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Abstract

The aim of this thesis is to calculate the real cohomology of the special linear group SLn(Z)
in low degrees. This is a special case of Borel's article Stable Real Cohomology of Arithmetic
Groups from 1974 and Borel and Serre's article Corners and Arithmetic Groups from 1973. In
fact, the ambition of this project is to provide a stepping stone towards understanding these
articles by looking at the details of the special case while avoiding use of the general theory.
To calculate the real cohomology of SLn(Z), we exploit the geometric setting: We cover Siegel
reduction theory, the Borel-Serre compacti�cation, logarithmic di�erential forms and Mat-
sushima's Vanishing Theorem.

Resumé

Formålet med dette speciale er at udregne den reelle kohomologi af den specielle lineære gruppe
SLn(Z) i lave grader. Dette er et specialtilfælde af Borels artikel Stable Real Cohomology of
Arithmetic Groups fra 1974 og Borel og Serres artikel Corners and Arithmetic Groups fra 1973.
Målet og ønsket er i virkeligheden, at dette projekt kan være en hjælp til at forstå disse artikler
ved at give en gennemgang af detaljerne i specialtilfældet uden brug af den generelle teori.
Vi udnytter et geometrisk perspektiv til at udregne den reelle kohomologi af SLn(Z): Vi gen-
nemgår Siegels reduktionsteori, Borel-Serre-kompacti�ceringen, logaritmiske di�erentialformer
og en sætning af Matsushima.

Prerequisites

The project assumes basic knowledge of smooth manifolds and di�erential forms, Lie groups and
Lie algebras, group cohomology and de Rham cohomology.
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Introduction and Notation

Introduction

The aim of this project is to cover the content of the article Stable Real Cohomology of Arithmetic
Groups by Armand Borel ([6]) in the special case of the arithmetic group SLn(Z). We also go
through the construction of the article Corners and Arithmetic Groups by Armand Borel and
Jean-Pierre Serre ([3]) as this is used explicitly in [6]. These articles are written in great generality
and our intention is to bring it all down to a more digestible level; we therefore try to avoid the
general theory as much as possible, but we do, now and then, make some remarks relating our
way of doing it to the more general way.

We wish to compute the real cohomology of the discrete group Γ := SLn(Z). It sits as a lattice
inside the Lie group G := SLn(R) and this enables us to move into the world of geometry. We
consider the smooth manifold X of positive de�nite quadratic forms on Rn inducing the same
volume as the standard inner product. There is a natural action of G on X, and with the
inherited action, Γ acts properly discontinuously on X. It turns out that

H∗(Γ;R) ∼= H∗
(
Ω∗(X)Γ

)
,

where Ω(X)Γ denotes the complex of Γ-invariant di�erential forms on X. Hence, the computa-
tion of H∗(Γ;R) boils down to understanding the manifold X and the action of Γ on X. With
the above isomorphism, it is natural to consider the inclusion

Ω∗(X)G ↪→ Ω∗(X)Γ.

The chain complex Ω∗(X)G can be calculated using Lie algebra cohomology, so if we could use
this complex to calculate H∗(Γ,R), we would be in a much more favourable situation. The
aim of the rest of the thesis is then to prove that this inclusion induces an isomorphism on
cohomology in low degrees, more speci�cally in degrees ∗ ≤ n+1

4 for n 6= 3, and in degree zero
for n = 3.
The �rst inconvenience we encounter is that the quotient X/Γ is not compact. To solve this,
we �nd a nice compact replacement; this is the Borel-Serre compacti�cation and the content
of [3]. The construction proceeds as follows: We add some boundary to the smooth manifold
X yielding a smooth manifold with corners X, which contains X as its interior � one could
say that we construct a partial compacti�cation of X. We do this in a way that enables us to
extend the action of Γ to X. This action is also properly discontinuous and the quotient X/Γ
is compact and contains X/Γ as its interior.
It turns out that it su�ces to work with a normal torsion free subgroup of SLn(Z) of �nite index,
so from now on we let Γ denote such a subgroup instead. The Borel-Serre compacti�cation
remains the same. As Γ is torsion free and acts properly discontinuously on X and X, it acts
freely on X and X. Then X/Γ is a smooth manifold and X/Γ is a compact smooth manifold
with corners.
The second inconvenience is that the de Rham complex of X/Γ is too big. The problem is that
we cannot control the growth of an arbitrary di�erential form on X/Γ near the boundary of X/Γ.
To solve this, we de�ne some growth conditions and consider the subcomplex of di�erential forms
satisfying these conditions; crudely put, the di�erential forms have to grow logarithmically as

i
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they approach the boundary. Now, this subcomplex is particularly nice: The inclusion into the de
Rham complex is a quasi isomorphism, it contains the image of Ω∗(X)G under the isomorphism
Ω∗(X)Γ ∼= Ω∗(X/Γ), and in low degrees the forms with logarithmic growth are square integrable.

The �nal ingredient needed is the fact that in low degrees, harmonic forms on X/Γ are pulled
back toG-invariant forms onX via the projectionX → X/Γ. This is a version of the Matsushima
Vanishing Theorem. With this fact, the existence of the above mentioned subcomplex and some
classical results on harmonic and square integrable di�erential forms, we are able to prove that
Ω∗(X)G ↪→ Ω∗(X)Γ does indeed induce an isomorphism on cohomology in low degrees as desired.

To �nish o�, we use that we can now express H∗(Γ;R), for ∗ su�ciently small, in terms of Lie
algebra cohomology to calculate these cohomology groups. We use a clever little trick, allowing
us to consider a compact Lie group and a well known calculation. The range is in fact rather
small for a given n, but the bound tends to in�nity as n does. Our calculations show that
the real cohomology of SLn(Z) stabilises as n → ∞ and we are also able to calculate the real
cohomology of SL∞(Z).

The thesis is structured as follows:

- In Chapter 1, we go through some preliminary theory that we will need throughout: First,
we review several matrix decompositions, then we revise the de�nition of the Haar measure
and of unimodularity and �nally we go over the details of induced inner products on exterior
algebras and Riemannian manifolds.

- In Chapter 2, we set the scene: We de�ne the smooth manifold X, the action of G on it
and make some immediate observations, and we take a closer look at the case n = 2. We
then show that we have the above mentioned relationship between the real cohomology of
Γ and the homology of the complex of Γ-invariant forms on X.

- In Chapter 3, we look at Siegel reduction theory, the aim of which is simply to �nd a nice
subset of X that intersects all Γ-orbits. Again, we take a closer look at the case n = 2 and
we �nish o� by proving some technical results.

- Chapters 4,5 and 6 is where the real work is done. The three chapters di�er greatly in
method: One could say that Chapter 4 is geometric in nature, Chapter 5 analytic and
Chapter 6 algebraic.

- In Chapter 4, we go through the Borel-Serre compacti�cation. We de�ne the geodesic
action on X, which is the key ingredient, and then directly construct X. The construction
is very technical, so to illustrate the geometry behind it, we include a section on the cases
n = 2 and n = 3.

- In Chapter 5, we de�ne the subcomplex of logarithmic forms, that is, the di�erential forms
on X/Γ satisfying some suitable growth conditions near the boundary of X/Γ. We show
that this subcomplex satis�es the three properties mentioned in the above.

- In Chapter 6, we �rst prove a version of the Matsushima Vanishing Theorem: That a
harmonic form on X/Γ of su�ciently low degree is pulled back to a G-invariant form on
X via the projection onto X/Γ. Then, �nally, we are able to prove that the inclusion
Ω∗(X)G ↪→ Ω∗(X)Γ induces an isomorphism on cohomology in small degrees. We �nish
o� with an actual calculation of H∗(Γ;R) in low degrees and we consider the issue of
stability.
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Notation and Conventions

We try, as far as possible, to stick to standard notation.
Let M be a manifold (all manifolds are smooth) of dimension n. We opt for the de�nition of a
di�erential k-form on M as a smooth section

ω : M → Λk(M) =
⋃
p∈M

Λk(TpM
∗),

where Λk(M) is equipped with the natural smooth structure for which the projection onto M
is smooth � the charts are of the form

U × R(nk) → Λk(M), (x, v) 7→ Λk((Dpθ
−1)∗) ◦ ϕ(v) ∈ Λk(TpM

∗),

for a chart θ : U →M and an isomorphism ϕ : R(nk) → Λk((Rn)∗).
Given a chart θ : Rn → U ⊆ M , the maps xi := pri ◦ θ−1 : U → R are local coordinates on V ,
where pri : Rn → R is projection onto the i'th coordinate.
Consider the di�erentials dxi : U × Rn → R, which we shall regard as di�erential 1-forms on U
by evaluating in the �rst coordinate, dxi : U → (Rn)∗ = Λ1((Rn)∗). For p = θ(x), {Dxθ(ei)}ni=1

form a basis of TpM with dual basis {dxi(p)}ni=1 of TpM
∗, where (ei) is the standard basis

of Rn. Then the set {dxσ = dxσ(1)(p) ∧ · · · ∧ dxσ(k)(p)}σ∈Σk,n−k forms a basis of Ωk(TpM
∗),

where Σk,m ⊆ Σk+m denotes the set of permutations σ ∈ Σk+m satisfying σ(1) < · · · < σ(k)
and σ(k + 1) < · · · < σ(k + m). For 1 ≤ i ≤ n, we can de�ne a vector �eld Xi : M → TM
corresponding to the coordinate xi: This is simply given by Xi(p) = Dxθ(ei) for p = θ(x),
x ∈ Rn.
As usual, a hat denotes that an element is omitted, for example

(x1, . . . , x̂i, . . . , xn) = (x1, . . . , xi−1, xi+1, . . . , xn),

and we write N0 = N ∪ {0}.





1 | Preliminaries and Tools

1.1 Matrix Decompositions

We make use of various matrix decompositions in this project: Iwasawa, Cartan, Langlands,
Cholesky and Bruhat. We collect them all here.

Let G = SLn(R) with Lie algebra g = sl(n).

Theorem 1.1.1 (Iwasawa Decomposition). Let A ≤ G be the subgroup of diagonal matrices
with positive entries, N ≤ G the subgroup of upper triangular matrices with 1's on the diagonal,
and K = SO(n) ≤ G the subgroup of orthogonal matrices. Then the multiplication map

K ×A×N → G, (k, a, u) 7→ kau,

is a di�eomorphism.

This is a well-known decomposition and in this special case a standard exercise � we refer to
[17] for a proof of the general case, i.e. the decomposition for any connected semisimple real Lie
group.
We will also need the following useful Lie algebra decomposition of g, which is also standard
and easy to prove:

Proposition 1.1.2 (Cartan Decomposition). Let k = so(n) be the set of skew-symmetric ma-
trices with trace zero, and p the set of symmetric matrices with trace zero. Then g decomposes
as a direct sum g = k⊕ p.

There is also an Iwasawa decomposition of the Lie algebra:

Proposition 1.1.3. Let a ⊆ g denote the subspace of diagonal matrices with trace 0, n ⊆ g the
subspace of strictly upper triangular matrices, and k = so(n) the subspace of skew-symmetric
matrices. Then g decomposes as a direct sum g = k⊕ a⊕ n.

We refer also to [17] for a proof of the general case.

Remark 1.1.4. Note that with the above de�nitions, k is the Lie algebra of K, a is the Lie algebra
of A, and n is the Lie algebra of N .

Let P ≤ G be a subgroup of block upper triangular matrices (a BUT) de�ned by a partition κP of
n: κP is given by an increasing sequence of natural numbers 0 = l0 < l1 < · · · < lk = n, or equiv-
alently by a tuple of natural numbers (m1, . . . ,mk) satisfying

∑k
i=1mi = n (here mi = li − li−1

and lj =
∑j

i=1mi). Then P is the subgroup of matrices u = (uij) ∈ G satisfying uij = 0 for
j ≤ lr < i, r = 1, . . . , k, i.e. the elements of P are block upper triangular matrices such that the
i'th diagonal block is an mi ×mi-matrix, i = 1, . . . , k. De�ne

AP = {(ai) diagonal | ali+j = ali+1
> 0 for j = 1, . . . ,mi+1, i = 0, . . . , k − 1},

NP = {(uij) upper triangular | uii > 0 for i = 1, . . . , n

and Π
mi+1

j=1 uli+j,li+j = 1 for i = 0, . . . , k − 1}.

1
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In other words, AP is the subgroup of diagonal matrices with positive entries and determinant
1 such that the entries of the i'th block as de�ned by the partition κP are all equal; and NP

is the subgroup of upper triangular matrices with positive diagonal entries and determinant 1
such that the i'th block as de�ned by κP has determinant 1. We let AP , NP ≤ G inherit the
smooth structure of G; thus the maps

NP −→ Rn−k>0 × R
n(n−1)

2 , (uij) 7→ ((uii)i 6=lj , (uij)i<j), AP −→ Rk−1
>0 , a = (ai) 7→ (ali)

k−1
i=1

are di�eomorphisms. In fact, this last map is a Lie group isomorphism into the multiplicative
group Rk−1

>0 . If k = 1, i.e. P = G, then AP = {id}, and we interpret Rk−1
>0 as a point.

Proposition 1.1.5 (Langlands Decomposition). The multiplication map

(K ∩ P )×AP ×NP −→ P, (k, a, u) 7→ kau

is a di�eomorphism.

This is a consequence of the Iwasawa decomposition (see [17] for the general case, that is, the
Langlands decomposition for parabolic subgroups of reductive Lie groups).

Remark 1.1.6. P is a so called standard parabolic subgroup of G, and there is a Langlands
decomposition of all parabolic subgroups. The group B of upper triangular matrices is a standard
Borel subgroup, and we see that AB = A and NB = N , so the Langlands decomposition of B
coincides with the restriction of the Iwasawa decomposition to (K ∩B)×A×N .

Definition 1.1.7. A symmetric matrix s ∈ G is positive de�nite if xtsx > 0 for all x ∈ Rn−{0},
and it is positive semi-de�nite if xtsx ≥ 0 for all x ∈ Rn − {0}.

Note that any positive de�nite matrix is invertible. In addition we have the following useful
result:

Proposition 1.1.8 (Cholesky Decomposition). Any positive de�nite matrix s can be written
uniquely as a product s = btb, where b is an upper triangular matrix with positive diagonal
values.

Proof. We prove the claim by induction on the dimension of s. If s = (s11) is a 1 × 1 positive
de�nite matrix, then s = btb for b = (

√
s11), where we use that s being positive de�nite implies

that s11 > 0. Now, assume that the claim holds for positive de�nite (n × n)-matrices, and let
s = (sij) be an (n+ 1)× (n+ 1)-matrix which is positive de�nite. Write

s =

(
s11 s12,1n

st12,1n s′

)
, where s12,1n = (s12, . . . , s1n) and s′ = (sij)

n
i,j=2.

Consider the matrix r := s′ − 1
s11
st12,1ns12,1n. Clearly, r is symmetric. We claim that it is also

positive de�nite: Indeed, for any n-dimensional vector x 6= 0, let y =

(
− 1
s11

(s12,1nx)

x

)
, and note

that

0 < ytsy =
(
− 1
s11

(s12,1nx) xt
)( s11 s12,1n

st12,1n s′

)(
− 1
s11

(s12,1nx)

x

)
= xts′x− 1

s11
xtst12,1ns12,1nx = xtrx.
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Our induction hypothesis implies that r = bt0b0 for an upper triangular matrix, b0, with positive
diagonal elements. Noting �nally that s11 = et1se1 > 0, where e1 is the �rst standard basis
vector of Rn+1, we can de�ne

b :=

(√
s11

1√
s11
s12,1n

0 b0

)
and we see that btb =

(
s11 s12,1n

st12,1n
1
s11
st12,1ns12,1n + bt0b0

)
= s.

Thus we have proved existence. If b = (bij) is an upper triangular matrix with positive diagonal
entries satisfying btb = s = (sij), then one can compute the entries bij recursively:

bll =

√√√√sll −
l−1∑
k=1

b2kl, blj =
1

bll

(
slj −

l−1∑
k=1

bklbkj

)
, l = 1, . . . , n, j > l.

From this uniqueness is immediate.

Corollary 1.1.9. A matrix g is positive de�nite, if and only if it admits a Cholesky decompo-
sition, i.e. g = btb for an upper triangular matrix, b, with positive diagonal entries.

We will make use of one �nal matrix decomposition, the Bruhat decomposition.

Definition 1.1.10. For every permutation σ ∈ Σn, de�ne a matrix wσ ∈ SLn(R) such that

(wσ)1,σ(1) = sign σ, (wσ)i,σ(i) = 1 for i ≥ 2, and (wσ)i,j = 0 for j 6= σ(i).

The Weyl group is the group whose underlying set isW := {wσ | σ ∈ Σn}, and with composition
given by wσwτ = wσ◦τ .

Theorem 1.1.11 (Bruhat Decomposition). For B the subgroup of upper triangular matrices
and N the subgroup of upper triangular matrices with 1's on the diagonal, the sets NwB,
w ∈ W , form a partition of G. In particular, any g ∈ G can be written uniquely as g = uwav
for u, v ∈ N , a ∈ A, and w ∈W .

We refer to [5, Theorem 3.3] for the proof.

1.2 Haar Measure and Unimodularity

In this section, we consider the Haar measure and the notion of unimodularity. We cover the
basics, take a look at the speci�c matrix groups appearing in this project, and go on to prove
an immensely useful result, namely the Iwasawa decomposition of the Haar measure on SLn(R).

Let G be an arbitrary real Lie group of dimension n.

We shall make a very brief recap of some basic de�nitions and results from measure theory, which
we need in the following � we refer the reader to [14] for details. Recall that a Borel measure
on G is a measure on the measurable space (G,B(G)), where B(G) is the Borel σ-algebra on
G, that is the σ-algebra generated by the open subsets of G. If ϕ : G→ H is a Borel-measurable
map between Lie groups G and H, and µ a Borel measure on G, then we denote by ϕ∗µ the
image measure on H, i.e. the measure given by ϕ∗µ(U) = µ(ϕ−1(U)) for U ∈ B(H). We have
an abstract change of variable-formula:∫

H
f(h) dϕ∗µ(h) =

∫
G
f ◦ ϕ(g) dµ(g), f : H → R integrable.
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For a positive Borel-measurable function f : G→ [0,∞), we de�ne a measure ν with density f
with respect to µ, denoted by ν = f.µ and given by ν(U) =

∫
U f(g) dµ(g) for U ∈ B(G). Note

that if ϕ : G → H and f : G → [0,∞) are as above, and in addition ϕ is invertible with ϕ−1

Borel-measurable, then ϕ∗(f.µ) = (f ◦ ϕ−1).(ϕ∗µ). If we have Borel measures µ and ν on Lie
groups G respectively H, then we de�ne the product measure µ ⊗ ν on the product G ×H by
setting (µ⊗ν)(U×V ) = µ(U)ν(V ) for all U ∈B(G), V ∈B(H); as the sets U×V , U ∈B(G),
V ∈B(H), generate B(G×H), this de�nes a Borel measure on G×H. If µ and ν are σ-�nite,
then Tonelli's Theorem states that for any integrable function f : G×H → R.∫

G×H
f(g, h) d(µ⊗ ν)(g, h) =

∫
G

(∫
H
f(h, l) dν(h)

)
dµ(g).

We will in this case write
∫
G×H f(g, h) dµ(g)dν(h). If ϕ and ψ are Borel-measurable maps from

G respectively H into some other Lie groups, then (ϕ× ψ)∗(µ⊗ ν) = ϕ∗µ⊗ ψ∗ν.

Definition 1.2.1. A left Haar measure on G is a non-zero Borel measure µ on G which is left
invariant, i.e. (Lg)∗µ = µ for all g ∈ G, where Lg : G → G denotes left translation by g, and
which satis�es µ(K) <∞ for all compact K ⊆ G.
Analogously, a right Haar measure on G is a non-zero Borel measure µ on G which is right
invariant and satis�es µ(K) <∞ for all compact K ⊆ G.
We say that a measure µ on G is biinvariant, if it is both left and right invariant.

Remark 1.2.2. As G is locally compact and second countable, and a Haar measure is �nite
on compact subsets, it is immediate that the Haar measure is σ-�nite. It follows from [11,
Proposition 7.2.3] that any Haar measure µ is regular, i.e.

µ(U) = sup{µ(K) | K ⊆ U compact} for all U ⊆ G open,

µ(F ) = inf{µ(U) | F ⊆ U open} for all F ∈B(G).

We refer to [17] for a proof of the following important theorem.

Theorem 1.2.3. There exists a left (right) Haar measure on G and it is unique up to multipli-
cation by a positive constant.

The existence is simply a consequence of the existence of a left (right) invariant volume form
ω on G (see the proof of Lemma 1.2.6 below) and Riesz Representation Theorem: f 7→

∫
fω,

f ∈ Cc(G), is a linear functional and as such de�nes a unique regular Borel measure µ on G
satisfying

∫
G f dµ =

∫
fω, f ∈ Cc(G) (here Cc(G) denotes the compactly supported continuous

functions G → R). Proportionality of any two left (right) Haar measures is proved using the
Radon-Nikodym Theorem and Fubini's Theorem.

Definition 1.2.4. Let µ be a left Haar measure on G. De�ne the modular function of G,
∆G : G → R>0, such that (Rg)∗µ = ∆G(g)µ for all g ∈ G, where Rg : G → G denotes right
multiplication by g. We write ∆ = ∆G, when no confusion can occur.

Remark 1.2.5. The above de�nition makes sense, as (Rg)∗µ is also left invariant, so Theo-
rem 1.2.3 implies that it is equal to λµ for some λ ∈ R>0. The same theorem also implies that
the de�nition is independent of the choice of µ.

Lemma 1.2.6. The modular function ∆: G→ R>0 is given by ∆(g) = | detAd(g)| for all g ∈ G.
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Proof. Let {ei}ni=1 be a basis of the Lie algebra g ofG with dual basis {εi}ni=1. Set ε := ε1∧· · ·∧εn,
and de�ne ω ∈ Ωn(G) by ωg(v1, . . . , vn) = ε(DgLg−1(v1), . . . , DgLg−1(vn)) for all g ∈ G. This
is a left-invariant volume form on G, and as such de�nes a Haar measure µ on G satisfying∫
G f dµ =

∫
fω for all f ∈ Cc(G). Recall that for linear maps ωi : g→ R, vi ∈ g, we have

(ω1 ∧ · · · ∧ ωn)(v1, . . . , vn) = det

(
ωi(vj)

)
i,j

.

From this it follows that if T : ThG → TeG = g is a linear transformation for some h ∈ G and
{fi}ni=1 is any basis of ThG, then ε(T (f1), . . . , T (fn)) = det(T ). Now, let g, h ∈ G and let {fi}ni=1

be some basis of ThG. Then

((Rg)
∗ω)h(f1, . . . , fn) = ωhg(DhRg(f1), . . . , DhRg(fn))

= ε(Dh(L(hg)−1 ◦Rg)(f1), . . . , Dh(L(hg)−1 ◦Rg)(fn))

= ε(Ad(g−1) ◦DhLh−1(f1), . . . ,Ad(g−1) ◦DhLh−1(fn))

= det(Ad(g−1))ε(DhLh−1(f1), . . . , DhLh−1(fn))

= det(Ad(g−1))ωh(f1, . . . , fn).

A di�erential top form is uniquely determined by its value on an ordered basis of every tangent
space, so we conclude that (Rg)

∗ω = det(Ad(g−1))ω for all g ∈ G. Recall the following trans-
formation formula for integrating di�erential forms (see [17, Proposition 8.19]): If Φ: M → N
is a di�eomorphism of n-dimensional manifolds, and ω ∈ Ωn(N), then for all f ∈ Cc(N)∫

N
fω = δ

∫
M

(f ◦ Φ)Φ∗ω,

where δ = 1 if Φ is orientation-preserving, and δ = −1 if it is orientation-reversing.

Then ∫
G
f d(Rg)∗µ =

∫
G

(f ◦Rg) dµ =

∫
(f ◦Rg)ω = δ

∫
f(Rg−1)∗ω

= δ det(Ad(g))

∫
fω = δ det(Ad(g))

∫
G
f dµ, for all f ∈ Cc(G).

Now, Rg−1 is orientation-preserving if and only if ω and (Rg−1)∗ω = det(Ad(g))ω determine the
same orientation, which clearly happens if and only if det(Ad(g)) > 0. Thus, we conclude that∫

G
f d(Rg)∗µ = |det(Ad(g))|

∫
G
f dµ, for all f ∈ Cc(R),

and the Riesz Representation Theorem implies that ∆(g)µ = (Rg)∗µ = | det(Ad(g))|µ for all
g ∈ G.

It is easy to see that ∆(gh) = ∆(g)∆(h) for all g, h ∈ G and the above lemma in particular
shows that ∆ is smooth. Thus:

Corollary 1.2.7. ∆: G→ R>0 is a smooth homomorphism into the multiplicative group R>0.

Proposition 1.2.8. Let µ be a left Haar measure on G, and let ι : G→ G denote the inversion.
Then ι∗µ and ∆.µ are right Haar measures and are equal.
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Proof. We see directly that (Rg)∗ι∗µ = (Rg ◦ ι)∗µ = (ι ◦ Lg−1)∗µ = ι∗(Lg−1)∗µ = ι∗µ for all
g ∈ G. Clearly, ι∗µ(K) <∞ for all compacts K ⊆ G, so ι∗µ is a right Haar measure.
As ∆ is smooth, it makes sense to de�ne ∆.µ. It is clear that ∆.µ(K) < ∞ for all compacts
K ⊆ G. To see that it is right invariant, let g ∈ G; then

(Rg)∗(∆.µ)(U) = ∆.µ(Ug−1) =

∫
1Ug−1(h)∆(h) dµ(h) =

∫
1U (hg)∆(h) dµ(h)

=

∫
1U (h)∆(hg−1)d(Rg)∗µ(h) =

∫
1U (h)∆(h)∆(g)−1∆(g) dµ(h) = ∆.µ(U)

for all U ∈B(G). It follows that ι∗µ = λ∆.µ for some λ ∈ R>0. Then

µ = ι∗ι∗µ = λι∗(∆.µ) = λ(∆ ◦ ι).(ι∗µ) = λ2((∆ ◦ ι) · (∆)).µ = λ2µ.

Thus, we must have λ = 1, and as desired ι∗µ = ∆.µ.

Definition 1.2.9. We say that G is unimodular, if the modular function is identically 1.

Proposition 1.2.10. G is unimodular if and only if any left or right Haar measure on G is
biinvariant.

Proof. This follows from Proposition 1.2.8. For the left to right implication, let µ be a left Haar
measure on G. Then µ = ∆.µ is a right Haar measure, so µ is biinvariant. It follows that
any right Haar measure is proportional to µ and as such also left invariant. For the converse
implication, note that λµ = ∆.µ for some λ > 0, as both µ and ∆.µ are right Haar measures.
Hence, ∆ is constantly equal to λ, and as ∆(e) = 1, we must have λ = 1.

Proposition 1.2.11. The following types of Lie groups are unimodular:

1. Compact Lie groups.

2. Abelian Lie groups.

3. Nilpotent Lie groups.

Proof. The �rst two are easy: On an abelian Lie group, any Haar measure is biinvariant; the
image of a compact Lie group under the modular function is a compact subgroup of R>0 and
therefore equal to {1}. For the third case, suppose G is a nilpotent Lie group with Lie algebra g.
Then for any x ∈ g, ad(x) : g → g is a nilpotent linear transformation, so it has all eigenvalues
equal to zero and

detAd(exp(x)) = det ead(x) = etr(ad(x)) = e0 = 1.

As G is connected by assumption, exp(g) generates G, and we conclude that

∆G(g) = | detAd(g)| = 1 for all g ∈ G.

The following proposition gives a useful decomposition of the Haar measure, when the Lie group
itself can be decomposed as a product.

Proposition 1.2.12. Let H,L ≤ G be closed subgroups such that the multiplication map
Φ: H × L→ G is a homeomorphism. Then the left Haar measures on G, H and L, denoted by
µG, µH , µL, respectively, can be scaled such that

(Φ−1)∗µG = ( ∆L
∆G
◦ πL).(µH ⊗ µL),

where πL : H × L→ L denotes the projection onto L
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Proof. Note �rst that H × L acts on G from the left by (h, l).g = hgl−1, and it acts naturally
on itself by left multiplication. Then the map ϕ : H × L → G, (h, l) 7→ hl−1 is equivariant and
a homeomorphism.

Set µ := (ϕ−1)∗µG and note that

(Rl−1 ◦ Lh)∗µG = (Rl−1)∗µG = ∆G(l)−1µG for any (h, l) ∈ H × L.

Then, as ϕ−1 is equivariant, we have

(L(h,l))∗µ = (ϕ−1)∗(Rl−1)∗(Lh)∗µG = ∆G(l)−1µ for any (h, l) ∈ H × L.

Set ν := (∆G|L ◦ ι ◦ πL).µ, where ι is the inversion on L. For all (h, l) ∈ H × L, we have
∆G ◦ ι ◦ πL ◦ L(h−1,l−1) = ∆G(l)(∆G ◦ ι ◦ πL) and therefore

(L(h,l))∗ν = (∆G|L ◦ ι ◦ πL ◦ L(h−1,l−1)).(L(h,l))∗µ = ∆G(l)−1∆G(l)(∆G ◦ ι ◦ πL).µ = ν.

The measure ν is �nite on compact sets as µ is; thus, ν is a left Haar measure on H × L and
therefore after appropriately scaling µH and µL, we have ν = µH ⊗ µL. This in turn implies
that µ = (∆G ◦ πL).(µH ⊗ µL).

From this we see that for any Borel-measurable function f : H × L→ [0,∞), we have∫
H×L

f(h, l) d(Φ−1)∗µG(h, l) =

∫
G
f ◦ Φ−1(g) dµG(g)

=

∫
G
f ◦ Φ−1 ◦ ϕ(h, l) d(ϕ−1)∗µG(h, l)

=

∫
H×L

f(h, l−1) dµ(h, l)

=

∫
H×L

f(h, l−1)∆G(l) dµH(h)dµL(l)

=

∫
H×L

f(h, l)∆G(l)−1 dµH(h)dι∗µL(l)

=

∫
H×L

f(h, l)
∆L(l)

∆G(l)
dµH(h)dµL(l),

implying (Φ−1)∗µG = ( ∆L
∆G
◦ πL).(µH ⊗ µL), as desired.

Remark 1.2.13. The above proposition can be generalised considerably: The intersection H ∩L
need only be compact and HL need not be equal to G, but the di�erence should be a null set
(see [17]). We will, however, only need the above version.

Iwasawa Decomposition of the Haar Measure

Let G = SLn(R) with Lie algebra g = sl(n), and let Ψ: K×A×N → G, (k, a, u) 7→ kau denote
the Iwasawa di�eomorphism of Theorem 1.1.1, where K = SO(n), A ≤ G is the subgroup of
diagonal matrices with positive entries, and N ≤ G the subgroup of upper triangular matrices
with 1's on the diagonal. Recall from Proposition 1.1.3 that we also have a decomposition of
the Lie algebra, g = k ⊕ a ⊕ n, where k = so(n), a is the set of diagonal matrices with positive
entries and trace 0, and n is the set of strictly upper triangular matrices.

Proposition 1.2.14. The Lie groups K, A and N are all unimodular.
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Proof. The Lie algebra of N is the set n of strictly upper triangular matrices; it is clear that
this is a nilpotent Lie algebra, so N is a nilpotent Lie group. A is abelian and K is compact.
Proposition 1.2.11 then implies that K, A and N are unimodular.

Proposition 1.2.15. The Lie group G is unimodular.

Proof. To see this, we show directly that ∆ = ∆G : G→ R>0 is identically 1. As ∆ is multiplica-
tive, it su�ces to consider the elements of K, A and N separately. Note �rst that ∆(K) = {1}
as it is a compact subgroup of R>0. For A and N , we will use Lemma 1.2.6. As Ad(g) is linear
for all g ∈ G, we can evaluate Ad(g) : g→ g on k, a and n separately for any g ∈ G. Note that
{Eij − Eji}i<j is a basis of k, and that {Eij}i<j is a basis of n, where Eij is the matrix with
(i, j)'th entry equal to 1 and all other entries equal to zero.

Let a = (ai) ∈ A. For any â ∈ a, Ad(a)(â) = aâa−1 = â, so Ad(a)|a = ida. For any
1 ≤ i < j ≤ n,

Ad(a)(Eij) = aEija
−1 =

ai
aj
Eij ,

and

Ad(a)(Eij − Eji) = a(Eij − Eji)a−1 =
ai
aj
Eij −

aj
ai
Eji =

aj
ai

(Eij − Eji) +
a2
i − a2

j

aiaj
Eij .

If we take any basis {âi}i of a, then with respect to the basis

{Eij − Eji}i<j ∪ {âi}i ∪ {Eij}i<j of g = k⊕ a⊕ n,

Ad(a) is given by the matrix 
(
aj
ai

)
i<j

0 0

0 ida 0(
a2
i−a2

j

aiaj

)
i<j

0

(
ai
aj

)
i<j

 ,

where (xi,j)i<j is the diagonal matrix with entries xi,j , and thus

detAd(a) =
∏
i<j

aj
ai
·
∏
i<j

ai
aj

= 1,

which gives us ∆(a) = 1 for all a ∈ A. Let û = (ûij) ∈ n. Then

detAd(exp(û)) = det ead(û) = etr(ad(û)).

We will show that ad(û) has trace zero. Note �rst that as ad(û) is nilpotent on a⊕n, so ad(û)|a⊕n
has trace 0, having all eigenvalues equal to zero. For any basis {b̂i}i of a⊕ n, we can write the
matrix of ad(û) with respect to the basis {Eij − Eji}i<j ∪ {b̂i}i of g = k⊕ a⊕ n as(

ũ 0
∗ ad(û)|a⊕n

)
, where

(
ũ
∗

)
is the matrix representing ad(û)|k : k→ g.
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Calculations show that for any 1 ≤ i < j ≤ n

ad(û)(Eij − Eji) = û(Eij − Eji)− (Eij − Eji)û

=
∑
i<l

ûilEjl −
∑
l<j

ûljEli +
∑
l<i

ûliElj −
∑
j<l

ûjlEil

=
∑
i<l<j

(
ûlj(Eil − Eli)− ûil(Elj − Ejl)

)
+ ûij(Ejj − Eii)

+
∑
l<i

(ûliElj − ûljEli) +
∑
j<l

(ûilEjl − ûljEil) +
∑
i<l<j

(ûilElj − ûljEil).

Here the �rst sum is an element of k, the element ûij(Ejj −Eii) is an element of a, and the last
three sums are elements of n. We see that Eij −Eji does not appear in the k-element, and thus
conclude that all diagonal entries of ũ are zero. Hence, tr(ad(û)) = 0. As exp(n) generates N ,
we conclude that ∆(u) = | detAd(u)| = 1 for all u ∈ N .

Remark 1.2.16. In fact, all semisimple Lie groups are unimodular (see for example [17]).

Remark 1.2.17. Some of the computations in the above proof will come in handy further on.

Proposition 1.2.18. Let µG denote the Haar measure on G. There is a decomposition of µG
corresponding to the Iwasawa decomposition of G:

(Ψ−1)∗µG = (ρ ◦ πA).(µK ⊗ µA ⊗ µN )

for appropriate scalings of the Haar measures on K, A and N , and where ρ : A → R>0,
ρ(a) =

∏
i<j

ai
aj

for a = (ai) ∈ A, and πA : K ×A×N → A is the projection.

Proof. Let ϕ : K×AN → G, denote the di�eomorphism (k, b) 7→ kb. Then by Proposition 1.2.12

(ϕ−1)∗µG = (∆AN
∆G
◦ πAN ).(µK ⊗ µAN ) = (∆AN ◦ πAN ).(µK ⊗ µAN ).

Letting ψ : A×N → AN denote the di�eomorphism (a, u) 7→ au, and applying Proposition 1.2.12
again, we have that

(ψ−1)∗µAN = ( ∆N
∆AN

◦ πN ).(µK ⊗ µAN ) = (∆AN ◦ ι ◦ πN ).(µA ⊗ µN ).

Now, we determine the modular function ∆AN ; recall that its Lie algebra is a ⊕ n, the set of
upper triangular matrices with trace zero. From the proof of Proposition 1.2.15, we see that
∆AN (u) = | det(Ada⊕n(u))| = 1 for all u ∈ N as ada⊕n(û) is a nilpotent linear transformation
on a⊕ n for all û ∈ n. The proof of Proposition 1.2.15 also shows that for any a = (ai) ∈ A

detAda⊕n(a) =
∏
i<j

ai
aj
.

We conclude that ∆AN (au) = ∆AN (a) =
∏
i<j

ai
aj

for all a = (ai) ∈ A, u ∈ N .

Thus we see that (ψ−1)∗µAN = µA ⊗ µN and as Ψ = ϕ ◦ (id× ψ), we have

(Ψ−1)∗µG = (id× ψ−1)∗(ϕ
−1)∗µG = (id× ψ−1)∗((∆AN ◦ πAN ).(µK ⊗ µAN ))

= (∆AN ◦ πAN ◦ (id× ψ)).(µK ⊗ (ψ−1)∗µAN ) = (ρ ◦ πA).(µK ⊗ µA ⊗ µN ).

Remark 1.2.19. The above decomposition holds for all reductive Lie groups as they all admit
an Iwasawa decomposition.
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1.3 Inner products

There is a natural choice of inner product on the exterior algebra of an oriented inner prod-
uct space. In this section, we go through the details involved as it will be useful to have a
good understanding of the steps in this construction. To �nish o�, we apply it to an oriented
Riemannian manifold and de�ne the notion of a square integrable di�erential form.

Exterior Algebra

Let V be an n-dimensional real vector space equipped with an inner product 〈−,−〉. Let
e1, . . . , en be a basis of V and denote by e1, . . . , en the dual basis of V ∗, i.e. ei(ej) = δij . The
inner product gives rise to an isomorphism

V −→ V ∗, v 7→ v̂ := 〈v,−〉.

In terms of our chosen bases, this is given by the matrix

g = (gij) with entries gij = 〈ei, ej〉.

This dualises to an isomorphism

(V ∗)∗ −→ V ∗, f 7→ (f̌ : v 7→ f(v̂)),

which is also given by the matrix g as g is symmetric. So we have an isomorphism V ∗ → (V ∗)∗

given by the matrix g−1 = (gij), and thus an inner product

〈−,−〉∗ : V ∗ × V ∗ → R, 〈v, w〉∗ = g−1(v)(w).

There is an induced inner product on the k'th exterior power of V , 〈−,−〉k : ΛkV × ΛkV → R
de�ned on elementary wedges by

〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk〉k = det (〈vi, wj〉) ,

i.e. the determinant of the matrix with entries 〈vi, wj〉, and extended bilinearly.
The elements

εσ := eσ(1) ∧ · · · ∧ eσ(k), σ ∈ Σk,n−k,

form a basis of ΛkV with respect to 〈−,−〉k and

〈εσ, ετ 〉k = det
(
gσ(i)τ(j)

)
.

If e1, . . . , en is an orthonormal basis of V , then {εσ}σ∈Σk,n−k is an orthonormal basis of ΛkV .
The inner product gives rise to an orientation form on V , the choice of which is canonical up to
sign, and if V is already oriented, then there is a canonical choice respecting this orientation.
Indeed, we have an inner product 〈−,−〉∗n on the one-dimensional vector space ΛnV ∗, which then
has exactly two unit vectors. If V is oriented, then the unit vector respecting this orientation is
the canonical choice of orientation form induced by 〈−,−〉. If (ei) is a positively oriented basis,
then the orientation form induced by 〈−,−〉 is√

det g e1 ∧ · · · ∧ en

as ‖e1 ∧ · · · ∧ en‖2 = det(g−1).
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Riemannian Manifold

Let M be a connected oriented Riemannian manifold of dimension n with metric tensor g. We
alter between interpreting g as a smoothly varying family of inner products on the tangent
spaces and a C∞(M)-bilinear map X(M) × X(M) → C∞(M). Then g induces a volume form
ω0 ∈ Ωn(M) as it induces a canonical orientation form on TxM for every x by the above. On a
positively oriented coordinate system U = (x1, . . . , xn) on M , ω0 is given by

ω0|U =
√

detgU dx1 ∧ · · · ∧ dxn,

where gU is the matrix representation of g in the local coordinates, i.e. gUij = g(Xi, Xj) with
Xi the vector �eld corresponding to the coordinate xi as de�ned in the preliminaries. Denote
by µM the corresponding Borel measure.
Let x ∈M . As in the above section the inner product gx on TxM induces an inner product on
the k'th exterior power of the cotangent space, ΛkTxM

∗, which we denote by 〈−,−〉xg (k will be
implicit). As x 7→ gx is smooth, so is x 7→ 〈−,−〉xg.

Definition 1.3.1. A di�erential form ω ∈ Ωk(M) is square integrable, if

‖ω‖2M :=

∫
〈ωx, ωx〉xg dµM . <∞.

We denote by Ωk
(2)(M) the set of all square integrable k-forms on M .

Remark 1.3.2. On Ωk
(2)(M), there is an inner product, (−,−)M , given by

(−,−)M : Ωk(M)× Ωk(M) −→ R, (α, β)M =

∫
〈αx, βx〉xg dµM .

We denote by ‖ − ‖M the corresponding norm.

Suppose N is another connected oriented Riemannian manifold with metric tensor h, and that
f : N →M is an immersion. Suppose in addition that h = f∗g, that is, for p ∈ N , v, w ∈ TpN ,
hp(v, w) = gf(p)(Dpf(v), Dpf(w)). Then ωh = f∗ωg and µg = f∗µh. Moreover,

〈ωf(p), ω
′
f(p)〉

f(p)
g = 〈(f∗ω)p, (f

∗ω′)p〉ph for all p ∈ N, ω, ω′ ∈ Ωk(M).





2 | Setting the Scene

To calculate the real cohomology of SLn(Z), we exploit the action of SLn(Z) on a speci�c
manifold X. In this chapter, we construct the manifold X, de�ne an action of SLn(R), and
hence of SLn(Z), on it and �nally show how this setting can be exploited to express the group
cohomology of SLn(Z) in terms of a certain subcomplex of the de Rham complex of X. This
places us in the realm of geometry with an immense selection of tools at hand; the rest of the
project then exploits this. We take a closer look at the construction in the case n = 2, which
will be our running example.

2.1 Quadratic forms

In this section, we construct the space X of quadratic forms inducing the same volume as the
standard inner product and equip it with a natural smooth structure. There is a natural action
of SLn(R) on X and this action is proper. We also show that the four manifolds which we will
be considering in this project are orientable.

Construction

Let n ≥ 2.

Definition 2.1.1. An n-ary quadratic form over a �eld k is a homogeneous polynomial of degree
two in n variables.

A quadratic form q must be of the form q(x1, . . . , xn) =
∑

1≤i,j≤n sijxixj , for sij ∈ k. If we
write x = (x1, . . . , xn), this reads

q(x) = xtsx, where s = (sij) is the n× n-matrix with entries the coe�cients above.

As the matrix (s+ st)/2 is symmetric and gives rise to the same quadratic form q, we may and
do always assume that s is symmetric. With this assumption, s is uniquely given, and

q(x) = xtsx =

n∑
i=1

siix
2
i +

∑
1≤i<j≤n

2 sijxixj .

From now on, we consider only real quadratic forms, k = R, and we will additionally assume
that the variables are real, x = (x1, . . . , xn) ∈ Rn. Under these assumptions, we say that q is a
quadratic form on Rn.

Definition 2.1.2. A quadratic form q is positive de�nite, if q(x) > 0 for all x 6= 0, and it is
positive semi-de�nite, if q(x) ≥ 0 for all x 6= 0.

Remark 2.1.3. A quadratic form is positive de�nite if and only if the symmetric matrix de�ning
it is (cf. De�nition 1.1.7).

Remark 2.1.4. A positive de�nite quadratic form q on Rn induces an inner product on Rn:
〈x, y〉q = xtsy, x, y ∈ Rn, where s is the symmetric matrix de�ning q.

13
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Let (ei) be the standard basis of Rn, ei the dual basis of R∗n. Applying the machinery of
Section 1.3, q induces an orientation form on Rn given by

εq :=
√

det(s) e1 ∧ · · · en.

Definition 2.1.5. We say that εq as de�ned above is the volume induced by q on Rn.

Proposition 2.1.6. Two quadratic forms q and q′ given by the matrices s respectively s′ induce
the same volume on Rn, if and only if det s = det s′. In particular, q induces the same volume
as the standard inner product, i.e. as the quadratic form ι : x 7→ xtx, if and only if det s = 1.

Construction 2.1.7. We are interested in these latter quadratic forms: Let X denote the set
of positive de�nite quadratic forms on Rn inducing the same volume as the standard inner
product. By the above observations, this is in bijection with the set of real positive de�nite
symmetric matrices of determinant 1, which we will denote by S(R). Cholesky decomposition
(cf. Proposition 1.1.8) implies that this is in bijection with the set of upper triangular matrices
with positive diagonal entries and determinant 1, AN ; here A denotes the set of diagonal matrices
with positive entries and determinant 1, and N denotes the set of upper triangular matrices with
1's on the diagonal. Denote these bijections by

Φ: X −→ S(R), (q : x 7→ xtsx) 7→ s

Ψ: S(R) −→ AN, s = btb 7→ b.

Now, AN inherits the smooth structure of SLn(R), being a subgroup, and we let X and S(R)
inherit the smooth structure of AN under the bijections Φ and Ψ.

Proposition 2.1.8. The inclusion S(R) ↪→ SLn(R) is smooth.

Proof. The inclusion is equal to the following composition of smooth maps

S(R)
∼=−→AN

incl−→ SLn(R)× SLn(R)
t×id−→ SLn(R)× SLn(R)

m−→ SLn(R),

where incl(b) = (b, b), t is transposition, and m is the multiplication map.

So in fact, S(R) is a submanifold of SLn(R).

Proposition 2.1.9. X is di�eomorphic to R
n(n+1)

2
−1. In particular, it is contractible.

This is immediate from the construction.

Remark 2.1.10. For illustrative purposes it is sometimes helpful to picture a positive de�nite
quadratic form on Rn as an ellipsoid in Rn, namely the unit ball with respect to the norm induced
by the given quadratic form. This will be particularly helpful when considering group actions
on X, which we look at in the following section. For example, the quadratic form ι : x 7→ xtx
gives rise to the unit ball in Rn, as 〈−,−〉ι is the standard inner product � when we need
a basepoint, this will be our choice. If q ∈ X is a quadratic form represented by a diagonal
matrix d = (di), then it gives rise to the ellipsoid given by the equation

∑n
i=1 dix

2
i = 1; thus its

semi-principal axes follow the standard axes of Rn and the i'th semi-principal axis is of length
1√
di
. The non-diagonal positive de�nite symmetric matrices give rise to ellipsoids with axes not

following the standard axes. The condition that the quadratic forms induce the same volume as
ι simply implies that the ellipsoids all have the same Euclidean volume.



Chapter 2. Setting the Scene 15

Group Action

There is an obvious action of G = SLn(R) on X, namely precomposition:

(q.g)(x) = q(gx) for x ∈ Rn, q ∈ X, g ∈ G.

This is a right action and it is immediately seen that if q is represented by the symmetric matrix
s, then q.g is represented by gtsg.

Proposition 2.1.11. The action α : X ×G→ X, (q, g) 7→ q.g is smooth.

Proof. It is obvious that the map α′ : G × G → G, (s, g) 7→ gtsg is smooth. Consider the
inclusion i : S(R) ↪→ G and the di�eomorphism Φ: X → S(R) given in Construction 2.1.7. We
have the following commutative diagram

X ×G S(R)×G G×G

X S(R) G

Φ× id

Φ

α α′

i× id

i

As the image of α′ ◦ (i× id) is in the image of i, this diagram shows that α is smooth.

Cholesky decomposition (cf. Proposition 1.1.8) implies that the subgroup B of upper triangular
matrices with determinant 1 acts transitively on X; hence any BUT P acts transitively on X
as it contains B. The stabiliser of X x G at ι is K = SO(n); more generally, for a BUT P , the
stabiliser at ι of the restriction of this action, X x P , is K ∩ P , which is the subgroup of block
diagonal matrices where each block is an orthogonal matrix. Hence, in view of Proposition A.2.3,
we have:

Proposition 2.1.12. X is di�eomorphic to the homogeneous spaces (K ∩ P )\P via the map
[g] 7→ ι.g for any BUT P .

Remark 2.1.13. The di�eomorphism

(K ∩ P )\P −→ S(R)

is given by [g] 7→ gtg.

Let P be a BUT, and recall the Langlands decomposition (K ∩ P ) × AP × NP → P (cf.
Proposition 1.1.5). This combined with the above proposition immediately yields the following
result:

Corollary 2.1.14. The map AP ×NP → X, (a, u) 7→ ι.(au) is a di�eomorphism.

Recall that an action, Y x H, is proper if the map Y ×H → Y × Y , (y, h) 7→ (y.h, y) is proper
(see also Appendix A.1). As a corollary of the results in the appendix, we have the following
proposition.

Proposition 2.1.15. The action X x G is proper, and the action X x SLn(R) is properly
discontinuous.

Proof. As X is di�eomorphic to the homogeneous space K\G, with the action of G on X
corresponding to right multiplication on the coset space, the �rst claim is a direct consequence
of Corollary A.1.5. The second is a consequence of the �rst and Corollary A.1.7 since SLn(R) is
discrete and closed in G.
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In the following, we identify X with K\G. Consider the Cartan decomposition g = k ⊕ p. We
alter between interpreting g as TeG and as the set of right-invariant vector �elds on G � it
should not cause any confusion. Write Γ = SLn(R).

Lemma 2.1.16. Let ω ∈ Ωk(G). Then ω = ρ∗η for some η ∈ Ωk(X), if and only if ιxω = Lxω = 0
for all x ∈ k, where ιx is the interior product on di�erential forms and Lx is the Lie derivative.

Proof. Consider the diagram below, where the downwards directed vertical maps are the pro-
jections: we have to show that η exists if and only if ιxω = Lxω = 0 for all x ∈ k.

(ΛkTG)∗ (ΛkT (K\G))∗

G K\G

ω

(ΛkDρ)∗

ρ

η

To prove the left to right implication, let η ∈ Ωk(K\G), x ∈ k, and note that for all g ∈ G,
v1, . . . , vk−1 ∈ TgG,

(ιxρ
∗η)g(v1, . . . , vk−1) = (ρ∗η)g(DeRg(x), v1, . . . , vk−1)

= ηρ(g)(Dgρ ◦DeRg(x), Dgρ(v1), . . . , Dgρ(vk−1)) = 0,

as Dgρ ◦DeRg(x) = Dρ(g)g ◦Deρ(x) = 0, where as usual g : X → X denotes the action of g on
X given by right multiplication on K\G.
Recall that R×G→ G, (t, g) 7→ Lexp(tx)(g), is the �ow of the right invariant vector �eld x. For
any g ∈ G we therefore have

Lx(ρ∗η)g =
d

dt

∣∣∣∣
t=0

(L∗exp(tx)ρ
∗η)g =

d

dt

∣∣∣∣
t=0

((ρ ◦ Lexp(tx))
∗η)g =

d

dt

∣∣∣∣
t=0

(ρ∗η)g = 0.

For the converse implication, assume that ιxω = Lxω = 0 for all x ∈ k and de�ne a map
ω̃ : G→ (ΛkT (K\G))∗ as follows: For g ∈ G, v1, . . . , vk ∈ Tρ(g)(K\G), set

ω̃g(v1, . . . , vk) := ωg(w1, . . . , wk) for wi ∈ TgG such that Dgρ(wi) = vi.

If w ∈ TgG is such that Dgρ(w) = vi, then wi − w ∈ kerDgρ and y = DgRg−1(wi − w) ∈ k, so

ωg(w1, . . . , wi − w, . . . , wk) = (−1)i−1(ιyω)g(w1, . . . , ŵi, . . . , wk) = 0,

Hence, ω̃ is well-de�ned and it is smooth as ω is smooth.

Let x ∈ k, g ∈ G, and consider the map t 7→ ω̃exp(tx)g. Given v1, . . . , vk ∈ Tρ(g)(K\G) and
t0 ∈ R, let w1, . . . , wk ∈ Texp(t0x)gG such that Dexp(t0x)gρ(wi) = vi. Then for any t ∈ R,

Dexp(tx)gρ
(
DgLexp(tx) ◦Dexp(t0x)gLexp(−t0x)(wi)

)
= Dexp(t0x)g(ρ ◦ Lexp((t−t0)x))(wi)

= Dexp(t0x)g(ρ)(wi) = vi,

so

ω̃exp(tx)g(v1, . . . , vk) = ωexp(tx)g(DgLexp(tx) ◦Dexp(t0x)gLexp(−t0x)(w1), . . . )

= (L∗exp(tx)ω)g(Dexp(t0x)gLexp(−t0x)(w1), . . . , Dexp(t0x)gLexp(−t0x)(wk))
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and

d

dt

∣∣∣∣
t=t0

ω̃exp(tx)g(v1, . . . , vk) =
d

dt

∣∣∣∣
t=t0

(L∗exp(tx)ω)g(Dexp(t0x)gLexp(−t0x)(w1), . . . )

=
d

dt

∣∣∣∣
t=0

(L∗exp((t+t0)x)ω)g(Dexp(t0x)gLexp(−t0x)(w1), . . . )

=
d

dt

∣∣∣∣
t=0

ωexp(tx) exp(t0x)g(Dg(Lexp(tx) ◦ Lexp(t0x)) ◦Dexp(t0x)gLexp(−t0x)(w1), . . . )

=
d

dt

∣∣∣∣
t=0

(L∗exp(tx)ω)exp(t0x)g(w1, . . . , wk) = (Lxω)exp(t0x)g(w1, . . . , wk) = 0.

In other words, the map t 7→ ω̃exp(tx)g is constant. As K = 〈exp k〉, K being connected, we
conclude that ω̃ is constant on the �bres, Kg, of ρ. Therefore it factors through ρ, i.e. there
exists an η as in the diagram.

Suppose Γ′ ≤ Γ is a torsion-free subgroup. Then the action of Γ′ on X is free: Indeed, the
action is properly discontinuous, so the stabiliser subgroups are �nite and as Γ′ is torsion-free,
they must be trivial.

Proposition 2.1.17. If Γ′ ≤ Γ is a torsion-free subgroup, then the manifolds G, X, G/Γ′ and
X/Γ′ are all orientable.

Proof. Being a Lie group, G is orientable. Moreover, we may take a right and left invariant
volume form ω ∈ Ωn2−1(G) on G as it is unimodular (cf. Proposition 1.2.15). X is di�eomorphic
to Euclidean space and as such is orientable, but we would like to give a speci�c volume form.
More speci�cally, we will show that ω descends to a volume form on the quotients K\G, G/Γ′
and K\G/Γ′.
Let ρ : G→ X, π : X → X/Γ′ and π̃ : G→ G/Γ′ denote the projections.
We have an isomorphism of chain complexes π̃∗ : Ω∗(G/Γ′) → Ω∗(G)Γ′ . As ω is right invariant
under G, it is in particular right invariant under Γ′, so it descends to a form ζ ∈ Ωn2−1(G/Γ′)
satisfying π̃∗ζ = ω.
Let x1, . . . , xk be a basis of k, k = n(n−1)

2 . Consider the form ω′ := ix1 · · · ixkω ∈ Ωm(G),

m = n− k = n(n+1)
2 − 1. Clearly, ixω

′ = 0 for all x ∈ k. In addition, Lxω
′ = 0 for all x ∈ k, but

this requires a little more work to prove.
Note �rst that as ω is left invariant,

Lxω =
d

dt

∣∣∣∣
t=0

(L∗exp(tx)ω)g) =
d

dt

∣∣∣∣
t=0

ωg = 0 for all x ∈ g.

Using succesively the identity Lyix − ixLy = i[y,x], x, y ∈ g, and the above, we get

Lyω
′ =

k∑
i=1

ix1 · · · i[y,xi] · · · ixkω for all y ∈ g.

It follows that Ly+y′ = Ly + Ly′ , so it su�ces to check the identity Lxω
′ = 0 on basis vectors

x ∈ k. Choosing as our basis x1, . . . , xk, the basis {Eij − Eji}i<j , straightforward calculations
show that

[xi, xj ] =

k∑
l=1

cli,jxl with cii,j = cji,j = 0.
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Therefore

Lxiω
′ =

k∑
j=1

ix1 · · · i[xi,xj ] · · · ixkω =
k∑
j=1

∑
l 6=j

cli,jix1 · · · ixl · · · ixkω = 0

for all i = 1, . . . , k, and we conclude that Lxω
′ = 0 for all x ∈ k.

By Lemma 2.1.16, ω′ descends to X, i.e. there is a form η ∈ Ωm(X) such that ρ∗η = ω′. Note
now that ω′ is right invariant: Indeed, for any right invariant form α ∈ Ωq+1(G), x ∈ g, the form
ixα is also right invariant by the simple calculation

(R∗gixα)h(v1, . . . , vq) = αhg(DeRhg(x), DhRg(v1), . . . , DhRg(vk))

= (R∗gα)h(DeRh(x), v1, . . . , vq) = (ixα)h(v1, . . . , vq)

for any g, h ∈ G, v1, . . . , vq ∈ ThG.
It follows that η is G-invariant; in particular, η ∈ Ωm(X)Γ′ , so it descends to X/Γ′. Let
ξ ∈ Ωm(X/Γ′) such that π∗ξ = η.

As ω is non-zero everywhere, so is ω′, and it follows immediately that the forms ζ, η and ξ are
non-zero everywhere, and as such are volume forms on the respective manifolds.

2.2 The Case n = 2 Part I

In order to understand the setting better, we take a closer look at the case n = 2. Let X denote
the set of positive de�nite binary forms on R2 inducing the same volume as the standard inner
product equipped with the smooth structure de�ned in the previous section, set G = SL2(R)
and Γ = SL2(Z), and let H ⊆ C denote the upper half-plane. We claim that X is di�eomorphic
to H, and we will use this relationship to get a better understanding of the space X. We then
investigate the action of G and Γ on X by de�ning an appropriate action of G on H.

Proposition 2.2.1. X is di�eomorphic to H.

Proof. Given q ∈ X, let s = (sij) be the positive de�nite symmetric matrix de�ning q, and de�ne
a complex number zq = s12

s11
+ 1

s11
i ∈H. Conversely, given z ∈H, de�ne a matrix sz = (sij) by

s11 =
1

Im(z)
, s12 = s21 =

Re(z)

Im(z)
, s22 =

1 + s2
12

s11
.

Clearly, sz is symmetric and det(sz) = 1. As s11 is positive, sz is positive de�nite: Indeed, for
a > 0, c ∈ R, (

a c

c 1+c2

a

)
=

(√
a 0
c√
a

1√
a

)(√
a c√

a

0 1√
a

)
,

is a Cholesky decomposition. Let qz be the quadratic form x 7→ xtszx. The maps

Φ: X →H, q 7→ zq, Ψ: H → X, z 7→ qz

are smooth and each other's inverses, so we have X ∼= H, as claimed.
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Remark 2.2.2. Recall that we can picture an element q ∈ X as an ellipse in R2 by plotting the
unit ball with respect to the norm induced by q. Our basepoint is ι : x 7→ xtx, which can be
identi�ed with the unit disk in R2; in H, this basepoint is Φ(ι) = i.
For λ > 1, consider the matrices

g1 =

(
λ 0
0 1

λ

)
, g2 =

(
λ
2 + 1

2λ
λ
2 −

1
2λ

λ
2 −

1
2λ

λ
2 + 1

2λ

)
, g3 =

(
1
λ 0
0 λ

)
, g4 =

(
λ
2 + 1

2λ −λ
2 + 1

2λ

−λ
2 + 1

2λ
λ
2 + 1

2λ

)
.

These are all positive de�nite with determinant 1. Let qi ∈ X denote the binary form x 7→ xtgix
and let Ei denote the ellipse arising from qi, i = 1, . . . , 4. The ellipses, Ei, all have major radius√
λ and minor radius 1√

λ
, but their orientations di�er. Let e1, e2 denote the standard basis of

R2.

- E1 has major axis in the direction of e2 and minor axis in the direction of e1;

- E2 has major axis in the direction of e2 − e1 and minor axis in the direction of e1 + e2;

- E3 has major axis in the direction of e1 and minor axis in the direction of e2;

- E4 has major axis in the direction of e1 + e2 and minor axis in the direction of e2 − e1.

In H, the four binary forms q1, q2, q3 and q4 are

Φ(q1) = 1/λi, Φ(q2) =
λ− 1/λ

λ+ 1/λ
+

2

λ+ 1/λ
i, Φ(q3) = λi, Φ(q4) = −λ− 1/λ

λ+ 1/λ
+

2

λ+ 1/λ
i.

Note that |Φ(q2)| = |Φ(q4)| = 1. The four points are plotted in Figure 2.1 for the values λ = 2, 4
including sketches of the corresponding ellipses; the basepoint is also plotted. Looking at this
�gure, the reader may think of the hyperbolic plane; after de�ning an appropriate action of G
on H, we show that the hyperbolic metric is G-invariant.

Construction 2.2.3. De�ne an action H x G by

z.g =
dz + b

cz + a
for g =

(
a b
c d

)
∈ G.

It is clear that z.id = z, and a direct calculation shows that (z.g).h = z.(gh) for any g, h ∈ G.
Note that for any z ∈H and g =

(
a b
c d

)
∈ G, we have

Im(z.g) =
Im(z)

|cz + a|2
,

Re(z.g) =
cd|z|2 + (bc+ ad)Re(z) + ab

|cz + a|2
. (2.1)

We also have z.g = z.(−g) for all z ∈H, g ∈ G.

Proposition 2.2.4. The maps Φ and Ψ de�ned in the proof of Proposition 2.2.1 above are
equivariant.

Proof. Let q ∈ X be given by the matrix s = (sij), and let g =
(
A b
c d

)
∈ G. Then q.g is given by

the matrix

gtsg =

(
a2 s11 + 2ac s12 + c2 s22 ab s11 + (bc+ ad) s12 + cd s22

ab s11 + (bc+ ad) s12 + cd s22 b2 s11 + 2bd s12 + d2 s22

)
,
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Figure 2.1: The upper half-plane with ellipses. The blue circle is the basepoint ι; the dashed
green circle marks the set of points which give rise to ellipses with major radius

√
2 and minor

radius 1/
√

2; the dashed orange circle marks the set of points which give rise to ellipses with
major radius 2 and minor radius 1/2. The four points plotted on the two circles denote the four
points in H corresponding to q1, q2, q3, q4 ∈ X for λ = 2, respectively, λ = 4. The numbering
runs anticlockwise with E1 at the bottom.

and by Equation (2.1), we have

Im(zq.g) =
Im(zq)

|czq + a|2
=

(
s11(c2 s212+1

s211
+ 2ac s12

s11
+ a2)

)−1

=

(
c2 s22 + 2ac s12 + a2 s11

)−1

= (gtsg)−1
11 ,

Re(zq.g) =
cd |zq|2 + (bc+ ad)Re(zq) + ab

|czq + a|2

=
cd

s212+1

s211
+ (bc+ ad) s12

s11
+ ab

c2 s212+1

s211
+ 2ac s12

s11
+ a2

=
cd s22 + (bc+ ad) s12 + ab s11

c2 s22 + 2ac s12 + a2 s11
=

(gtsg)12

(gtsg)11
.

We see that z(q.g) = zq.g, implying that Φ and Ψ are indeed equivariant.

Thus X and H are isomorphic as smooth G-spaces.
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Proposition 2.2.5. The hyperbolic metric on H, d : H ×H → R≥0, given by

d(z1, z2) = 2 tanh−1

(
|z1 − z2|
|z1 − z2|

)
is G-invariant.

Proof. Let g =
(
a b
c d

)
∈ G and z1, z2 ∈H. Then

z1.g − z2.g

z1.g − z2.g
=

(
dz1 + b

cz1 + a
− dz2 + b

cz2 + a

)(
dz1 + b

cz1 + a
− dz2 + b

cz2 + a

)−1

=

(
cz2 + a

cz2 + a

)(
(dz1 + b)(cz2 + a)− (dz2 + b)(cz1 + a)

(dz1 + b)(cz2 + a)− (dz2 + b)(cz1 + a)

)
=

(
cz2 + a

cz2 + a

)(
z1 − z2

z1 − z2

)
,

implying d(z1, z2) = d(z1.g, z2.g) as the �rst factor has norm 1.

Remark 2.2.6. We take a closer look at the geometry of the action of G on H. Note that for
any λ ∈ R, z ∈H

z.
(

1 λ
0 1

)
= z + λ, z.

(
1 0
λ 1

)
=

z

λz + 1
.

Thus we see that the orbits of N , the upper triangular matrices of the form
(

1 λ
0 1

)
, λ ∈ R, are

horizontal lines in H. In terms of ellipses, they are stretched out, tending towards a horizontal
line.

The orbits of lower triangular matrices of the form
(

1 0
λ 1

)
, λ ∈ R, are circles centered at a point

on the imaginary axis and with the real axis as a tangent line: Indeed, if z = Im(z)i is purely
imaginary, then for any λ ∈ R∣∣∣∣z. ( 1 0

λ 1

)
− Im(z)

2 i

∣∣∣∣2 =

∣∣∣∣2Im(z)i− Im(z)i(λIm(z)i+ 1)

2(λIm(z)i+ 1)

∣∣∣∣2
=

∣∣∣∣ Im(z)i+ λIm(z)2

2(λIm(z)i+ 1)

∣∣∣∣2 =
Im(z)2 + λ2Im(z)4

4(λIm(z))2 + 4
=

Im(z)2

4
.

In other words, the orbit of z is a circle of radius 1
2 Im(z) centered at 1

2 Im(z)i (here we are using

the standard Euclidean norm). Now, for arbitrary z ∈H, set λ = −Re(z)
|z|2 ; then

z.
(

1 0
λ 1

)
=

z

λz + 1
=
λ|z|2 + z

|λz + 1|2
=

1

|λz + 1|2
(λ|z|2 + Re(z) + Im(z)i) =

Im(z)

|λz + 1|2
i,

so by the above, the orbit of z under
(

1 0
λ 1

)
, λ ∈ R, is the circle of radius Im(z)

2|λz+1|2 centered at
Im(z)

2|λz+1|2 i. In terms of ellipses, they are stretched out, tending towards a vertical line.

Finally, note that z.
(

0 −1
1 0

)
= −1

z = − z
|z|2 . In terms of ellipses,

(
0 −1
1 0

)
simply rotates the ellipse

such that major and minor axes are swapped around.
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2.3 Real Cohomology of SLn(Z)

In this section, we relate the group cohomology of SLn(Z) with real coe�cients to the de Rham
cohomology of X. This relationship naturally leads us to consider a speci�c chain map, and the
focus of the rest of the project is to show that this map induces an isomorphism on cohomology
in low degrees.

Let G = SLn(R), Γ = SLn(Z) and X as constructed in Section 2.1. For any g ∈ G, we denote
by g : X → X the action map x 7→ x.g. Recall that there is an induced action of G on the de
Rham complex Ω∗(X) via the pullbacks of these maps: ω.g = g∗ω, ω ∈ Ω∗(X).

Proposition 2.3.1. Γ contains a normal torsion free subgroup of �nite index.

Proof. Let p ≥ 3 be some prime; we claim that the principal congruence subgroup

Γ′ := {γ ∈ Γ | γ ≡ id (mod p)}

is normal, torsion free and of �nite index. That it is normal is immediate, and clearly the quotient
Γ/Γ′ is isomorphic to SLn(Z/pZ) and thus �nite. Assume for contradiction that Γ′ is not torsion
free: Then it contains an element of prime order, i.e. there is an element γ = id + pkα ∈ Γ′,
where α ∈ Γ such that α 6≡ 0 (mod p), k ≥ 1, and a prime q such that γq = id. But then

id = γq =

q∑
l=0

(
q

l

)
pk(q−l)αq−l, implying that pkqα = −p2k

q−2∑
l=0

(
q

l

)
pk(q−l−2)αq−l.

Then we must have p = q and k = 1, and the equality yields

α = −
p−2∑
l=0

(
p

l

)
pk(p−l−2)αp−l.

But p |
(
p
l

)
for all 0 < l < p, and p | pk(p−2) as p ≥ 3, so p divides the right-hand side, hence α,

a contradiction.

Let Γ′ ≤ Γ be a normal, torsion-free subgroup of �nite index and let Γ′ inherit the action of Γ
on X. Then Γ′ acts freely on X. As X is contractible, it follows immediately that X/Γ′ is a
classifying space of Γ′.

Proposition 2.3.2. The group cohomology of Γ′ with real coe�cients is isomorphic to the ho-
mology of the the chain complex of Γ′-invariant di�erential forms on X: H∗(Γ′) ∼= H∗(Ω(X)Γ′).

Proof. As Γ′ acts properly and freely on X, X/Γ′ is a smooth manifold (cf. [18, Theorem 9.16])
and by the remark above, it is a classifying space of Γ′. Hence we have H∗(Γ′) ∼= H∗(X/Γ′;R),
and by De Rham's Theorem (cf. [18, Theorem 11.34]), this latter group is isomorphic to the de
Rham cohomology of X/Γ′, H∗(Ω

∗(X/Γ′)).

Let π : X → X/Γ′ denote the projection and consider the chain map π∗ : Ω∗(X/Γ′) → Ω∗(X).
Note that for any γ ∈ Γ′, ω ∈ Ω∗(X/Γ′), we have γ∗π∗ω = (π ◦γ)∗ω = π∗ω, so imπ∗ ⊆ Ω∗(X)Γ′ .
Now, given ω ∈ Ωk(X)Γ′ , de�ne ω̃ ∈ Ωk(X/Γ′) as follows: for x ∈ X/Γ′, w1, . . . wk ∈ Tx(X/Γ′),
set

ω̃x(w1, . . . , wk) = ωq(v1, . . . , vk)
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for q ∈ X, vi ∈ TqX such that π(q) = x and Dqπ(vi) = wi. This is well-de�ned since if q′ ∈ X,
v′i ∈ Tq′X satisfy π(q′) = x and Dq′π(v′i) = wi, then q

′ = q.γ and v′i = Dqγ(vi) for some γ ∈ Γ′,
and thus

ωq′(v
′
1, . . . , v

′
k) = ωq.γ(Dqγ(v1), . . . , Dqγ(vk)) = (γ∗ω)q(v1, . . . , vk) = ωq(v1, . . . , vk)

as ω is Γ′ invariant. The form ω̃ is smooth as π is a local di�eomorphism. Finally, the map
Ω∗(X)Γ′ −→ Ω∗(X/Γ′), ω 7→ ω̃, is a chain map and inverse to π∗, so π∗ is a chain isomorphism
and we conclude that

H∗(Γ′) ∼= H∗(Ω
∗(X/Γ′)) ∼= H∗(Ω

∗(X)Γ′).

If C is a chain complex of H-modules for some group H, then there is an obvious action on
H∗(C): h.[c] = [h.c], h ∈ H, [c] ∈ H∗(C).

Lemma 2.3.3. For any �nite group H and chain complex of H-modules C, the inclusion of the
chain complex of invariants CH ↪→ C induces an isomorphism H∗(C

H) → H∗(C)H , which is
natural in C.

Proof. It is obvious that the image of the map H∗(C
H)→ H∗(C) is a subset of the H-invariants

of H∗(C). Consider the map C → CH , c 7→ 1/|H|
∑

h∈H hc, and the induced map on ho-
mology restricted to the submodule of H-invariants H∗(C)H → H∗(C

H). The composition
CH ↪→ C → CH is the identity, and thus so is the induced map on homology. For the other
composition, note that for [c] ∈ H∗(C)H , we have[

1/|H|
∑
h∈H

hc

]
= 1/|H|

∑
h∈H

h[c] = 1/|H|
∑
h∈H

[c] = [c].

Hence, the composition C → CH → C induces the identity on H∗(C)H .

Naturality follows directly from naturality of H∗(−), requiring of course the chain map in ques-
tion to be equivariant.

We need the following important result:

Proposition 2.3.4. Let H be a group, H ′ a normal subgroup of �nite index in H, and M
an H-module. If multiplication by |H : H ′| is an isomorphism of M , then the restriction map
induced by the inclusion H ′ ↪→ H yields an isomorphism H∗(H,M)→ H∗(H ′,M)H/H

′
.

Proof. See [9, Proposition 10.4].

Proposition 2.3.5. The group cohomology of Γ with real coe�cients is isomorphic to the
homology of the chain complex of Γ-invariant di�erential forms on X: H∗(Γ) ∼= H∗(Ω

∗(X)Γ)

Proof. For any Γ-module, M , the submodule MΓ′ has a natural structure of a Γ/Γ′-module and
MΓ = (MΓ′)Γ/Γ′ . Hence, using Proposition 2.3.2, Lemma 2.3.3 and Proposition 2.3.4, we have
an isomorphism

H∗(Γ) H∗(Γ′)Γ/Γ′ H∗(Ω
∗(X)Γ′)Γ/Γ′ H∗((Ω

∗(X)Γ′)Γ/Γ′) H∗(Ω
∗(X)Γ)

∼= ∼= ∼=
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The aim of this project is to calculate H∗(Γ) in low degrees and the way we do this is by
exploiting the following theorem. The proof of this theorem is where all the hard work of this
project lies and this will be the content of the next four chapters.

Theorem 2.3.6. The inclusion Ω∗(X)G ↪→ Ω∗(X)Γ induces an isomorphism on homology in
degrees ∗ ≤ n+1

4 for n 6= 3 and in the zero'th degree for n = 3.

Evaluation at the identity yields an isomorphism Ω∗(X)G ∼= C∗(g, k,R), where the latter denotes
the Chevalley-Eilenberg chain complex of the relative Lie algebra cohomology (we do a very brief
recap of Lie algebra cohomology in Section 6.1). Hence, the above theorem and Proposition 2.3.5
enable us, in low degrees, to express the group cohomology of Γ with real coe�cients in terms
of Lie algebra cohomology. We exploit this in Section 6.3.
It su�ces to prove the theorem for a torsion-free normal subgroup of �nite index:

Theorem 2.3.7. Let Γ′ ⊆ Γ be a normal torsion-free subgroup of �nite index. If the in-
clusion Ω∗(X)G ↪→ Ω∗(X)Γ′ induces an isomorphism on homology in degree k, then so does
Ω∗(X)G ↪→ Ω∗(X)Γ.

Proof. The claim is seen immediately from the following commutative diagram on homology,
where the vertical maps are induced by the inclusions, and the second square commutes by
naturality of the isomorphism in Lemma 2.3.3:

Hk(Ω
∗(X)G) Hk((Ω

∗(X)G)Γ/Γ′) Hk(Ω
∗(X)G)Γ/Γ′

Hk(Ω
∗(X)Γ) Hk((Ω

∗(X)Γ′)Γ/Γ′) Hk(Ω
∗(X)Γ′)Γ/Γ′

∼=

∼=



3 | Siegel Reduction Theory

In this chapter we try to understand better the manifold X as de�ned in the previous chapter
and the action of SLn(Z) on it. The de�nitions and results of this chapter will be essential in
what is to come. More speci�cally, we de�ne a �nice� type of subset of SLn(R) and of X, namely
Siegel sets, and we show that su�ciently large Siegel sets intersect all Γ-orbits in X. This eases
the study of the quotient space X/Γ. Again, we take a closer look at the case n = 2 and �nish
o� with some technical results for use later on. The chapter is based on [5].

Let G = SLn(R), Γ = SLn(Z) and let X be as in Section 2.1.

3.1 Siegel Sets

Using the Iwasawa decomposition of G, we de�ne Siegel sets and show that su�ciently large
Siegel sets in G intersect all Γ-orbits in G, with Γ acting by right multiplication. This is done
by showing that a certain function has a minimum and that this minimum is attained in a point
belonging to a certain Siegel set. We then use the quotient map G → X to translate these
de�nitions and results onto X.

Recall the Iwasawa decomposition ofG (Theorem 1.1.1): The multiplication mapK×A×N → G
is a di�eomorphism, with A ≤ G the subgroup of diagonal matrices with positive entries, N ≤ G
the subgroup of upper triangular matrices with 1's on the diagonal, and K = SO(n). In the
following, 1 ≤ i, j ≤ n.

Definition 3.1.1. For λ, δ > 0, set

Aλ := {a = (ai) ∈ A | ai ≤ λai+1 for all i}
Nδ := {u = (uij) ∈ N | |uij | ≤ δ for all i < j}.

A Siegel set in G is a subset of the form Sλ,δ := KAλNδ ⊆ G for some λ, δ > 0.

We will prove that the Siegel set S2/
√

3,1/2 intersects all Γ-orbits in G, and hence satis�es
G = S2/

√
3,1/2.Γ when Γ acts on G by right translation. It will be a consequence of Theorem 3.1.6

below.

Lemma 3.1.2. N = N1/2NZ, where NZ = N ∩ Γ.

Proof. Let u = (uij) ∈ N . Note that for any z = (zij) ∈ NZ, the product uz has entries
(uz)ii = 1 for all i,

(uz)ij =

j∑
k=i

uikzkj = zij + ui i+1zi+1 j + . . .+ uij for i < j, (3.1)

and zero elsewhere. We construct z = (zij) ∈ NZ such that |(uz)ij | ≤ 1
2 for all i < j by

de�ning the entries recursively: First, set zii = 1 for all i, and let zn−1n ∈ Z such that

25
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|zn−1n + un−1n| ≤ 1
2 ; by 3.1, |(uz)n−1n| ≤ 1

2 . Let 1 ≤ l < n − 1, and suppose that zij
have been de�ned for all l < i < j such that |(uz)ij | ≤ 1

2 . For j > l, let zlj ∈ Z such that∣∣∣∣zlj +

j∑
k=l+1

ulkzkj

∣∣∣∣ ≤ 1

2
.

With z = (zij) as above, we have u = (uz)z−1 with uz ∈ N1/2, z
−1 ∈ NZ (this last claim can

be seen by recursively calculating the entries of z−1 using Equation (3.1)).

Construction 3.1.3. Let e1, . . . , en denote the standard basis of Rn. De�ne Φ: G → R>0 by
Φ(g) = ‖g(e1)‖, where ‖ · ‖ is the standard norm on Rn. Note that Φ is continuous, and that if
g = kau is the Iwasawa decomposition with a = (ai), then

Φ(g) = ‖kau(e1)‖ = ‖ka(e1)‖ = ‖a(e1)‖ = a1 = Φ(a),

as u(e1) = e1, and k is orthogonal.

Lemma 3.1.4. For any g ∈ G, the map ϕg : Γ→ R>0, γ 7→ Φ(gγ), has a minimum.

Proof. Let g ∈ G. As Γe1 ⊆ Zn − {0} is a closed, discrete subset of Rn, and g : Rn → Rn is
a homeomorphism, gΓe1 is a closed, discrete subset of Rn. It follows that the norm function
‖ · ‖ : Rn − {0} → R>0 restricted to gΓe1 has a minimum.

Lemma 3.1.5. Let g ∈ G and let g = kgagug be its Iwasawa decomposition with ag = (ai). If
Φ(g) ≤ Φ(gγ) for all γ ∈ Γ, then a1 ≤ 2√

3
a2.

Proof. Note �rst that for any z ∈ NZ, we have Φ(gz) = Φ(g) as z(e1) = e1, and moreover,
kgag(ugz) = gz = kgzagzugz, so we must have ag = agz by uniqueness of the Iwasawa decom-
position. Hence, in view of Lemma 3.1.2, it su�ces to consider the case where g = kau for
u ∈ N1/2. In particular, |u12| ≤ 1

2 . Consider the element γ = (γij) ∈ Γ with γ12 = −1, γ21 = 1,
γii = 1 for all i ≥ 3 and zero elsewhere. Then γ ∈ Γ and

gγ(e1) = g(e2) = kau(e2) = ka(e2 + u12e1) = k(a1u12e1 + a2e2),

and therefore

a2
1 = Φ(g)2 ≤ Φ(gγ)2 = a2

1u
2
12 + a2

2 ≤ 1
4a

2
1 + a2

2,

from which the desired inequality follows.

Theorem 3.1.6. For any g ∈ G, the minimum of Φ on g.Γ is attained in a point belonging to
g.Γ ∩Sλ,δ for λ = 2/

√
3, δ = 1/2. In particular, g.Γ ∩S2/

√
3,1/2 6= ∅.

Proof. Write S0 := S2/
√

3,1/2. We prove the claim by induction on the dimension n.
For n = 1, we have G = S0 = {(1)}. Now, let n > 1 and assume that the claim holds for
n− 1. Let g ∈ G, and take, in view of Lemma 3.1.4, an h ∈ g.Γ such that Φ(h) ≤ Φ(gγ) for all
γ ∈ Γ. Write h = khahuh as its Iwasawa decomposition. Again, we can assume that uh ∈ N1/2

as Φ(hz) = Φ(z) for all z ∈ NZ. Then

k−1
h h =

(
a1 a1v
0 g′

)
for some g′ ∈ GLn−1(R) with det g′ =

1

a1
,

where a1 is the �rst entry of ah and v = (u12 · · · u1n). Then n−1
√
a1 g

′ ∈ SLn−1(R) and our

induction hypothesis implies that g′.SLn−1(Z) ∩ S
(n−1)
0 6= ∅, where S

(n−1)
0 = S

(n−1)
2/
√

3,1/2 denotes
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the Siegel set in SLn−1(R), i.e. there is a γ′ ∈ SLn−1(Z) such that n−1
√
a1 g

′γ′ ∈ S
(n−1)
0 . Set

γ =
(

1 0
0 γ′
)
and write n−1

√
a1 g

′γ′ = k′a′u′, hγ = k′′a′′u′′ as their Iwasawa decompositions. As

n−1
√
a1 g

′γ′ ∈ S
(n−1)
0 , we have a′ ∈ A(n−1)

2/
√

3
and u′ ∈ N (n−1)

1/2 . Note that

k−1
h k′′a′′u′′ = k−1

h hγ =

(
a1 a1v
0 g′γ′

)
=

(
a1 a1v
0 1

n−1
√
a1
k′a′u′

)
.

By uniqueness of the Iwasawa decomposition, we must have

k′′ = kh

(
1 0
0 k′

)
, a′′ =

(
a1 0
0 1

n−1
√
a1
a′

)
, u′′ =

(
1 v
0 u′

)
.

It is clear that u′′ ∈ N1/2. To �nish the proof, we must show that a′′ ∈ A2/
√

3: By construction,

a′′i =
1

n−1
√
a1
a′i ≤

1
n−1
√
a1

2√
3
a′i+1 =

2√
3
a′′i+1 for all i ≥ 2.

Note that Φ(hγ) = Φ(h) as γ(e1) = e1. Hence, Φ(hγ) ≤ Φ(gη) for all η ∈ Γ. In particular,
Φ(hγ) ≤ Φ(hγη) for all η ∈ Γ, and therefore by Lemma 3.1.5,

a′′1 ≤
2√
3
a′′2.

We conclude that a′′ ∈ A2/
√

3. Thus hγ ∈ g.Γ ∩S0 and hγ is a minimum point of Φ|g.Γ.

We have proved that:

Theorem 3.1.7. The Siegel set S2/
√

3,1/2 intersects all Γ-orbits in G; that is, G = S2/
√

3,1/2.Γ.

Remark 3.1.8. Recall that S(R) denotes the set of positive de�nite matrices with determinant
1. Cholesky decomposition (Proposition 1.1.8) implies that an element s ∈ S(R) can be written
uniquely as s = utau for u ∈ N , a ∈ A.

Definition 3.1.9. A Siegel set in X is the image of a set of the form

{utau | u ∈ Nδ, a ∈ Aλ} ⊆ S(R)

under the di�eomorphism S(R) ∼= X described in Construction 2.1.7 for some λ, δ > 0; in other
words, it is the set of quadratic forms in X represented by matrices of the form utau with u ∈ Nδ,
a ∈ Aλ. It is denoted by S′λ,δ.

Remark 3.1.10. Let π : G → X be the projection g 7→ ι.g, where ι : x 7→ xtx. It is equivariant,
when G acts on itself by right multiplication and X x G as de�ned in the previous section.
Note that g = kau is the Iwasawa decomposition of g if and only if gtg = uta2u is the Cholesky
decomposition of gtg. It follows that

π(Sλ,δ) = S′λ2,δ, and π−1(S′λ2,δ) = Sλ,δ.

The above remark and Theorem 3.1.7 yields the following result

Theorem 3.1.11. The Siegel set S′4/3,1/2 intersects all Γ-orbits in X, so X = S′4/3,1/2.Γ.

From now on we denote by Sλ,δ both the Siegel sets in G and X; it will be immediate from the
context, where they belong.
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Remark 3.1.12. We will see that at least for n = 2, we cannot take λ and δ any smaller (see
Section 3.2), so this is the best we can do to �nd a Siegel set which works for all n.

Construction 3.1.13 (Siegel Normal Coordinates). Consider the map τ : A → Rn−1
>0 given by

pri ◦ τ(a) = ai
ai+1

for a = (ai) ∈ A. This is bijective with inverse τ−1 : Rn−1
>0 → A given by

τ−1(b)j =

n

√∏n−1
i=1 b

n−i
i

b1 . . . bj−1
for b = (bi) ∈ Rn−1

>0 .

Indeed, for all b = (bi) ∈ Rn−1
>0 ,

prj(τ ◦ τ−1(b)) =
τ−1(b)j
τ−1(b)j+1

=

n

√∏n−1
i=1 b

n−i
i

b1 . . . bj−1
· b1 . . . bj

n

√∏n−1
i=1 b

n−i
i

= bj

and for all a = (ai) ∈ A, where we write τ(a)j := prj(τ(a)),

an1 =

n∏
i=1

a1

ai
=

n∏
i=2

τ(a)1 . . . τ(a)i−1 =

n−1∏
i=1

τ(a)n−ii

and thus

τ−1(τ(a))j = (τ(a)1 . . . τ(a)j−1)−1 n

√√√√n−1∏
i=1

τ(a)n−ii =
aj
a1
a1 = aj .

Both τ and τ−1 are smooth, so τ is a di�eomorphism, and it is easily seen that it is in fact a
group isomorphism into the multiplicative group Rn−1

>0 .

Definition 3.1.14. The maps ti : A→ R>0, a = (ai) 7→ ai
ai+1

, are called the Siegel normal coor-

dinates on A, and the map τ : A→ Rn−1
>0 given by pri◦τ = ti is the Siegel normal coordinatisation

map.

3.2 The Case n = 2 Part II

We return to the case n = 2. Set G = SL2(R) and Γ = SL2(Z), let X be the manifold
constructed in Section 2.1 and let H ⊆ C denote the upper half-plane. We know that X and
H are di�eomorphic, and we have compatible actions of G on X and H (Section 2.2). In
this section, we determine a fundamental domain of the action H x Γ and compare it with
S0 := S4/3,1/2 ⊆ X.

Recall that the action of G on H is given by

z.
(
a b
c d

)
=
dz + b

cz + a
for z ∈H,

(
a b
c d

)
∈ G.

Proposition 3.2.1. The set D = {z ∈H | |z| > 1, |Re(z)| < 1
2} satis�es H = D.Γ.

Proof. To see that H = D.Γ, let z ∈H. For any M > 0, there are only �nitely many integers
a, b ∈ Z such that |az + b| ≤ M . Hence, as Im(z.γ) = Im(z)

|γ21z+γ11|2 for any γ = (γij) ∈ Γ, there

exists γ0 ∈ Γ such that Im(z.γ0) ≥ Im(z.γ) for all γ ∈ Γ. With γ0 as above, set z′ := z.γ0. Let
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m ∈ Z such that |Re(z′) + m| ≤ 1
2 and de�ne η0 := ( 1 m

0 1 ); then z′.η0 = z′ + m. We claim that
z′′ := z′.η0 = z.(γ0η0) is an element of D. By construction |Re(z′′)| ≤ 1

2 ; to see that |z′′| ≥ 1,
note that

Im(z′′)

|z′′|2
= Im(z′′.

(
0 −1
1 0

)
) = Im(z.(γ0η0

(
0 −1
1 0

)
)) ≤ Im(z.γ0) = Im(z.(γ0η0)) = Im(z′′).

We conclude that z′′ ∈ D = {z ∈H | |z| ≥ 1, |Re(z)| ≤ 1
2}.

Claim 1 of the following proposition shows that we cannot take D smaller; Claims 2-4 show
what happens on the boundary.

Proposition 3.2.2. Let z ∈H, γ ∈ Γ. Then the following hold:

1. If z, z.γ ∈ D, then γ = ±id.

2. If z, z.γ ∈ D − {z ∈H | |z| = 1} and γ 6= ±id, then Re(z) = ±1
2 and γ = ±

(
1 ∓1
0 1

)
.

3. If z, z.γ ∈ D − {±1
2 +

√
3

2 i} and γ /∈
{
± id,±

(
1 ±1
0 1

)}
, then |z| = 1 and γ = ±

(
0 −1
1 0

)
.

4. If z, z.γ ∈ D and γ /∈
{
± id,±

(
1 ±1
0 1

)
,±
(

0 −1
1 0

)}
, then

z, z.γ ∈ {±1
2 +

√
3

2 i} and γ ∈
{
±
(

0 −1
1 ±1

)
,±
(

1 0
±1 1

)
,±
(±1 −1

1 0

)}
.

Proof. For all four claims, we can without loss of generality assume that Im(z.γ) ≥ Im(z) � if the

opposite is the case, we simply consider z.γ and (z.γ).γ−1 instead. Then, as Im(z.γ) = Im(z)
|γ21z+γ11|2 ,

we must have |γ21z + γ11| ≤ 1. First note that

1 ≥ |γ21z + γ11|2 = γ2
21|z|2 + 2γ11γ21Re(z) + γ2

11 ≥ γ2
21|z|2 − γ11γ21 + γ2

11

= γ2
21|z|2 − 1

4γ
2
21 + (1

2γ21 − γ11)2 ≥ γ2
21(|z|2 − 1

4) ≥ 3
4γ

2
21. (3.2)

It follows that |γ21| ≤ 2√
3
< 2, i.e. γ21 ∈ {0,±1}.

For the �rst two claims we have |z| > 1. Hence, if γ21 = ±1, then

1 ≥ | ± z + γ11|2 = |z|2 ± 2γ11Re(z) + γ2
11 ≥ |z|2 ∓ γ11 + γ2

11 ≥ |z|2 + γ2
11 − |γ11| ≥ |z|2 > 1,

so we conclude that γ21 = 0, and thus

γ = ±
(

1 γ12

0 1

)
is an upper triangular matrix and z.γ = z + γ12.

In Claim 1, z, z.γ ∈ D, and therefore |γ21| = |Re(z.γ)− Re(z)| < 1, so γ21 = 0, and as desired,
we have γ = ±id and z.γ = z.
In Claim 2, z, z.γ ∈ D, and therefore |γ21| = |Re(z.γ) − Re(z)| ≤ 1, and as γ 6= ±id, we must
have γ12 = ±1. It follows that Re(z) = ∓1

2 and z.γ = z ± 1.
For the third and fourth claim, note �rst that if γ21 = 0, then Re(z.γ) = Re(z) + γ12 would
imply γ12 ∈ {0,±1}; as we have assumed γ 6= ±id,±

(
1 ±1
0 1

)
, we conclude that γ21 = ±1. The

inequality

1 ≥ | ± z + γ11|2 ≥ |z|2 + γ2
11 − |γ11|
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implies that |z| = 1 and γ11 ∈ {0,±1}. Then also |±z+γ11| = 1, and therefore Im(z) = Im(z.γ).
If γ11 = ±1, then

1 = |z ± 1| = |z|2 ± 2Re(z) + 1 = 2(1± Re(z)),

implying Re(z) = ∓1
2 and thus z = ∓1

2 +
√

3
2 i.

Therefore, in Claim 3, we must have γ11 = 0, so γ = ±
(

0 −1
1 γ22

)
. If γ22 6= 0, then

z.γ = γ22 − z and |Re(z.γ)| = |γ22 − Re(z)| ≥ 1

2
.

But then z = ±1
2 +

√
3

2 i, contradicting our assumption. Hence, as desired γ = ±
(

0 −1
1 0

)
and

z.γ = 1
z = −z.

Now, for the fourth and �nal claim: If γ11 = 0, then γ = ±
(

0 −1
1 γ22

)
for γ22 6= 0 and the above

arguments show that γ22 = ±1 and z = z.γ = ±1
2 +

√
3

2 .

If γ11 = ±1, then z = ∓1
2 +

√
3

2 by the above and γ = ±
(
±1 γ22−1
1 ±γ22

)
. Then, as |z| = 1 and

Im(z.γ) = Im(z) =
√

3
2 , we must have |Re(z.γ)| = 1

2 . It follows that

1 = |z.γ|2 =
| ± γ22z + γ22 − 1|2

|z ± 1|2
= γ2

22|z|2 ± 2γ22(γ22 − 1)Re(z) + (γ22 − 1)2

≥ γ2
22 ∓ γ22(γ22 − 1) + (γ22 − 1)2 = (2∓ 1)γ22(γ22 − 1) + 1

and thus γ22 ∈ {0, 1}, so γ ∈
{
±
(

1 0
±1 1

)
,±
(±1 −1

1 0

)}
.

Definition 3.2.3. A fundamental domain for a group action on a set Y is a subset of Y which
intersects each orbit exactly once.

Corollary 3.2.4. The following set is a fundamental domain for the action H x Γ

D ∪ {z ∈ D | |z| > 1,Re(z) = 1
2} ∪ {z ∈ D | |z| = 1,Re(z) ≤ 0}.

Remark 3.2.5. The image of Sλ,δ ⊆ X under the di�eomorphism Φ is the set

Φ(Sλ,δ) =

{
z ∈H

∣∣∣∣ Im(z) ≥ 1√
λ
, |Re(z)| ≤ δ

}
This can be seen from the Cholesky decomposition of s = (sij) de�ning q ∈ X:(

s11 s12

s12 s22

)
=

(√
s11 0
s12√
s11

1√
s11

)(√
s11

s12√
s11

0 1√
s11

)
=

(
1 0
s12
s11

1

)(
s11 0
0 1

s11

)(
1 s12

s11

0 1

)
.

By de�nition of Sλ,δ, if q ∈ Sλ,δ, then s11 ≤ λ 1
s11

, implying s11 ≤
√
λ and | s12

s11
| ≤ δ. Hence,

Φ(q) = zq = s12
s11

+ 1
s11
i is contained in the set above. This decomposition also shows that

Ψ(z) = qz ∈ Sλ,δ for any z satisfying Im(z) ≥ 1√
λ
and |Re(z)| ≤ δ.

We see that Φ(S0) is only a little bit bigger than the fundamental domain of X x Γ, and that it
is the smallest Siegel set Sλ,δ in X such that D ⊆ Φ(Sλ,δ). The sets D and Φ(S0) are pictured
in Figure 3.1.
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� ���

Figure 3.1: The subsets D (horizontal shading) and Φ(S0) (diagonal shading) of the upper
half-plane H.

3.3 Technical Results

As the title suggests, this section contains some technical results about Siegel sets. Though we
will not need it, we prove that a Siegel set has �nite measure with respect to a Haar measure
on G. There are two reasons for doing this: It is in itself an interesting result, but more
importantly the idea of the proof reappears later on, albeit in a much more complicated version
(see Proposition 5.2.9). We also prove that there are certain limitations to how an element of
SLn(R) may act on a Siegel set; this we will need later on.

Lemma 3.3.1. For any compact subset C ⊆ N , λ > 0, the set
⋃
a∈Aλ aCa

−1 ⊆ N is relatively
compact.

Proof. Note �rst that that the exponential map exp: n→ N is a di�eomorphism and that

exp ◦Ad(a)|n = ca|N ◦ exp, where ca is conjugation by a ∈ A.

Hence, it su�ces to show that for any compact C ⊆ n, λ > 0, the set
⋃
a∈Aλ Ad(a)C is relatively

compact in n. We know from the proof of Proposition 1.2.15 that for a = (ai) ∈ A, Ad(a)|n is
given by the diagonal matrix (( aiaj )i<j). Then {Ad(a)|n}a∈Aλ is a bounded family of operators

on n as ai
aj
< λj−i for all i < j, a = (ai) ∈ Aλ. It follows that

⋃
a∈Aλ Ad(a)C is bounded and

thus relatively compact for any C ⊆ n compact.
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Proposition 3.3.2. Let (xj)j∈N ⊆ G and g ∈ G. Let 0 = l0 < . . . < lk = n be a partition of

n de�ning a BUT P . If {xj}, {xjg} ⊆ Sλ,δ and
(aj)li

(aj)li+1
−−−→
j→∞

0 for all i = 1, . . . , k − 1, where

aj ∈ Aλ is the diagonal matrix of the Iwasawa decomposition of xj , then g ∈ P .

Proof. Assume xj , xjg ∈ Sλ,δ for all j ∈ N and write xj = kjajxj , xjg = k′ja
′
ju
′
j for kj , k

′
j ∈ K,

aj , a
′
j ∈ Aλ, uj , u′j ∈ Nδ. Assume that

(aj)li
(aj)li+1

−−−→
j→∞

0 for all i = 1, . . . , k − 1. Let g = uwzv be

the Bruhat decomposition of g, i.e. u, v ∈ N , w ∈W and z ∈ A. Then

k′ja
′
ju
′
j = xjg = kjajujuwzv = kj(ajujua

−1
j )ajwzv = kjw(w−1ajujua

−1
j w)(w−1ajw)zv.

Setting dj := w−1ajujua
−1
j w = kdjadjudj , kdj ∈ K, adj ∈ A, udj ∈ N , we have

k′ja
′
ju
′
j = kjw(kdjadjudj )(w

−1ajw)zv = (kjwkdj )(adjw
−1ajwz)((w

−1ajwz)
−1udj (w

−1ajwz)v),

where

kjwkdj ∈ K, adjw
−1ajwz ∈ A, (w−1ajwz)

−1udj (w
−1ajwz)v ∈ N.

In particular, we must have a′j = adjw
−1ajwz. We use this identity to prove that w ∈ P from

which it directly follows that g = uwzv ∈ P . Let σ−1 ∈ Σn be the permutation de�ning w, i.e.
wiσ−1(i) = ±1 and wij = 0 for j 6= σ−1(i) (we take the inverse permutation to simplify notation
a little). Then w−1ajw is the diagonal matrix with i'th entry equal to (aj)σ(i). We see that

dj ∈ w−1(
⋃
j∈N ajNδua

−1
j )w; this set is bounded by Lemma 3.3.1, so the set {dj}j∈N is bounded

in G and hence the set {adj} is bounded in A ∼= Rn−1
>0 . Let C ∈ R such that

(adj )i

(adj )i+1
≥ C for all

i = 1, . . . , n− 1 and set Z := mini
zi
zi+1

. Then

λ >
(a′j)i

(a′j)i+1
=

zi
zi+1

·
(adj )i

(adj )i+1
·

(aj)σ(i)

(aj)σ(i+1)
≥ ZC

(aj)σ(i)

(aj)σ(i+1)
for all i = 1, . . . n− 1.

Now, we claim that σ preserves the partition 0 = l0 < · · · < lk = n, i.e.

σ({ls + 1, . . . , ls+1}) = {ls + 1, . . . , ls+1} for all s = 1, . . . , k − 1.

Then so does σ−1 and hence w ∈ P . Assume for contradiction that σ does not preserve the
partition and let s be minimal such that σ({ls−1 +1, . . . , ls}) 6= {ls−1 +1, . . . , ls}. By minimality
of s, we must have some i ≤ ls such that σ(i) > ls and some i′ > ls such that σ(i′) ≤ ls. But
then

σ(i)−1∏
m=σ(i′)

(aj)m+1

(aj)m
=

(aj)σ(i)

(aj)σ(i′)
=

i′−1∏
m=i

(aj)σ(m)

(aj)σ(m+1)
≤
(

λ

ZC

)i′−i
.

Now,
(aj)m+1

(aj)m
> λ−1 for all m = 1, . . . , n − 1, j ∈ N, and (aj)ls+1

(aj)ls
→ ∞ as j → ∞. Then as

ls ∈ {σ(i′), . . . , σ(i)− 1}, the product on the very left tends to in�nity, a contradiction.

Theorem 3.3.3. The measure of a Siegel set Sλ,δ ⊆ G with respect to a Haar measure on G is
�nite.
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Proof. Let µG be a Haar measure on G. Then by Proposition 1.2.18, we have

µG(Sλ,δ) =

∫
Sλ,δ

dµG(g) =

∫
K×Aλ×Nδ

ρ(a) dµK(k)dµA(a)dµN (n)

=

(∫
K
dµK(k)

)(∫
Aλ

ρ(a) dµA(a)

)(∫
Nδ

dµN (n)

)
.

As K and Nδ are compact, we have

µG(Sλ,δ) = c1

∫
Aλ

ρ(a) dµA(a)

for some constant c1 > 0. Let τ : A → Rn−1
>0 , a = (ai) 7→ b = (bi) with bi = ai

ai+1
denote the

Siegel normal coordinatisation map (De�nition 3.1.14). Then τ∗µG is a Haar measure on Rn−1
>0 .

Note that

τ(Aλ) = (0, λ]n−1 and ρ ◦ τ−1(b) =

n−1∏
i=1

b
i(n−i)
i for all b = (bi) ∈ Rn−1

>0 .

The map ξ : Rn−1 → Rn−1
>0 , y = (yi) 7→ (exp(yi)) is a group isomorphism mapping the Lebesgue

measure ν on Rn−1 to a Haar measure on Rn−1
>0 , so ξ∗ν = c2τ∗µG for some c2 > 0. Setting

C = c1
c2
, we then have

µG(Sλ,δ) = c1

∫
Aλ

ρ(a) dµA(a) = c1

∫
(0,λ]n−1

ρ ◦ τ−1(b) dτ∗µA(b)

= C

∫
(−∞,log(λ)]n−1

ρ ◦ τ−1 ◦ ξ(y) dν(y).

Now, ρ ◦ τ−1 ◦ ξ(y) =
∏n−1
i=1 exp(i(n− i)yi) for all y = (yi) ∈ Rn−1. Hence, as desired

µG(Sλ,δ) = C
n−1∏
i=1

(∫ log(λ)

−∞
exp(i(n− i)yi) dyi

)
<∞.





4 | Borel-Serre Compactification

We still consider Γ = SLn(Z) and X as in Section 2.1 and we are interested in the quotient
space X/Γ. The main inconvenience is that X/Γ is not compact. In this chapter, we construct
a compact replacement, that is a compacti�cation of X/Γ. We partially compactify X to get a
manifold with corners X, to which we can extend the action of Γ, and such that the quotient
X/Γ is compact. Again, we look at the case n = 2 in detail to get a better understanding of
the geometry of this construction. We also take a look at the case n = 3, as the case n = 2 is in
some ways too simple to really illustrate the construction.
The construction is due to Borel and Serre and is done for general arithmetic groups in their
paper [3]. In our case, as Borel and Serre also point out in their article, it is an application of
Siegel reduction theory of quadratic forms, which was dealt with in the previous chapter.

We will not prove here that X/Γ is not compact � it is a consequence of the Godement compact-
ness criterion (see [7, Proposition III.2.15]). Note that in the case n = 2, it is seen immediately
that X/Γ is not compact in Section 3.2 as we determined explicitly the fundamental domain of
the action X x Γ.

We refer to [15, Appendix C] for some background on manifolds with corners. We will in the
following use the terms smooth, submanifold etc. without specifying explicitly that it is of course
meant in the sense of manifolds with corners.

Let G = SLn(R) and let A ≤ G denote the subgroup of diagonal matrices with positive entries,
N ≤ G the subgroup of upper triangular matrices with 1's on the diagonal and set K = SO(n).
For g ∈ G, we write qg := ι.g for the quadratic form given by the matrix gtg.

4.1 Geodesic Action

We begin by de�ning a left action on X by A. We will consider the orbits of this action and of
certain restrictions of it when we construct the partial compacti�cation.

Let P ≤ G be a subgroup of block upper triangular matrices (a BUT) given by a partition
κP , with κP given by 0 = l0 < l1 < · · · < lk = n, or equivalently (m1, . . . ,mk) such that∑k

i=1mi = n. Recall the Langlands decomposition (cf. 1.1.5): (K ∩P )×AP ×NP
∼=−→ P , where

AP = {(ai) diagonal | ali+j = ali+1
> 0 for j = 1, . . . ,mi+1, i = 0, . . . , k − 1},

NP = {(uij) upper triangular | uii > 0 for i = 1, . . . , n

and Π
mi+1

j=1 uli+j,li+j = 1 for i = 0, . . . , k − 1}.

Recall the Siegel normal coordinates on A (De�nition 3.1.14), ti : A → R>0, ti(a) = ai
ai+1

, and
consider the map

τP : AP −→ Rk−1
>0 , given by pri ◦ τ = tli . (4.1)

This is an isomorphism of Lie groups (by the same arguments as in Construction 3.1.13).
Recall also that we have a di�eomorphism AP × NP → X, (a, u) 7→ ι.(au) = qau (Corol-
lary 2.1.14).

35
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Construction 4.1.1 (Geodesic Action).
Consider the action of A on X given by left multiplication of A on (K ∩ B)\B ∼= X. This is
well-de�ned because A commutes with K∩B, the subgroup of diagonal matrices with ±1 on the
diagonal. In terms of quadratic forms and symmetric matrices, the action is given as follows: if
q ∈ X is represented by s = btb for b ∈ B, then for a ∈ A, a.q is represented by (ab)tab.
For a BUT P , let AP ≤ A inherit the above left action on X. This is easily seen to be equivalent
to de�ning the action as left multiplication of AP on (K ∩ P )\P ∼= X, exploiting that AP
commutes with K ∩ P : If q ∈ X is represented by s = btb for b ∈ P , then for a ∈ AP , a.q is
represented by (ab)tab.
This action is called the geodesic action of AP on X.

Proposition 4.1.2. The action of A, and hence of any AP , on X is smooth.

Proof. The multiplication map m : A × AN → AN is smooth as it is the restriction of mul-
tiplication in G and the inclusions AN ↪→ G and A ↪→ G are smooth. Then A × X → X,
(a, q) 7→ a.q, is smooth, being equal to the composite

A×X id×ϕ−1

−−−−−→ A×AN m−→ AN
ϕ−→ X,

where ϕ : AN → X is the di�eomorphism b 7→ (q : x 7→ xbtbx).

Proposition 4.1.3. The action of A, and hence of any AP , on X is free.

Proof. Let b ∈ B and assume that a ∈ A satis�es (ab)t(ab) = btb. Then ata = id, so a is
orthogonal. Being a diagonal matrix with positive entries, we must have a = id.

Remark 4.1.4. It follows from the above propositions that the orbits ofAP inX are di�eomorphic
to AP , and therefore via τP to Rk−1

>0 , so we get a partition of X into copies of Rk−1
>0 .

If we let AP act on AP ×NP by left multiplication on the �rst term, then the di�eomorphism
AP ×NP → X, (a, u) 7→ qau, is equivariant, so the partition of X into AP -orbits is given by this
product.

4.2 Construction

In this section, we get our hands dirty: The aim is to construct a manifold with corners X with
the desired properties. For every subgroup of block upper triangular matrices P , we add the
boundary to each AP -orbit and, in addition, to each γ-translate of an AP -orbit, γ ∈ Γ. In this
way, we partially compactify X, obtaining a space X. We can equip this with the structure of
a manifold with corners, extend the action of Γ to it and using Siegel reduction theory, we see
that X/Γ is compact.

Construction 4.2.1 (Corner associated to a Subgroup of Block Upper Triangular Matrices I).
Let P be a BUT given by a partition κP , with κP given by 0 = l0 < l1 < · · · < lk = n, or
equivalently (m1, . . . ,mk) such that

∑k
i=1mi = n. Set AP := Rk−1

≥0 and interpret AP as a

subspace of AP using the di�eomorphism τP : AP → Rk−1
>0 ⊆ Rk−1

≥0 = AP . Let AP act on AP by
coordinatewise multiplication and note that this simply extends the action of AP on itself. In
the case P = G, AP = AP = ∗.
Given γ ∈ Γ, let AP act on X.γ from the left by

AP ×X.γ
id×γ−1

−−−−→ AP ×X −→ X → X.γ,
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where the middle map is the action map of the geodesic action of AP on X, so the composition
maps (a, q.γ) ∈ AP ×X.γ to (a.q).γ ∈ X.γ. The orbits of this action are simply the γ-translates
of the AP -orbits in X.
For any [γ]P ∈ (Γ ∩ P )\Γ, set

X(P )[γ]P := AP ×AP X.γ = AP ×X/ ∼γ,P ,

where the equivalence relation ∼γ,P is de�ned as (a.a, q.γ) ∼γ,P (a, (a.q).γ) for all a ∈ A,
p = q.γ ∈ X, a ∈ AP .
We must show that X(P )[γ]P is well-de�ned: Suppose γ = βη for some η ∈ Γ, β ∈ Γ∩P , and let

q ∈ X, a ∈ AP and a ∈ AP . Let b ∈ P such that q is given by x 7→ xt(btb)x. Then the quadratic
form (a.q).β is represented by the matrix (abβ)t(abβ). The quadratic form q.β is represented by
(bβ)t(bβ), and as bβ ∈ P , a.(q.β) is represented by (abβ)t(abβ), so (a.q).β = a.(q.β). Therefore

(a.a, q.γ) = (a.a, (q.β).η) ∼η,P (a, (a.(q.β)).η) = (a, ((a.q).β).η) = (a, (a.q).γ).

We conclude that ∼γ,P and ∼η,P are equal, and thus that X(P )[γ]P is well-de�ned.
Equipping X(P )[γ]P with the quotient topology, ι[γ]P : X ↪→ X(P )[γ]P , q 7→ [(id, q)][γ]P is an
open inclusion. We identify X with ι[γ]P (X) for all [γ]P .

Proposition 4.2.2. The map AP×NP → X(P )[γ]P , (a, u) 7→ [a, qu.γ][γ]P , is a homeomorphism.

Proof. Consider the smooth quotient AP × AP × NP → AP × NP , (a, a, u) 7→ (aa, u) and
let ϕ : AP × NP → X denote the di�eomorphism (a, u) 7→ qau. Then the di�eomorphism
id×(γ ◦ϕ) : AP ×AP ×NP → AP ×X induces a homeomorphism on the quotients, as illustrated
in the following diagram, given by (a, u) 7→ [a, qu.γ][γ]P :

AP ×AP ×NP AP ×X

AP ×NP X(P )[γ]P

id× (γ ◦ ϕ)

Construction 4.2.3 (Corner associated to a Subgroup of Block Upper Triangular Matrices II).
We equip the space X(P )[γ]P with the structure of a manifold with corners inherited from

AP × NP
∼= Rk−1

≥0 × R
n(n+1)

2
−k under the above homeomorphism. With this structure, the

quotient map AP ×X � X(P )[γ]P is smooth. X(P )[γ]P is the corner associated to P and γ.

Let 0P ∈ AP denote the origin and let e(P )[γ]P ⊆ X(P )[γ]P denote the image of {0P } × NP

under the di�eomorphism AP ×NP → X(P )[γ]P . This is the boundary component associated to
P and γ.

Remark 4.2.4. Note that the boundary component associated to P and γ is not necessarily the
same as the boundary of the corner associated to P and γ. This is unfortunate, but de�ning
them in this way eases the construction considerably.
Note also that for P = G, we have X(G)[id]G = e(G)[id]G = X.

Proposition 4.2.5. For BUTs P ≤ Q, γ ∈ Γ, we have an open embedding of manifolds with
corners

X(Q)[γ]Q −→ X(P )[γ]P , [a, q][γ]Q 7→ [a, q][γ]P .
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Proof. For R equal to P or Q, denote by κR : 0 = l0,R < l1,R < · · · < lkR,R = n the parti-
tion de�ning R (note that κP is �ner that κQ) and denote by τR the Lie group isomorphism

τR : AR → RkR−1
>0 , pri(τ(a)) =

ali,R
ali+1,R

. The inclusion AQ ↪→ AP extends to an inclusion of

AQ ↪→ AP : Interpreting AP and AQ as RkP−1
>0 , respectively, RkQ−1

>0 via the maps τP and τQ,
AQ ↪→ AP is given by

RkQ−1
>0 ↪→ RkP−1

>0 , (ri)
kQ−1
i=1 7→ (si)

kP−1
i=1

with

si = rj , if li,P = lj,Q and si = 1 if li,P 6= lj,Q for all j = 1, . . . , kQ − 1.

Replacing strictly positive with weakly positive in the above gives us the inclusion AQ ↪→ AP .
Interpreting AQ as a subset of AP , it is easy to see that if a ∈ AQ, a ∈ AP satisfy that aa ∈ AQ
(where the multiplication takes place in AP ), then we must have a ∈ AQ:
Indeed, let (ri) ∈ RkQ−1

≥0 and (ai) ∈ RkP−1
>0 and denote by (si) ∈ RkP−1

geq0 the image of (ri) under

the above map. Then (ri)(ai) = (si)(ai) = (siai) and this element belongs to AQ ⊆ AP if and
only if siai = 1 for all i such that li,P 6= lj,Q for all j = 1, . . . , kQ − 1. This in turn implies that
ai = siai = 1 for all such i since (si) belongs to AQ ⊆ AP .
It follows that ∼γ,P restricts to ∼γ,Q on AQ ×X.

Now, the inclusion AQ × X ↪→ AP × X induces a smooth map on the quotients as illustrated
below, and it is given by [a, q][γ]Q 7→ [a, q][γ]P . It is injective as ∼γ,P restricts to ∼γ,Q on AQ×X
by the above:

AQ ×X X(Q)[γ]Q

AP ×X X(P )[γ]P

Remark 4.2.6. In view of the above observation, we will interpret X(Q)[γ]Q as a subspace of
X(P )[γ]P for BUTs P ≤ Q, γ ∈ Γ. We can also view e(Q)[γ]Q as a subspace of X(P )[γ]P , which
leads to the proposition below. Note that for a di�erent choice of representative of [γ]Q, we may
get a di�erent class in (P ∩ Γ)\Γ and thus an inclusion into a di�erent corner � this will be
quite essential in the understanding of the construction of the Borel-Serre compacti�cation (see
Remark 4.2.9).

Proposition 4.2.7. For any BUT P ≤ G, [γ]P ∈ (Γ ∩ P )\P , we have

X(P )[γ]P =
∐

P≤Q BUT

e(Q)[γ]Q .

Proof. For a given BUT Q containing P , denote by κQ : 0 = l0,Q < l1,Q < · · · < lkQ,Q = n, the
partition de�ning Q (note again that κP is �ner than κQ). Recall the Lie group isomorphisms

τQ : AQ → RkQ−1
>0 , pri(τ(a)) =

ali,Q
ali+1,Q

. De�ne

AP,Q := { a ∈ AP | alj,Q+1 · · · alj+1,Q
= 1, j = 0, . . . , kQ − 1 }.
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In other words, AP,Q consists of the elements in AP (diagonal matrices with positive entries and
determinant 1 such that the entries in each block de�ned by P are equal) such that each block
de�ned by Q has determinant 1. Then the multiplication map

AP,Q ×NP −→ NQ

is a di�eomorphism, and we have the following commutative diagram, where the second upper
map is the identity on the �rst factor and multiplication of the second and third factor, and the
third upper map is multiplication of the �rst and second factor and the identity on the third
factor:

{0Q} ×NQ AQ ×NQ AQ ×AP,Q ×NP AP ×NP X(P )[γ]P

X(Q)[γ]Q

∼=

∼= ∼=

Thus, to identify e(Q)[γ]Q as a subset of X(P )[γ]P , we simply need to identify the image of
the composition of the upper sequence of maps; in other words, we must identify the image of
{0Q} ×AP,Q ×NP in AP ×NP under multiplication of the �rst two factors.
Recall that the inclusion AQ ⊆ AP is given by

RkQ−1
≥0 ↪→ RkP−1

≥0 , (ri)
kQ−1
i=1 7→ (si)

kP−1
i=1

with

si = rj if li,P = lj,Q and si = 1, if li,P 6= lj,Q for all j = 1, . . . , kQ − 1.

Note that 0Q = (ri)
kP−1
i=1 ∈ AP is given by ri = 0 if li,P = lj,Q for some j = 1, . . . , kQ − 1, and

ri = 1 for all other i.
The inclusion AP,Q ↪→ AP ∼= RkP−1

>0 is given by a = (ai) 7→ (si)
kP−1
i=1 with

si =

{ ali,P
ali+1,P

if li,P 6= lj,Q for all j = 1, . . . , kQ − 1,

ϕi(a) if li,P = lj,Q for some j = 1, . . . , kQ − 1.

for some functions ϕi : R
kP−kQ
>0 −→ R: The conditions on the elements of AP,Q are such that the

lj,Q'th coordinates are completely determined by the rest, which may take any strictly positive
value. Thus the image of the composition

{0Q} ×AP,Q −→ AP −→ RkP−1
≥0 ,

where the �rst map is multiplication and the second is τP , is
∏kP−1
i=1 RQi with

RQi =

{
{0} li,P 6= lj,Q for all j = 1, . . . , kQ − 1

R>0 li,P = lj,Q for some j = 1, . . . , kQ − 1
.

It is easy to see that

RkP−1
≥0 =

∐
P≤Q

kP−1∏
i=1

RQi ,
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and thus we conclude that

AP ×NP =
∐
P≤Q

Im({0Q} ×AP,Q ×NP ),

which �nally gives the desired

X(P )[γ]P =
∐
P≤Q

e(Q)[γ]Q .

Construction 4.2.8 (Partial Compacti�cation of X).
We can now de�ne our space X as the disjoint union of the boundary components e(P )[γ]P :

X :=
∐

P, [γ]P

e(P )[γ]P ,

where P runs over all BUTs and [γ]P runs through all the elements in (Γ ∩ P )\Γ.
In view of Proposition 4.2.7, we identify X(P )[γ]P with

∐
P≤Q e(Q)[γ]Q ⊆ X for all BUTs P and

[γ]P ∈ (P ∩ Γ)\Γ.
Now, for any BUTs P,Q and γ, η ∈ Γ, we have

X(P )[γ]P ∩X(Q)[η]Q =
∐

P,Q≤R
γη−1∈R

e(R)[γ]R = X(R0)[γ]R0
,

where R0 is the smallest BUT such that γη−1 ∈ R0 and P,Q ≤ R0.

The inclusions X(Q)[γ]Q ↪→ X(P )[γ]P are open embeddings of manifolds with corners, and for a
BUT P with k blocks, we have di�eomorphisms

Rk−1
≥0 × R

n(n+1)
2
−k −→ AP ×NP −→ X(P )[γ]P .

Hence, the inclusions X(P )[γ]P ↪→ X form an atlas on X, de�ning a structure of a manifold with

corners on X such that the corners X(P )[γ]P are open submanifolds with corners of X (note

that we do not here require a manifold with corners to be Hausdor� � we show below that X
is in fact Hausdor� and thus X is a manifold with corners in the usual sense).

Note that the interior of X is equal to e(G)[id]G = X. It follows that the inclusion X ↪→ X is
a homotopy equivalence as a topological manifold with boundary is homotopy equivalent to its
interior (cf. [22, p. 297]).

Remark 4.2.9. What we have done in the above construction is to add the boundary to all AP -
orbits and their Γ-translates in X. Picturing the AP -orbit or its translate as Rk−1

>0 , we simply

add all points with at least one coordinate equal to zero, obtaining Rk−1
≥0 .

Note that we can interpret X as the union of the corners X(P )[γ]P under the condition that
we glue these corners together along the inclusions of subcorners X(Q)[γ]Q ⊆ X(P )[γ]P , P ≤ Q.
This interpretation is nice to have in mind when trying to visualise the construction. It does not
unfortunately come into play in our running example n = 2 as we have just two BUTs, namely
B and G, and here we easily see the enormous di�erence in complexity between the cases n = 2
and n = 3. We go through the construction in the case n = 2 below and also try to give an idea
of what happens in the case n = 3 to get a better grasp of this glueing interpretation.
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Construction 4.2.10 (Extending the action of Γ).
For a BUT P , set X(P ) :=

⋃
[γ]P

X(P )[γ]P ⊆ X, where [γ]P runs through all elements in
(P ∩ Γ)\Γ and de�ne a right action of Γ on X(P ) by

[(a, q)][η]P .γ = [(a, q.γ)][ηγ]P , for any [(a, q)][η]P ∈ X(P )[η]P , γ ∈ Γ.

This action is well-de�ned, as

(a.a, (q.η).γ) = (a.a, q.(ηγ)) ∼ηγ,P (a, (a.q).(ηγ)) = (a.a, ((a.q).η).γ),

for all a ∈ AP , a ∈ AP , q ∈ X, η, γ ∈ Γ. In addition, it extends the action of Γ on X ⊆ X(P ):
[id, q][γ]P .η = [id, q.η][γη]P .

For BUTs P ≤ Q, the inclusion X(Q) ↪→ X(P ) given by [a, q][γ]Q 7→ [a, q][γ]P for all a ∈ AQ,
q ∈ X, γ ∈ Γ, is equivariant. Hence, as the sets X(P ) form an open cover of X, this de�nes a
right action of Γ on X, which extends the action of Γ on X.

Remark 4.2.11. Γ acts on the boundary components of X as follows: γ ∈ Γ maps the boundary
component e(P )[η]P to the boundary component e(P )[ηγ]P ; in particular, if γ ∈ P ∩ Γ, then γ
simply translates the elements of a boundary component along the component itself.

Proposition 4.2.12. For γ ∈ Γ, the map γ : X → X, x 7→ x.γ, is smooth.

Proof. As X(P ) ⊆ X is an open submanifold, it su�ces to prove that the restriction of γ to
X(P ) is smooth for all BUTs P . Consider the commutative diagram

X(P ) X(P ) [a, qu][η]P [a, qu.γ][ηγ]P

AP ×NP AP ×NP (a, u) (aa, v)

∼= ∼=

γ

γ̂

γ

γ̂

where uγ = kav is the Langlands decomposition, so qu.γ is given by (av)t(av). Then γ̂ is smooth
as it is equal to the composition

AP ×NP
id×γ−−−→ AP ×G

id×Langlands−−−−−−−−→ AP ×K ×AP ×NP
m×id−−−→ AP ×NP

of smooth maps, where γ here denotes multiplication by γ restricted to NP , and m is the map
which multiplies the �rst and third factor while forgetting the second, and we have extended
the Langlands decomposition to G. That the multiplication map K × AP × NP → G is a
di�eomorphism is a consequence of the Iwasawa decomposition. We conclude that γ is smooth.

4.3 Observations and Properties

In this section, we prove that X satis�es the properties that we are after: It is Hausdor�, so an
actual manifold with corners, the action of Γ on X is properly discontinuous and the quotient
X/Γ is compact.

We will consider sequences (qm)m∈N of quadratic forms. This should not be confused with our
notation qg for the quadratic form given by the matrix gtg, g ∈ G � it should be clear from the
subscripts which it is.
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Lemma 4.3.1. Let P be a BUT, γ, η ∈ Γ and let (qm)m∈N be a sequence in X converging to a
point x ∈ e(P )[γ]P . If (qm.η)m∈N converges in X(B)[γ]B , then γηγ

−1 ∈ P .

Proof. Let P be given by the partition 0 = l0 < l1 < · · · < lk = n and assume that (qm.η)m∈N
converges in X(B)[γ]B .
Assume �rst that γ = id. As {qm}m∈N, {qm.η}m∈N are relatively compact in X(B)[id]B , we have
{qm}m∈N, {qm.η}m∈N ⊆ Sλ,δ for some λ, δ > 0. For every m ∈ N, let am ∈ Aλ, um ∈ Nδ such
that qm is given by (amum)t(amum).
Now, write x = [0P , qau][id]P ∈ e(P )[id]P for u ∈ N , a ∈ A, using the Iwasawa decomposition
restricted to NP . Then in X(B)[id]B we have

x = [0P , qau][id]P = [0P , qau][id]B = [0Pa, qu][id]B .

Note that 0P ∈ AP ⊆ A = Rn−1
≥0 is the element with (0P )li = 0 for all i = 1, . . . , k − 1 and all

other coordinates equal to 1. Then, since (am, um)→ (0pa, u) in A×N as m→∞, we have

amum, amumη ∈ KAλNδ, with
(am)li

(am)li+1
→ 0 for all i = 1, . . . , k − 1,

and Proposition 3.3.2 yields η ∈ P , as desired.
For γ 6= id, consider the sequence (qm.γ

−1)m∈N ⊆ X(B)[id]B converging to x.γ−1 ∈ X(B)[γ]B .
Then the sequence ((qm.γ

−1).(γηγ−1))m∈N = ((qm.η).γ−1)m∈N converges in X(B)[id]B , and by
the above γηγ−1 ∈ P as desired.

Proposition 4.3.2. The space X is Hausdor�.

Proof. Let y, y′ ∈ X and assume that Vm, V
′
m ⊆ X, m ∈ N, are open neighbourhoods of y,

respectively, y′ such that Vm ∩ V ′m 6= ∅ for all m ∈ N and the sequences (Vm)m∈N, (V
′
m)m∈N are

strictly decreasing. We will show that y = y′.
If y ∈ X, then there is a relatively compact neighbourhood V ⊆ X of y. This is bounded, hence
V ∩ ∂X = ∅. It follows that y′ ∈ X, and hence, y = y′ as X is Hausdor�.
We may therefore assume that y, y′ ∈ ∂X. We will show that y and y′ belong to the same corner.
Let P, P ′ be BUTs and γ, γ′ ∈ Γ such that y ∈ e(P )[γ]P , y

′ ∈ e(P ′)[γ′]P ′
. As Vm ∩ V ′m is non-

empty and open for all m ∈ N and X is an open dense subspace of X, we have Vm∩V ′m∩X 6= ∅
for all m ∈ N. Let for all m ∈ N, xm ∈ Vm ∩ V ′m ∩X. For η = γ′−1γ, we have

X(P ′)[γ′]P ′
.η = X(P ′)[γ]P ′

⊆ X(B)[γ]B .

Therefore, as the action of Γ on X is continuous, the sequence (xm)m∈N ⊆ X satis�es

xm −→ y ∈ e(P )[γ]P ⊆ X(B)[γ]B , xm.η −→ y′.η ∈ e(P ′)[γ]P ′
⊆ X(B)[γ]B as m→∞.

Then by Lemma 4.3.1, γγ′−1 = γηγ−1 ∈ P , implying [γ]P = [γ′]P , and thus

e(P )[γ]P = e(P )[γ′]P ⊆ X(B)[γ′]B .

But then y, y′ ∈ X(B)[γ′]B , and we have y = y′ as X(B)[γ′]B
∼= A×N is Hausdor�.

The following observation is immediate from the composition of di�eomorphisms

X(B)[id]B −→ A×N −→ Rn−1
≥0 × R

n(n−1)
2 ,

which maps the Siegel set Sλ,δ to (0, λ]n−1 × [−δ, δ]
n(n−1)

2 :
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Lemma 4.3.3. For any λ, δ > 0, the closure of the Siegel set Sλ,δ ⊆ X in X is equal to

Sλ,δ = {[(a, qu)][id]B ∈ X(B)[id]B | a ∈ [0, λ]n−1 ⊆ A, u ∈ Nδ}.

Definition 4.3.4. The closure in X of a Siegel set in X is a Siegel set in X.

Lemma 4.3.5. Let S = Sλ,δ = KAλNδ ⊆ G, λ, δ > 0, be a Siegel set in G, and let M ⊆Mn(Z)
be a set of invertible (n × n)-matrices with integer coe�cients such that | detm| ≤ c for all
m ∈M and some constant c > 0. Then the set {m ∈M | S.m ∩S 6= ∅} is �nite.

Proof. See [5, Theorem 4.6].

Proposition 4.3.6. The action of Γ on X is properly discontinuous.

Proof. We have to prove that for any two compacts K1,K2 ⊆ X, the set {γ ∈ Γ | K1∩K2.γ 6= ∅}
is �nite. Since X is locally compact, we may for any K1,K2 ⊆ X take compact neighbourhoods
C1, C2 ⊆ X ofK1 respectivelyK2. AsX is dense inX, C1∩C2.γ 6= ∅ will imply C1∩C2.γ∩X 6= ∅.
Hence,

{γ ∈ Γ | K1 ∩K2.γ 6= ∅} ⊆ {γ ∈ Γ | C1 ∩ C2.γ ∩X 6= ∅},

so it su�ces to show that for any two compacts K1,K2 ⊆ X, the set {γ ∈ Γ | K1∩K2.γ∩X 6= ∅}
is �nite.
Let K ⊆ X be a compact subset. The corners X(B)[γ]B , [γ]B ∈ (Γ ∩B)\Γ, form an open cover

of X, so K is covered by �nitely many of them, say the ones associated to γ1, . . . , γm ∈ Γ. Being
bounded, any compact subset of X(B)[γ]B is contained in Sλ,δ.γ for some λ, δ > 0. It follows

that there exist λ, δ > 0 such that K ⊆
⋃m
i=1 Sλ,δ.γi. For a second compact subset K ′ ⊆ X, let

γ′1, . . . , γ
′
m′ ∈ Γ and λ′, δ′ > 0 such that K ⊆

⋃m′

i=1 Sλ′,δ′ .γ
′
i. We may assume λ = λ′ and δ = δ′

and we see that

{γ ∈ Γ | K ∩K ′.γ ∩X 6= ∅} ⊆ {γ ∈ Γ |
m⋃
i=1

Sλ,δ.γi ∩
m′⋃
i=1

Sλ,δ.γ
′
iγ ∩X 6= ∅}

=
⋃
i,j

{γ ∈ Γ | Sλ,δ.γi ∩Sλ,δ.γ
′
jγ ∩X 6= ∅},

and for any η, ζ ∈ Γ,

{γ ∈ Γ | Sλ,δ.η ∩Sλ,δ.ζγ ∩X 6= ∅} = {γ ∈ Γ | Sλ,δ ∩Sλ,δ.ζγη
−1 ∩X 6= ∅}

= {γ ∈ Γ | Sλ,δ ∩Sλ,δ.γ ∩X 6= ∅}
= {γ ∈ Γ | Sλ,δ ∩Sλ,δ.γ 6= ∅}
= {γ ∈ Γ | KAλNδ ∩KAλNδγ 6= ∅}.

It is enough to prove that this latter set is �nite; this is a consequence of Lemma 4.3.5 above.

Proposition 4.3.7. Sλ,δ.Γ = X for any λ ≥ 4/3, δ ≥ 1/2.

Proof. As S := Sλ,δ is compact in X, the family {S.γ}γ∈Γ is locally �nite: Indeed, for any
x ∈ X, we may take a relatively compact neighbourhood U of x; then U ∩ S.γ 6= ∅ for only
�nitely many γ as Γ acts properly discontinuously on X.
Being locally �nite, the union

⋃
γ∈Γ S.γ = S.Γ is closed in X. From Theorem 3.1.7, we know

that X ⊆ S.Γ, and as X is dense in X, we have S.Γ = X as desired.
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As an immediate consequence, we see that this construction does indeed satisfy what we set out
to �x:

Corollary 4.3.8. The space X/Γ is compact.

Remark 4.3.9. Recall that Γ contains a normal subgroup of �nite index which is torsion free.
For such a subgroup, Γ′, there is a �nite set C ⊆ Γ such that Γ = C Γ′. The inherited action
of Γ′ on X is properly discontinuous and free, and so the space X/Γ′ inherits the structure of
a manifold with corners from X. Moreover, (Sλ,δ.C).Γ′ = X for any λ ≥ 4/3, δ ≥ 1/2. Hence,
X/Γ′ is compact, being the image of a �nite union of compact sets. The inclusion X/Γ′ ↪→ X/Γ′

is a homotopy equivalence (cf. [22, p. 297]).

4.4 The Case n = 2 Part III and The Case n = 3

We will take a closer look at the cases n = 2 and n = 3 to give ourselves a better understanding
of the construction of the Borel-Serre compacti�cation. The formal construction above is very
technical, but the geometry behind it is actually not so bad (if we ignore the fact that the
dimensions very quickly get out of hand). In the case n = 2, we can go through the complete
construction and are able to visualise it as X and X are two-dimensional. The case n = 2
is, however, almost too simple: It all becomes a lot more complicated for n > 2 and not just
because the dimension of X exceeds our abilities of perception. Essentially, this is because there
is only one proper subgroup of block upper triangular matrices in SL2(R), namely the subgroup
B of upper triangular matrices, therefore there is no glueing to be done (cf. Remark 4.2.9).
Therefore we also try to give a picture of the case n = 3, where we have three proper subgroups
of block upper triangular matrices, so we see how this glueing comes into play.

The Case n = 2

We identify the geodesic action on X on the model H and show what happens when we add
the boundary to the orbits under this action. We will use both the upper half plane model and
the Poincaré disk model as both have their advantages in visualising the construction.

Recall from Section 2.2 that we can identify X with the hyperbolic plane, H, under the map

X −→H, q 7→ zq = 1/s11 (s12 + i),

where q ∈ X is given by the positive de�nite matrix s = (sij).

Simple calculations show that the geodesic action of A on H is given by(
λ 0
0 1/λ

)
.z = Re(z) + 1/λ2 Im(z) i, λ > 0, z ∈H.

The following proposition is immediate:

Proposition 4.4.1. The orbits of A are vertical lines in the upper half plane, H. Under the
di�eomorphism A → R>0, (ai) 7→ a1

a2
= a2

1, the orientation of the orbits is such that 0 sits at
in�nity.

Adding zero to each A-orbit then corresponds to �adding a real line at in�nity�, i.e. the corner
X(B)[id]B can be interpreted as the set R × (0,∞], and the boundary component e(B)[id]B as
the line {(x,∞) ∈ R× R× (0,∞]}. We then have:
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Corollary 4.4.2. The corner X(B)[id]B is di�eomorphic to a strip {z ∈ C | 0 < Im(z) ≤ a}
for any choice of a > 0, and the boundary component e(B)[id]B corresponds to the boundary of
this corner, i.e. the line {z ∈ C | Im(z) = a}.

Remark 4.4.3. Below, in Figures 4.1 and 4.2, we draw the corner X(B)[id]B in both the upper
half plane model and the Poincaré disk model, where we interpret the corner as a strip as in the
above corollary; we also include some A-orbits.

�

�

Figure 4.1: The corner X(B)[id]B for n = 2 in the upper half plane. The hatched area is the
corner X(B)[id]B interpreted as the strip {z ∈ C | 0 < Im(z) ≤ a}; the boundary component
e(B)[id]B is then the line {z ∈ C | Im(z) = a}. We have drawn some of the A-orbits, the arrows
denoting the orientation under the di�eomorphism A→ R>0, (ai) 7→ a1

a2
.

Proposition 4.4.4. Let γ ∈ Γ. The γ-translates of the A-orbits are parallel lines in H ⊆ C,
and the orientation is such that all the orbits have zero located at in�nity or at the same rational
point on the real axis.

Proof. As the metric is Γ-invariant and the A-orbits are parallel, clearly the γ-translates of the
orbits are parallel. Write

γ =

(
a b
c d

)
and λ.z :=

(
λ 0
0 1/λ

)
.z for λ > 0, z ∈ C.

Then for any z ∈ C, λ > 0, we have

(λ.z).γ =
d(λ.z) + b

c(λ.z) + a
=

(d(λ.z) + b)(c(λ.z) + a)

(c(λ.z) + a)(c(λ.z) + a)

=
cdRe(z)2 + (ad+ bc)Re(z) + cdλ−4 Im(z)2 + ab+ λ−2 Im(z)i

c2 Re(z)2 + c2λ−4 Im(z)2 + 2acRe(z) + a2
.

We see that if c 6= 0, then

Im((λ.z).γ) −→ 0 and Re((λ.z).γ) −→ d/c as λ→ 0.
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�

�

Figure 4.2: The corner X(B)[id]B for n = 2 in the Poincaré disk. The hatched area is the corner
X(B)[id]B interpreted as the strip {z ∈ C | 0 < Im(z) ≤ a} ⊆ H mapped into the disk model;
the boundary component e(B)[id]B is the circumference of the smaller circle minus the point on
the boundary of the disk. The lines are A-orbits, where the arrows denote the orientation under
the di�eomorphism A→ R>0, (ai) 7→ a1

a2
.

If c = 0, we simply get

(λ.z).γ =
1

a2
(adRe(z) + ab+ λ−2 Im(z)i),

and thus

Im((λ.z).γ) −→∞ as λ→ 0 and Re((λ.z).γ) = 1/a(dRe(z) + b) for all λ > 0.

Remark 4.4.5. We view the corner X(B)[γ]B as a strip in H.γ as in Figure 4.1. For γ =
(
a b
c d

)
,

the point d
c takes the place of in�nity, so this amounts to cutting out an open disk in H which

touches the real line at d
c . Doing this for all [γ]B ∈ (Γ∩B)\Γ, we get the upper half plane with

a disk cut out at every rational point on the real axis and also at in�nity. See Figures 4.3 and
4.4 for illustrations of X in the upper half plane and Poincaré disk models.

Remark 4.4.6. The element γ ∈ Γ acts on X as follows:

- On X, γ acts as it did before.

- Suppose η ∈ Γ is such that [η]B = [γ]B. Viewing e(B)[η]B as a copy of the real line (see
Figure 4.3 and Figure 4.4), γ acts by translations.

- Suppose η ∈ Γ is such that [η]B 6= [γ]B. Then γ maps e(B)[η]B to e(B)[ηγ]B , possibly with
some translation as well.
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�

Figure 4.3: The Borel-Serre compacti�cation of X for n = 2 in the half plane model. The
hatched area is di�eomorphic to X, which is the upper half plane H with an open disk removed
at every rational point on the real axis and at in�nity. The di�erent sizes of the disks are simply
for the sake of �tting in more of them.

Figure 4.4: The Borel-Serre compacti�cation of X for n = 2 in the Poincaré disk model. The
hatched area is di�eomorphic to X, which is the Poincaré disk with a small open disk removed
at every rational point on the boundary. The di�erent sizes of the disks are again simply for the
sake of �tting in more of them.
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The Case n = 3

We go through the ideas of the Borel-Serre compacti�cation for n = 3 to get a better grasp of
the glueing involved in the construction.

In SL3(R), there are three proper subgroups of block upper triangular matrices

B =

∗ ∗ ∗0 ∗ ∗
0 0 ∗

 , P =

∗ ∗ ∗∗ ∗ ∗
0 0 ∗

 , and Q =

∗ ∗ ∗0 ∗ ∗
0 ∗ ∗

 .

Since B = P ∩Q, we have to glue the di�erent corners associated to B together along the corners
associated to P and Q. In SL3(R), A = AB is di�eomorphic to R2

>0, and both AP and AQ are
di�eomorphic to R>0. For γ ∈ Γ, consider the corner associated to B and γ:

X(B)[γ]B
∼= A×N = R2

≥0 ×N.

Its boundary looks like the product of the boundary of the upper quadrant in R2 and N . The
boundary component associated to B and γ, e(B)[γ]B , is the preimage of {0} × N under the
above composition of di�eomorphisms.
For γ ∈ Γ, consider now the corner associated to P and γ:

X(P )[γ]P
∼= AP ×NP = R≥0 ×NP .

Under the inclusion X(P )[γ]P ⊆ X(B)[γ]B , the corner corresponds to R>0×R≥0×N ⊆ R2
≥0×N

under the above di�eomorphisms. This is better seen from the commutative diagram below,
where u ∈ NP is decomposed as u = bv for b ∈ A, v ∈ N ; note that NP = (A ∩ NP )N , so
b ∈ A∩NP is of the form b = (b, 1/b, 1), b ∈ R>0. Recall that the inclusion R≥0 = AP ↪→ A = R2

≥0

is given by a 7→ (1, a).

AP ×NP X(P )[γ]P (a, u) [a, qu.γ][γ]P

A×N X(B)[γ]B (ab, v) [a, qu.γ][γ]B = [ab, qv.γ][γ]B

∼=

∼=

From this diagram, it is also easy to see that the boundary component associated to P and γ,
e(P )[γ]P , i.e. the image of {0}×NP under the upper horizontal di�eomorphism, corresponds to
R>0 × {0} ×N ⊆ R2

≥0 ×N . Similarly, the corner associated to Q and γ, X(Q)[γ]Q , corresponds

R≥0 × R>0 ×N ⊆ R2
≥0 ×N in X(B)[γ]B , and the boundary component, e(Q)[γ]Q , corresponds

to {0} × R>0 ×N .
For a given γ ∈ Γ, there exists η ∈ Γ such that [γ]P = [η]P , but [γ]B 6= [η]B. Then we
have to identify the corners X(B)[γ]B and X(B)[η]B along the corner X(P )[γ]P . Consider
the commutative diagram below, where the middle isomorphism is the one de�ned using γ:
AP ×NP → X(P )[γ]P , (a, u) 7→ [a, qu.γ][γ]P . The upper right inclusion is given by the equality
X(P )[γ]P = X(P )[η]P .

X(B)[γ]B X(P )[γ]P X(B)[η]B

R2
≥0 ×N R≥0 ×NP R2

≥0 ×N

∼= ∼= ∼=
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The lower row induces a map R>0×R≥0×N −→ R>0×R≥0×N . It can be shown that this map
reverses the orientation of the �rst factor. So glueing X(B)[γ]B and X(B)[γ]B together along
X(P )[γ]P = X(P )[η]P corresponds to glueing two copies of R2

≥0×N together along R>0×R≥0×N
with the orientation of the �rst factor reversed in one of the copies, see Figure 4.5. There is also
some translation going on in the other factors, but we will not go into that.
Glueing along a corner associated to Q is similar. Now, we have to glue all the corners together
along their �intersections�, i.e. along the corners associated to P and Q; this amounts to glueing
lots of copies of R2

≥0 together as above, yielding a kind of �in�nite polygon�, see Figure 4.6.

Figure 4.5: Glueing the corners associated to B together for n = 3. A cross section of the
corner X(B)[γ]B

∼= R2
≥0×N at some u ∈ N looks like R2

≥0, similarly a cross section of X(P )[γ]P

at u looks like R>0 × R≥0. In the cross section (which may be twisted in some way), glueing
two corners associated to B together along a corner associated to P looks like identifying the
upper and lower square above along the middle square included into the upper, respectively,
lower square in the way they are drawn. In the cross section, the resulting space then looks like
the shape on the right.

Figure 4.6: Glueing several corners associated to B together for n = 3. Glueing several corners
associated to B together along the corners associated to P and Q amounts to, when viewing the
cross section, glueing several copies of R2

≥0 together along R>0×R≥0 and R≥0×R>0 where the
orientation of the �rst, respectively, second factor are reversed in one of the copies. This results
in a kind of �in�nite polygon�.





5 | Logarithmic Forms

We want to exploit the geometric setting, so we are going to work with the de Rham complex
of the manifold X/Γ for an appropriate torsion free subgroup Γ ≤ SLn(Z). The complex is,
however, too wild to consider all at once. What we would like is to be able control the growth of
the di�erential forms as they approach the boundary ofX. To this end, we consider a subcomplex
of forms which behave �nicely� near the boundary and it turns out that the inclusion of this
into the de Rham complex is a quasi-isomorphism. In addition, this subcomplex satis�es two
very convenient properties, which will be essential in the �nal chapter, where we show that
Ω∗(X)G ↪→ Ω∗(X)Γ induces an isomorphism on cohomology in low degrees. This chapter is a
technical nightmare � enjoy!

As usual, G = SLn(R), X is the manifold of Section 2.1, A the subgroup of diagonal matrices
with positive entries, N the subgroup of upper triangular matrices with 1's on the diagonal, and
qg ∈ X denotes the quadratic form given by the matrix gtg, g ∈ G. Let a denote the Lie algebra
of A, that is the set of diagonal matrices with trace zero, and let n denote the Lie algebra of N ,
that is the set of strictly upper triangular matrices.

5.1 Preliminaries

Before we dive into the real content of this chapter, we need to do some foot work: We explore
the structure of X in more detail. More speci�cally, we �x convenient bases of the tangent and
cotangent bundles, T (A × N) and T ∗(A × N), go on to de�ne a G-invariant metric on X and
do a lot of calculations.

Let ti : A → R>0 denote the Siegel normal coordinates (De�nition 3.1.14), ti(a) = ai
ai+1

, a ∈ A.
Then the maps

log ti : A→ R, respectively, d(log ti) =
dti
ti

: A→ TA∗, i = 1, . . . , n− 1

form a coordinate system on A, respectively a basis of the cotangent bundle, T ∗A. Moreover, if
θ : Rn−1 → A is the di�eomorphism such that pri ◦θ−1 = log ti, then for a = θ(x), {Dxθ(ei)}n−1

i=1

is a basis of the tangent space TaA with dual basis {d(log ti)(a)}n−1
i=1 of (TaA)∗.

Consider the basis {Eij}i<j of n = TidN and the dual basis {Êij}i<j of n∗. For i < j, let
ηij denote the right-invariant di�erential 1-form on N which is equal to the dual of Eij at
the identity, i.e. ηij(u)(x) = Êij(DuRu−1(x)) for all u ∈ N , x ∈ TuN . Then {ηij}i<j is a
right-invariant basis of the cotangent bundle TN∗. For u ∈ N , ηij(u) ∈ TuN

∗ is the dual of

DeRuEij ∈ TuN . Fix an enumeration of this basis, {ηi}
1/2n(n−1)
i=1 ; we will write li < ki for the

pair corresponding to i under the chosen enumeration, i.e. ηi = ηliki .
Now, set εi := π∗Ad(log ti) for i = 1, . . . , n− 1 and set εi := π∗Nηi for i = n, . . . ,m, where πA, πN
denote the projections onto A and N , respectively, and m = 1/2n(n+ 1)− 1. Then {εi}mi=1 is a
basis of the cotangent bundle T ∗(A×N) and the elements

εσ = εσ(1) ∧ · · · ∧ εσ(k), σ ∈ Σk,m−k,

form a basis of Ωk(A×N). Any di�erential k-form on an open subset V ⊆ A×N can then be
written uniquely as a linear combination of the εσ. In particular, if % : A×N → X denotes the
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di�eomorphism (a, u) 7→ qau, then for any open subset U ⊆ X and ω ∈ Ωk(U), we can uniquely
write

%∗ω =
∑
σ

fσεσ, fσ ∈ C∞(%−1(U)).

Let e1, . . . , en−1 denote the standard basis of Rn−1.

Proposition 5.1.1. With θ : Rn−1 → A as above, x ∈ Rn−1, θ(x) = a = (ai) and 1 ≤ j ≤ n−1,
we have

Dxθ(ej) = 1/n

(
(n−j)a1, . . . , (n−j)aj−1, −j aj , . . . , −j an−1, (j−n)

j−1∑
i=1

ai + j

n−1∑
i=j

ai

)
,

where the tuple should be interpreted as a diagonal matrix in TaA.

Proof. Let τ : A → Rn−1
>0 denote the Siegel normal coordinatisation map, pri ◦ τ = ti. Then

θ−1 = log ◦τ and θ = τ−1 ◦ exp, where log and exp denote the maps which apply the logarithm,
respectively, the exponential map coordinatewise. Recall that the inverse τ−1 : Rn−1

>0 → A is
given by

τ−1(b)j =

n

√∏n−1
i=1 b

n−i
i

b1 · · · bj−1
for b = (bi) ∈ Rn−1

>0 .

Composing with the coordinatisation κ : A→ Rn−1
>0 , pri ◦κ(a) = ai for a = (ai) ∈ A, we see that

Dθ−1(a)(κ ◦ θ) = Dτ(a)(κ ◦ τ−1) ◦Dlog τ(a) exp: Rn−1 → Rn−1.

We have ∂
∂xi

pri exp(x) = exi , x = (xi) ∈ Rn−1, and ∂
∂xj

pri exp(x) = 0 for i 6= j, so Dlog τ(a) exp

is a diagonal matrix with i'th diagonal entry elog τ(a) = ai
ai+1

.

Now we determine the matrix Dτ(a)(κ ◦ τ−1). For b = (bi) ∈ Rn−1,

∂

∂xj
(prk ◦ κ ◦ τ−1)(b) =

∂

∂xj

(
n

√√√√n−1∏
i=1

xn−ii · 1

x1 · · ·xk−1

)∣∣∣∣
x=b

= cj,k
prk ◦ κ ◦ τ−1(b)

prj(b)
,

where cj,k = (n− j)/n if k ≤ j, and cj,k = −j/n if j < k. Thus, Dτ(a)(κ ◦ τ−1) has entry (k, j)
equal to

Dτ(a)(κ ◦ τ−1)kj =
∂

∂xj
(prk ◦ κ ◦ τ−1)(τ(a)) = cj,k

prk ◦ κ ◦ τ−1(τ(a))

prj(τ(a))
= cj,k

aj+1

aj
ak.

Hence,

(Dθ−1(a)(κ ◦ θ))ij = (Dτ(a)(κ ◦ τ−1))ij ◦ (Dlog τ(a) exp)j = cj,iai

and

Dθ−1(a)(κ ◦ θ)(ej)i =

{
n−j
n ai i ≤ j
− j
nai j < i

.
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To �nish o�, note that Daκ : TaA→ Rn−1 is given by pri ◦Daκ(x) = xi for x = (xi) ∈ TaA, and
thus (Daκ)−1 : Rn−1 → TaA is given by

(Daκ)−1(b)i =

{
bi for i < n,

−
∑n−1

i=1 bi for i = n.

With this we get

Dθ−1(a)θ(ej) = (Daκ)−1 ◦Dθ−1(a)(κ ◦ θ)(ej)

=
1

n

(
(n− j)a1, . . . , (n− j)aj ,−jaj+1, . . . ,−jan−1, (j − n)

j∑
i=1

ai + j

n−1∑
i=j+1

ai

)
,

as claimed.

Remark 5.1.2. In particular, the diagonal matrices expressed as tuples

D0θ(ej) = (1, . . . , 1,− j
n−j , . . . ,−

j
n−j ), j = 1, . . . , n− 1,

where the �rst j entries of D0θ(ej) are 1 and the last n − j entries are − j
n−j , form a basis of

a = TidA, and the dual basis of a∗ is {d(log ti)(id)}n−1
i=1 . Note also that θ is a group isomorphism

from the additive group Rn−1 into A, so Ra ◦ θ = θ ◦ +θ−1(a) for all a ∈ A, where Ra is right
multiplication by a and +b is translation by b ∈ Rn−1. Hence, DaRa−1 ◦Dθ−1(a)θ = D0θ.

Proposition 5.1.3. The map g0 : g × g → R given by g0(x, y) = tr(xyt), x, y ∈ g, de�nes a
right invariant Riemannian metric on G.

Proof. De�ne a smooth section g : G −→ T ∗G⊗ T ∗G as follows: For g ∈ G, let

gg : TgG× TgG→ R be given by gg(x, y) = g0(DgRg−1x,DgRg−1y), x, y ∈ TgG,

where we interpret TgG
∗⊗TgG∗ as the set of bilinear maps TgG×TgG→ R. This is a (0, 2)-tensor

�eld on G and clearly it is right invariant.
To see that g is a Riemannian metric, we simply need to show that gg is an inner product on
TgG: It is symmetric as tr(xyt) = tr((xyt)t) = tr(yxt) for all x, y ∈ g, and it is positive de�nite
as a positive semi-de�nite matrix, xxt, has trace zero, if and only if x = 0.

Remark 5.1.4. The above de�ned g0 : g× g→ R is proportional to the positive de�nite form

(x, y) 7→ −B(x, θ(y)) for all x, y ∈ g,

where B is the Killing form on g and θ the Cartan involution y 7→ −yt.

Let G act on AN from the right such that the di�eomorphism AN → X, p 7→ qp, is equivariant;
explicitly, this action is given by p.g = au, p ∈ AN , g ∈ G, where pg = kau is the Iwasawa
decomposition of pg. Let λg : AN → AN denote map p 7→ p.g; it is equal to the composite

AN ↪→ G
Rg−−→ G

Iwasawa−−−−−→ K ×AN � AN.

Note that for g = au ∈ AN , λau is given by λau(bv) = (ba)(a−1vau) for b ∈ A, v ∈ N . The
restriction of g to AN , g : AN → T ∗(AN) ⊗ T ∗(AN), is a G-invariant Riemannian metric on
AN (we also denote it by g). It is given by

gp(x, y) = g0(Dpλp−1x,Dpλp−1), x, y ∈ Tan(AN).
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Let ν : A×N → AN denote the multiplication map and set h := ν∗(g); this is a metric on A×N
which is invariant under the inherited action of G, namely the one given by (a, u).g = (b, v),
where aug = kbv is the Iwasawa decomposition, a, b ∈ A, u, v ∈ N , g ∈ G, k ∈ K � we
denote also by λg : A × N → A × N the map (a, u) 7→ (a, u).g. Note that for g = au ∈ AN ,
we have (b, v).g = (ba, a−1vau). We wish to determine h a little more explicitly. Recall that
{Daθ(ei)}n−1

i=1 ∪ {Eiju}i<j forms a basis of the tangent space T(a,u)(A × N) = TaA × TuN at
(a, u) ∈ A × N , where we interpret â ∈ TaA and û ∈ TuN as the elements (â, 0), respectively,
(0, û) in TaA× TuN .

Proposition 5.1.5. For (a, u) ∈ A×N , a = (ai), we have

h(a,u)(Daθ(el), DeRuEij) = 0 for any l and any i < j,

h(a,u)(DeRuEij , DeRuElk) = 0 for any distinct i < j and l < k,

h(a,u)(DeRuEij , DeRuEij) = ( aiaj )2 for any i < j,

h(a,u)(Daθ(ei), Daθ(ej)) = 1/n2mi,j,n for any i, j,

for an integer mi,j,n ∈ Z depending only on n, i and j.

Proof. As (au)−1 = a−1(au−1a−1) is the Iwasawa decomposition of (au)−1, we see that

λ(au)−1(bv) = (ba−1, ava−1(au−1a−1) = (ba−1, avu−1a−1),

so λ(au)−1 = Ra−1×(ca◦Ru−1), where R(−) is right multiplication and c(−) is conjugation. Hence,
Dauλ(au)−1 = DaRa−1 × Ad(a) ◦ DuRu−1 . Recalling that D(a,u)ν : TaA × TuN → Tau(AN) is
given by (v, w) 7→ v + w, we see that for any (a, u) ∈ A×N and (v, w), (v′, w′) ∈ TaA× TuN ,

h(a,u)((v, w), (v′, w′)) = (λ∗(au)−1h)(a,u)((v, w), (v′, w′))

= h(id,id)(D(a,u)λ(au)−1(v, w), D(a,u)λ(au)−1(v′, w′))

= (ν∗g)(id,id)(D(a,u)λ(au)−1(v, w), D(a,u)λ(au)−1(v′, w′))

= g0(Didν(DaRa−1v,Ad(a) ◦DuRu−1w), Didν(DaRa−1v′,Ad(a) ◦DuRu−1w′))

= g0(DaRa−1v +Ad(a) ◦DuRu−1w,DaRa−1v′ +Ad(a) ◦DuRu−1w′).

We now apply this expression to our chosen basis of TaA× TuN . Recall �rst that

DaRa−1 ◦Dθ−1(a)θ = D0θ and Ad(a)Eij =
ai
aj
Eij , i < j,

(cf. Remark 5.1.2 and the proof of Proposition 1.2.15).

For any i < j, l, we have

h(a,u)(Dθ−1(a)θ(el), DeRuEiju) = g0(DaRa−1 ◦Dθ−1(a)θ(el), Ad(a) ◦DuRu−1 ◦DeRuEij)

= g0(D0θ(el),
ai
aj
Eij) =

ai
aj

tr(D0θ(el)E
t
ij) = 0.

For i < j, l < k, we have

h(a,u)(DeRuEij , DeRuElk) = g0(Ad(a)Eij ,Ad(a)Elk)

=
ai
aj

al
ak

tr(EijE
t
lk) =

{
(ai/aj)2 i = l, j = k,

0 else
.
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Lastly, for some i, j, we may assume that i ≤ j. Then, using Proposition 5.1.1, we have

h(a,u)(Daθ(ei), Daθ(ej)) = g0(D0θ(ei), D0θ(ej)) = tr(D0θ(ei)D0θ(ej))

= i− (j − i)n− i
n

+ (n− j)(n− i)(n− j)
n2

=
1

n2
(in2 − n(j − i)(n− i) + (n− i)(n− j)2).

Recall from Section 1.3 that the metric h induces inner products 〈−,−〈(a,u)
h on Λk(T(a,u)(A×N)∗

and a measure µh on A×N . We have the following corollaries.

Corollary 5.1.6. In terms of the basis {Dθ−1(a)θ(ej)}n−1
j=1 ∪ {DeRuEij}i<j , the isomorphism

TaA× TuN → (TaA× TuN)∗ induced by h(a,u) is given by the matrix

x(a,u) = ((x(a,u))ij) =

(
1
n2M 0

0 Ad(a)|2n

)
,

where M ∈ GLn−1(Z) is independent of the choice of (a, u), and Ad(a)|n is the diagonal matrix
with entry i < j equal to ai

aj
.

Corollary 5.1.7. The volume form ωh on A×N induced by h is given by

(ωh)(a,u) =
√
|detx(a,u)| εid = 1

nn−1

∏
i<j

ai
aj
εid, (a, u) ∈ A×N.

Let µA be the measure on A given by the volume form d(log t1) ∧ . . . ∧ d(log tn−1), and let µN
be the measure on N given by the volume form ηn ∧ . . . ∧ ηm. The ηi are by de�nition right
invariant and the forms d(log ti) are right invariant, as ti ◦Rb = ti(b) ti. Thus

λ∗bd(log ti) = R∗b(
1
ti
dti) =

1

ti ◦Rb
d(ti ◦Rb) =

1

ti(b) ti
ti(b) dti = d(log ti) for all i = 1, . . . , n− 1,

where Rb : A→ A denotes right multiplication by b ∈ A. So the measures µA and µN are right
Haar measures (and therefore also left Haar measures as A and N are unimodular). Finally, let
µh be the measure on A×N de�ned by h, i.e. given by the volume form ωh.

Corollary 5.1.8. With ρ : A→ R given by ρ(a) =
∏
i<j

ai
aj
, a ∈ A, and πA the projection onto

A, we have µh = ( 1
n)n−1(ρ ◦ πA).(µA ⊗ µN ).

For (a, u) ∈ A×N , let 〈−,−〉(a,u)
h denote the inner product on Λk(TaA× TuU)∗ induced by h

(the power k will be implicit from the context).

Corollary 5.1.9. Let σ, τ ∈ Σk,m−k, (a, u) ∈ A×N . Then for the elements εσ, ετ ∈ Ωk(A×N),
we have

〈(εσ)(a,u), (ετ )(a,u)〉
(a,u)
h = 0 if {σ(i)}σ(i)≥n

i=1,...k

6= {τ(i)}τ(i)≥n
i=1,...k

,

∣∣∣〈(εσ)(a,u), (ετ )(a,u)〉
(a,u)
h,

∣∣∣ ≤ cn∏
σ(i)≥n

(
akσ(i)

alσ(i)

)2

if {σ(i)}σ(i)≥n
i=1,...k

= {τ(i)}τ(i)≥n
i=1,...k

,

for some constant cn > 0 depending only on n.
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Proof. The point (a, u) will be implicit: We write εσ = (εσ)(a,u), 〈−,−〉h = 〈−,−〉(a,u)
h , and

x = x(a,u). Writing x−1 = (xij), we have by de�nition that

〈εσ, ετ 〉h = det

(
xσ(i)τ(j)

)
.

From Corollary 5.1.6 we see that

x−1 =

(
n2M−1 0

0 Ad(a−1)|2n

)
and we know that M is independent of the point (a, u). Write M−1 = (mij) and de�ne for any
l = 1, . . . , n− 1, α, β ∈ Σl,n−1−l, an l × l-matrix M−1

α,β := (mα(i)β(j)). Set

c′n := max{|detM−1
α,β| | l = 1, . . . , n− 1, α, β ∈ Σl,n−1−l}.

If

{σ(i) | σ(i) ≥ n, i = 1, . . . k} 6= {τ(i) | τ(i) ≥ n, i = 1, . . . k},

then the elements ηij appearing in εσ and ετ are not the same and therefore the matrix (xσ(i)τ(j))
has a zero row or column, so 〈εσ, ετ 〉h = 0.
If

{σ(i) | σ(i) ≥ n, i = 1, . . . k} = {τ(i) | τ(i) ≥ n, i = 1, . . . k},

let 1 ≤ p ≤ k, such that σ(i), τ(i) ≤ n − 1 for i ≤ p and σ(i), τ(i) ≥ n for i ≥ p. Let
σ′, τ ′ ∈ Σp,n−1−p denote the restriction of σ, respectively, τ to {1, . . . , p}, extended to permuta-
tions on {1, . . . , n− 1} in whatever way possible. Then∣∣∣〈εσ, ετ 〉h∣∣∣ =

∣∣∣∣ det

(
xσ(i)τ(j)

)∣∣∣∣ = n2p
∣∣∣ detM−1

σ′,τ ′

∣∣∣ ∏
σ(i)≥n

(
akσ(i)

alσ(i)

)2

≤ n2(n−1)c′n
∏

σ(i)≥n

(
akσ(i)

alσ(i)

)2

.

5.2 Logarithmic Forms

The scene is set and we can now de�ne the notion of a di�erential form having logarithmic
growth near the boundary. This in turn allows us to de�ne the subcomplex of logarithmic forms
on X/Γ for an appropriate torsion free subgroup Γ ≤ SLn(Z). We prove that the inclusion into
the de Rham complex is a quasi-isormorphism, that logarithmic forms of low degrees are square
integrable and that the G-invariant forms on X are mapped to logarithmic forms under the
chain isomorphism Ω∗(X)Γ ∼= Ω∗(X/Γ). The section relies heavily on the calculations of the
previous section and is in itself very heavy on calculations.

Recall the di�eomorphisms

% : A×N
∼=−→ X, (a, u) 7→ qau, %′ : A×N

∼=−→ X(B)[id]B ↪→ X, (a, u) 7→ [a, qu].

In the following, the notion of open Siegel sets will be useful, the de�nition of which is rather
obvious:
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Definition 5.2.1. For λ, δ > 0, set

A(λ) := {a = (ai) ∈ A | ai
ai+1

< λ, i = 1, . . . , n− 1},

A(λ) := {a = (ai) ∈ A | ai < λ, i = 1, . . . , n− 1},
N(δ) := {u = (uij) ∈ N | |uij | < δ, i < j}.

The open Siegel sets of X, respectively, X given by λ and δ are de�ned to be the sets

S(λ,δ) := %(A(λ) ×N(δ)), respectively, S(λ,δ) := %(A(λ) ×N(δ)).

Remark 5.2.2. It is immediate that S(λ,δ) is open in X and in fact equal to the interior of Sλ,δ;

likewise, S(λ,δ) is open in X and equal to the interior of Sλ,δ.

Recall that SLn(Z) contains a normal torsion free subgroup Γ of �nite index. Then X/Γ
is a smooth manifold, X/Γ is a compact smooth manifold with corners and the inclusion
X/Γ ↪→ X/Γ is a homotopy equivalence (cf. Remark 4.3.9). Let π : X → X/Γ denote the
projection and let C ⊆ SLn(Z) be a �nite subset such that SLn(Z) = CΓ. Then X/Γ = π(S0.C)
and X/Γ = π(S0.C), where S0 = S4/3,1/2.

Definition 5.2.3.

i) For an open subset U ⊆ S(λ,δ), λ, δ > 0, and ω ∈ Ωk(U), write %∗ω =
∑
fσεσ for

fσ ∈ C∞(%−1(U)). We say that ω has logarithmic growth if there exists a real polynomial
p in n− 1 variables such that for all (a, u) ∈ %−1(U) ⊆ A(λ) ×N(δ), σ ∈ Σk,m−k,

|fσ(a, u)| ≤ |p(log t1(a), . . . , log tn−1(a))|. (5.1)

ii) For an open subset U ⊆ S(λ,δ).C, λ, δ > 0, a di�erential form ω ∈ Ω∗(U) has logarithmic
growth if the restriction of γ∗ω to U.γ−1 ∩S(λ,δ) has logarithmic growth for all γ ∈ C.

iii) For an open subset V ⊆ X/Γ, a di�erential form ω ∈ Ωk(V ) has logarithmic growth if π∗ω
has logarithmic growth on π−1(V ) ∩S(λ,δ).C for some λ > 4/3, δ > 1/2.

Definition 5.2.4. Let V ⊆ X/Γ be an open subspace and let ω ∈ Ω∗(V ∩ X/Γ). We say
that ω has logarithmic growth near the boundary of V if for every point y ∈ ∂V , there exists a
neighbourhood U of y such that the restriction of ω to U ∩X/Γ has logarithmic growth.
If V = X/Γ, and ω ∈ Ωk(X/Γ) has logarithmic growth near the boundary of X/Γ, we say that
ω has logarithmic growth at in�nity, and we let Ω∗log(X/Γ) ⊆ Ω∗(X/Γ) denote the subcomplex
of forms ω ∈ Ω∗(X/Γ) for which both ω and dω have logarithmic growth at in�nity. We also
call these forms logarithmic.

Lemma 5.2.5. A di�erential form ω ∈ Ω∗(X/Γ) has logarithmic growth at in�nity, if and only
if there exist λ > 4/3, δ > 1/2 such that γ∗π∗ω has logarithmic growth on S(λ,δ) for all γ ∈ C.

Proof. The right to left implication is clear. For the converse, note that ∂X/Γ is compact, being
the image of ∂S0.C, and ∂S0

∼= ∂A4/3 × N1/2. Hence, if ω has logarithmic growth at in�nity,

then there is a �nite cover U1, . . . , Uk of ∂X/Γ such that the restriction of ω to each Ui has
logarithmic growth. Then there exist λ > 4/3, δ > 1/2 for which the restriction of γ∗π∗ω to
π−1(Ui).γ

−1 ∩S(λ,δ) has logarithmic growth for all γ ∈ C, i = 1, . . . , k.
Let γ ∈ C, set Vi := %−1(π−1(Ui).γ

−1)∩ (A(λ) ×N(δ)) and write %∗γ∗π∗ω|Vi =
∑
f iσ εσ for some

f iσ ∈ C∞(Vi) for all i. Let p1, . . . , pk be real polynomials in n− 1 variables such that

|f iσ(a, u)| ≤ |pi(log t1(a), . . . , log tn−1(a))| for all (a, u) ∈ Vi, σ ∈ Σk,m−k, i = 1, . . . , k.
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Now, let λ > λ′ > 4/3, δ > δ′ > 1/2 and write

%∗γ∗π∗ω|A(λ)×N(δ)
=
∑

fσ εσ for fσ ∈ C∞(A(λ) ×N(δ)).

Then we must have fσ|Vi = f iσ for all i = 1, . . . , k. Note that F := Aλ′×Nδ′−
⋃k
i=1 Vi ⊆ Aλ′×Nδ′

is compact, being closed in Aλ′ × Nδ′ and not intersecting the boundary. Let p be a real
polynomial in n− 1 variables satisfying

|p(log t1(a), . . . , log tn−1(a))| ≥ |pi(log t1(a), . . . , log tn−1(a))|
and |p(log t1(a), . . . , log tn−1(a))| ≥ max

σ, (b,v)∈F
{|fσ(b, v)|}.

for all (a, u) ∈ Aλ′ ×Nδ′ , i = 1, . . . k. This polynomial satis�es

|fσ(a, u)| ≤ |p(log t1(a), . . . , log tn−1(a))|, for all (a, u) ∈ A(λ′) ×N(δ′), σ ∈ Σk,m−k,

and we conclude that γ∗π∗ω has logarithmic growth on S(λ′,δ′).

We go on to prove three important properties of the complex Ω∗log(X/Γ).

Proposition 5.2.6. Under the chain isomorphism Ω∗(X)Γ ∼= Ω∗(X/Γ), the subcomplex of
G-invariant forms on X is mapped into the subcomplex of logarithmic forms.

Proof. Let ω ∈ Ω∗(X)G and let ϕ : Ω∗(X)Γ → Ω∗(X/Γ) denote the chain isomorphism (see
Proposition 2.3.2). To see that ϕ(ω) ∈ Ω∗log(X/Γ), we have to show that ϕ(ω) and dϕ(ω) have
logarithmic growth at in�nity. Note �rst that ω is closed: This is an immediate consequence of
the chain isomorphism Ω∗(X)G ∼= C∗(g, k,R) as the latter chain complex has trivial di�erential
(see Proposition 6.2.3). Then dϕ(ω) = ϕ(dω) = 0 trivially has logarithmic growth at in�nity.
In view of Lemma 5.2.5, ϕ(ω) has logarithmic growth at in�nity if for some λ > 4/3, δ > 1/2,
γ∗π∗ϕ(ω) has logarithmic growth on Sλ,δ for any γ ∈ C. As π∗ = ϕ−1 and ω is G-invariant, we
have γ∗π∗ϕ(ω) = ω.
Write %∗ω =

∑
fσ εσ, fσ ∈ C∞(A×N). At this point we are only going to use that ω is invariant

under the inherited right action of A. Recall the right action of G on A×N from the previous
section (with this action on A × N , % is equivariant), and let for b ∈ A, λb : A × N → A × N
denote this action, i.e. λb(a, u) = (ab, b−1ub).
Recall that d(log ti) is right invariant and note that for cb−1 : N → N conjugation by b−1, we

have c∗b−1ηij =
bj
bi
ηij as

(c∗b−1ηij)id(Elk) = (ηij)id(Ad(b−1)Elk) =
bk
bl
Êij(Elk) for all i < j, l < k.

Hence, if ιA, ιN denote the canonical inclusions of A, respectively, N into A×N , we have

λ∗bεi = π∗Aι
∗
Aλ
∗
bπ
∗
Ad(log ti) = π∗AR

∗
bd(log ti) = εi for all i = 1, . . . , n− 1,

and λ∗bεi = π∗N ι
∗
Nλ
∗
bπ
∗
Nηi = π∗Nc

∗
b−1ηi =

bki
bli
εi for all i = n, . . . ,m,

where li < ki correspond to i under the chosen enumeration. With these observations, we see
that ∑

fσ εσ = %∗ω = %∗b∗ω = λ∗b%
∗ω =

∑
fσ ◦ λb

( ∏
σ(i)≥n
i=1,...,k

bkσ(i)

blσ(i)

)
εσ,
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so

fσ =

( ∏
σ(i)≥n
i=1,...,k

bkσ(i)

blσ(i)

)
fσ ◦ λb, for all σ ∈ Σk,m−k.

In particular, for a given (a, u) ∈ A×N we can take b = a−1 and then

fσ(a, u) =

( ∏
σ(i)≥n
i=1,...,k

alσ(i)

akσ(i)

)
fσ(id, aua−1) =

( n−1∏
i=1

ti(a)ni,σ
)
fσ(id, aua−1)

for some ni,σ ∈ N0.
Let λ > 4/3, δ > 1/2. We know from Lemma 3.3.1 that V =

⋃
a∈Aλ aNδa

−1 is relatively compact.

Thus there exists c > 0 such that |fσ(id, aua−1)| ≤ c for all (a, u) ∈ A(λ) ×N(δ), and therefore
by the above

|fσ(a, u)| ≤ cλ
∑
i ni,σ for all (a, u) ∈ A(λ) ×N(δ).

Being bounded on A(λ)×N(δ), the fσ trivially have logarithmic growth, which is what we needed
to show.

Lemma 5.2.7. If λ ≤ 3/2 and f ∈ C∞(A(λ) ×N(δ)) satis�es

|f(a, u)| ≤ |p(log t1(a), . . . , log tn−1(a))|

for some polynomial p and all (a, u) ∈ A(λ) × N(δ), then for any 0 < ε < 1 there is a constant
cε > 0 such that

|f(a, u)| ≤ cε
n−1∏
i=1

(
ai+1

ai

)ε
for all (a, u) ∈ A(λ) ×N(δ).

Proof. Suppose the map f ∈ C∞(A(λ)×N(δ)) and the polynomial p satisfy the inequality above.

Note �rst that for any 0 < ε < 1, | log(x)| ≤ 1
ε x
−ε for all 0 < x < λ. Then for a given 0 < ε < 1

and any n ∈ N, replacing ε by ε/n in the above inequality yields

| log(x)|n ≤ (n/εx−
ε/n)n ≤ (n/ε)nx−ε and | log(x)|0 = 1 < (λ)ε x−ε for all 0 < x < λ.

Then there is some constant cε > 0 for which

|p(log t1(a), . . . , log tn−1(a))| ≤ cε
n−1∏
i=1

ti(a)−ε = cε

n−1∏
i=1

(
ai+1

ai

)ε
for all a ∈ Aλ.

Equip X with the G-invariant Riemannian metric gX := %∗(h). Equip X/Γ with the inherited
metric g′, i.e. the metric given by g′π(p)(v, w) = gXp ((Dpπ)−1(v), (Dpπ)−1(w)) for p ∈ X,

v, w ∈ Tπ(p)(X/Γ) (this is well-de�ned as gX is G-invariant and thus in particular Γ-invariant).

Then gX = π∗g′. Similarly, we let G/Γ inherit the right invariant metric from G. For future
use, we note the following:

Proposition 5.2.8. The manifolds G, X, G/Γ and X/Γ are all complete.
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Proof. G and X are complete as they are homogeneous and the metrics are G-invariant, so the
isometries act transitively (cf. [1, Lemma 5.2]). As the projections G → G/Γ, X → X/Γ are
local isometries, it follows that G/Γ and X/Γ are complete.

Now X and X/Γ are connected oriented Riemannian manifolds (cf. the above and Proposi-
tion 2.1.17), so we can apply the machinery of Section 1.3. Let µgX , µg′ denote the measures

induced by gX , respectively, g′ and note that µg′ = π∗µgX . Recall that gX and g′ induce

inner products 〈−,−〉p
gX

on Λk(TpX)∗, respectively, 〈−,−〉π(p)
g′ on Λ∗(Tπ(p)(X/Γ))∗ for p ∈ X

and that

〈ωπ(p), ω
′
π(p)〉

π(p)
g′ = 〈(π∗ω)p, (π

∗ω′)p〉pgX , ω, ω′ ∈ Ωk(X/Γ), p ∈ X.

Recall �nally that a di�erential form ω ∈ Ω∗(X/Γ) is square integrable if

‖ω‖2g′ :=

∫
〈ωp, ωp〉pg′ dµg′(p) <∞.

Proposition 5.2.9. For k < n−1
2 , any ω ∈ Ωk

log(X/Γ) is square integrable.

Proof. Let ω ∈ Ωk
log(X/Γ) for some k < n−1

2 . By de�nition of the metric g′ on X/Γ, and using
that X/Γ = π(S0.C), we have by the abstract change of variable formula

‖ω‖2g′ =

∫
X/Γ
〈ωπ(p), ωπ(p)〉

π(p)
g′ dµg′(π(p)) ≤

∫
S0.C
〈(π∗ω)p, (π

∗ω)p〉pgX dµgX (p).

Noting that∫
S0.γ
〈(π∗ω)p, (π

∗ω)p〉kgX dµgX (p) =

∫
S0.γ
〈(π∗ω)p, (π

∗ω)p〉kgX dγ∗µgX (p)

=

∫
S0

〈(γ∗π∗ω)p, (γ
∗π∗ω)p〉kgX dµgX (p),

we have

‖ω‖2g′ ≤
∫
S0.C
〈(π∗ω)p, (π

∗ω)p〉pgX dµgX (p)

≤
∑
γ∈C

∫
S0.γ
〈(π∗ω)p, (π

∗ω)p〉pgX dµgX (p)

=
∑
γ∈C

∫
S0

〈(γ∗π∗ω)p, (γ
∗π∗ω)p〉pgX dµgX (p)

=
∑
γ∈C

∫
A4/3×N1/2

〈(%∗γ∗π∗ω)(a,u), (%
∗γ∗π∗ω)(a,u)〉

(a,u)
h dµh(p)

=
1

nn−1

∑
γ∈C

∫
A4/3×N1/2

〈(%∗γ∗π∗ω)(a,u), (%
∗γ∗π∗ω)(a,u)〉

(a,u)
h ρ(a) d(µA ⊗ µN )(a, u),

where we use that gX = %∗(h) and µh = (1/n)n−1(ρ ◦ πA).(µA ⊗ µN ).
For an arbitrary γ ∈ C, write %∗γ∗π∗ω =

∑
fσεσ for fσ ∈ C∞(A×N). Then

〈(%∗γ∗π∗ω)(a,u), (%
∗γ∗π∗ω)(a,u)〉

(a,u)
h =

∑
σ,τ

fσ(a, u)fτ (a, u)〈((εσ)(a,u), (ετ )(a,u)〉
(a,u)
h
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and the only non-zero terms in this sum are the ones for σ, τ satisfying

{σ(i) | σ(i) ≥ n, i = 1, . . . , k} = {τ(i) | τ(i) ≥ n, i = 1, . . . , k}

(cf. Corollary 5.1.9). If we can show that for all such σ, τ , we have∫
A4/3×N1/2

∣∣fσ(a, u)fτ (a, u)〈(εσ)(a,u), (ετ )(a,u)〉
(a,u)
h ρ(a)

∣∣ d(µA ⊗ µN )(a, u) <∞,

then by the above calculations, we must have ‖ω‖2g′ <∞, i.e. ω ∈ Ω∗(2)(X/Γ).
Using Corollary 5.1.9, we see that∫

A4/3×N1/2

∣∣fσ(a, u)
∣∣∣∣fτ (a, u)

∣∣∣∣〈(εσ)(a,u), (ετ )(a,u)〉
(a,u)
h

∣∣∣∣ρ(a)
∣∣ d(µA ⊗ µN )(a, u)

≤
∫
A4/3×N1/2

|fσ(a, u)||fτ (a, u)| cn
∏

σ(i)≥n

(
akσ(i)

alσ(i)

)2∏
i<j

(
ai
aj

)
d(µA ⊗ µN )(a, u).

Let 0 < ε < 1
2 . We know from Lemma 5.2.5 that the fσ have logarithmic growth in the sense of

De�nition 5.2.3 Equation (5.1) on some neighbourhood of A4/3 ×N1/2. Then, by Lemma 5.2.7,
we have∫

A4/3×N1/2

|fσ(a, u)||fτ (a, u)| cn
∏

σ(i)≥n

(
akσ(i)

alσ(i)

)2∏
i<j

(
ai
aj

)
d(µA ⊗ µN )(a, u)

≤ cεcn
∫
A4/3×N1/2

n−1∏
i=1

(
ai+1

ai

)2ε ∏
σ(i)≥n

(
akσ(i)

alσ(i)

)2∏
i<j

(
ai
aj

)
d(µA ⊗ µN )(a, u)

= µN (N1/2)cncε

∫
A4/3

n−1∏
i=1

(
ai+1

ai

)2ε ∏
σ(i)≥n

(
akσ(i)

alσ(i)

)2∏
i<j

(
ai
aj

)
dµA(a)

for some constant cε > 0, and where µN (N1/2) <∞ as N1/2 is compact. Note that

n−1∏
i=1

(
ai+1

ai

)2ε ∏
σ(i)≥n

(
akσ(i)

alσ(i)

)2∏
i<j

(
ai
aj

)
=

n−1∏
i=1

(
ai+1

ai

)2ε n−1∏
i=1

(
ai+1

ai

)2nσ,i n−1∏
i=1

(
ai
ai+1

)i(n−i)

=

n−1∏
i=1

(
ai
ai+1

)i(n−i)−2nσ,i−2ε

for nσ,i ∈ N0 equal to the cardinality of the set

{j = 1, . . . , k | lσ(j) ≤ i ≤ kσ(j)−1}.

Then nσ,i ≤ k < n−1
2 and therefore αi,σ,ε := i(n− i)− 2nσ,i− 2ε > 0 for all i = 1, . . . , n− 1. We

can now use the fact that the map θ−1 : A→ Rn−1 of the previous section, pri ◦ θ−1(a) = log ti,
is a group isomorphism from A to the additive group Rn−1 and the image measure ν = θ−1

∗ µA
is the Lebesgue measure:∫

A4/3

n−1∏
i=1

ti(a)αi,σ,ε dµA(a) =

n−1∏
i=1

∫ log(4/3)

−∞
exp(αi,σ,εx) dx <∞.

This �nishes our proof.



62 Mikala Ørsnes Jansen

We will need a version of the Poincaré Lemma for logarithmic forms to prove the next proposition.

Lemma 5.2.10 (Poincaré Lemma for Logarithmic Forms). Let x ∈ X/Γ with V ⊆ X/Γ a
neighbourhood of x and let k ≥ 1. If ω ∈ Ωk(V ∩ X/Γ) has logarithmic growth near the
boundary of V and dω = 0, then there is a neighbourhood V ′ ⊆ V of x and a di�erential form
ω′ ∈ Ωk−1(V ′ ∩ X/Γ) with logarithmic growth near the boundary of V ′ such that ω = dω′ on
V ′.

Proof. If x ∈ X/Γ, this is just the standard Poincaré Lemma. So suppose x ∈ ∂X/Γ. We may
assume that ω has logarithmic growth on V ∩ (X/Γ) (we can just replace V by a neighbourhood
of x, on which this holds true). Then there exist λ > 4/3, δ > 1/2 such that π∗ω has logarithmic
growth on π−1(V ) ∩S(λ,δ).C.

For a given y′ ∈ π−1(x) ∩ S0.C, let γ ∈ C such that y := y′.γ−1 ∈ S0. Take a neigh-
bourhood U ⊆ π−1(V ).γ−1 ∩ S(λ,δ) of y for which π|U : U → π(U) is a di�eomorphism. As

y ∈ ∂S0 ⊆ ∂X(B)[id]B , it must belong to the boundary component corresponding to some
BUT P and id: Let P be a BUT de�ned by the partition 0 = l0 < · · · < lk = n such that
y ∈ e(P )[id]P ⊆ X(B)[id]B . Finally, let ay ∈ A, uy ∈ N such that ayuy ∈ NP and (0P , ayuy)

corresponds to y under the di�eomorphism AP × NP → X(P )[id]P , (a, u) 7→ [a, qu][id]P . De-

note by % : A × N → X(B)[id]B , (a, u) 7→ [a, qu][id]B , the di�eomorphism extending %. Then
%−1(y) = (ay, uy), where ay = 0Pay, so

(ay)lj = 0 for j = 1, . . . , k − 1,

0 < (ay)i =
(ay)i

(ay)i+1
< λ for all i 6= lj ,

|(uy)ij | < δ for all i < j.

We consider a ball around the point (ay, uy): Let t > 0 such that

Ut := {(a, u) ∈ A×N | |ai − (ay)i| < t, |uij − (uy)ij | < t} ⊆ %−1(U).

Set U(t) := Ut ∩ (A×N). We pick a di�erent set of coordinates on A×N : Fix some 0 < t0 < t
and de�ne

xlj : A −→ R, xlj (a) = log tlj (a)− log t0 for j = 1, . . . , k − 1,

xi : A −→ R, xi(a) = ti(a)− (ay)i
(ay)i+1

for i 6= lj ,

xij : N −→ R xij(u) = uij − (uy)ij , for i < j.

Clearly, these form a coordinate system on A×N . We see that dxi = d(log ti) are our chosen basis
elements of TA∗ for all i = lj , j = 1, . . . , k− 1, and for i 6= lj , we see that dxi = dti = tid(log ti)
and ti is bounded on πA(U(t)). On πN (U(t)), dxlk =

∑
i<j fijηij for some fij ∈ C∞(U(t)) and

these fij must be bounded; conversely the ηij can be written as a linear combination of the dxij
with bounded coe�cients on πN (U(t)). Pull the coordinates back to A×N , keeping the same no-
tation, �x an enumeration of the coordinates xij from n, . . . ,m and let dxσ = dxσ(1)∧· · ·∧dxσ(k),

σ ∈ Σk,m−k, denote the basis of Ωk(U(t)) given by this coordinate system. For an arbitrary

α ∈ Ωk(U(t)),

α =
∑

fσεσ =
∑

gσdxσ,
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and we see that the fσ have logarithmic growth in the sense of De�nition 5.2.3 Equation (5.1)
if and only if the gσ do as the dxi which di�er from the εi can be written as linear combinations
of these with bounded coe�cients and vice versa.
Let ψ : A×N → Rn−1

>0 × R
n(n−1)

2 denote the map ψ(a, u) = ((xi(a))n−1
i=1 , (xi(u))mi=n); then

ψ(U(t)) = {x ∈ Rm | xlj < log(t/t0) for all j = 1, . . . , k − 1, |xi| < t for all other i}.

In particular, ψ(U(t)) ⊆ Rm is star-shaped with respect to the origin.
Let z1, . . . , zm denote the standard coordinates on Rm and dz1, . . . , dzm the induced basis of the
cotangent space. Then for α =

∑
gσdxσ ∈ Ωk(Ut),

(ψ−1)∗α =
∑

gσ ◦ ψ−1dzσ =
∑

hσdzσ,

and the gσ have logarithmic growth if and only if there exists a real polynomial p in n − 1
variables such that

|hσ(z)| = |gσ ◦ ψ−1(z)| ≤ |p(ž)| for all z ∈ ψ−1(Ut) ⊆ Rm,

where ž ∈ Rn−1 is given by žlj = zlj , j = 1, . . . , k − 1, and ži = log(zi) for all other i. For
i 6= lj , pri(ψ(U(t))) is bounded, so the above condition is equivalent to the existence of a real
polynomial p in k − 1 variables such that

|hσ(z)| ≤ |p(zl1 , . . . , zlk−1
)| for all z ∈ ψ−1(U(t)) ⊆ Rm. (5.2)

We consider the standard homotopy operator on Euclidean space (see Appendix A.3)

H : Ωk(Rm)→ Ωk−1(Rm) given by H(hσdzσ) =
k∑
i=1

cσi dzσi ,

where σi ∈ Σk−1,m−k+1 is the permutation skipping σ(i), i.e. σi(j) = σ(j) for j < i and
σi(j) = σ(j + 1) for j ≥ i. The coe�cients cσi ∈ C∞(A×N) are de�ned as

cσi(z) = (−1)i−1zσ(i)

∫ 1

0
hσ(zt)tk−1 dt.

On ψ(U(t)), we know that dH + Hd = id, so for α ∈ Ωk(ψ(U(t))) satisfying dα = 0, we have
α = dH(α). Thus, we need only show that H preserves logarithmic growth in the sense of
Equation (5.2) above. Write

α =
∑

σ∈Σk,m−k

hσdzσ, and H(α) =
∑

τ∈Σk−1,m−k+1

cτdzτ .

Then

cτ (z) =
∑

σ∈Σk,m−k
τ=σi

cσi(z) =
∑

σ∈Σk,m−k
τ=σi

(−1)i−1zσ(i)

∫ 1

0
hσ(zt)tk−1 dt.

If |hσ(z)| ≤ |p(zl1 , . . . , zlk−1
)| for all z ∈ ψ(U(t)), σ ∈ Σk,m−k and some polynomial p, then as

the integral of a polynomial is itself a polynomial and |zσ(i)| is bounded for all i 6= lj , it is clear
that there exists a real polynomial P in k − 1 variables such that

|cτ (z)| ≤ |P (zl1 , . . . , zlk−1
)| for all z ∈ ψ(U(t)), τ ∈ Σk−1,m−k+1.
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To conclude, set V ′ := π(%(Ut).γ). We know that (ψ−1)∗%∗γ∗π∗ω = dH((ψ−1)∗%∗γ∗π∗ω) on
ψ(U(t)), and H((ψ−1)∗%∗γ∗π∗ω) has logarithmic growth in the sense of Equation (5.2). Then
ω = dω′ on π(%(U(t)).γ)) = V ′ ∩X/Γ for

ω′ := ϕ(γ−1)∗(%−1)∗ψ∗H((ψ−1)∗%∗γ∗π∗ω) ∈ Ωk−1(V ′ ∩X/Γ),

where ϕ : Ω∗(X)Γ → Ω∗(X/Γ) is the inverse of π∗, and by the observations above, ω′ has
logarithmic growth near the boundary of V ′.

For the proof of the following proposition we will use some basic sheaf theory (we refer to [21]
and [8]). In fact, the proof is analogous to the proof of De Rham's Theorem using sheaf theory.

Proposition 5.2.11. The inclusion Ω∗log(X/Γ) ↪→ Ω∗(X/Γ) is a quasi-isomorphism.

Proof. Let U(X/Γ) denote the category of open sets on X/Γ (that is the category with objects
open sets in X/Γ and morphisms the inclusions) and let R-Vect denote category of real vector
spaces. Then de�ne Fk : U(X/Γ) → R-Vect by Fk(∅) = 0 and for any non-empty open set
V ⊆ X/Γ, set

Fk(V ) := {ω ∈ Ωk(V ∩ (X/Γ)) | ω and dω have logarithmic growth near the boundary of V }.

Clearly, an inclusion V ⊆ U of open subsets of X/Γ induces a restriction map Fk(U)→ Fk(V ),
and this correspondence preserves compositions and the identity, so Fk is a presheaf. It is easy
to see that Fk satis�es the equaliser condition, so it is a sheaf.

Then F∗ is a di�erential sheaf with the di�erential simply being exterior di�erentation of di�er-
ential forms. Note that F∗(X/Γ) = Ω∗log(X/Γ) and F∗(X/Γ) = Ω∗(X/Γ). We will prove that

F∗ is a �ne resolution of the constant sheaf RX/Γ; X/Γ is a compact Hausdor� space and thus
paracompact, so the notion of a �ne sheaf makes sense.

First, we prove that Fk is �ne, i.e. that it possesses a �partition of unity�: Let f ∈ C∞(X/Γ).
For a given γ ∈ C, express %∗γ∗π∗df in terms of the basis {dti}n−1

i=1 ∪ {ηij}i<j on A×N :

%∗γ∗π∗df =

n−1∑
i=1

fidti +
∑
i<j

fijηij , fi, fij ∈ C∞(A4/3 ×N1/2).

As %∗γ∗π∗df extends smoothly to the compact set A4/3×N1/2 and the dti extend to a basis of the

cotangent space on A, the fi and the fij must be bounded in absolute value. Now, expressing
%∗γ∗π∗df in terms of our chosen basis {d(log ti)}n−1

i=1 ∪ {ηij}i<j as

%∗γ∗π∗df =

n−1∑
i=1

f ′i
dti
ti

+
∑
i<j

f ′ijηij , f ′i , f
′
ij ∈ C∞(A4/3 ×N1/2),

we must have f ′i = fiti and f
′
ij = fij from which it follows that the f ′i and f

′
ij are bounded in

absolute value. In particular, both f and df have logarithmic growth at in�nity. Then for any
V ∈ U(X/Γ), ω ∈ F∗(V ), both fω and d(fω) = df ∧ ω + fdω belong to F(V )∗ as the exterior
product preserves logarithmic growth.

Now, let U = {Ui} be a locally �nite open cover of X/Γ and let {λi} be a partition of unity
subordinate to U. De�ne sheaf morphisms

ζi : F
∗ → F∗ by ζi(ω) = λiω for ω ∈ F∗(V ), V ∈ U(X/Γ).
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Then ζi is trivial on the complement of suppλi for all i and
∑

i ζi = idF∗ . We conclude that F∗

is indeed �ne.

Now we prove that F∗ is a resolution of RX/Γ, where we take the inclusion as the augmentation

map ε using that RX/Γ(U) consist of the locally constant functions on U .

We will use the fact that a sequence of sheaves over X/Γ with values in R-Vect, G′ ϕ−→ G
ψ−→ G′′,

is exact if and only if the sequence of stalks G′x
ϕx−→ Gx

ψx−→ G′′x is exact in R-Vect for all
x ∈ X/Γ (cf. [21, Theorem 5.85]). Recall that the stalk of a sheaf G at x ∈ X/Γ is the object
Gx = lim−→x∈U G(U).

Let x ∈ X/Γ and consider the sequence

· · · dx−→ Fk−1
x

dx−→ Fk
x

dx−→ Fk+1
x

dx−→ · · ·

Suppose [ω] ∈ Fk
x is such that 0 = dx[ω] = [dω] and ω ∈ Fk(V ) for some neighbourhood V of

x. Then there is a neighbourhood x ∈W ⊆ V such that dω|W = 0. By the Poincaré Lemma for
logarithmic forms (cf. Lemma 5.2.10), there is a neighbourhood x ∈ U ⊆ W and a di�erential
form ω′ ∈ Fk−1(U) such that ω|U = dω′. So [ω] = [ω|U ] = [dω′] = dx[ω′] in Fk

x . As d
2 = 0, we

conclude that the sequence is exact for k > 0.
Now, for [f ] ∈ F0

x , dx[f ] = 0 if and only if f is locally constant at x. Hence, the sequence

0 −→ RX/Γ
εx−→ F0

x
dx−→ F1

x
dx−→ · · ·

is exact at F0
x and we conclude that F∗ is a resolution of RX/Γ.

Being a �ne resolution of RX/Γ, F
∗(X/Γ) calculates the sheaf cohomology of RX/Γ (cf. [21,

Section 6.3]). So does the di�erential sheaf associated to the presheaf of singular cochains on
X/Γ (cf. [8, I.7]), so by independence of the chosen resolution in computing derived functors, we
get a canonical isomorphism H∗(Ω

∗
log(X/Γ))→ H∗(X/Γ), where H∗(X/Γ) denotes the singular

cohomology of X/Γ; on chain level, it is the map over idRX/Γ given by the Comparison Theorem

(cf. [21, Theorem 6.16]).
Let ι : X/Γ→ X/Γ denote the inclusion. The de Rham sheaf Ω∗X/Γ is a �ne resolution of RX/Γ
and ι∗F∗ = Ω∗X/Γ. The inverse image of the sheaf associated to the presheaf of singular cochains

on X/Γ is exactly the sheaf associated to the presheaf of singular cochains on X/Γ. Finally,
ι∗RX/Γ = RX/Γ. Consider the diagram below:

H∗(Ω
∗
log(X/Γ)) H∗(X/Γ)

H∗(Ω
∗(X/Γ)) H∗(X/Γ)

The upper horizontal map is the isomorphism mentioned above, the vertical maps are the ones
induced by the inclusion ι (on chain level, they are the maps over ι∗ : RX/Γ → RX/Γ given by

the Comparison Theorem) and the lower horizontal map is the de Rham isomorphism (on chain
level, the map over idRX/Γ given by the Comparison Theorem). The diagram commutes as it
commutes on chain level.
Now, ι is a homotopy equivalence, so the vertical map on the right is an isomorphism. Thus we
conclude that H∗(Ω

∗
log(X/Γ))→ H∗(Ω

∗(X/Γ)) is an isomorphism, as desired.
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We collect the above propositions in one theorem:

Theorem 5.2.12. The subcomplex Ω∗log(X/Γ) ⊆ Ω∗(X/Γ) satis�es:

i). j(Ω∗(X)G) ⊆ Ω∗log(X/Γ), where j : Ω∗(X)G ↪→ Ω∗(X)Γ ∼= Ω∗(X/Γ).

ii). The inclusion Ω∗log(X/Γ) ↪→ Ω∗(X/Γ) is a quasi-isomorphism.

iii). Ωk
log(X/Γ) ⊆ Ωk

(2)(X/Γ) for all k < n−1
2 .



6 | Finishing off

In this �nal chapter, we show that the inclusion Ω∗(X)SLn(R) ↪→ Ω∗(X)SLn(Z) induces an isomor-
phism on cohomology in low degrees. To do this, we �rst review some results on harmonic and
square integrable di�erential forms and brie�y recap the de�nition of Lie algebra cohomology.
Using a result of Borel and Garland, we prove a version of the Matsushima Vanishing Theorem
applicable to our case which turns out to be last ingredient needed. We will see that our hard
work in the previous chapter pays o�: With the existence of the subcomplex of logarithmic
forms and the Matsushima Vanishing Theorem, the fact that Ω∗(X)SLn(R) ↪→ Ω∗(X)SLn(Z) in-
duces an isomorphism on cohomology in low degrees almost comes for free. Finally, we use this
isomorphism to calculate the real cohomology of SLn(Z) in low degrees using a clever little trick
that enables us to consider the compact Lie group SU(n) instead of SLn(R). Our calculations
show that the cohomology stabilises and we can calculate the real cohomology of SL∞(Z).

6.1 Preliminaries

To �nish o�, we need some results about harmonic and square integrable forms and we apply the
theory of Lie algebra cohomology. Much of this is well-known and in any case it will take focus
from the actual content of this project to introduce the theory in full formality and prove these
results, so we opt to give a very brief overview, state the results needed and supply references.

Harmonic Forms and Square Integrable Forms

We de�ne the notion of a di�erential form being harmonic and review some important results.

Let M be a connected oriented complete Riemannian manifold of dimension n. Recall that
Ω∗(2)(M) denotes the space of square integrable forms on M with respect to the inner product

(−,−)M induced by the metric tensor on M (cf. Section 1.3). Let ‖ − ‖M denote the induced
norm. We denote by 〈−,−〉 and ‖−‖ the induced inner products and norms on ΛkTxM

∗ for all
x ∈M , k ∈ N0.
Let ? : Ωq(M)→ Ωn−q(M) denote the Hodge star operator : ?ω ∈ Ωn−q(M) is uniquely de�ned
by the condition that

(η ∧ ?ω)x = (ηx, ωx)volM for all x ∈M, η ∈ Ωq(M),

where the inner product on the right is the one on ΛqTxM induced by the metric tensor onM and
volM the induced volume element. The Hodge star ? is invertible with inverse ?−1 = (−1)q(n−q)?.
De�ne the codi�erential δ := (−1)q ?−1 d? : Ωq(M)→ Ωq−1(M) and the Laplace-Beltrami oper-
ator ∆ := dδ + δd : Ωq(M)→ Ωq(M).
By de�nition of ?, we have:

Proposition 6.1.1. (α, β)M =
∫
α ∧ ?β for all α, β ∈ Ωq(M).

Definition 6.1.2. A form ω ∈ Ω∗(M) is said to be harmonic if ∆ω = 0. Let Hq
(2)(M) denote

the space of square integrable harmonic forms.

As M is complete, we have the following result:

67
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Proposition 6.1.3 (Andreotti-Vesentini). A form ω ∈ Ω∗(2)(M) is harmonic if and only if
dω = δω = 0.

Proof. See [12, Theorem 26].

It follows that (H∗(2)(M), d) is a chain complex with homology H∗(2)(M).

Proposition 6.1.4 (Kodaira). Any closed square integrable form ω ∈ Ωq
(2)(M) can be written

uniquely as ω = ω′ + dω′′ for ω′ ∈H
q

(2)(M) and ω′′ ∈ Ωq−1(M) .

Proof. See [12, Theorems 24 and 14].

Lemma 6.1.5. There exist compact sets Cr ⊆ Dr, smooth functions λr : M → [0, 1], r > 0 and
a constant c > 0 satisfying

i) M =
⋃
r>0Cr,

ii) Cr contains the interior of Cs for s < r,

iii) λr(Cr) = 1 and λr(D
c
r) = 0,

iv) ‖dλr(x)‖ ≤ c
r for all x ∈M .

Proof. See the proof of [12, Theorem 26] (see also [6, Lemma 1.2]).

The exterior derivative and the codi�erential are adjoint in the following sense:

Proposition 6.1.6. If α ∈ Ωq(M), β ∈ Ωq+1(M) are such that α, β, dα, δβ are all square
integrable, then

(dα, β)M = (α, δβ)M .

Proof. Suppose �rst that one of the forms α or β has compact support. Then Stokes' Theorem
and Proposition 6.1.1 yield

0 =

∫
d(α ∧ ?β) =

∫
dα ∧ ?β −

∫
(−1)q+1α ∧ d ? β

= (dα, β)−
∫
α ∧ ?(−1)q+1 ?−1 d ? β = (dα, β)−

∫
α ∧ ?δβ = (dα, β)− (α, δβ).

If neither α nor β has compact support, let λr, r > 0, as in Lemma 6.1.5. Then λrα is compactly
supported for all r > 0, so by the above we have

(λrα, δβ) = (d(λrα), β) = (dλr ∧ α, β) + (λrdα, β) for all r > 0.

As µ is inner regular and M =
⋃
r∈RCr, (λrα, δβ) and (λrdα, β) tend to (α, δβ) and (dα, β),

respectively, as r →∞. We need to show that (dλr ∧ α, β) tends to zero as r →∞.

Let x ∈ M and take an orthonormal basis of TxM
∗; this gives rise to orthonormal basis of

ΛkTxM
∗ and the norm of an element in ΛkTxM

∗ is the square root of the sum of the squares
of its coe�cients with respect to this basis. The coe�cients of a wedge product are sums of
products of a coe�cient of the �rst factor and a coe�cient of the second factor, multiplied by
some sign, and each product occurs exactly once. Then the Cauchy-Schwarz inequality implies
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that ‖ω ∧ ω′‖ ≤ ‖ω‖‖ω′‖ for all ω, ω′ ∈ Λ∗TxM
∗. The Cauchy-Schwarz inequality for (−,−)M

then yields

|(dλr ∧ α, β)M |2 ≤ ‖β‖2M‖dλr ∧ α‖2M = ‖β‖2M
∫
‖dλr(x) ∧ αx‖2dµ

≤ ‖β‖2M
∫
‖dλr(x)‖2‖αx‖2dµ ≤

c2

r2
‖α‖2M‖β‖2M

and we immediately get the desired.

Proposition 6.1.7. If ω ∈H∗(2)(M) satis�es ω = dω′ for ω′ ∈ Ω∗(2)(M), then ω = 0.

Proof. Indeed, by Propositions 6.1.3 and 6.1.6, we have (dω′, dω′)M = (ω′, δω) = 0 and thus
ω = dω′ = 0.

Lastly, we need the following result of E. Cartan:

Proposition 6.1.8. Any G-invariant di�erential form ω ∈ Ω∗(X)G is harmonic.

Proof. See for example [4, II �3].

Lie Algebra Cohomology

We brie�y recap the de�nitions of Lie algebra cohomology and of relative Lie algebra cohomology
for use in the following section. We refer to [4] for details.

Let g be a �nite-dimensional real Lie algebra. Given a real g-module V , the Chevalley-Eilenberg
chain complex (C∗, d) is de�ned as

Cq = Cq(g, V ) = HomR(Λqg, V )

with di�erential d : Cq −→ Cq+1 given by

df(x0, . . . , xq) =
∑
i

(−1)i xi · f(x0, . . . , x̂i, . . . , xq)

+
∑
i<j

(−1)i+jf([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xq)

for f ∈ Cq, x0, . . . , xq ∈ g. The Lie algebra cohomology of g with coe�cients in V is the
homology of this complex, denoted by Hq(g, V ).
For a given x ∈ g, we have maps ix : Cq → Cq−1, θx : Cq → Cq given by

(ixf)(x1, . . . , xq−1) = f(x, x1, . . . , xq−1),

(θxf)(x1, . . . , xq) = x · f(x1, . . . , xq) +
∑
i

f(x1, . . . , [xi, x], . . . , xq)

for f ∈ Cq, x1, . . . , xq ∈ g. The map ix is the interior product and θx is related to the Lie
derivative of di�erential forms.
Let k be a subalgebra of g and let Cq(g, k, V ) denote the subspace of Cq(g, V ) consisting of the
elements f ∈ Cq(g, V ) such that ixf = θxf = 0 for all x ∈ k. These subspaces are preserved by
d and we de�ne the relative Lie algebra cohomology of g relative to k with coe�cients in V as
the homology of the complex (C∗(g, k, V ), d). It is easy to show that

Cq(g, k, V ) ∼= Homk(Λ
q(g/k), V )
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with k acting on Λq(g/k) by the adjoint representation, i.e.

x · (x1 ∧ · · · ∧ xq) =
∑
i

x1 ∧ · · · ∧ [x, xi] ∧ · · · ∧ xq, x ∈ k, xi ∈ g,

where y denotes passing to the quotient. Then Cq(g, k, V ) is the subspace of HomR(Λq(g/k), V )
consisting of the maps f satisfying

x · f(x1, . . . , xq) =
∑
i

f(x1, . . . , [x, xi], . . . , xq), x ∈ k, xi ∈ g.

Assume now that g is semisimple and let B denote the Killing form on g, i.e. B : g × g → R,
B(x, y) = tr(ad(x) ◦ ad(y)). Let (yi) be a basis of g and let (y′i) be the dual basis of g with
respect to B, that is, y′j is such that B(yi, y

′
j) = δij .

Definition 6.1.9. The Casimir element is the element C :=
∑

i yiy
′
i ∈ U(g) in the universal

enveloping algebra of g.

Remark 6.1.10. The Casimir element is independent of the choice of basis, and it belongs the
centre of U(g).

Remark 6.1.11. There is an intricate relationship between the Casimir element and the Laplace-
Beltrami operator, which is the reason why we will need the element in the following, but we do
not need the explicit relation (see Kuga's Formula in for example [4, II Theorem 2.5]).

6.2 Matsushima's Vanishing Theorem

In this section, we prove a version of the Matsushima Vanishing Theorem. More speci�cally, we
prove that in low enough degrees, a harmonic form on X/Γ is pulled back to a G-invariant form
on X via the projection X → X/Γ for an appropriate torsion free subgroup Γ ≤ SLn(Z). We
exploit a result by Borel and Garland which we state without proof. The fact that a harmonic
form is pulled back to a G-invariant form is the last piece of the puzzle; with this we can �nally
prove that the inclusion Ω∗(X)G ↪→ Ω∗(X)SLn(Z) induces an isomorphism on cohomology in low
degrees.

Let G = SLn(R) with Lie algebra g = sln(R) and K = SO(n) with Lie algebra k = so(n). Let
X be as in Section 2.1; we will identify X with K\G. Finally, let Γ be a torsion free normal
subgroup of SLn(R) of �nite index. Recall that G, G/Γ, X and X/Γ are complete orientable,
Riemannian manifolds. We denote the projections as follows:

G G/Γ

X = K\G X/Γ

π̃

ρ ρ̃

π

A Result of Borel and Garland

After making the necessary introductions, we state the needed result of Borel and Garland.

First we de�ne the G- and g-module structure on C∞(G) and C∞(G/Γ):
Left and right multiplication induce actions of G on C∞(G): g.f = f ◦ Lg−1 , f.g = f ◦ Rg−1

for f ∈ C∞(G), g ∈ G. Likewise, left multiplication by G on G/Γ induces a left action of G on
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C∞(G/Γ). We identify g with the right invariant vector �elds on G and in turn with the induced
vector �elds on G/Γ, i.e. x ∈ g is the vector �eld on G/Γ given by xπ̃(g) = Dgπ̃ ◦DeRg(x). We
denote by Lx : Ω∗(−) → Ω∗(−) the Lie derivative with respect to the vector �eld x ∈ g, where
the manifold in question is either G or G/Γ.
We consider C∞(G) and C∞(G/Γ) as G-modules with left multiplication as described above.
As R×G→ G, (t, g) 7→ Lexp(tx)(g), is the �ow of the right invariant vector �eld x ∈ g, it is clear
that the corresponding g-module structure on these vector spaces is given by the Lie derivative
with respect to the right invariant vector �elds.

Recall that the cotangent bundle of a Lie group is trivialisable via the map T ∗G → g∗ × G,
(TgG)∗ 3 x 7→ (DeRgx, g), where Rg is right multiplication by G. This provides a trivialisation
of the bundle ΛkT ∗G:

ϕ : ΛkT ∗G→ (Λkg)∗ ×G, (ΛkTgG)∗ 3 f 7→ (f ◦ ΛkDeRg, g).

This in turn allows us to make the following identi�cation

ψ : Ωk(G) −→ HomR(Λkg, C∞(G)) = Ck(g, C∞(G)), ω 7→ (ϕ ◦ ω)∼,

where for η : G → (Λkg)∗ × G, we de�ne η̃ : Λkg → C∞(G) as η̃(u)(g) = pr1(η(g))(u). More
explicitly, ψ is given as follows:

(ψω)(x1, . . . , xk)(g) = ωg(DeRg(x1), . . . , DeRg(xk)) for all xi ∈ g, g ∈ G,
(ψ−1f)g(v1, . . . , vk) = f(DgRg−1(v1), . . . , DgRg−1(vk))(g) for all g ∈ G, vi ∈ TgG.

The invariant formula for the exterior derivative immediately shows that ψ is a chain isomor-
phism.

Proposition 6.2.1. The composition ψ ◦ ρ∗ ◦ π∗ induces a chain isomorphism

Ψ: Ω∗(X/Γ) −→ C∗(g, k, C∞(G/Γ)).

Proof. It is easy to see that the maps ιx and θx on C∗(g, C∞(G)) correspond to ιx and Lx on
Ω∗(G). We know from Lemma 2.1.16 that a form ω ∈ Ω∗(G) is the pullback of a di�erential
form on X if and only if ιxω = Lxω = 0 for all x ∈ k. We therefore immediately have a chain
isomorphism

ψ ◦ ρ∗ : Ω∗(X) −→ C∗(g, k, C∞(G)).

Then it simply remains to show that ψ ◦ ρ∗ restricted to Ω∗(X)Γ induces the desired chain
isomorphism. Let ω ∈ Ωk(G). For all γ ∈ Γ, we have

((ψω)(x1, . . . , xk).γ
−1)(g) = (ψω)(x1, . . . , xk)(gγ) = ωgγ(DeRgγ(x1), . . . , DeRgγ(xk))

= (R∗γω)g(DeRg(x1), . . . , DeRg(xk)) = (ψR∗γω)(x1, . . . , xk)(g)

for all x1, . . . , xk ∈ g, g ∈ G. Hence, ω ∈ Ωk(G)Γ if and only if ψω ∈ Ck(g, k, C∞(G)Γ), where
Ω∗(G)Γ, respectively, C∞(G)Γ denotes the right invariant di�erential forms, respectively, smooth
maps on G. If ω = ρ∗η, then as ρ∗ is injective and ρ is equivariant, we see that ω ∈ Ω∗(G)Γ if
and only if η ∈ Ω∗(X)Γ. It follows that ψ ◦ ρ∗ ◦ π∗ is a chain isomorphism

Ω∗(X/Γ) −→ C∗(g, k, C∞(G)Γ).

Finally, as π̃ : G → G/Γ is a local di�eomorphism, it is easy to see that the induced map
π̃∗ : C∞(G/Γ) → C∞(G) yields an isomorphism C∞(G/Γ) ∼= C∞(G)Γ which respects the G-
module structure.
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Remark 6.2.2. Explicitly, the isomorphism Ψ: Ω∗(X/Γ) −→ C∗(g, k, C∞(G/Γ)) is given by

(Ψω)(x1, . . . , xk)(π̃(g)) = ωπρ(g)(Dgπρ ◦DeRg(x1), . . . , Dgπρ ◦DeRg(xk))

for ω ∈ Ω∗(X/Γ), x1, . . . , xk ∈ g, g ∈ G.

Proposition 6.2.3. Evaluating at the identity coset yields a chain isomorphism

Ω∗(X)G −→ C∗(g, k,R),

where g acts trivially on R.

Proof. This is an immediate consequence of Lemma 2.1.16 and the invariant formula for the
exterior derivative.

We exploit the following result due to Borel and Garland without proof (see [2] for details, in
particular Proposition 5.6):

Theorem 6.2.4 (Borel-Garland). There exists a unitary g-module V satisfying

i) V is a submodule of C∞(G/Γ),

ii) The Casimir element acts trivially on V ,

iii) Ψ restricts to an isomorphism H∗(2)(X/Γ)→ C∗(g, k, V ).

Remark 6.2.5. Being a unitary g-module means that V is an inner product space with inner
product (−,−) satisfying

(x · v, w) + (v, x · w) = 0, for all v, w ∈ V, x ∈ g.

Remark 6.2.6. V is a subspace of the separable Hilbert space L2(G/Γ) on which G acts by left
multiplication. Therefore the completion of V has a countable orthonormal basis � we will use
this in the following section.

Matsushima's Vanishing Theorem

We will show that π∗ yields an isomorphism H∗(2)(X/Γ) −→ Ω∗(X)G in low enough degrees. We

follow the proof of Matsushima's Vanishing Theorem as given in [4] (Chapter II).

First, we need to set the scene. Let g = k ⊕ p be the Cartan decomposition of g (cf. 1.1.2),
i.e. k = so(n) and p consists of the symmetric matrices with trace 0. Then the Killing form
B : g × g → R, B(x, y) = tr(ad(x) ◦ ad(y)) is positive de�nite on p and negative de�nite on k.
Moreover

B(k, p) = 0, [k, k] ⊆ k, [k, p] ⊆ p, and [p, p] = k. (6.1)

Set m := 1/2n(n + 1) − 1. Now, �x orthogonal bases (xi)1≤i≤m of p and (xa)m+1≤a≤n2−1 of k
such that

B(xi, xi) = 1, 1 ≤ i ≤ m, B(xa, xa) = −1, m+ 1 ≤ a ≤ n2 − 1.

From now on we always let i, j, k, l run from 1 to m and a, b run from m+ 1 to n2− 1. In terms
of this basis, the Casimir element in U(g) is C =

∑
i x

2
i −

∑
a x

2
a (cf. De�nition 6.1.9).
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Let (ωi) denote bases of p∗ dual to (xi). As g/k is canonically isomorphic to p, we may identify
Cq(g, k, V ) with Homk(Λ

qp, V ), where k acts on p by the adjoint representation; in other words,
we identify Cq(g, k, V ) with the space of R-linear maps f : Λqp→ V satisfying

x · f(y1, . . . , yq) =

q∑
u=1

f(y1, . . . , [x, yu], . . . , yq) for all x ∈ k, yi ∈ p. (6.2)

Set

ωj1···jq := ωj1 ∧ · · · ∧ ωjq for 1 ≤ j1, . . . , jq ≤ m.

If the set I = {j1, . . . , jq} is ordered, we write ωI := ωj1...jq . Then any element η ∈ Cq(g, k, V )
can be written uniquely as

η =
∑
I

ηI ω
I with ηI = ηj1···jq = η(xj1 , . . . , xjq) ∈ V, (6.3)

where I = {j1, . . . , jq} runs through ordered subsets of {1, . . . ,m}. We also de�ne ηj1···jq as
above for unordered sets {j1, . . . , jq} ⊆ {1, . . .m}. Note that for any ordered I = {j1, . . . , jq},

ωI = signσ ωjσ(1)···jσ(q) , ηI = signσ ηjσ(1)···jσ(q)
for all σ ∈ Σq.

De�ne a symmetric bilinear form L : k× k→ R by

L(x, y) = tr(adp(x) ◦ adp(y)), x, y ∈ k,

where adp(x) = ad(x)|p = [x,−] : p→ p, x ∈ k. Let Bk denote the Killing form on k; by 6.1, we
see that

ad(x) =

(
adp(x) 0

0 adk(x)

)
for all x ∈ k.

Hence, B|k = Bk + L.

Lemma 6.2.7. L is negative de�nite.

Proof. Let x ∈ k. Being skew-symmetric, x has purely imaginary eigenvalues; moreover it is
diagonalisable by a unitary matrix. In particular, there exists a set of n linearly independent
eigenvectors for x, say u1, . . . , un with corresponding eigenvalues λ1, . . . , λn. Consider the Kro-
necker products of these: ukl = uk ⊗ utl with entry i, j equal to the product of the i'th entry of
uk and the j'th entry of ul. By direct calculations, these matrices are seen to satisfy

xukl − uklx = (λk + λl)ukl for all 1 ≤ k, l ≤ n,

and thus we conclude that ad(x) has purely imaginary eigenvalues. Applying adp(x) to the
elements Eij −Eji ∈ p, we see that if adp(x) is identically zero, then x is a diagonal matrix and,
being skew-symmetric, it must be zero. Therefore for any x 6= 0, we must have adp(x) 6= 0, and
thus adp has a non-zero eigenvalue, so we conclude that

L(x, x) = tr(adp(x)2) ≤ 0 for all x ∈ k

with equality if and only if x = 0.
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In view of 6.1, we can write

[xi, xj ] =
∑
a

cai,jxa, [xa, xi] =
∑
j

cja,ixj , and [xi, xa] =
∑
j

cji,axj

for uniquely given constants cai,j , c
j
a,i, c

j
i,a ∈ R.

Lemma 6.2.8. The constants above satisfy

cai,j = −caj,i, cja,i = −cji,a, and cai,j = cia,j .

Proof. The �rst two identities are clear. The third follows from invariance of the Killing form:

0 = B([xi, xj ], xa) +B(xi, [xa, xj ]) = −cai,j + cia,j .

Lemma 6.2.9. L(xa, xb) = −
∑

i,j c
a
i,jc

b
i,j .

Proof. First, we note that as adp(xa)(xj) = [xa, xj ] =
∑

i c
i
a,jxi, the matrix of adp(x) in terms

of the basis (xi) of p is the (m×m)-matrix with entry i, j equal to cia,j . Therefore

L(xa, xb) =
∑
i,j

cia,jc
j
b,i =

∑
i,j

cai,jc
b
j,i = −

∑
i,j

cai,jc
b
i,j .

We assume from now on that the basis (xa) of k is orthogonal with respect to L (this is possible
as Bk and L can be simultaneously diagonalised).
De�ne constants

Rijkl := −
∑
a

cai,jc
a
k,l,

and set

A := min{−L(x, x) | x ∈ k, B(x, x) = −1}.

Note that 0 < A < 1 as both L and Bk are negative de�nite. For q ∈ N, de�ne a real quadratic
form F q in m2 variables by

F q(η) =
A

2q

∑
i,j

η2
ij +

∑
i,j,k,l

Rijkl ηil ηjk for η = (ηij)i,j .

It is immediate that if p ≤ q and F q is positive de�nite, then so is F p.

Definition 6.2.10. The Matsushima constant of g is the number

m(g) := max({0} ∪ {q | F q is positive de�nite}).

Remark 6.2.11. In [6], the Matsushima constant is denoted by m(G).

We refer to [16, Theorem 4.1] for the calculation of Matsushima's constant:

Proposition 6.2.12. m(g) ≥ n+1
4 .
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We �rst prove a representation theoretic version of the Matsushima Vanishing Theorem which
we can then apply to our case using Theorem 6.2.4. The proof follows that of [4] which in turn
follows the structure of Matsushima's own version in [19].

Theorem 6.2.13 (Matsushima Vanishing I). Let V be a unitary g-module on which the Casimir
element acts trivially and such that its completion is separable. If 0 < q ≤ n−1

4 , then any element
η =

∑
I ηI ω

I ∈ Cq(g, k, V ) satis�es ηI ∈ V g for all I, where we write η as in 6.3.

Proof. As in the above, i, j, k, l run from 1 to m, while a, b run through m+1 to n2−1, and I, J
run through all ordered subsets of {1, . . . ,m} of q elements. In addition, we let ji run through
1 to m for �xed i, and u run from 1 to q. It should in all cases be clear from the context what
the indices are, this is just to make perfectly clear the conventions.

Let (−,−) denote the inner product on V and (er)r∈N the orthonormal basis of the completion
of V . Recall that being unitary means that

(x · v, w) + (v, x · w) = 0 for all x ∈ g, v, w ∈ V.

Let η =
∑

I ηI ω
I ∈ Cq(g, k, V ). To show that ηI ∈ V g for all I, we have to show that

xi · ηI = xa · ηI = 0 for all i and a. As the Casimir element C =
∑

i x
2
i −

∑
a x

2
a ∈ U(g)

acts trivially on V , we have

0 = (CηI , ηI) =
∑
i

(x2
i · ηI , ηI)−

∑
a

(x2
a · ηI , ηI) =

∑
a

‖xaηI‖2 −
∑
i

‖xiηI‖2. (6.4)

It therefore su�ces to show that xi · ηI = 0 for all i � this also follows readily from the fact
that [p, p] = k.

We de�ne a real number, Φ(η), as follows

Φ(η) :=
(q − 1)!

2

∑
i,j,I

‖[xi, xj ] · ηI‖2 =
1

2q

∑
i,j

j1,...,jq

‖[xi, xj ] · ηj1···jq‖2.

The second equality follows from the fact that ‖[xi, xj ]·ηI‖ = ‖[xi, xj ]·ηjσ(1)···jσ(q)
‖ for all σ ∈ Σq,

I = {j1, . . . , jq}, so there are q! occurances of ‖[xi, xj ] · ηI‖2 in the last sum.

We will write Φ(η) in two di�erent ways in order to exploit the fact that the above de�ned
quadratic form F q is positive de�nite as q ≤ m(g). First, using that [xi, xj ] =

∑
a c

a
i,jxa and

L(xa, xb) = −
∑

i,j c
a
i,jc

b
i,j , we get

Φ(η) =
(q − 1)!

2

∑
i,j,a,b,I

cai,jc
b
i,j (xa · ηI , xb · ηI) = −(q − 1)!

2

∑
a,b,I

L(xa, xb) (xa · ηI , xb · ηI)

= −(q − 1)!

2

∑
a,I

L(xa, xa) ‖xa · ηI‖2,

where we use that the xa are orthogonal with respect to L for the �nal equality. Then using the
de�nition of A and 6.4, we get

Φ(η) ≥ A(q − 1)!

2

∑
a,I

‖xa · ηI‖2 =
A(q − 1)!

2

∑
i,I

‖xi · ηI‖2 =
A

2q

∑
i,j1,...,jq

‖xi · ηj1···jq‖2. (6.5)
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Now, we use the equality [xi, xj ] =
∑

a c
a
i,jxa on only one entry of the inner product in Φ(η) to

get

Φ(η) =
1

2q

∑
i,j,a

j1,...,jq

cai,j (xa · ηj1···jq , [xi, xj ] · ηj1···jq)

=
1

2q

∑
i,j,a

j1,...,jq

(
cai,j (xa · ηj1···jq , xi · (xj · ηj1···jq)) + caj,i (xa · ηj1···jq , xj · (xi · ηj1···jq))

)

=
1

q

∑
i,j,a

j1,...,jq

cai,j (xa · ηj1···jq , xi · (xj · ηj1···jq)),

where we use that cai,j = −caj,i. Invoking the fact that η : Λqp → V is a k-linear map (cf. 6.2),
we see that

xa · ηj1···jq = xa · η(xj1 , . . . , xjq) =
∑
u

η(xj1 , . . . , [xa, xju ], . . . , xjq)

=
∑
k,u

cka,ju η(xj1 , . . . , xk, . . . , xjq)

=
∑
k,u

(−1)u−1cka,ju η(xk, xj1 , . . . , x̂ju , . . . xjq),

where in the second sum, xk is in the u'th place. Then

qΦ(η) =
∑
i,j,k,u
j1,...,jq

(−1)u−1

(∑
a

cai,jc
k
a,ju

)
(ηkj1···ĵu···jq , xi · (xj · ηj1···jq))

=
∑
i,j,k,u
j1,...,jq

(−1)u−1Rijkju (xi · ηkj1···ĵu···jq , xj · ηj1···jq)

=
∑
i,j,k,u
j1,...,jq

Rijkju (xi · ηkj1···ĵu···jq , xj · ηjuj1···ĵu···jq),

where we use the de�nition of the constants Rijkl and that V is a unitary module.
Note that for �xed k, l, 1 ≤ i2, . . . , iq ≤ m, we have

ηki2···iq = ηkj1···ĵu···jq , and ηli2···iq = ηjuj1···ĵu···jq ,

for all u and j1, . . . , jq satisfying

jr =


ir+1 r = 1, . . . , u− 1,

l r = u,

ir r = u+ 1, . . . , q.

There are exactly q such tuples in the above sum, one for every u = 1, . . . , q. Hence,

qΦ(η) = q
∑
i,j,k,l
j2,...,jq

Rijkl (xi · ηkj2···jq , xj · ηlj2···jq).
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Then, as Rijkl = −Rijlk, we get

Φ(η) = −
∑
i,j,k,l
j2,...,jq

Rijkl (xi · ηlj2···jq , xj · ηkj2···jq). (6.6)

Combining 6.5 and 6.6, we obtain∑
j2,...,jq

(
A

2q

∑
i,j

‖xi · ηjj2···jq‖2 +
∑
i,j,k,l

Rijkl (xi · ηlj2···jq , xj · ηkj2···jq)
)
≤ Φ(η)− Φ(η) = 0. (6.7)

We now use the orthonormal basis, (er)r∈N, of the completion of V . Each term in the above
sum can then be written as

A

2q

∑
i,j

∑
r∈N

(xi · ηjj2···jq , er)2 +
∑
i,j,k,l

Rijkl
∑
r∈N

(xi · ηlj2···jq , er) · (xj · ηkj2···jq , er)

=
∑
r∈N

(
A

2q

∑
i,j

(xi · ηjj2···jq , er)2 +
∑
i,j,k,l

Rijkl(xi · ηlj2···jq , er) · (xj · ηkj2···jq , er)
)
.

For all r ∈ N, j2, . . . , jq, de�ne

ξr,j2,...,jq := (ξ
r,j2,...,jq
ij )i,j , where ξ

r,j2,...,jq
ij = (xi · ηjj2···jq , er).

Then 6.7 reads ∑
j2,...,jq

∑
r∈N

F q(ξr,j2,...,jq) ≤ 0.

As q ≤ n+1
4 ≤ m(g), F q is positive de�nite, so the above inequality implies that ξr,j2,...,jq = 0 for

all r and j2, . . . , jq. Then xi ·ηjj2···jq = 0 for all i, j, j2, . . . , jq, which exactly says that xi ·ηI = 0
for all i and I, so ηI ∈ V g for all I.

The property we need is a corollary of the above:

Corollary 6.2.14 (Matsushima Vanishing II). If ω ∈ H
q

(2)(X/Γ) and q ≤ n+1
4 , then the

pullback via π is G-invariant, i.e. π∗ω ∈ Ωq(X)G.

Proof. Let V be as in 6.2.4: This is a unitary g-module, the Casimir element acts trivially on
it, and its completion is separable, so we can apply the above theorem to C∗(g, k, V ).
Let ω ∈ H

q
(2)(X/Γ). Then by Theorem 6.2.4, Ψω ∈ Cq(g, k, V ); write Ψω =

∑
I(Ψω)Iω

I as in

Equation (6.3). If q = 0, then d(Ψω) = Ψ(dω) = 0 implying that (Ψω)∅ = Ψω ∈ V g. If q > 0,
then Theorem 6.2.13 implies that (Ψω)I ∈ V g for all I. Using that elements are g-invariant if
and only if they are G-invariant, i.e. V g = V G, we see that the coe�cients are constant:

(Ψω)I = (Ψω)I ◦ Lg for all g ∈ G.

Now, for any g ∈ G, we have

(Ψω)I(π̃(g)) = (ρ∗π∗ω)g(DeRg(xj1), . . . , DeRg(xjq)) = (R∗gρ
∗π∗ω)e(xj1 , . . . , xjq),

so g 7→ (R∗gρ
∗π∗ω)e(xj1 , . . . , xjq) is constant on G for any �xed I = {j1, . . . , jq}. For �xed g ∈ G,

we have

(R∗gρ
∗π∗ω)h(DeRh(xj1), . . . , DeRh(xjq)) = (R∗hgρ

∗π∗ω)e(xj1 , . . . , xjq)

= (R∗hρ
∗π∗ω)e(xj1 , . . . , xjq) = (ρ∗π∗ω)h(DeRh(xj1), . . . , DeRh(xjq))
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for all h ∈ G, I = {j1, . . . , jq}. Moreover, for all h ∈ G and {i1, . . . , iq} ⊆ {1, . . . , n2 − 1}, we
have

(ρ∗π∗ω)h(DeRh(xi1), . . . , DeRh(xiq)) = 0,

if iu ≥ m + 1 for some 1 ≤ u ≤ q as ιy(ρ
∗π∗ω) = 0 for all y ∈ k (cf. Lemma 2.1.16). Then, as

{DeRh(xi)}mi=1 ∪ {DeRh(xa)}n
2−1
a=m+1 forms a basis of ThG, and a di�erential form is completely

determined by its values on ordered subsets of distinct basis vectors at a given point, we conclude
that R∗gρ

∗π∗ω = ρ∗π∗ω. From ρ∗ being injective and ρ being equivariant, we �nally deduce that

π∗ω ∈ Ωq(X)G.

Corollary 6.2.15. The map π∗ : H∗(2)(X/Γ) → Ω∗(X)G exists in degrees ∗ ≤ n+1
4 and for

n 6= 3 it is always an isomorphism. For n = 3, it is an isomorphism in degrees ∗ < n+1
4 .

Proof. Existence is a consequence of the above Corollary 6.2.14 and injectivity of π∗ is immediate.
Let ω ∈ Ωq(X)G for some q ≤ n+1

4 . We know that ω is a harmonic form on X (cf. Proposi-
tion 6.1.8). Harmonic being a local condition, it is immediate that ϕω = (π∗)−1ω ∈ Ωq(X/Γ) is
harmonic. For n 6= 3, q < n−1

2 , so by Theorem 5.2.12 iii) we have ϕω ∈H
q

(2)(X/Γ). For n = 3,

we have to require q < n+1
4 = 1 in order to have q < n−1

2 = 1.

Remark 6.2.16. In [6], Borel refers to the proof of Theorem 1 in the paper On Betti Numbers
of Compact, Locally Symmetric Riemannian Manifolds by Yozô Matsushima ([19]) to prove
that the harmonic square integrable forms on X/Γ are mapped to G-invariant forms. Given a
harmonic square integrable form, he pulls it back to G/Γ and constructs sequences converging
to the coe�cients in L2(G/Γ); he then states that all the steps of Matsushima's argument follow
through applied to the elements of the sequences. We have chosen to use the algebraic version of
the Matsushima Vanishing Theorem as proved in [4] instead, exploiting �rst the result of Borel
and Garland.

Definition 6.2.17. For n ∈ N, de�ne a number c(n) as c(n) = n+1
4 for n 6= 3 and c(3) = 0.

And Finally...

Now we are ready to prove what we set out to, namely that the inclusion Ω∗(X)G → Ω∗(X/Γ)
is an isomorphism on cohomology in small degrees.

Theorem 6.2.18. The map j : Ω∗(X)G ↪→ Ω∗(X/Γ) induces an isomorphism on cohomology in
degrees ∗ ≤ c(n).

Proof. Consider the following commutative diagram in degrees ∗ ≤ c(n) and the induced diagram
on cohomology:

H∗(2)(X/Γ) Ω∗(2)(X/Γ) H∗(2)(X/Γ) H∗(2)(X/Γ)

Ω∗(X)G Ω∗log(X/Γ) H∗(Ω
∗(X)G) H∗(Ω

∗
log(X/Γ))

Ω∗(X)Γ Ω∗(X/Γ) H∗(Ω
∗(X)Γ) H∗(X/Γ)

∼

∼

π∗ ∼=

π∗

∼=

∼= ∼=

∼=

∼=
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The map j : Ω∗(X)G → Ω∗(X/Γ) is the composition of the lower left vertical map and the
lower horizontal map and we know that the image of j is in Ω∗log(X/Γ) by 5.2.12 i), thus giving
rise to the middle horizontal map. The lower right vertical map is a quasi-isomorphism by
Theorem 5.2.12 ii). The top horizontal map is surjective on cohomology by Proposition 6.1.4,
and the top left vertical map is an isomorphism by Corollary 6.2.15.
The top right vertical map Ω∗log(X/Γ) ↪→ Ω∗(2)(X/Γ) exists by 5.2.12 iii), as ∗ < n−1

2 , and it

induces an isomorphism on cohomology as Ω∗log(X/Γ) ↪→ Ω∗(X/Γ) is a quasi-isomorphism.
We wish to show that the middle horizontal map induces an isomorphism on cohomology; the
lower right vertical map being a quasi-isomorphism, this will imply that j induces an isomorphism
on cohomology. Surjectivity is clear by commutativity of the upper square. Injectivity is seen
as follows: Assume [ω] ∈ H∗(Ω

∗(X)G) is mapped to zero in H∗(Ω
∗
log(X/Γ)). Then ω is a

harmonic form satisfying ω = dω′ for some ω′ ∈ Ω∗log(X/Γ) ⊆ Ω∗(2)(X/Γ). Hence, ω = 0 by
Proposition 6.1.7.

Remark 6.2.19. Note that in the above proof, we actually show that j induces an injective map
on cohomology in degrees ∗ ≤ n−1

2 .

By Theorem 2.3.7, we have proved Theorem 2.3.6 as we set out to several pages ago, namely
that the inclusion Ω∗(X)G ↪→ Ω∗(X)SLn(Z) induces an isomorphism in degrees ∗ ≤ n+1

4 for n 6= 3
and ∗ < n+1

4 for n = 3. Combining this with Proposition 2.3.5 and the fact that Ω∗(X)G has
trivial di�erential, we have:

Theorem 6.2.20.

Hq(SLn(Z)) ∼= Hq(Ω
∗(X)G) = Ωq(X)G for all q ≤ c(n).

6.3 Calculating H∗(SLn(Z)) in Low Degrees

We will now put to use the results of our hard work and actually calculate the cohomology of
SLn(Z) in low degrees. We use the compact real form of sln(R), allowing us to use the fact that
the inclusion Ω∗(M)H ↪→ Ω∗(M) is a quasi isomorphism when H is a compact Lie group and
M a homogeneous H-space. We also consider the issue of stability.

Consider again the Cartan decomposition of g = k ⊕ p into a direct sum of skew-symmetric
matrices with trace zero, k, and symmetric matrices with trace zero, p. Consider the subspace
ip ⊆ g ⊗R C; then the direct sum k ⊕ ip is a Lie algebra with the Lie bracket de�ned in the
obvious way and it is in fact isomorphic to the special unitary Lie algebra

k⊕ ip = {x ∈ g⊗R C | x∗ = −x} ∼= {x ∈ Mn(C) | x∗ = −x, tr(x) = 0} = su(n).

Recall that the special unitary group, SU(n) = {g ∈ SLn(C) | u∗ = u−1}, is a compact real Lie
group. Recall also that for a compact Lie group H and homogeneous H-space M , the inclusion
Ω∗(M)H ↪→ Ω∗(M) is a quasi-isomorphism (see [23, Theorem 13.6.30] � the idea is to construct
an inverse by averaging the translations of a closed di�erential form on M over H).
Write Gu := SU(n). Evaluating at the identity coset yields isomorphisms

Ω∗(X)G
∼=−→ C∗(g, k,R) = Homk(Λ

∗(g/k),R),

Ω∗(K\Gu)Gu
∼=−→ C∗(k⊕ ip, k,R) = Homk(Λ

∗((k⊕ ip)/k),R),

and the isomorphism p → ip, x 7→ ix, induces a vector space isomorphism and hence an
isomorphism of chain complexes as both complexes have trivial di�erential:

Homk(Λ
∗(ip),R)

∼=−→ Homk(Λ
∗p,R).
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So we have the following sequence of chain complex isomorphisms:

Ω∗(X)G ∼= Homk(Λ
∗(g/k),R) ∼= Homk(Λ

∗p,R) ∼= Homk(Λ
∗(ip),R)

∼= Homk(Λ
∗((k⊕ ip)/k),R) ∼= Ω∗(X\Gu)Gu .

Composing this with the quasi-isomorphism Ω∗(X\Gu)Gu ↪→ Ω∗(K\Gu), we get

Ω∗(X)G ∼= H∗(Ω
∗(X)G) ∼= H∗(K\Gu).

The calculation of the cohomology of K\Gu can be done using spectral sequences (see [20, page
92] or [13, Proposition 7.2]):

Proposition 6.3.1.

H∗(SO(n)\SU(n),R) ∼= Λ∗{xi | deg(xi) = 4i+ 1, i = 1, . . . , bn+1
2 c }.

Combining the above results with Theorem 6.2.20, it follows directly that:

Theorem 6.3.2.

Hq(SLn(Z)) ∼= Λq{xi | deg(xi) = 4i+ 1, i = 1, . . . , bn+1
2 c }, for any q ≤ c(n).

For a given n, the computable range is quite small. For n = 2, 3 for example, we only get
information about the zero'th cohomology group, which we already knew. We also see, however,
that the bound c(n) tends to ∞ as n→∞, encouraging us to consider the question of stability.
Consider the inclusion fn : SLn(R) ↪→ SLn+1(R). This induces maps

SLn(Z) ↪→ SLn+1(Z), Xn → Xn+1, and Xn/Γn → Xn+1/Γn+1

which we also denote by fn. By tracing through the isomorphisms de�ning

Hq(SLn(Z))
∼=−→ Ωq(Xn)Gn ,

we see that these commute with the maps f∗n:

Hq(SLn(Z)) Ωq(Xn)Gn

Hq(SLn+1(Z)) Ωq(Xn+1)Gn+1

f∗n

∼=

∼=

f∗n

The only non-trivial observation to be done here is that the map fn : Xn/Γn → Xn+1/Γn+1

induces the map fn : SLn(Z) → SLn+1(Z) on π1, but this is immediate from the de�nition of
the fn. This implies that when interpreting the group cohomology in terms of these classifying
spaces, the maps f∗n on H∗(Γn) and H∗(Xn/Γn;R) are compatible.

The following result is due to H. Cartan (see [10, Exp. 16])

Proposition 6.3.3. The sequence (Ωq(Xn)Gn , f∗n) stabilises, i.e. given q ≥ 0, there exists
n(q) ≥ 2 such that

lim←−Ωq(Xn)Gn = Ωq(Xm)Gm ∼= Λq{xi | deg(xi) = 4i+ 1, i = 1, . . . , bm+1
2 c }

for all m ≥ n(q).
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As a corollary, we have:

Corollary 6.3.4. The limit of (Ω∗(Xn)Gn , f∗n) is

lim←−Ω∗(Xn)Gn = Λ∗{xi | deg(xi) = 4i+ 1, i ∈ N}.

Thus the real cohomology of SLn(Z) stabilises:

Theorem 6.3.5. For a given q ≥ 0, the sequence (Hq(SLn(Z)), f∗n) stabilises, i.e. there ex-
ists n′(q) ≥ 2 such that the composition fm−1 ◦ · · · ◦ fn′(q) : SLn′(q)(Z) ↪→ SLm(Z) induces an
isomorphism

Hq(SLm(Z))
∼=−→ Hq(SLn′(q)(Z)) for all m ≥ n′(q).

Theorem 6.3.6. The real cohomology of the stable special linear group, SL∞(Z), is

H∗(SL∞(Z)) ∼= Λ∗{xi | deg(xi) = 4i+ 1, i ∈ N}.

Proof. Indeed, we have the following sequence of isomorphisms

H∗(SL∞(Z)) = H∗(lim−→ SLn(Z)) ∼= lim←−H
∗(SLn(Z))

∼= lim←−Ω∗(Xn)Gn = Λ∗{xi | deg(xi) = 4i+ 1, i ∈ N}.

For any q ≥ 0, we have isomorphisms Hq(SLn(Z)) ∼= Ω∗(Xn)Gn for all n ≥ 4q and they commute
with the maps f∗n de�ning the limit. This shows the second isomorphism. The �rst isomorphism
is a consequence of the fact that homology commutes with limits, the fact that HomR(−,R)
takes colimits to limits and the Universal Coe�cient Theorem.





A | Appendix

A.1 Proper Group Actions

In this section, we consider the notion of an action being proper. As the action to which we
shall apply the following results is a right action, we shall consider only right actions, but it is
immediate that all results hold for both right and left actions.

Definition A.1.1. Let G be a topological group acting on a space X. The action is proper, if
the map X × G → X ×X, (x, g) 7→ (x.g, x), is proper, i.e. inverse images of compact sets are
compact. We also say that G acts properly on X.
If G is discrete and acts properly on X, then we say that it acts properly discontinuously or that
the action is properly discontinuous.

Proposition A.1.2. Let G be a topological group acting on a space X. If X is Hausdor�, then
the following are equivalent:

1. The action, X x G, is proper.

2. For any compacts K1,K2 ⊆ X, the set {g ∈ G | K1g ∩K2 6= ∅} is compact.

3. For any compact K ⊆ X, the set {g ∈ G | Kg ∩K 6= ∅} is compact.

Proof. Let α : X × G → X × X denote the map (x, g) 7→ (x.g, x), let πX : X × G → X,
πG : X ×G→ G denote the projections, and let πi : X ×X → X denote the projection onto the
i'th coordinate, i = 1, 2. Note that for any compacts K1,K2 ⊆ X

{g ∈ G | K1g ∩K2 6= ∅} = πG(α−1(K2 ×K1)). (A.1)

Indeed, if g ∈ G satis�es K1g ∩K2 6= ∅, then there exists xi ∈ Ki, i = 1, 2, such that x1.g = x2.
Hence, α(x1, g) = (x2, x1). Conversely, if g ∈ πH(α−1(K2 ×K1)), then there exists x ∈ X such
that x.h ∈ K2 and x ∈ K1, implying x.g ∈ K1h ∩K2.
The implication (1) ⇒ (2) follows immediately from A.1, and (2) ⇒ (3) is obvious. For the
implication (3) ⇒ (1), let F ⊆ X × X be compact and set K1 := π1(F ), K2 := π2(F ), and
K := K1 ∪K2. Then F ⊆ K1 ×K2 ⊆ K ×K, and thus

α−1(F ) ⊆ α−1(K1 ×K2) ⊆ α−1(K ×K) ⊆ K ×A,

where A := {g ∈ G | Kg ∩K 6= ∅}. As X is Hausdor�, F is closed. We conclude that α−1(F )
is compact, being closed in a compact space.

Proposition A.1.3. For any topological group G, the action of G on itself by right multiplica-
tion is proper.

Proof. Let K ⊆ G be a compact subset. Then {g ∈ G | Kg∩K 6= ∅} = K−1K is compact being
the image of K−1×K ⊆ G×G under multiplication. The action is proper by Proposition A.1.2.

Proposition A.1.4. Let G be a topological group acting on spaces X and Y . If f : X → Y is
a proper surjective equivariant map and X x G is proper, then Y x G is proper.
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Proof. Let αX : X × G → X × X, αY : Y × G → Y × Y denote the action maps described in
De�nition A.1.1. Let K ⊆ X×X be a compact subset and note that αY ◦(f× id) = (f×f)◦αX .
Then

α−1
Y (K) = (f × id)(α−1

X ◦ (f × f)−1(K))

as f × id is surjective. By assumption, (f × f) ◦ αX is proper, so (f × id)(α−1
X ◦ (f × f)−1(C))

is compact. We conclude that αY is proper.

Corollary A.1.5. Let G be a topological group, K ⊆ G a compact subgroup. Then the action
of G on the coset space K\G by right multiplication is proper.

Proof. The canonical projection π : G → K\G is equivariant and surjective. To see that it is
proper, allowing us to apply Propositions A.1.3 and A.1.4, let F ⊆ K\G be a compact subset.
Let W ⊆ G such that W contains exactly one representative of each coset contained in F . We
claim thatW is compact. Let {Ui}i∈I be an open covering ofW . For every i ∈ I, set Vi := KUi.
The Vi are open by homogeneity of the topology on G. Then {π(Vi)}i∈I is an open cover of
F as π−1(π(Vi)) = KVi = Vi is open for all i ∈ I. Let J ⊆ I be a �nite subset such that
F ⊆

⋃
i∈J π(Vi). Then W ⊆ π−1(F ) ⊆

⋃
i∈J Vi, and since W ∩ Vi = W ∩ Ui for all i by our

choice of W , we conclude that W ⊆
⋃
i∈J Ui. Now, π

−1(F ) = π−1(π(W )) = KW is compact as
it is the image of the compact set K ×W under multiplication.

Proposition A.1.6. A closed inclusion into a Hausdor� space is proper.

Proof. Let i : X ↪→ Y be a closed inclusion with Y Hausdor�. Identify X with its image i(X),
which must be closed in Y by assumption. Let K ⊆ Y be any compact subset; as Y is Hausdor�,
K is closed, and K ∩X is compact as it is closed in a compact space.

Corollary A.1.7. If G is a Hausdor� topological group acting properly on a Hausdor� space,
and H is a closed subgroup of G, then the inherited action of H on X is proper.

Proof. This is a consequence of the previous proposition as X×H → X×G is a closed inclusion
and thus the composite X ×H → X ×G→ X ×X, (x, h) 7→ (x.h, x), is proper.

A.2 Smooth Actions and Quotient Spaces

We are interested in group actions of Lie groups on smooth manifolds and will need the following
results about smooth structures on quotients. We do not prove these results but refer to [18] for
details.

Proposition A.2.1. Let M be a smooth manifold and G a Lie group acting smoothly on M
(from the right). If the action M x G is proper and free, then the quotient space M/G can
be equipped with a unique smooth structure such that the canonical projection M →M/G is a
smooth submersion.

Proof. [18, Theorem 21.10].

Proposition A.2.2. Let G be a Lie group and H a closed subgroup of G. There is a unique
smooth structure on the coset space H\G such that the canonical projection G → H\G is a
smooth submersion. With respect to this smooth structure, right multiplication of G on H\G
is a smooth action.

Proof. [18, Theorem 21.17].
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We have the following smooth version of the orbit-stabiliser theorem.

Proposition A.2.3. Let M be a smooth manifold and G a Lie group acting smoothly on M
(from the right). For a given x ∈ M , the stabiliser of x, Gx, is a closed subgroup of G and
the orbit of x, x.G, is a submanifold of M . Moreover, the map G → M , g 7→ x.g, induces
an equivariant di�eomorphism Gx\G → x.G, where the coset space Gx\G is equipped with
the smooth structure described in A.2.2. In particular, if the action is transitive, then M is
di�eomorphic to Gx\G.

Proof. [18, Theorem 21.18].

Remark A.2.4. A smooth manifold which is di�eomorphic to H\G for some Lie group G and
closed subgroup H ⊆ G, is called a homogeneous space. Equivalently, it is a smooth manifold
on which G acts smoothly and transitively.

A.3 Standard Homotopy Operator

We de�ne the standard homotopy operator and prove that it is indeed a homotopy operator.

For m ∈ N, let e1, . . . , em be a basis of Rm and denote by ε1, . . . , εm the dual basis of (Rm)∗.
Then εσ = εσ(1) ∧ · · · ∧ εσ(k), σ ∈ Σk,m−k, form a basis of Ωk(Rm). Consider the map

H : Ωk(Rm)→ Ωk−1(Rm) given by H(fεσ) =
k∑
i=1

cσi εσi , f ∈ C∞(Rm), σ ∈ Σk,m−k,

where σi ∈ Σk−1,m−k+1 is the permutation skipping σ(i) (i.e. σi(j) = σ(j) for j < i, and
σi(j) = σ(j + 1) for j ≥ i) and the coe�cients cσi ∈ C∞(A×N) are de�ned as

cσi(x) = (−1)i−1xσ(i)

∫ 1

0
f(xt)tk−1 dt.

Proposition A.3.1. On any subset U ⊆ Rm which is starshaped with respect to the origin, we
have dH +Hd = id for k ≥ 1.

Proof. First we see that

dH(fεσ) =

k∑
i=1

dcσi ∧ εσi =
k∑
i=1

m∑
j=1

∂cσi

∂xj
εj ∧ εσi =

k∑
i=1

∑
j 6=σi(l)

l=1,...,k−1

∂cσi

∂xj
εj ∧ εσi

=
k∑
i=1

(
(−1)i−1 ∂cσi

∂xσ(i)
εσ +

∑
j 6=σ(l)
l=1,...,k

∂cσi

∂xj
εj ∧ εσi

)

and

Hd(fεσ) = H(df ∧ εσ) =
∑
j 6=σ(l)
l=1,...,k

H

(
∂f

∂xj
εj ∧ εσ

)
=

∑
j 6=σ(l)
l=1,...,k

(
c̃jεσ +

k∑
i=1

c̃j,σiεj ∧ εσi
)
,

where

c̃j = xj

∫ 1

0

∂f

∂xj
(xt)tk dt, c̃j,σi = (−1)i xσ(i)

∫ 1

0

∂f

∂xj
(xt)tk dt.
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For j 6= σ(i), we have

∂cσi

∂xj
(x) = (−1)i−1xσ(i)

∫ 1

0

∂

∂xj
f(xt)tk−1 dt = (−1)i−1xσ(i)

∫ 1

0

∂f

∂xj
(xt)tk dt

and

∂cσi

∂xσ(i)
(x) = (−1)i−1

∫ 1

0
f(xt)tk−1 dt+ (−1)i−1xσ(i)

∫ 1

0

∂f

∂xσ(i)
(xt)tk dt.

We see that c̃j,σi = −∂cσi
∂xj

, so

(dH +Hd)(fεσ) =
k∑
i=1

(−1)i−1 ∂cσi

∂xσ(i)
εσ +

∑
j 6=σ(l)
l=1,...,k

c̃jεσ.

Finally, setting hx : I → R, hx(t) = f(xt), for a given x ∈ Rm, we have

k∑
i=1

(−1)i−1 ∂cσi

∂xσ(i)
(x) +

∑
j 6=σ(l)
l=1,...,k

c̃j(x) =

m∑
j=1

xj

∫ 1

0

∂f

∂xj
(xt)tk dt+

k∑
i=1

∫ 1

0
f(xt)tk−1 dt

=

∫ 1

0

m∑
j=1

xj
∂f

∂xj
(xt)tk dt+ k

∫ 1

0
f(xt)tk−1 dt

=

∫ 1

0
tk
dhx
dt

(t) + ktk−1hx(t) dt =

∫ 1

0

d

dt
(hx(t)tk) dt = [hx(t)tk]10 = f(x).

We conclude that (dH +Hd)(fεσ) = fεσ as desired.
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