Let A ⊆ B be rings, B integral over A. Let p be a prime
ideal of A. Then there exists a prime ideal q in B such that q ∩A = p.

Proof. As before Bp is integral over Ap. We have the following commutative
diagram

A B

Ap Bp

α β
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Recall that there is a one-to-one correspondence between the prime ideals
in A not meeting p and the prime ideals in Ap

q ⊆ Ap ↔ α−1(q) ⊆ A.

The prime ideal p corresponds to the unique maximal ideal in the local ring
Ap. Let m be a maximal ideal of Bp. Then n = m∩Ap is the unique maximal
ideal in Ap by Corollary A.5. Let q = β−1(m). Then q is a prime ideal in B
and α−1(n) = q ∩A. Hence q ∩A = p as desired.

Theorem A.8 (Going-up Theorem). Let A ⊆ B be rings, B integral over
A. Let p1 ⊆ p2 ⊆ · · · ⊆ pn be a chain of prime ideals in A and let q1 ⊆
q2 ⊆ · · · ⊆ qm be a chain of prime ideals in B with m < n such that
qi ∩ A = pi. Then the chain in B can be extended to a chain of length n,
q1 ⊆ q2 ⊆ · · · ⊆ qm, with qi ∩A = pi.

Proof. By induction it is enough to consider the case where m = 1 and
n = 2. Since q1 = p1 ∩ A, B/q1 is integral over A/p1. Let p2 denote the
image of p2 in the quotient ring A/p1. By Theorem A.7, there exist a prime
ideal q2 in B/q1 such that q2 ∩ A/p1 = p2. The pre-image of q2 is a prime
ideal in B with the desired properties.

A.2 Krull Dimension

Definition A.9. Let A be a ring. The Krull dimension of A, denoted dimA,
is the largest number of sharp inclusion appearing in a chain of prime ideals

p1 ⊂ p2 ⊂ · · · ⊂ pn

in A. If no such upper bound exists, we set dimA =∞.

We refer the following basic result concerning the Krull dimension of poly-
nomial rings. A proof can be found in [18, DIM4, Kor. 4.4].

Theorem A.10. Let A be a Noetherian ring, A 6= 0. Then dimA[x] =
dimA+ 1.

Let A1, . . . , An be rings and consider the product A =
∏n
i=1Ai. A prime

ideal in A must be of the form

A1 × · · · ×Ai−1 × pi ×Ai+1 × · · · ×An,

for a prime ideal pi ⊆ Ai, hence dimA = max(dimAi).

Theorem A.11. Let A ⊆ B be rings, B integral over A. Then dimA =dimB.

61



Proof. Let p1 ⊂ · · · ⊂ pn be a chain of prime ideals in B. This gives rise to
a chain of prime ideals in A, namely

p1 ∩A ⊆ · · · ⊆ pn ∩A.

By Theorem A.6, the inclusions are still sharp, hence dimA ≥dimB. Con-
versely, let p1 ⊂ p2 ⊂ · · · ⊂ pn be a chain of prime ideals in A. By
Theorem A.7, there exists a prime ideal q1 in B such that q1 ∩ A = p1.
Now it follows from Theorem A.8 that there exists a chain of prime ideals
q1 ⊆ q2 ⊆ · · · ⊆ qn with qi∩A = pi. Since the pi’s are distinct, the inclusions
in the chain must be sharp, hence dimA ≤dimB.

A.3 Graded Commutative Rings

Definition A.12. A graded ring is a ring R with a direct sum decomposition

R =

∞⊕
i=0

Ri

of abelian subgroups such that RiRj ⊆ Ri+j for all i, j ≥ 0. A graded right
R-module is a right R-module M with a direct sum decomposition

M =
∞⊕
i=0

Mi

of abelian subgroups such that RiMj ⊆ Mi+j for all i, j ≥ 0. A graded
R-algebra is an R-algebra A, which is both a graded ring and a graded
R-module.

An element r ∈ R is called homogeneous of degree i if r ∈ Ri, and we write
deg(r) = i. A ring homomorphism φ : R → S of graded rings is called
homogeneous if φ(Ri) ⊆ Si for all i ≥ 0. Note that R0 is a subring of R,
and each Ri is an R0-module. Any ring S may trivially be considered as a
graded ring with S0 = S and Si = 0 for all other i. We have the following
useful theorem about graded rings. A proof can be found in [1, Prop. 10.7]

Theorem A.13. The following are equivalent for a graded ring R:

1. R is a Noetherian ring.

2. R0 is a Noetherian ring and R is finitely generated as an R0-algebra.

Definition A.14. A graded ring R is called graded commutative if

xy = (−1)deg(x)deg(y)yx

for all homogeneous elements x, y ∈ R.
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Note that elements of even degree always commute, and if 2 is invertible in
R, then the square of an element of odd degree is zero. Of course, a graded
ring R may be commutative in the usual sense, in which case we say that it
is commutative graded.

Let k be a field of characteristic p and let A be a graded commutative
k-algebra. If p = 2 then A is commutative in the usual sense. If p > 2
we shall consider the following commutative subring. Let Aev denote the
subring of A consisting of elements in even degree, i.e.

Aev =

∞⊕
i=1

A2i.

Remark A.15. If A is finitely generated as a k-algebra, then so is Aev.
The k-algebra generators of A of even degree and the products of pair of
k-algebra generators of odd degree form a generating set of Aev.

Theorem A.16. Let A ⊆ B be graded commutative k-algebras, both finitely
generated over k. Suppose that B is finitely generated as a module over A
and that A0 = k. Then Bev is finitely generated as a module over Aev.

Proof. By Theorem A.2, B is integral over A. Let b ∈ Bev and let

bn + a1b
n−1 + · · ·+ an−1b+ an = 0, ai ∈ A

be an equation of integral dependence. We may assume without loss of
generality that b is homogeneous, say deg(b) = m. The sum of the terms
in the above equation which live in dimension m · n equals zero and must
have coefficients in Aev, hence Bev is integral over Aev. Since Bev is finitely
generated as a k-algebra, it is in particular finitely generated as an Aev-
algebra, hence Bev is a finite Aev-module.
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B Finite p-Groups

Let p be a prime. This section contains some basic results regarding finite
p-groups.

Definition B.1. A finite p-group is a group G of order pa for some a ≥ 1.

Theorem B.2. Suppose G is a group of order pa, a ≥ 1. Then

1. The center of G is non trivial, Z(G) 6= 1.

2. If H is a non-trivial normal subgroup of G, then H meets the center
non-trivially.

3. If H is a normal subgroup of G, then H contains a subgroup of order
pb that is normal in G for each divisor pb of |H|

4. Every maximal subgroup of G is of index p and normal in G.

A proof can be found in [4, Capter 6, Thm 1]. We will derive some easy
consequences, which will be useful in the thesis.

Corollary B.3. Suppose G is a group of order pa, a ≥ 1. Then there exists
an increasing sequence of normal subgroups

1 E N1 E · · · E Na−1 E G

so that |Ni| = pi for all i.

Proof. We proceed by induction. If a = 1 the statement is trivial. Let a ≥ 2
and assume that the statement is true for groups of order pa−1. Since Z(G)
is a non-trivial normal subgroup of G, it contains a subgroup N1 of order p
such that N1 E G. G/N1 is a p-group of order pa−1. By induction G/N1

has a normal series as above. The preimage of this series in G together with
N1 form the desired normal series of G.

Corollary B.4. Suppose that G is a finite p-group. Then the following are
equivalent for a subgroup H ≤ G.

1. H is maximal and normal.

2. H is maximal.

3. [G : H] = p.

Proof. Clearly 1. implies 2. By Theorem B.2, 2. implies 1. and 3. If H is of
index p and H ≤ K ≤ G, then the equality [G : H] = [G : K] · [K : H]
implies K = G, hence H is maximal, thus 3. implies 2.

64



References

[1] M. F. Atiyah and I. G. Macdonald. Introduction to commutative al-
gebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don
Mills, Ont., 1969.

[2] D. J. Benson. Representations and cohomology. I, volume 30 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 1991. Basic representation theory of finite groups and as-
sociative algebras.

[3] D. J. Benson. Representations and cohomology. II, volume 31 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 1991. Cohomology of groups and modules.

[4] D. S. Dummit and R. M. Foote. Abstract Algebra. John Wiley and
Sons, Inc., 2004.

[5] Leonard Evens. The cohomology ring of a finite group. Trans. Amer.
Math. Soc., 101:224–239, 1961.

[6] Leonard Evens. A generalization of the transfer map in the cohomology
of groups. Trans. Amer. Math. Soc., 108:54–65, 1963.

[7] Leonard Evens. The cohomology of groups. Oxford Mathematical Mono-
graphs. The Clarendon Press Oxford University Press, New York, 1991.
Oxford Science Publications.

[8] Allen Hatcher. Algebraic topology. Cambridge University Press, Cam-
bridge, 2002.

[9] P. J. Hilton and U. Stammbach. A course in homological algebra, vol-
ume 4 of Graduate Texts in Mathematics. Springer-Verlag, New York,
second edition, 1997.

[10] B. Huppert. Endliche Gruppen. I. Die Grundlehren der Mathematis-
chen Wissenschaften, Band 134. Springer-Verlag, Berlin, 1967.

[11] Dale Husemoller. Fibre bundles, volume 20 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, third edition, 1994.

[12] Paul J. McCarthy. Algebraic extensions of fields. Dover Publications
Inc., New York, second edition, 1991.

[13] John McCleary. A user’s guide to spectral sequences, volume 58 of
Cambridge Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, second edition, 2001.

65



[14] Stephen A. Mitchell. Notes on principal bundles and classifying spaces.
Quillen Seminar, Spring 2006.

[15] D. Quillen and B. B. Venkov. Cohomology of finite groups and elemen-
tary abelian subgroups. Topology, 11:317–318, 1972.

[16] Daniel Quillen. The spectrum of an equivariant cohomology ring. I, II.
Ann. of Math. (2), 94:549–572; ibid. (2) 94 (1971), 573–602, 1971.

[17] Jean-Pierre Serre. Sur la dimension cohomologique des groupes profinis.
Topology, 3:413–420, 1965.

[18] Anders Thorup. Kommutativ Algbera. Matematisk Afdeling, Køben-
havns Universitet, 2005.

[19] B. B. Venkov. Cohomology algebras for some classifying spaces. Dokl.
Akad. Nauk SSSR, 127:943–944, 1959.

66


