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ABSTRACT

The aim of this thesis is to calculate the real cohomology of the special linear group SL,(Z)
in low degrees. This is a special case of Borel’s article Stable Real Cohomology of Arithmetic
Groups from 1974 and Borel and Serre’s article Corners and Arithmetic Groups from 1973. In
fact, the ambition of this project is to provide a stepping stone towards understanding these
articles by looking at the details of the special case while avoiding use of the general theory.
To calculate the real cohomology of SL,(Z), we exploit the geometric setting: We cover Siegel
reduction theory, the Borel-Serre compactification, logarithmic differential forms and Mat-
sushima’s Vanishing Theorem.

RESUME

Formalet med dette speciale er at udregne den reelle kohomologi af den specielle linezre gruppe
SL,(Z) i lave grader. Dette er et specialtilfeelde af Borels artikel Stable Real Cohomology of
Arithmetic Groups fra 1974 og Borel og Serres artikel Corners and Arithmetic Groups fra 1973.
Malet og gnsket er i virkeligheden, at dette projekt kan vaere en hjzelp til at forsta disse artikler
ved at give en gennemgang af detaljerne i specialtilfaeldet uden brug af den generelle teori.

Vi udnytter et geometrisk perspektiv til at udregne den reelle kohomologi af SL,(Z): Vi gen-
nemgar Siegels reduktionsteori, Borel-Serre-kompactificeringen, logaritmiske differentialformer
og en saxtning af Matsushima.

PREREQUISITES

The project assumes basic knowledge of smooth manifolds and differential forms, Lie groups and
Lie algebras, group cohomology and de Rham cohomology.
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INTRODUCTION AND NOTATION

INTRODUCTION

The aim of this project is to cover the content of the article Stable Real Cohomology of Arithmetic
Groups by Armand Borel ([6]) in the special case of the arithmetic group SL,(Z). We also go
through the construction of the article Corners and Arithmetic Groups by Armand Borel and
Jean-Pierre Serre ([3]) as this is used explicitly in [6]. These articles are written in great generality
and our intention is to bring it all down to a more digestible level; we therefore try to avoid the
general theory as much as possible, but we do, now and then, make some remarks relating our
way of doing it to the more general way.

We wish to compute the real cohomology of the discrete group I' := SL,,(Z). It sits as a lattice
inside the Lie group G := SL,(R) and this enables us to move into the world of geometry. We
consider the smooth manifold X of positive definite quadratic forms on R™ inducing the same
volume as the standard inner product. There is a natural action of G on X, and with the
inherited action, I' acts properly discontinuously on X. It turns out that

H*(I;R) = H* (2°(X)"),

where Q(X)I' denotes the complex of T-invariant differential forms on X. Hence, the computa-
tion of H*(T';R) boils down to understanding the manifold X and the action of I" on X. With
the above isomorphism, it is natural to consider the inclusion

O (X)¢ — (X)L

The chain complex Q*(X)“ can be calculated using Lie algebra cohomology, so if we could use
this complex to calculate H*(I',R), we would be in a much more favourable situation. The
aim of the rest of the thesis is then to prove that this inclusion induces an isomorphism on
cohomology in low degrees, more specifically in degrees x < ”TH for n # 3, and in degree zero
for n = 3.

The first inconvenience we encounter is that the quotient X/T" is not compact. To solve this,
we find a nice compact replacement; this is the Borel-Serre compactification and the content
of [3]. The construction proceeds as follows: We add some boundary to the smooth manifold
X yielding a smooth manifold with corners X, which contains X as its interior — one could
say that we construct a partial compactification of X. We do this in a way that enables us to
extend the action of I to X. This action is also properly discontinuous and the quotient X /T
is compact and contains X/I" as its interior.

It turns out that it suffices to work with a normal torsion free subgroup of SL,,(Z) of finite index,
so from now on we let I' denote such a subgroup instead. The Borel-Serre compactification
remains the same. As I is torsion free and acts properly discontinuously on X and X, it acts
freely on X and X. Then X/T is a smooth manifold and X /T is a compact smooth manifold
with corners.

The second inconvenience is that the de Rham complex of X/I" is too big. The problem is that
we cannot control the growth of an arbitrary differential form on X/T near the boundary of X /T.
To solve this, we define some growth conditions and consider the subcomplex of differential forms
satisfying these conditions; crudely put, the differential forms have to grow logarithmically as
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they approach the boundary. Now, this subcomplex is particularly nice: The inclusion into the de
Rham complex is a quasi isomorphism, it contains the image of Q*(X)® under the isomorphism
Q*(X)'' =2 Q*(X/T), and in low degrees the forms with logarithmic growth are square integrable.
The final ingredient needed is the fact that in low degrees, harmonic forms on X/I' are pulled
back to G-invariant forms on X via the projection X — X/T". This is a version of the Matsushima
Vanishing Theorem. With this fact, the existence of the above mentioned subcomplex and some
classical results on harmonic and square integrable differential forms, we are able to prove that
Q*(X)¢ < Q*(X)T does indeed induce an isomorphism on cohomology in low degrees as desired.
To finish off, we use that we can now express H*(I';R), for * sufficiently small, in terms of Lie
algebra cohomology to calculate these cohomology groups. We use a clever little trick, allowing
us to consider a compact Lie group and a well known calculation. The range is in fact rather
small for a given n, but the bound tends to infinity as n does. Our calculations show that
the real cohomology of SL,,(Z) stabilises as n — oo and we are also able to calculate the real
cohomology of SLoo(Z).

The thesis is structured as follows:

- In Chapter 1, we go through some preliminary theory that we will need throughout: First,
we review several matrix decompositions, then we revise the definition of the Haar measure
and of unimodularity and finally we go over the details of induced inner products on exterior
algebras and Riemannian manifolds.

- In Chapter 2, we set the scene: We define the smooth manifold X, the action of G on it
and make some immediate observations, and we take a closer look at the case n = 2. We
then show that we have the above mentioned relationship between the real cohomology of
I' and the homology of the complex of I'-invariant forms on X.

- In Chapter 3, we look at Siegel reduction theory, the aim of which is simply to find a nice
subset of X that intersects all '-orbits. Again, we take a closer look at the case n = 2 and
we finish off by proving some technical results.

- Chapters 4,5 and 6 is where the real work is done. The three chapters differ greatly in
method: One could say that Chapter 4 is geometric in nature, Chapter 5 analytic and
Chapter 6 algebraic.

- In Chapter 4, we go through the Borel-Serre compactification. We define the geodesic
action on X, which is the key ingredient, and then directly construct X. The construction
is very technical, so to illustrate the geometry behind it, we include a section on the cases
n=2and n=3.

- In Chapter 5, we define the subcomplex of logarithmic forms, that is, the differential forms
on X/T" satisfying some suitable growth conditions near the boundary of X /I". We show
that this subcomplex satisfies the three properties mentioned in the above.

- In Chapter 6, we first prove a version of the Matsushima Vanishing Theorem: That a
harmonic form on X/I' of sufficiently low degree is pulled back to a G-invariant form on
X via the projection onto X/I". Then, finally, we are able to prove that the inclusion
Q*(X)¢ — Q*(X)' induces an isomorphism on cohomology in small degrees. We finish
off with an actual calculation of H*(I'; R) in low degrees and we consider the issue of
stability.
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NOTATION AND CONVENTIONS

We try, as far as possible, to stick to standard notation.
Let M be a manifold (all manifolds are smooth) of dimension n. We opt for the definition of a
differential k-form on M as a smooth section

w: M — AY(M) = | ] AMT,M),
peEM

where AF(M) is equipped with the natural smooth structure for which the projection onto M
is smooth — the charts are of the form

U xRG) o AR, (z,0) = AR(Dp071)") 0 p(v) € AR(T, M),

for a chart §: U — M and an isomorphism ¢: R(:) — AR((R™)%).

Given a chart §: R® — U C M, the maps x; := pr; o #~': U — R are local coordinates on V/,
where pr;: R” — R is projection onto the i'th coordinate.

Consider the differentials dx;: U x R®™ — R, which we shall regard as differential 1-forms on U
by evaluating in the first coordinate, dx;: U — (R")* = AL((R™)*). For p = 0(z), {D.0(e;)}",
form a basis of T,M with dual basis {dz;(p)}', of T,M*, where (e;) is the standard basis
of R”. Then the set {dz, = dzs1)(p) A -+ A dTop)(p)}oes,,,_, forms a basis of Qk (T, M™),
where ¥, € Xjy,, denotes the set of permutations o € Xy, satisfying o(1) < --- < o(k)
and o(k+1) < --- < o(k+m). For 1 <i < n, we can define a vector field X;: M — TM
corresponding to the coordinate z;: This is simply given by X;(p) = D,0(e;) for p = 6(x),
z e R™

As usual, a hat denotes that an element is omitted, for example

(T1y ey Tiy ooy @) = (T1y e ooy Tim 1, Tigly - - -5 Tn),

and we write Ng = NU {0}.






1 PRELIMINARIES AND TOOLS

1.1 MATRIX DECOMPOSITIONS

We make use of various matrix decompositions in this project: Iwasawa, Cartan, Langlands,
Cholesky and Bruhat. We collect them all here.

Let G = SL,,(R) with Lie algebra g = sl(n).

THEOREM 1.1.1 (Iwasawa Decomposition). Let A < G be the subgroup of diagonal matrices
with positive entries, N < G the subgroup of upper triangular matrices with 1’s on the diagonal,
and K = SO(n) < G the subgroup of orthogonal matrices. Then the multiplication map

KxAx N — G, (k,a,u) — kau,

is a diffeomorphism.

This is a well-known decomposition and in this special case a standard exercise — we refer to
[17] for a proof of the general case, i.e. the decomposition for any connected semisimple real Lie
group.

We will also need the following useful Lie algebra decomposition of g, which is also standard
and easy to prove:

PROPOSITION 1.1.2 (Cartan Decomposition). Let £ = so(n) be the set of skew-symmetric ma-
trices with trace zero, and p the set of symmetric matrices with trace zero. Then g decomposes
as a direct sum g =€ @ p.

There is also an Iwasawa decomposition of the Lie algebra:

ProOPOSITION 1.1.3. Let a C g denote the subspace of diagonal matrices with trace 0, n C g the
subspace of strictly upper triangular matrices, and ¢ = so(n) the subspace of skew-symmetric
matrices. Then g decomposes as a direct sum g =€ H a dn.

We refer also to [17] for a proof of the general case.

Remark 1.1.4. Note that with the above definitions, € is the Lie algebra of K, a is the Lie algebra
of A, and n is the Lie algebra of N.

Let P < G be a subgroup of block upper triangular matrices (a BUT) defined by a partition xp of
n: Kp is given by an increagsing sequence of natural numbers 0 =y < 1 < --- < I = n, or equiv-
alently by a tuple of natural numbers (mq,...,my) satisfying Zle m; =n (here m; = 1; — l;—1
and [; = 23:1 m;). Then P is the subgroup of matrices v = (u;;) € G satisfying u;; = 0 for
j<l.<i,r=1,...,k, i.e. the elements of P are block upper triangular matrices such that the
7’th diagonal block is an m; X m;-matrix, ¢ = 1,..., k. Define

Ap = {(a;) diagonal | aj,4; = a;,,, > 0for j=1,... ,miy1, i=0,...,k—1},
Np = {(u;j) upper triangular | u; >0fori=1,...,n
and T2 w4 g, 45 = 1for i =0,... k= 1}.
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In other words, Ap is the subgroup of diagonal matrices with positive entries and determinant
1 such that the entries of the i’th block as defined by the partition xp are all equal; and Np
is the subgroup of upper triangular matrices with positive diagonal entries and determinant 1
such that the i’th block as defined by kp has determinant 1. We let Ap, Np < G inherit the
smooth structure of G; thus the maps

_ n(n=1) _ _
Np —RIGF xR 7, (u;) = ((wis)iz, > (wijli<i)y,  Ap — RYGY a=(a;) — (a,)i2)

are diffeomorphisms. In fact, this last map is a Lie group isomorphism into the multiplicative
group R];f)l. If k=1,ie. P=G, then Ap = {id}, and we interpret R’;_Ol as a point.

PROPOSITION 1.1.5 (Langlands Decomposition). The multiplication map
(KNP)x Ap x Np — P, (k,a,u) — kau
is a diffeomorphism.

This is a consequence of the Iwasawa decomposition (see [I7] for the general case, that is, the
Langlands decomposition for parabolic subgroups of reductive Lie groups).

Remark 1.1.6. P is a so called standard parabolic subgroup of G, and there is a Langlands
decomposition of all parabolic subgroups. The group B of upper triangular matrices is a standard
Borel subgroup, and we see that Ag = A and N = N, so the Langlands decomposition of B
coincides with the restriction of the Iwasawa decomposition to (K N B) x A x N.

DEFINITION 1.1.7. A symmetric matrix s € G is positive definite if x'sx > 0 for all z € R"—{0},
and it is positive semi-definite if x'sx > 0 for all x € R™ — {0}.

Note that any positive definite matrix is invertible. In addition we have the following useful
result:

PROPOSITION 1.1.8 (Cholesky Decomposition). Any positive definite matrix s can be written
uniquely as a product s = b'b, where b is an upper triangular matrix with positive diagonal
values.

Proof. We prove the claim by induction on the dimension of s. If s = (s11) is a 1 x 1 positive
definite matrix, then s = b0 for b = (y/s11), where we use that s being positive definite implies
that s;; > 0. Now, assume that the claim holds for positive definite (n x n)-matrices, and let
s = (s4;) be an (n + 1) x (n + 1)-matrix which is positive definite. Write

511 S12,1n / n
s=1| 4 7 ), where s121n = (812, .+, S1n) and s° = (si);j—o-
512,1n §

Consider the matrix r := s’ — istm’lnslg’ln. Clearly, r is symmetric. We claim that it is also

1
——(s x
positive definite: Indeed, for any n-dimensional vector x # 0, let y = ( 511 (;Q’M )> , and note

that

1
t 1 t S11 S$12,1n s (812,1n37)
<ysy=(—-—-(s xr) x ’ 11
S
0 <y'sy=(—5;(s12102) 2" (St v .
12,1n
ot Loie ot
=T'ST — —T 819 1,512,1nT = T T'X.
511 ’



Chapter 1. Preliminaries and Tools 3

Our induction hypothesis implies that r = by for an upper triangular matrix, by, with positive
diagonal elements. Noting finally that s;; = etlsel > (0, where e; is the first standard basis
vector of R"*1 we can define

— 1
b:= ( 311 msn’ln) and we see that b'b = < 511 $12,1n ) =s.

1.t t
bo S12,1n  37512,1n512,1n + bpbo

Thus we have proved existence. If b = (b;;) is an upper triangular matrix with positive diagonal
entries satisfying b'b = s = (s;;), then one can compute the entries b;; recursively:

-1 -1
1 .
by = Sll—Zb%l, blj:bi Slj_zbklbkj , 1l=1,...,n, j>l.
k=1 i k=1
From this uniqueness is immediate. O

COROLLARY 1.1.9. A matrix g is positive definite, if and only if it admits a Cholesky decompo-
sition, i.e. g = b'b for an upper triangular matrix, b, with positive diagonal entries.

We will make use of one final matrix decomposition, the Bruhat decomposition.

DEFINITION 1.1.10. For every permutation o € ¥,,, define a matrix w, € SL,(R) such that
(Wo)1,001) =8ign 0,  (Wo)ie@ =1 fori>2, and (wy);; =0 forj# o(i).

The Weyl group is the group whose underlying set is W := {w, | o € ¥, }, and with composition
given by w,w; = Weor.

THEOREM 1.1.11 (Bruhat Decomposition). For B the subgroup of upper triangular matrices
and N the subgroup of upper triangular matrices with 1’s on the diagonal, the sets NwB,
w € W, form a partition of G. In particular, any g € G can be written uniquely as g = wwav
foru,v € N,a€ A, and w e W.

We refer to [5l Theorem 3.3] for the proof.

1.2 HAAR MEASURE AND UNIMODULARITY

In this section, we consider the Haar measure and the notion of unimodularity. We cover the
basics, take a look at the specific matrix groups appearing in this project, and go on to prove
an immensely useful result, namely the Iwasawa decomposition of the Haar measure on SL,,(R).

Let G be an arbitrary real Lie group of dimension n.

We shall make a very brief recap of some basic definitions and results from measure theory, which
we need in the following — we refer the reader to [I4] for details. Recall that a Borel measure
on G is a measure on the measurable space (G, B(G)), where B(G) is the Borel o-algebra on
G, that is the g-algebra generated by the open subsets of G. If ¢: G — H is a Borel-measurable
map between Lie groups G and H, and p a Borel measure on G, then we denote by @,pu the
image measure on H, i.e. the measure given by @,u(U) = u(e~1(U)) for U € B(H). We have
an abstract change of variable-formula:

/ f(h)dpsu(h) = / foe(g)du(g), f: H — R integrable.
H G
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For a positive Borel-measurable function f: G — [0,00), we define a measure v with density f
with respect to p, denoted by v = f.u and given by v(U) = [;; f(g) du(g) for U € B(G). Note
that if ¢: G — H and f: G — [0,00) are as above, and in addition ¢ is invertible with ¢!
Borel-measurable, then o.(f.u) = (f o ¢~ 1).(¢sp). If we have Borel measures p and v on Lie
groups G respectively H, then we define the product measure p ® v on the product G x H by
setting (u@v)(UxV) = p(U)v(V) foral U € B(G), V € B(H); as thesets U xV, U € B(G),
V € B(H), generate B(G x H), this defines a Borel measure on G x H. If y and v are o-finite,
then Tonelli’s Theorem states that for any integrable function f: G x H — R.

/Gfo(g’h)d(M@W)(g’h):/G</Hf(h’l)d’/(h)) dulg).

We will in this case write [, f(g, h) du(g)dv(h). If ¢ and 1) are Borel-measurable maps from
G respectively H into some other Lie groups, then (¢ X ¥).(1 ® 1) = @i @ yv.

DEFINITION 1.2.1. A left Haar measure on G is a non-zero Borel measure p on G which is left
invariant, i.e. (Lg).p = p for all g € G, where Ly: G — G denotes left translation by g, and
which satisfies u(K) < oo for all compact K C G.

Analogously, a right Haar measure on G is a non-zero Borel measure p on G which is right
invariant and satisfies u(K) < oo for all compact K C G.

We say that a measure p on G is bitnvariant, if it is both left and right invariant.

Remark 1.2.2. As G is locally compact and second countable, and a Haar measure is finite
on compact subsets, it is immediate that the Haar measure is o-finite. It follows from [IT],
Proposition 7.2.3] that any Haar measure p is regular, i.e.

w(U) = sup{u(K) | K CU compact} forall U C G open,
p(F) =inf{u(U) | F C U open} for all F' € B(G).

We refer to [I7] for a proof of the following important theorem.

THEOREM 1.2.3. There exists a left (right) Haar measure on G and it is unique up to multipli-
cation by a positive constant.

The existence is simply a consequence of the existence of a left (right) invariant volume form
w on G (see the proof of Lemma below) and Riesz Representation Theorem: f — [ fw,
f € C.(@Q), is a linear functional and as such defines a unique regular Borel measure p on G
satisfying [, fdu = [ fw, f € C.(G) (here Ce(G) denotes the compactly supported continuous
functions G — R). Proportionality of any two left (right) Haar measures is proved using the
Radon-Nikodym Theorem and Fubini’s Theorem.

DEFINITION 1.2.4. Let p be a left Haar measure on G. Define the modular function of G,
Ag: G — Ry, such that (Rg)«pu = Ag(g)p for all g € G, where Ry: G — G denotes right
multiplication by g. We write A = A, when no confusion can occur.

Remark 1.2.5. The above definition makes sense, as (Rg).p is also left invariant, so Theo-
rem implies that it is equal to Ap for some A € Rsg. The same theorem also implies that
the definition is independent of the choice of p.

LEMMA 1.2.6. The modular function A: G — Rs¢ is given by A(g) = | det Ad(g)| for all g € G.
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Proof. Let {e;}'_; be a basis of the Lie algebra g of G with dual basis {€;}I" ;. Set € := e1A- - -Aep,
and define w € Q*(G) by wy(v1,...,v,) = €(DgLy-1(v1),...,DgLy-1(vy)) for all g € G. This
is a left-invariant volume form on G, and as such defines a Haar measure p on G satisfying
Jo fdu= [ fwfor all fe C.(G). Recall that for linear maps w;: g — R, v; € g, we have

(Wi A Awn)(v1,. .., 0n) = det <wi(vj))z .

‘7-]'

From this it follows that if T: T,G — T.G = g is a linear transformation for some h € G and
{fi}?, is any basis of T;,G, then e(T(f1),...,T(fn)) = det(T). Now, let g, h € G and let {f;}}" ;
be some basis of T;,G. Then

(Rg)*w)n(fr,- .- fn) = wng(DpRy(f1),. ... DpRy (fn))
= €(Dp(Lpgy-1 o R )(fl) Dy (L(ng)-1 © Rg)(fn))
=e(Ad(g ) o Dthfl(fl)a co 7Ad(971) o DpLy-1(fn))

= det(Ad(g™")e(DpLy-1(f1),- -, DnLp-1(fn))
= det(Ad(g_l>)wh(flv s fn)

A differential top form is uniquely determined by its value on an ordered basis of every tangent
space, so we conclude that (Ry)*w = det(Ad(g~!))w for all g € G. Recall the following trans-
formation formula for integrating differential forms (see [I7, Proposition 8.19]): If ®: M — N
is a diffeomorphism of n-dimensional manifolds, and w € Q"(N), then for all f € C.(NV)

/waza/M(focb)@w

where § = 1 if ® is orientation-preserving, and § = —1 if it is orientation-reversing.

Then
| ra®)a= [ (rordn= [(ro R =5 [ 1R,
= 5det(Ad(g))/fw = 5det(Ad(g))/Gfdu, for all f € C.(G).

Now, R,-1 is orientation-preserving if and only if w and (R,-1)*w = det(Ad(g))w determine the
same orientation, which clearly happens if and only if det(Ad(g)) > 0. Thus, we conclude that

[ FaRg)n = det(adi))] [ fd, forall £ € C(R),
G G

and the Riesz Representation Theorem implies that A(g)u = (Ry)«p = |det(Ad(g))|p for all
g €aqG. O

It is easy to see that A(gh) = A(g)A(h) for all g,h € G and the above lemma in particular
shows that A is smooth. Thus:

COROLLARY 1.2.7. A: G — Ry is a smooth homomorphism into the multiplicative group Rsq.

PROPOSITION 1.2.8. Let i be a left Haar measure on G, and let +: G — G denote the inversion.
Then ¢, and A.p are right Haar measures and are equal.
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Proof. We see directly that (Rg)stspt = (Rg o t)ept = (10 Lg-1)upt = tu(Lg-1)spt = tsps for all
g € G. Clearly, t,u(K) < oo for all compacts K C G, so i, is a right Haar measure.

As A is smooth, it makes sense to define A.u. It is clear that A.u(K) < oo for all compacts
K C @G. To see that it is right invariant, let g € G; then

(Ry)s (Ap)(U) = Apu(Ug™") = / Ly (AR) du(h) = [ 10 (h)A(h) du(h)

— [ 10 ®)Ahg i(Ry)alh) = [ Lo WAMAG)Alg) di(h) = AV)
for all U € B(G). Tt follows that top = AA.p for some A € Rsg. Then
= bt = A Dopt) = A 00).(tp) = X2((A00) - (A)).1 = A2
Thus, we must have A = 1, and as desired 1,0 = A.p. O

DEFINITION 1.2.9. We say that G is unimodular, if the modular function is identically 1.

ProposiTION 1.2.10. G is unimodular if and only if any left or right Haar measure on G is
biinvariant.

Proof. This follows from Proposition For the left to right implication, let u be a left Haar
measure on G. Then p = A.y is a right Haar measure, so p is biinvariant. It follows that
any right Haar measure is proportional to p and as such also left invariant. For the converse
implication, note that Ay = A.u for some A > 0, as both u and A.u are right Haar measures.
Hence, A is constantly equal to A, and as A(e) = 1, we must have A = 1. O

ProPOSITION 1.2.11. The following types of Lie groups are unimodular:

1. Compact Lie groups.
2. Abelian Lie groups.

3. Nilpotent Lie groups.

Proof. The first two are easy: On an abelian Lie group, any Haar measure is biinvariant; the
image of a compact Lie group under the modular function is a compact subgroup of R and
therefore equal to {1}. For the third case, suppose G is a nilpotent Lie group with Lie algebra g.
Then for any = € g, ad(z): g — g is a nilpotent linear transformation, so it has all eigenvalues
equal to zero and

det Ad(exp(z)) = det ¢24(®) = ¢frad(@) — 0 — 7,
As G is connected by assumption, exp(g) generates GG, and we conclude that
Ag(g) =|detAd(g)]=1 forall geG.
O

The following proposition gives a useful decomposition of the Haar measure, when the Lie group
itself can be decomposed as a product.

ProposiTiON 1.2.12. Let H,L < G be closed subgroups such that the multiplication map
®: H x L — G is a homeomorphism. Then the left Haar measures on G, H and L, denoted by
wa, B, 1L, respectively, can be scaled such that

(@7 )spc = (RE o mp).(na ® o),

where n,: H x L — L denotes the projection onto L
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Proof. Note first that H x L acts on G from the left by (h,1).g = hgl~!, and it acts naturally
on itself by left multiplication. Then the map ¢: H x L — G, (h,l) +~ hl~! is equivariant and
a homeomorphism.
Set p := (o~ 1).pue and note that

(Rj-1 0 Lp)spic = (Ri-1)wpig = Ag() ug  for any (h,1) € H x L.

1

Then, as ¢~ is equivariant, we have

(Lngy)stt = (9~ )l Ry=1)u(Ln)sppc = Ag(l) 'y for any (h,1) € H x L.
Set v := (Ag|r ot o7p).u, where ¢ is the inversion on L. For all (h,l) € H x L, we have
Agorompo Lg-1;-1y=Ag(l)(Ag oromy) and therefore

(Lnay)«v = (Aglpovomp o L1 3-1) (L)« = Aa() ' Ac()(Ag o tomy).u = v.

The measure v is finite on compact sets as p is; thus, v is a left Haar measure on H x L and
therefore after appropriately scaling py and pr, we have v = pg ® pr. This in turn implies
that p = (Agom).(uu ® pr).

From this we see that for any Borel-measurable function f: H x L — [0,00), we have

/ F(h1) d(@ ) pir (B, 1) = / f 0@ (g) duc(y)
HxL G
- /G fodVop(hl)d(g g (h, 1)

= F(h, 7YY dp(h, 1)
HxL

= S HAGW) dppr (R)dpr (1)
HXL

= [ F AW s (h)dep (1)
HxL

_ Ar(l)

_/H><Lf(h7[) G(l)

implying (®~1).pug = (ﬁ—é omr).(um ® pur), as desired. O

dup (h)dur(l),

B>

Remark 1.2.13. The above proposition can be generalised considerably: The intersection H N L
need only be compact and HL need not be equal to GG, but the difference should be a null set
(see [17]). We will, however, only need the above version.

IwAsAwA DECOMPOSITION OF THE HAAR MEASURE

Let G = SL,(R) with Lie algebra g = sl(n), and let ¥V: K x Ax N — G, (k,a,u) — kau denote
the Iwasawa diffeomorphism of Theorem [[.1.1} where K = SO(n), A < G is the subgroup of
diagonal matrices with positive entries, and N < G the subgroup of upper triangular matrices
with 1’s on the diagonal. Recall from Proposition that we also have a decomposition of
the Lie algebra, g = ¢ ® a ® n, where £ = so(n), a is the set of diagonal matrices with positive
entries and trace 0, and n is the set of strictly upper triangular matrices.

PROPOSITION 1.2.14. The Lie groups K, A and N are all unimodular.
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Proof. The Lie algebra of N is the set n of strictly upper triangular matrices; it is clear that
this is a nilpotent Lie algebra, so IV is a nilpotent Lie group. A is abelian and K is compact.
Proposition [1.2.11] then implies that K, A and N are unimodular. O

PrOPOSITION 1.2.15. The Lie group G is unimodular.

Proof. To see this, we show directly that A = Ag: G — Ry is identically 1. As A is multiplica-
tive, it suffices to consider the elements of K, A and N separately. Note first that A(K) = {1}
as it is a compact subgroup of Rs¢. For A and N, we will use Lemma [1.2.6] As Ad(g) is linear
for all g € G, we can evaluate Ad(g): g — g on ¢, a and n separately for any g € G. Note that
{Eij — Eji}i<j is a basis of ¢, and that {E;;};<; is a basis of n, where E;; is the matrix with
(7,7)’th entry equal to 1 and all other entries equal to zero.

Let a = (a;) € A. For any & € a, Ad(a)(@) = aaa™! = a, so Ad(a)|, = id,. For any
1<i<j<n,

_ Q;
Ad(a)(EU) = CLEZ']'(I - CTI'EU’
J
and
a; a; a; a?__az
Ad(a)(E;; — Ej‘) = a(Ey; — Ej‘)afl = —FE; — JEjz‘ - J(EZ _ Ej’) + JE”
a; a; % a;a;

If we take any basis {a;}; of a, then with respect to the basis

{Eij — EjiyicgjU{ai}i U{Eij}ic; of g=t@adn,

(), o ¢
1<)

0 idg 0 ;
a2—qa?
(%), v ()
iaj iy a ). .
1<) 1<)

where (z;;)i<; is the diagonal matrix with entries x; ;, and thus

detAd(a):H%~H%:17

7
i<j i<y

Ad(a) is given by the matrix

which gives us A(a) = 1 for all a € A. Let @ = (4;;) € n. Then
det Ad(exp(a)) = det e2d(@) _ tr(ad(a))

We will show that ad(a) has trace zero. Note first that as ad(4) is nilpotent on a®n, so ad(@)|aan
has trace 0, having all eigenvalues equal to zero. For any basis {b;}; of a ®n, we can write the
matrix of ad(u) with respect to the basis {E;;j — Eji}ic; U{bi}i of g=t®adn as

U 0 2\ . . ' )
<* ad(ﬁ)|a@n> ,  Wwhere <*> is the matrix representing ad(a)[e: € — g.
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Calculations show that for any 1 <i < j<mn
ad(a)(Eij — Eji) = 4(Eij — Eji) — (Eij — Eji)t

uy By — Z W By + Z By — Z wj By

i<l I<j I<i i<l
= Z (fuj(Ez‘l — Ey) — g (B — Ejl)) + 45 (Ejj — Ei)
i<i<j
+ Z(ﬂzz‘Elj — ;) + Z(ﬂilEjl — i Ey) + Z (waErj — i Ey).
I<i <l i<i<j

Here the first sum is an element of ¢, the element 1;;(FE;; — Ej;) is an element of a, and the last
three sums are elements of n. We see that E;; — Ej; does not appear in the £-element, and thus
conclude that all diagonal entries of @ are zero. Hence, tr(ad(@)) = 0. As exp(n) generates N,
we conclude that A(u) = |det Ad(u)| =1 for all u € N. O

Remark 1.2.16. In fact, all semisimple Lie groups are unimodular (see for example [17]).
Remark 1.2.17. Some of the computations in the above proof will come in handy further on.

PROPOSITION 1.2.18. Let ug denote the Haar measure on GG. There is a decomposition of ug
corresponding to the Iwasawa decomposition of G:

(U epa = (poma).(nk ® pia ® py)

for appropriate scalings of the Haar measures on K, A and N, and where p: A — Ry,
pla) =1l;c; & for a=(a;) € A, and ma: K x A x N — A is the projection.
J

Proof. Let ¢: K x AN — G, denote the diffeomorphism (k,b) — kb. Then by Proposition|1.2.12

(o et = (B2 0 man)- (1K ® pan) = (Aan 0 TaN)- (K @ p1aN)-

Letting »: AXN — AN denote the diffeomorphism (a, u) — au, and applying Proposition|1.2.12
again, we have that

(™ epan = (£ omn). (1 ® pan) = (Aan 0 tomn).(1a @ u).

Now, we determine the modular function A4py; recall that its Lie algebra is a @ n, the set of
upper triangular matrices with trace zero. From the proof of Proposition we see that
Aan(u) = |det(Adagn(u))| = 1 for all u € N as adgen(@) is a nilpotent linear transformation
on a @ n for all & € n. The proof of Proposition also shows that for any a = (a;) € 4

det Adgen(a) = JT &
-4y
1<]
We conclude that Ay (au) = Aan(a) =[],.; & for all a = (a;) € A, u € N.

l<] ag
Thus we see that (Y1), puan = pa @ py and as ¥ = o (id x v), we have

(U Yape = (id x ")l Nape = (1d X ™) ((Aan 0 maN)- (LK @ pan))
= (Aan oman o (id X 9)).(ux ® (V™" )upran) = (poma).(ix ® pia ® pin).
O

Remark 1.2.19. The above decomposition holds for all reductive Lie groups as they all admit
an Iwasawa decomposition.
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1.3 INNER PRODUCTS

There is a natural choice of inner product on the exterior algebra of an oriented inner prod-
uct space. In this section, we go through the details involved as it will be useful to have a
good understanding of the steps in this construction. To finish off, we apply it to an oriented
Riemannian manifold and define the notion of a square integrable differential form.

EXTERIOR ALGEBRA

Let V be an n-dimensional real vector space equipped with an inner product (—,—). Let
e1,...,e, be a basis of V and denote by el,...,e" the dual basis of V*, i.e. e'(ej) = &;;. The
inner product gives rise to an isomorphism

V—V" v 0= (v, —).
In terms of our chosen bases, this is given by the matrix
g = (gij) with entries g;; = (es, e;).
This dualises to an isomorphism
(V) — VY [ (fiue f(2)),

which is also given by the matrix g as g is symmetric. So we have an isomorphism V* — (V*)*
given by the matrix g~ = (¢/), and thus an inner product

(=, =) V*x V"5 R, (v, w)* = g~ (v)(w).

There is an induced inner product on the k’th exterior power of V, (—, —)r: AFV x A*V — R
defined on elementary wedges by

<v1/\~--/\vk,w1/\~--/\wk)k :det((vi,wj>),

i.e. the determinant of the matrix with entries (v;,w;), and extended bilinearly.
The elements

€0 1= €4(1) VANEEIWAN € (k) S Ek,nfkv
form a basis of A*V with respect to (—, —)z and

<607 6T>k = det (ga(z')‘r(j)) .

If eq,..., ey is an orthonormal basis of V, then {e;}sex, ,_, is an orthonormal basis of ARV
The inner product gives rise to an orientation form on V; the choice of which is canonical up to
sign, and if V is already oriented, then there is a canonical choice respecting this orientation.
Indeed, we have an inner product (—, —)» on the one-dimensional vector space A"V*, which then
has exactly two unit vectors. If V is oriented, then the unit vector respecting this orientation is
the canonical choice of orientation form induced by (—, —). If (e;) is a positively oriented basis,
then the orientation form induced by (—, —) is

Vdetg el Ao nen

as Hel Ao A e””2 = det(g_l).
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RIEMANNIAN MANIFOLD

Let M be a connected oriented Riemannian manifold of dimension n with metric tensor ¢. We
alter between interpreting ¢ as a smoothly varying family of inner products on the tangent
spaces and a C°°(M)-bilinear map X(M) x X(M) — C*°(M). Then g induces a volume form
wo € Q"(M) as it induces a canonical orientation form on T, M for every = by the above. On a
positively oriented coordinate system U = (x1,...,2,) on M, wy is given by

woly = Vdet gV dxy A -+ Aday,

where ¢V is the matrix representation of ¢ in the local coordinates, i.e. gg = g(X;, X;) with
X; the vector field corresponding to the coordinate x; as defined in the preliminaries. Denote
by pas the corresponding Borel measure.

Let x € M. As in the above section the inner product g, on T, M induces an inner product on
the k’th exterior power of the cotangent space, A¥T, M*, which we denote by (—, —)g (k will be
implicit). As z — g, is smooth, so is x — (—, —)7.

DEFINITION 1.3.1. A differential form w € QF(M) is square integrable, if
ol = [ Gwrsinl diar. < o

We denote by Q@)(M) the set of all square integrable k-forms on M.

Remark 1.3.2. On Ql&) (M), there is an inner product, (—, —)as, given by

(== O X DOD) — R (a,B)ar = [ s el diar.

We denote by || — |[ar the corresponding norm.

Suppose N is another connected oriented Riemannian manifold with metric tensor %, and that
f: N — M is an immersion. Suppose in addition that Z = f*¢, that is, forp € N, v,w € TN,

ip(v,0) = g ) (Dpf(v), Dpf(w)). Then wy = f*w, and py, = fips. Moreover,

(wryW)n” = (@) (F)p)y  forall pe N, w,w’ € Q¥(M).






2 SETTING THE SCENE

To calculate the real cohomology of SL,(Z), we exploit the action of SL,(Z) on a specific
manifold X. In this chapter, we construct the manifold X, define an action of SL,(R), and
hence of SL,(Z), on it and finally show how this setting can be exploited to express the group
cohomology of SL,(Z) in terms of a certain subcomplex of the de Rham complex of X. This
places us in the realm of geometry with an immense selection of tools at hand; the rest of the
project then exploits this. We take a closer look at the construction in the case n = 2, which
will be our running example.

2.1 QUADRATIC FORMS

In this section, we construct the space X of quadratic forms inducing the same volume as the
standard inner product and equip it with a natural smooth structure. There is a natural action
of SL,(R) on X and this action is proper. We also show that the four manifolds which we will
be considering in this project are orientable.

CONSTRUCTION

Let n > 2.

DEFINITION 2.1.1. An n-ary quadratic form over a field k is a homogeneous polynomial of degree
two in n variables.

A quadratic form ¢ must be of the form q(z1,...,2n) = 31, <, SijTizj, for s;5 € k. If we
write x = (x1,...,Zy,), this reads

q(z) = a'sx, where s = (s;;) is the n x n-matrix with entries the coefficients above.

As the matrix (s + s')/2 is symmetric and gives rise to the same quadratic form ¢, we may and
do always assume that s is symmetric. With this assumption, s is uniquely given, and

n
t 2
q(x) =a'sx = E SiiT; + E 285,25
i=1 1<i<j<n

From now on, we consider only real quadratic forms, £ = R, and we will additionally assume
that the variables are real, z = (z1,...,z,) € R™. Under these assumptions, we say that ¢ is a
quadratic form on R™.

DEFINITION 2.1.2. A quadratic form q is positive definite, if q(x) > 0 for all x # 0, and it is
positive semi-definite, if q(z) > 0 for all z # 0.

Remark 2.1.3. A quadratic form is positive definite if and only if the symmetric matrix defining
it is (cf. Definition |1.1.7]).

Remark 2.1.4. A positive definite quadratic form ¢ on R™ induces an inner product on R™:
(x,y)! = x'sy, x,y € R", where s is the symmetric matrix defining q.

13
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Let (e;) be the standard basis of R™, e’ the dual basis of RZ.
Section ¢ induces an orientation form on R™ given by

€g :=/det(s) e A---em.

DEFINITION 2.1.5. We say that ¢, as defined above is the volume induced by g on R".

Applying the machinery of

PROPOSITION 2.1.6. Two quadratic forms ¢ and ¢’ given by the matrices s respectively s’ induce
the same volume on R", if and only if det s = det s’. In particular, ¢ induces the same volume
as the standard inner product, i.e. as the quadratic form ¢: z + 2z, if and only if det s = 1.

Construction 2.1.7. We are interested in these latter quadratic forms: Let X denote the set
of positive definite quadratic forms on R" inducing the same volume as the standard inner
product. By the above observations, this is in bijection with the set of real positive definite
symmetric matrices of determinant 1, which we will denote by §(R). Cholesky decomposition
(cf. Proposition implies that this is in bijection with the set of upper triangular matrices
with positive diagonal entries and determinant 1, AN; here A denotes the set of diagonal matrices
with positive entries and determinant 1, and N denotes the set of upper triangular matrices with
1’s on the diagonal. Denote these bijections by

o: X — SR, (q: v+ a'sx) = s
U: $(R) — AN, s=0D > b.

Now, AN inherits the smooth structure of SL,(R), being a subgroup, and we let X and §(R)
inherit the smooth structure of AN under the bijections ® and W.

ProposITION 2.1.8. The inclusion &(R) < SL,,(R) is smooth.
Proof. The inclusion is equal to the following composition of smooth maps
S(R) =5 AN 24 ST, (R) x SL,(R) ZX SL,,(R) x SL,,(R) 2 SL,,(R),
where incl(b) = (b, b), t is transposition, and m is the multiplication map. O
So in fact, §(R) is a submanifold of SL,(R).

. . n(ntl) . .. .
PROPOSITION 2.1.9. X is diffeomorphic to R~z 1. In particular, it is contractible.

This is immediate from the construction.

Remark 2.1.10. For illustrative purposes it is sometimes helpful to picture a positive definite
quadratic form on R" as an ellipsoid in R™, namely the unit ball with respect to the norm induced
by the given quadratic form. This will be particularly helpful when considering group actions
on X, which we look at in the following section. For example, the quadratic form ¢: z — 'z
gives rise to the unit ball in R™, as (—, —)* is the standard inner product — when we need
a basepoint, this will be our choice. If ¢ € X is a quadratic form represented by a diagonal
matrix d = (d;), then it gives rise to the ellipsoid given by the equation Y - ; d;x? = 1; thus its
semi-principal axes follow the standard axes of R™ and the ¢’th semi-principal axis is of length
\/ldf;' The non-diagonal positive definite symmetric matrices give rise to ellipsoids with axes not
following the standard axes. The condition that the quadratic forms induce the same volume as
¢ simply implies that the ellipsoids all have the same Euclidean volume.
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GROUP ACTION
There is an obvious action of G = SL,,(R) on X, namely precomposition:
(q.9)(z) =q(gz) forzeR", ge X, ged.
This is a right action and it is immediately seen that if g is represented by the symmetric matrix
s, then q.g is represented by g'sg.
PrOPOSITION 2.1.11. The action a: X x G — X, (¢, 9) — ¢.g is smooth.

Proof. Tt is obvious that the map o/: G x G — G, (s,g9) — g'sg is smooth. Consider the
inclusion i: §(R) < G and the diffeomorphism ®: X — &(R) given in Construction We
have the following commutative diagram

D xi .
X xG xid S(R)XG&GXG

| E

X SR) ———— G
1

As the image of o o (i x id) is in the image of 7, this diagram shows that « is smooth. O

Cholesky decomposition (cf. Proposition implies that the subgroup B of upper triangular
matrices with determinant 1 acts transitively on X; hence any BUT P acts transitively on X
as it contains B. The stabiliser of X v~ G at ¢ is K = SO(n); more generally, for a BUT P, the
stabiliser at ¢ of the restriction of this action, X v\ P, is K N P, which is the subgroup of block
diagonal matrices where each block is an orthogonal matrix. Hence, in view of Proposition[A.2.3]
we have:

PrOPOSITION 2.1.12. X is diffeomorphic to the homogeneous spaces (K N P)\P via the map
[g] = t.g for any BUT P.

Remark 2.1.13. The diffeomorphism
(KNP)\P— S(R)
is given by [g] — ¢'g.

Let P be a BUT, and recall the Langlands decomposition (K N P) x Ap x Np — P (cf.
Proposition [1.1.5). This combined with the above proposition immediately yields the following
result:

COROLLARY 2.1.14. The map Ap x Np — X, (a,u) — t.(au) is a diffeomorphism.

Recall that an action, Y v~ H, is proper if the map Y x H = Y x Y, (y,h) — (y.h,y) is proper
(see also Appendix [A.1)). As a corollary of the results in the appendix, we have the following
proposition.

PROPOSITION 2.1.15. The action X v G is proper, and the action X  SL,(R) is properly
discontinuous.

Proof. As X is diffeomorphic to the homogeneous space K\G, with the action of G on X
corresponding to right multiplication on the coset space, the first claim is a direct consequence
of Corollary The second is a consequence of the first and Corollary since SL, (R) is
discrete and closed in G. O
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In the following, we identify X with K\G. Consider the Cartan decomposition g = ¢ ® p. We
alter between interpreting g as T.G and as the set of right-invariant vector fields on G — it
should not cause any confusion. Write I' = SL,, (R).

LEMMA 2.1.16. Let w € QF(G). Then w = p*n for some n € QF(X), if and only if t,w = Lpw = 0
for all x € &, where ¢, is the interior product on differential forms and &, is the Lie derivative.

Proof. Consider the diagram below, where the downwards directed vertical maps are the pro-
jections: we have to show that n exists if and only if 1w = L,w =0 for all x € ¢.

array L akp(r\Gyy

«(| |

G K\G

To prove the left to right implication, let n € QF(K\G), = € ¢, and note that for all g € G,
Voo yUp—1 € TQG,

(pr*n)g(vl, SRR Uk—l) = (P*n)g(DeRg(af); U1y .- )vk—l)
= np(g)<Dgp o DeRg(x)a Dgp(v1)7 SRR Dg/)(kal)) =0,

as Dgpo D.Ry(x) = D,gg0 D.p(z) = 0, where as usual g: X — X denotes the action of g on
X given by right multiplication on K\G.

Recall that R x G — G, (t,9) = Lexp(tz)(9), is the flow of the right invariant vector field x. For
any g € G we therefore have

d d d

gx(p*n)g = & tZO(Lpr(tm)p*n)g = @ t:(]((po Lexp(tm))*n)g = % t:o(p*n)g = 0.

For the converse implication, assume that (;w = Zw = 0 for all z € ¢ and define a map
@: G — (A*T(K\G))* as follows: For g € G, vy,...,v; € Tpg) (K\G), set

Wg(v1, ..., 0) = wg(wr, ..., wg) for w; € T,G such that Dgp(w;) = v;.
If w € TyG is such that Dyp(w) = v;, then w; —w € ker Dyp and y = DyR,-1(w; —w) € &, s0
Wo(wi, ..., w; —w,...,wg) = (—1)i_1(Lyw)g(w1, ey Wiy ey wg) =0,

Hence, w is well-defined and it is smooth as w is smooth.
Let z € £, g € G, and consider the map ¢ = Weyp(ta)
to € R, let wy,...,wi € Texp

g- Given vy,... v, € T (K\G) and

(tox)gG such that Dexptoa)gp(wi) = vi. Then for any t € R,

Dexp(tm)gP(DgLexp(tm) © Dexp(tox)gLexp(—tox) (wz)) = Dexp(tox)g (P © Lexp((t—to)m))(wi)
= Dexp(tom)g(p)(wi) = Ui,

SO

&exp(tm)g(vh ) Uk) = wexp(tx)g(DgLexp(ta:) © Dexp(toa:)gLexp(ftox) <w1>7 s )
= ( )(

pr(m)w)g(Dexp(tom)gLexp(—toaz wl)a sy Dexp(tox)gLexp(—toa:) (wk’))
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and
d - d .
a Wexp(tm)g(vla cee vvk) = @ (Lexp(m)w)g(Dexp(tgx)gLexp(—toz) (wl)’ cee )
t=to t=to
d *
= % (Lexp((t+t0)x)w)g(Dexp(toa:)gLexp(—tox) (wl)a s )
t=0
d
= % Wexp(tx) exp(toz)g(Dg (Lexp(tz) © Lexp(tozt)) o Dexp(toa:)gLexp(—tom) (w1)> s )
t=0
d *
== (Lexp(m)w)exp(tom)g(wl, Ce W) = (Exw)exp(tox)g(wl, cowg) =0.
t=0

In other words, the map ¢ + Wexp(tz)y 18 constant. As K = (expt), K being connected, we
conclude that @ is constant on the fibres, Kg, of p. Therefore it factors through p, i.e. there
exists an 7 as in the diagram. O

Suppose IV < T' is a torsion-free subgroup. Then the action of IV on X is free: Indeed, the
action is properly discontinuous, so the stabiliser subgroups are finite and as I is torsion-free,
they must be trivial.

PrROPOSITION 2.1.17. If IV < T is a torsion-free subgroup, then the manifolds G, X, G/T” and
X /T’ are all orientable.

Proof. Being a Lie group, G is orientable. Moreover, we may take a right and left invariant
volume form w € Q" (@) on @ as it is unimodular (cf. Proposition. X is diffeomorphic
to Euclidean space and as such is orientable, but we would like to give a specific volume form.
More specifically, we will show that w descends to a volume form on the quotients K\G, G/I”
and K\G/T".

Let p: G —» X, m: X — X/T” and 7: G — G/I" denote the projections.

We have an isomorphism of chain complexes 7*: Q*(G/I") — Q*(G)"". As w is right invariant
under G, it is in particular right invariant under I, so it descends to a form ¢ € Q" ~1(G/T")
satisfying 7°¢ = w.

Let x1,...,x; be a basis of ¢, k = n("2_1). Consider the form W' := iy, - igpw € Q™(G),
m=n—k= % — 1. Clearly, i,w’ = 0 for all x € €. In addition, Z,w’ = 0 for all z € £, but

this requires a little more work to prove.
Note first that as w is left invariant,

d d

Lrw = — (L* (tx)w)g) = a o

= Lo wg =10 for all x € g.

Using succesively the identity Zyiy — iz %y = i[y 4, T,y € ¢, and the above, we get

k
Zyw' = Zim eyt GW for all y € g.
i=1
It follows that £, = £, + £, so it suffices to check the identity Z,w’ = 0 on basis vectors

x € €. Choosing as our basis x1,...,xy, the basis {E;; — Ej;}i<j, straightforward calculations
show that

[z, 25] = Z cli,jxl with cij =cl; =0,
=1
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Therefore

k k

L' = E byt Uayy) " LW = E E Ci jlay * gy e lgyw =0

j=1 J=1 1#j

for all i = 1,...,k, and we conclude that Z,w' = 0 for all z € &.

By Lemma w’ descends to X, i.e. there is a form n € Q™(X) such that p*n = w’. Note
now that w’ is right invariant: Indeed, for any right invariant form o € Q4t1(G), = € g, the form
ig« is also right invariant by the simple calculation

(R;ima)h(vh ce ,Uq) = ahg(DeRhg(x), DhRg(’Ul), “. ,DhRg(Uk))
= (Rya)n(DeRp (), v1, - - ., vg) = (iz@)p(v1, .-, 0,)

for any g,h € G, v1,...,v4 € T}G.
It follows that n is G-invariant; in particular, n € Qm(X)F/, so it descends to X/I". Let
¢ € Q™(X/T’) such that 7*& = n.
As w is non-zero everywhere, so is w’, and it follows immediately that the forms ¢, n and £ are
non-zero everywhere, and as such are volume forms on the respective manifolds. O

2.2 THE CASE n =2 PART 1

In order to understand the setting better, we take a closer look at the case n = 2. Let X denote
the set of positive definite binary forms on R? inducing the same volume as the standard inner
product equipped with the smooth structure defined in the previous section, set G = SLa(R)
and I' = SL9(Z), and let #Z C C denote the upper half-plane. We claim that X is diffeomorphic
to &, and we will use this relationship to get a better understanding of the space X. We then
investigate the action of G and I on X by defining an appropriate action of G on # .

ProrosiTION 2.2.1. X is diffeomorphic to # .

Proof. Given g € X, let s = (s;5) be the positive definite symmetric matrix defining ¢, and define
a complex number z, = zﬁ + iz € # . Conversely, given z € #, define a matrix s, = (s;;) by

1 Re(2) 1+ 83y
S = S = S = S = .
11 Tm(2)’ 12 = 521 Tm(z)’ 22

Clearly, s, is symmetric and det(s,) = 1. As s11 is positive, s, is positive definite: Indeed, for

a>0,ceR,
a c va 0 Va %
c 142 = c 1 0 1 J»
a Vva  Va Va

is a Cholesky decomposition. Let ¢, be the quadratic form x + x's,2z. The maps
O X =X, q— 2z V. Z —X, zw—q,

are smooth and each other’s inverses, so we have X = #, as claimed. O
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Remark 2.2.2. Recall that we can picture an element ¢ € X as an ellipse in R? by plotting the
unit ball with respect to the norm induced by ¢q. Our basepoint is ¢: z + z'x, which can be
identified with the unit disk in R?; in 9, this basepoint is ®(:) = 1.

For A > 1, consider the matrices
A1 1 1 A1 A1
91=<)\ (1)>7 92=(§+21)‘ _21’\>7 g3=(’\ 0)7 94:<2,\+2)‘1 _,\2+12)‘>-
0 3 273 2t 0 A —2tax 3t
These are all positive definite with determinant 1. Let ¢; € X denote the binary form z + xtg;z
and let F; denote the ellipse arising from ¢;, ¢ = 1,...,4. The ellipses, F;, all have major radius

VA and minor radius \%/\, but their orientations differ. Let ey, eo denote the standard basis of
R2.

N[>0 >~

- Fj has major axis in the direction of e5 and minor axis in the direction of ey;
- F» has major axis in the direction of e — e; and minor axis in the direction of e; + eg;
- Fs3 has major axis in the direction of e; and minor axis in the direction of es;
- FE4 has major axis in the direction of e; + e and minor axis in the direction of eg — e;.

In 7, the four binary forms ¢, q2, g3 and g4 are

A—1/A 2 , A—1/A 2
P = ) =— .

Note that [®(g2)| = |®(ga)| = 1. The four points are plotted in Figure [2.1]for the values A = 2,4
including sketches of the corresponding ellipses; the basepoint is also plotted. Looking at this
figure, the reader may think of the hyperbolic plane; after defining an appropriate action of G
on #, we show that the hyperbolic metric is G-invariant.

Construction 2.2.3. Define an action #Z «~ G by

_dz+b

—(abd
ta forg—(cd)EG.

z.g

It is clear that z.id = z, and a direct calculation shows that (z.g).h = z.(gh) for any g,h € G.
Note that for any z € # and g = (‘é 3) € G, we have

In(eg) = 200,
C 2’2 C a ez a
Re(z.g) = d|z|* + (be + ad)Re(z) + b. (2.1)

lcz + al?
We also have z.g = z.(—g) forall z € #, g € G.

PROPOSITION 2.2.4. The maps ® and ¥ defined in the proof of Proposition above are
equivariant.

Proof. Let ¢ € X be given by the matrix s = (s;5), and let g = (f g) € G. Then q.g is given by
the matrix

teg — a? s11 + 2ac s19 + 2 S99 ab s11 + (be + ad) s12 + cd s22
959 = \ ab s11 + (be + ad) s12 + cd s92 b2 s11 + 2bd s19 + d? s99 ’
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Figure 2.1: The upper half-plane with ellipses. The blue circle is the basepoint ¢; the dashed
green circle marks the set of points which give rise to ellipses with major radius v/2 and minor
radius 1/4/2; the dashed orange circle marks the set of points which give rise to ellipses with
major radius 2 and minor radius 1/2. The four points plotted on the two circles denote the four
points in # corresponding to q1,q2,q3,q4 € X for A = 2, respectively, A = 4. The numbering

runs anticlockwise with E7 at the bottom.

and by Equation (2.1]), we have

I ~1
Im(zq.9) = 7m(zq) = <511(02 7‘9%2;1 + 2ac 32 4 a2)>

|CZq + CL|2 511 S11

-1
= <CQ 599 + 2ac s12 + a* 811> = (gtsg)ﬁlv

cd|zq? + (be + ad) Re(z,) + ab
czq + P

2 -‘rl
cd 75182%1 + (bc + ad) % + ab

Re(zq.9) =

2
2 ST+l 2ac 512 2
C 8%1 + 2ac S11 +a

_cdsyp+ (be+ad) sig+absit (9'sg)12

c? s99 + 2ac s12 + a? s11 ~ (g'sg)n

We see that z(, ) = 24.9, implying that ® and ¥ are indeed equivariant.

Thus X and # are isomorphic as smooth G-spaces.
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PROPOSITION 2.2.5. The hyperbolic metric on #, d: Z x #Z — R>q, given by

d(z1,22) = 2tanh ™! <|Zl _ 22|>

|21 — 72|
is G-invariant.

Proof. Let g = (‘éfl) € G and 21,29 € #. Then

21.9—22.9  (dz1+b dz+b dz1+b dzm+b -1
Z1.g—z2.gi cz1+a cz2+ta cz1+a cza+a

_ <cz2—|— a) <(dzl +b)(cz2 + a) — (dza + b)(cz1 + a)>
czg+a) \(dz1 +b)(cz2 + a) — (dzz + b)(cz1 + a)

_[(cz2ta 21 — 22
- \ezm+a 21 —23 )

implying d(z1, 2z2) = d(21.9, 22.9) as the first factor has norm 1. O

Remark 2.2.6. We take a closer look at the geometry of the action of G on #. Note that for
any AeR, ze X

2(A) =247 (1)) ="

Thus we see that the orbits of N, the upper triangular matrices of the form (é /1\), A € R, are
horizontal lines in #. In terms of ellipses, they are stretched out, tending towards a horizontal
line.

The orbits of lower triangular matrices of the form (}\ (1)), A € R, are circles centered at a point
on the imaginary axis and with the real axis as a tangent line: Indeed, if z = Im(z)i is purely
imaginary, then for any A € R

2

I ‘QIm(z)i — Im(2)i(AIm(z)i + 1)
2(AIm(z)i+ 1)
2 _ Tm(2)* + XIm(2)* _ Tm(z)?

4(A\Im(z))2 +4 4

‘Im(z)i + Am(2)?
2(MIm(2)i + 1)

In other words, the orbit of z is a circle of radius %Im(z) centered at %Im(z)i (here we are using

Rli?f ). then

the standard Euclidean norm). Now, for arbitrary z € #, set A = —

Im(2)

0) z Nz|? + 2 1
— — 2
! Az + 127

b vene e IEESIE = Az + 1|2()\’Z\2+Re(z) + Im(2)7)

2

> =

so by the above, the orbit of z under (}\ ‘1)), A € R, is the circle of radius % centered at

2‘1)\11;&1)'21'. In terms of ellipses, they are stretched out, tending towards a vertical line.
Finally, note that z. ((1] 51) = —% = —%. In terms of ellipses, ((1) 51) simply rotates the ellipse

such that major and minor axes are swapped around.
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2.3 REAL COHOMOLOGY OF SL,(Z)

In this section, we relate the group cohomology of SL,,(Z) with real coefficients to the de Rham
cohomology of X. This relationship naturally leads us to consider a specific chain map, and the
focus of the rest of the project is to show that this map induces an isomorphism on cohomology
in low degrees.

Let G = SL,(R), I' = SL,(Z) and X as constructed in Section 2.1} For any g € G, we denote
by g: X — X the action map = — x.g. Recall that there is an induced action of G on the de
Rham complex Q*(X) via the pullbacks of these maps: w.g = g*w, w € Q*(X).

ProprosITION 2.3.1. T' contains a normal torsion free subgroup of finite index.

Proof. Let p > 3 be some prime; we claim that the principal congruence subgroup
I":={yel|y=id (mod p)}

is normal, torsion free and of finite index. That it is normal is immediate, and clearly the quotient
I'/I" is isomorphic to SL,,(Z/pZ) and thus finite. Assume for contradiction that I is not torsion
free: Then it contains an element of prime order, i.e. there is an element v = id + pFa € TV,
where v € T such that aw # 0 (mod p), k > 1, and a prime ¢ such that v? = id. But then

q 9—2
id=~7= Z <(ll>pk(q_l)aq_l, implying that  pFqa = —p** Z (?)pk<q_l_2)aq_l-
1=0 =0

Then we must have p = ¢ and k£ = 1, and the equality yields

p—2

=0

But p | (flj) forall 0 <l < p,and p | pFP=2) a5 p > 3. so p divides the right-hand side, hence «,
a contradiction. O

Let TV < T be a normal, torsion-free subgroup of finite index and let T inherit the action of T
on X. Then I acts freely on X. As X is contractible, it follows immediately that X/T” is a
classifying space of T”.

PROPOSITION 2.3.2. The group cohomology of I with real coefficients is isomorphic to the ho-
mology of the the chain complex of I'-invariant differential forms on X: H*(I") = H,(Q(X)").

Proof. As T' acts properly and freely on X, X/T” is a smooth manifold (cf. [I8, Theorem 9.16|)
and by the remark above, it is a classifying space of I”. Hence we have H*(I') = H*(X/T"; R),
and by De Rham’s Theorem (cf. [I8, Theorem 11.34|), this latter group is isomorphic to the de
Rham cohomology of X/T", H,(Q*(X/T")).

Let m: X — X/I" denote the projection and consider the chain map 7*: Q*(X/I') — Q*(X).
Note that for any v € I, w € Q*(X/TI"), we have v*1*w = (mo07)*w = 7*w, so im7* C Q*(X)I".
Now, given w € QF(X)T", define @ € QF(X/I") as follows: for z € X/T", wy, ... w;, € Tp(X/T),
set

Wy (Wi, ..., wg) = wq(vi,. .., k)
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for g € X, v; € T,X such that 7(q) = z and Dyn(v;) = w;. This is well-defined since if ¢ € X,
v; € Ty X satisfy 7(¢') = x and Dym(v]) = w;, then ¢ = ¢y and v} = Dyvy(v;) for some v € I”,
and thus

wy (V] - vp) = wery (Dgy(v1), ..., Dgy(vg)) = (Y'w)g(v1, - - vg) = we(v1, - -, vg)

as w is I invariant. The form @ is smooth as 7 is a local diffeomorphism. Finally, the map
Q*(X)F/ — Q*(X/T’), w — w, is a chain map and inverse to 7*, so 7* is a chain isomorphism
and we conclude that

HY(I') = H(2'(X/T)) = B (X)").
O

If C is a chain complex of H-modules for some group H, then there is an obvious action on
H,.(C): h.lc] =lh.c], h € H, [c] € Hi(C).

LEMMA 2.3.3. For any finite group H and chain complex of H-modules C, the inclusion of the
chain complex of invariants C* < C induces an isomorphism H,(CH) — H,(C)H, which is
natural in C.

Proof. 1t is obvious that the image of the map H.(CH) — H,(C) is a subset of the H-invariants
of H,(C). Consider the map C — CH, ¢ — /|13,y he, and the induced map on ho-
mology restricted to the submodule of H-invariants H,(C)? — H,(CH). The composition
CcH — C — CH is the identity, and thus so is the induced map on homology. For the other
composition, note that for [¢] € H,(C), we have

[l/m T hc] — 1 S Al = Vi Y[l = [

heH heH heH

Hence, the composition ¢ — C* — C induces the identity on H,(C)H.
Naturality follows directly from naturality of H*(—), requiring of course the chain map in ques-
tion to be equivariant. O

We need the following important result:

PROPOSITION 2.3.4. Let H be a group, H' a normal subgroup of finite index in H, and M
an H-module. If multiplication by |H : H'| is an isomorphism of M, then the restriction map
induced by the inclusion H' < H yields an isomorphism H*(H, M) — H*(H', M)H/H’".

Proof. See [9, Proposition 10.4]. O

PropPoOSITION 2.3.5. The group cohomology of I' with real coefficients is isomorphic to the
homology of the chain complex of I-invariant differential forms on X: H*(I") = H,(Q*(X)")

Proof. For any T-module, M, the submodule MY has a natural structure of a T /T"-module and
M" = (M™)F/T". Hence, using Proposition Lemma and Proposition we have

an isomorphism

~ ~

HH (1) —— H* ()T — (8 (X)7)T/T — H, (9 (X)T)T/T) = H,(Q(X)")
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The aim of this project is to calculate H*(T') in low degrees and the way we do this is by
exploiting the following theorem. The proof of this theorem is where all the hard work of this
project lies and this will be the content of the next four chapters.

THEOREM 2.3.6. The inclusion Q*(X)¢ < Q*(X)! induces an isomorphism on homology in
degrees x < ”TH for n # 3 and in the zero’th degree for n = 3.

Evaluation at the identity yields an isomorphism Q*(X)¢ = C*(g, £, R), where the latter denotes
the Chevalley-Eilenberg chain complex of the relative Lie algebra cohomology (we do a very brief
recap of Lie algebra cohomology in Section . Hence, the above theorem and Proposition m
enable us, in low degrees, to express the group cohomology of I' with real coefficients in terms
of Lie algebra cohomology. We exploit this in Section [6.3]

It suffices to prove the theorem for a torsion-free normal subgroup of finite index:

THEOREM 2.3.7. Let IV C T be a normal torsion-free subgroup of finite index. If the in-

clusion Q*(X)% — Q*(X)I induces an isomorphism on homology in degree k, then so does
Q(X)¢ — (X)L

Proof. The claim is seen immediately from the following commutative diagram on homology,
where the vertical maps are induced by the inclusions, and the second square commutes by
naturality of the isomorphism in Lemma [2.3.3

(@ (X)6) = Hy (07 (X)5)/T) —— Hi (0 (X))
H(@ (X)) == Hy (@ (COF W)~ Hy( (X7



3 SIEGEL REDUCTION THEORY

In this chapter we try to understand better the manifold X as defined in the previous chapter
and the action of SL,(Z) on it. The definitions and results of this chapter will be essential in
what is to come. More specifically, we define a “nice” type of subset of SL,,(R) and of X, namely
Siegel sets, and we show that sufficiently large Siegel sets intersect all I'-orbits in X. This eases
the study of the quotient space X/I'. Again, we take a closer look at the case n = 2 and finish
off with some technical results for use later on. The chapter is based on [5].

Let G = SL,(R), I = SL,(Z) and let X be as in Section [2.1]

3.1 SIEGEL SETS

Using the Iwasawa decomposition of G, we define Siegel sets and show that sufficiently large
Siegel sets in G intersect all I'-orbits in G, with I' acting by right multiplication. This is done
by showing that a certain function has a minimum and that this minimum is attained in a point
belonging to a certain Siegel set. We then use the quotient map G — X to translate these
definitions and results onto X.

Recall the Iwasawa decomposition of G (T heorem: The multiplication map K X AXN — G
is a diffeomorphism, with A < G the subgroup of diagonal matrices with positive entries, N < G
the subgroup of upper triangular matrices with 1’s on the diagonal, and K = SO(n). In the
following, 1 < 4,5 < n.

DEFINITION 3.1.1. For A,§ > 0, set

Ay :={a = (a;) € A| a; < Aajt for all i}
Ns = {u = (UU) eN | \u”| < ¢ foralli< ]}

A Siegel set in G is a subset of the form &) s := KA\N; C G for some A, > 0.

We will prove that the Siegel set &z/51/, intersects all I-orbits in G, and hence satisfies
G = 62,311 when I acts on G by right translation. It will be a consequence of Theorem
below.

LEMMA 3.1.2. N = N1, Nz, where Nz = NNT.

Proof. Let uw = (u;;) € N. Note that for any z = (z;;) € Nz, the product uz has entries
(uz)i; = 1 for all 4,
J
(uz)ij = Zuikzkj = zjj U121 o0 UGG for ¢ < 7, (3.1)
k=i

and zero elsewhere. We construct z = (z;;) € Nz such that |(uz);| < % for all i < j by
defining the entries recursively: First, set z; = 1 for all ¢, and let z,_1, € Z such that

25
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|Zn—1n + Un—1n] < %; by , [(uz)p—1n|] < % Let 1 <1 < n —1, and suppose that z;;
have been defined for all | < i < j such that |(uz);;| < 3. For j > [, let z; € Z such that
J
215 + Z ULk 2k
k=I+1

1

< —.
-2

With z = (z;;) as above, we have u = (uz)z~! with uz € Nijp, 27! € Nz (this last claim can
be seen by recursively calculating the entries of 2! using Equation (3.1])). O

Construction 3.1.3. Let eq,...,e, denote the standard basis of R®. Define ®: G — Ryg by
®(g) = |lg(e1)]|, where || - || is the standard norm on R™. Note that ® is continuous, and that if
g = kau is the Iwasawa decomposition with a = (a;), then

®(g) = l[kauler)|| = l[kaler)|| = [laler) ]| = a1 = ®(a),
as u(e1) = ey, and k is orthogonal.
LEMMA 3.1.4. For any g € G, the map ¢4: I' = Ry, v — ®(g7), has a minimum.

Proof. Let g € G. As T'ey C Z" — {0} is a closed, discrete subset of R"”, and ¢g: R" — R" is
a homeomorphism, gl'e; is a closed, discrete subset of R™. It follows that the norm function
|- ||: R™ — {0} — Ry restricted to gI'e; has a minimum. O

LEMMA 3.1.5. Let g € G and let g = kgagug be its Iwasawa decomposition with ag = (a;). If
P(g) < ®(gy) for all v € T, then a; < %ag.

Proof. Note first that for any z € Nz, we have ®(gz) = ®(g) as z(e;) = ej, and moreover,
k:gag(ugz) = gz = kg.a4:ugyz, so we must have a, = ag4. by uniqueness of the Iwasawa decom-
position. Hence, in view of Lemma [3.1.2] it suffices to consider the case where ¢ = kau for
u € Nijp. In particular, luie| < % Consider the element v = (y;5) € I' with yj2 = =1, 721 =1,
~v;; = 1 for all ¢ > 3 and zero elsewhere. Then « € I" and

gy(e1) = g(e2) = kau(ez) = ka(ez + uizer) = k(aiuizer + azez),

and therefore

ai = ®(9)* < ®(g7)* = ajui, + a3 < 1a] + a3,

from which the desired inequality follows. O

THEOREM 3.1.6. For any g € (G, the minimum of ® on g¢.I' is attained in a point belonging to
gL NGy for A =2/v/3, § = /2. In particular, g.T' N &z 51 # 0.

Proof. Write &¢ := &2/,51/,- We prove the claim by induction on the dimension n.

For n = 1, we have G = &y = {(1)}. Now, let n > 1 and assume that the claim holds for
n—1. Let g € G, and take, in view of Lemma [3.1.4] an h € ¢.T such that ®(h) < ®(gv) for all
v € I'. Write h = kpapuy, as its Iwasawa decomposition. Again, we can assume that u, € Nip
as ®(hz) = ®(z) for all z € Nz. Then

1
ki th = (‘81 “1,”) for some g’ € GL,_1(R) with detg’ = —,
g aj
where ay is the first entry of ap, and v = (u12 -+ u1,). Then "Va; g € SL,—1(R) and our

induction hypothesis implies that ¢’.SL,,—1(Z) N 66”71) # (), where 6(()”71) = 627\;;3/2 denotes
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the Siegel set in SL,,_1(R), i.e. there is a 4/ € SL,_1(Z) such that ~~/a; ¢y € 6[()”_1). Set
v = ((1],?/) and write /a1 ¢’y = kK'd'v/, hy = k"a"u" as their Iwasawa decompositions. As

nyar gy € 68“ ). we have d € Ag/f) and v’ € Nl(/" Y. Note that

1 —1 a;  av a1 alv
B K = ey ey = (0 g’v’) B (0 ke )

By uniqueness of the Iwasawa decomposition, we must have

"no__ 10 " _ ai 0 "o 1 v
k _kh<0 k')’ “ _<0 #ala, T o W)

It is clear that u” € Nij. To finish the proof, we must show that a” € A/ 5: By construction,

o= P S

22
*\ﬁ > n,\l/a—l\/gaiﬂ— \/gaiJrl

Note that ®(hy) = ®(h) as y(e1) = e1. Hence, ®(hy) < ®(gn) for all n € T'. In particular,
®(hy) < ®(hyn) for all n € T, and therefore by Lemma [3.1.5]

for all 7+ > 2.

//<i//

f

We conclude that a” € Az 5. Thus hy € g.T'N &g and hvy is a minimum point of ®|, 1. O
We have proved that:
THEOREM 3.1.7. The Siegel set &2/, 1/, intersects all I-orbits in G that is, G = G251/,

Remark 3.1.8. Recall that &(R) denotes the set of positive definite matrices with determinant
1. Cholesky decomposition (Proposition [1.1.8)) implies that an element s € §(R) can be written
uniquely as s = ulau for u € N, a € A.

DEFINITION 3.1.9. A Siegel set in X is the image of a set of the form
{uau | u € Ns,a € Ay} C S(R)

under the diffeomorphism &(R) = X described in Construction for some A, § > 0; in other
words, it is the set of quadratic forms in X represented by matrices of the form u'au with u € Nj,
a € Ay. Tt is denoted by & ;.

Remark 3.1.10. Let m: G — X be the projection g — t.g, where ¢: x — xtz. It is equivariant,
when G acts on itself by right multiplication and X v G as defined in the previous section.
Note that g = kau is the Iwasawa decomposition of g if and only if g'g = u*a?u is the Cholesky
decomposition of g*g. It follows that

7(6)\,6) = 63\2757 and 77_1(6/)\275) = 6)\75.
The above remark and Theorem yields the following result
THEOREM 3.1.11. The Siegel set 64/3 1o intersects all I'-orbits in X, so X = 64/3 1/2

From now on we denote by & s both the Siegel sets in G’ and X; it will be immediate from the
context, where they belong.
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Remark 3.1.12. We will see that at least for n = 2, we cannot take A and ¢ any smaller (see
Section , so this is the best we can do to find a Siegel set which works for all n.

Construction 3.1.13 (Siegel Normal Coordinates). Consider the map 7: A — R;LBI given by
pr; o 7(a) = % for a = (a;) € A. This is bijective with inverse 7=*: RZ;' — A given by
+1

YIL= b
)y = for b= (b) € R

b1 . ..bj,1

Indeed, for all b= (b;) € R™;*

>0 >

), YIS by .
)

pr(r o7 (b)) = -

1/ | | ; b’
=1 "4

n a n n—1

1 _

al = H = HT(a)l om(a)i-g = H T(a)!™"
i=1 " = i=1

and thus

Both 7 and 7! are smooth, so 7 is a diffeomorphism, and it is easily seen that it is in fact a
group isomorphism into the multiplicative group R;‘al.

DEFINITION 3.1.14. The maps ¢;: A — R-o, a = (a;) — a?iﬂ are called the Siegel normal coor-
dinates on A, and themap 7: A — Rggl given by pr,or = t; is the Siegel normal coordinatisation

map.

3.2 THE CASE n = 2 PART II

We return to the case n = 2. Set G = SLa(R) and I' = SLy(Z), let X be the manifold
constructed in Section and let # C C denote the upper half-plane. We know that X and
F are diffeomorphic, and we have compatible actions of G on X and # (Section . In
this section, we determine a fundamental domain of the action # v I' and compare it with

60 = 64/371/2 - X.
Recall that the action of G on # is given by

dz+b
Z'(gg):cz—i—a for z € #, (‘;g)GG.

PROPOSITION 3.2.1. The set D = {z € # | |2| > 1,|Re(z)| < 3} satisfies # = D.T.

Proof. To see that # = D.T', let z € %. For any M > 0, there are only finitely many integers

a,b € Z such that |az + b] < M. Hence, as Im(z.y) = % for any v = (vi;) € I, there

exists 79 € I’ such that Im(z.79) > Im(z.7y) for all v € I'. With 7y as above, set 2’ := z.7¢. Let
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m € Z such that [Re(2’) +m| < £ and define 19 := (§ 7); then z".ng = 2’/ + m. We claim that

2" = 2.y = z.(yomo) is an element of D. By construction |[Re(2”)| < 3; to see that |2”| > 1,
note that
Im(z/’)_I (// (071))_1 ( ( (071)))<I ( )_I ( ( ))_I (//)
‘zup_mz'1o = Im(z.(70m0 (7 ¢ < Im(z.99) = Im(2.(y0m0)) = Im(2").
We conclude that 2” € D = {z € # | |z] > 1,|Re(z2)| < %} O

Claim 1 of the following proposition shows that we cannot take D smaller; Claims 2-4 show
what happens on the boundary.

PROPOSITION 3.2.2. Let z € #, v € I'. Then the following hold:
1. If z,z.v € D, then v = +id.

2. If z,zy € D— {2z € # | |2| = 1} and v # +id, then Re(z) = +3 and v = £ (} §).

3. Ifz,z.'yeﬁ—{i%+§i} andvgé{j:id,i((l]ill)},then |zl =1and vy =+ (97').
4. Ifz,z.weDandygé{:I:id,:l:((l)ill),:lz((l)_ol) },then

sere b i ad e {e Q) x (A= (37 )

Proof. For all four claims, we can without loss of generality assume that Im(z.7y) > Im(z) —if the

opposite is the case, we simply consider 2.y and (z.7).y ! instead. Then, as Im(z.7y) = %,
we must have |y212 4+ 711| < 1. First note that
1> yorz + 9l = 9312 + 2yuvziRe(2) + 471 > 931 [2° — vy + 93
21,12 2 2 2 2 2
=31l21* = 1931 + (32 —11)? > 51122 = 1) > $i (3.2)

It follows that |y21] < % < 2,ie. y91 € {0,£1}.
For the first two claims we have |z| > 1. Hence, if 91 = %1, then
|2

1> | z4yu* = 2P £2y1Re(z) + 91, = |22 F oy +951 = 127 + 98 — bl = 212 > 1,

so we conclude that 21 = 0, and thus

v==£ <(1) 7i2> is an upper triangular matrix and z.y = z 4 ¥12.

In Claim 1, z, z.y € D, and therefore |y21| = |Re(z.7) — Re(z)| < 1, so 721 = 0, and as desired,
we have v = +id and z.v = 2.

In Claim 2, z, 2.y € D, and therefore |y91| = |[Re(z.7) — Re(z)| < 1, and as v # +id, we must
have 19 = 1. It follows that Re(z) = :F% and z.y =z £ 1.

For the third and fourth claim, note first that if 497 = 0, then Re(z.7) = Re(z) + 712 would
imply 12 € {0,%+1}; as we have assumed v # +id, + (é ill), we conclude that y9; = +1. The
inequality

1> |:|:2+’Y11‘2 > ‘Z|2 +’7121 — ||
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implies that |z] = 1 and 11 € {0,£1}. Then also |£2z+~11| = 1, and therefore Im(2z) = Im(z.7).
If v11 = +1, then

1=|z41| = |z]> £ 2Re(z) + 1 = 2(1 £ Re(2)),

implying Re(z) = $2 and thus z = ¥2 + \égz

Therefore, in Claim 3, we must have v;; =0, so vy =+ ( If 99 # 0, then

’722 )

zy=rv2—2 and |Re(z.7)| = |y22 — Re(z)| >

w\»a

But then z = :t + fz contradicting our assumption. Hence, as desired v = + ((1) S ) and
zy =2 =—Z

Now, for the fourth and final claim: If v;; = 0, then v = + (
arguments show that y90 = +1 and 2z = z.y = :l:% + @

If v11 = £1, then z = $% + § by the above and v = + (3&11 722_1). Then, as |z| = 1 and

722) for 99 # 0 and the above

+y22
Im(z.y) =Im(z) = ?, we must have |Re(z.7)| = 3. It follows that

| & 222 + Y22 — 1
|z + 1|2

> 5 Fy2(ree — 1) + (v22 — 1) = (2 F D)yaa(re2 — 1) + 1

1=z = = 732]2|7 £ 2722(722 — 1)Re(2) + (722 — 1)*

andthuswge{O,l},SOWG{i(j:ll(l))ai(ill_ol)}‘ =

DEFINITION 3.2.3. A fundamental domain for a group action on a set Y is a subset of Y which
intersects each orbit exactly once.

COROLLARY 3.2.4. The following set is a fundamental domain for the action # T’
DU{z€D||z] >1,Re(z) = 3} U{z € D | |2| = 1,Re(z) < 0}.

Remark 3.2.5. The image of &) s C X under the diffeomorphism @ is the set

(S s) — {z cw ‘ Tin(2) Re(2)] < 5}

f

This can be seen from the Cholesky decomposition of s = (s;;) defining ¢ € X:

$11  S12 NCTEE V811 % 1 0\ /si1 O 1 %
= 512 1 0 1) =\ s12 1 0 1 0 1 .
512 522 NOTRRVIITY NG s11 511
By definition of &y, if ¢ € &y, then s11 < )\i, implying s11 < VA and |%\ < 4. Hence,
D(q) = zg = 22 + EZ is contained in the set above This decomposition also shows that
U(z) = q, € 6,5 for any z satisfying Im(z) > \T\ and |[Re(z)| < 6.
We see that ®(Sy) is only a little bit bigger than the fundamental domain of X T, and that it

is the smallest Siegel set &) 5 in X such that D C ®(&)s). The sets D and ®(Sy) are pictured
in Figure
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Figure 3.1: The subsets D (horizontal shading) and ®(Sg) (diagonal shading) of the upper
half-plane 7.

3.3 TECHNICAL RESULTS

As the title suggests, this section contains some technical results about Siegel sets. Though we
will not need it, we prove that a Siegel set has finite measure with respect to a Haar measure
on . There are two reasons for doing this: It is in itself an interesting result, but more
importantly the idea of the proof reappears later on, albeit in a much more complicated version
(see Proposition . We also prove that there are certain limitations to how an element of
SL,(R) may act on a Siegel set; this we will need later on.

LeMMA 3.3.1. For any compact subset C' C N, A > 0, the set UaEAA aCa=! C N is relatively
compact.

Proof. Note first that that the exponential map exp: n — N is a diffeomorphism and that
exp oAd(a)|n = cq|n 0 exp, where ¢, is conjugation by a € A.

Hence, it suffices to show that for any compact C' Cn, A > 0, the set {J,c 4, Ad(a)C is relatively
compact in n. We know from the proof of Proposition m 1.2.15| that for a = (a;) € A, Ad(a)|, is
given by the diagonal matrix ((“l )i<j). Then {Ad(a)ln}aca, is a bounded family of operators
on n as Z‘ < N7 foralli < j, a=(a;) € Ay. It follows that Uaea, Ad(a)C is bounded and
thus relatlvely compact for any C' C n compact. 0
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PROPOSITION 3.3.2. Let (2j)jey € G and g € G. Let 0 =1y < ... < [ = n be a partition of
n defining a BUT P. If {z;}, {z;9} C 6, and (@)1 —— Oforalli=1,...,k — 1, where

(@141 jooo
a; € Ay is the diagonal matrix of the Iwasawa decomposition of z;, then g € P.

Proof. Assume zj,1;9 € &) for all j € N and write z; = kja;z;, ;9 = Kaju’ for kj, k} € K,

Js 7
((57)1)_‘_1 ——>0foralli= 1,. k‘—l. Let g = uwzv be
j—o0

the Bruhat decomposition of g, i.e. u,v € N, w € W and z € A. Then

a],a € A, uj,u] € Ns. Assume that

Yajwzv = kjw(w ™ ajujua; o) (w ajw)zv.

AW AN | — . T o
Kjazu; = xj9 = kjajujuwze = kj(ajujua; ;

J j
: =1 -1, _
Setting d; := w ajujua; W = ka;aq;ua;, ka; € K, aq; € A, ug; € N, we have

= kjw(kq;aq,uq;)(w “lajw)zv = (kjwkdj)(adjw_lajwz)((w_lajwz)_ludj (wtajwz)v),

kjwkq, € K, adjw_lajwz € A, (w_lajwz)_ludj(w_lajwz)v € N.

1

In particular, we must have a, = aq;w—ajwz. We use this identity to prove that w € P from

j
which it directly follows that g = uwzv € P. Let 0~! € 3, be the permutation defining w, i.e.
Wig—1(;) = 1 and w;; = 0 for j # o~ 1(i) (we take the inverse permutation to simplify notation
a little). Then w™lajw is the diagonal matrix with i’th entry equal to (aj),(;)- We see that

d; € w‘l(UjeN ajN(;ua;l)w; this set is bounded by Lemma , so the set {d'}jeN is bounded

in G and hence the set {ag, } is bounded in A = RY;". . Let C € R such that (a )7.+1 > C for all
i=1,...,n—1and set 7 : —mlnzz . Then K
a; i ; i)i i)o(i j)o (i
A > (,]) - . (aq;) : (95)o(i) >7ZC (4)o(0 foralli=1,...n—1.
(@h)it1  zit1r (@aay)ivr (a5)o(itn) (@5)o(it1)

Now, we claim that o preserves the partition 0 =ly < --- < [l = n, i.e.
o{ls+1,...00ls1}) ={ls+1,...,ls41} foralls=1,...,k—1.

Then so does ¢~ and hence w € P. Assume for contradiction that o does not preserve the
partition and let s be minimal such that o({ls—1+1,...,ls}) # {ls 1+1,...,ls}. By minimality
of s, we must have some i <[5 such that o (i) > I and some i’ > I such that o(i') < ls. But
then

a(i)—1 i'—1 =
H CLJ m+1 _ (aj)a(i) _ H M < <)\>
m=o (i) (a7)o(i) i (aj)e(msry — \ZC
Now, ((Zfz)f)n: >Alforalm=1,...,n—1,j € N, and % 3 00 as j — 0o. Then as
ls € {o(i),...,0(i) — 1}, the product on the very left tends to infinity, a contradiction. O

THEOREM 3.3.3. The measure of a Siegel set &) s C G with respect to a Haar measure on G is
finite.
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Proof. Let pug be a Haar measure on G. Then by Proposition [1.2.18] we have

n6(®xs) = [ dnalo) = [ pe) dusc(R)dpala)dn ()

G XA\ X Ng

([ awew) (/ oo anat@) ([ 5 dnn ().

As K and Nj are compact, we have

no(®s9) =1 [ pla)dua(a)

Ay

for some constant ¢; > 0. Let 7: A — RZ;Y, a = (a;) — b = (b;) with b; = afﬁ denote the

Siegel normal coordinatisation map (Definition [3.1.14). Then T, uq is a Haar measure on R;LBl.
Note that

n—1
7(Ay) = (0,A""! and port(v) = [[ o/ forall b= (b;) € R
=1

The map &: R*1 — R’;al, y = (y;) — (exp(y;)) is a group isomorphism mapping the Lebesgue

measure v on R"~! to a Haar measure on ]Rgal, S0 & = caTwpg for some cy > 0. Setting
C= %, we then have

pa(Gyrs) = 01/

pla) dpia(a) = er / por L (b) druia(h)
Ax

(O’A]n—l

—cf porloE(y) du(y).
(—o0,log(A)]"~1

Now, pot lo&(y) = H?:_ll exp(i(n —i)y;) for all y = (y;) € R"~!. Hence, as desired

n—1 log(A)
pa(Gys) =C H (/ * exp(i(n —i)y;) dy¢> < 00.

i=1 -






4 BOREL-SERRE COMPACTIFICATION

We still consider I' = SL,,(Z) and X as in Section and we are interested in the quotient
space X/I". The main inconvenience is that X/I" is not compact. In this chapter, we construct
a compact replacement, that is a compactification of X/I". We partially compactify X to get a
manifold with corners X, to which we can extend the action of I', and such that the quotient
X /T is compact. Again, we look at the case n = 2 in detail to get a better understanding of
the geometry of this construction. We also take a look at the case n = 3, as the case n = 2 is in
some ways too simple to really illustrate the construction.

The construction is due to Borel and Serre and is done for general arithmetic groups in their
paper [3]. In our case, as Borel and Serre also point out in their article, it is an application of
Siegel reduction theory of quadratic forms, which was dealt with in the previous chapter.

We will not prove here that X/T" is not compact — it is a consequence of the Godement compact-
ness criterion (see [7, Proposition I11.2.15]). Note that in the case n = 2, it is seen immediately
that X/I" is not compact in Section as we determined explicitly the fundamental domain of
the action X ~ T

We refer to [I5, Appendix C| for some background on manifolds with corners. We will in the
following use the terms smooth, submanifold etc. without specifying explicitly that it is of course
meant in the sense of manifolds with corners.

Let G = SL,(R) and let A < G denote the subgroup of diagonal matrices with positive entries,
N < G the subgroup of upper triangular matrices with 1’s on the diagonal and set K = SO(n).
For g € G, we write g, := ¢.g for the quadratic form given by the matrix g'g.

4.1 GEODESIC ACTION

We begin by defining a left action on X by A. We will consider the orbits of this action and of
certain restrictions of it when we construct the partial compactification.

Let P < G be a subgroup of block upper triangular matrices (a BUT) given by a partition
kp, with kp given by 0 = |y < I3 < -+ < I = n, or equivalently (mq,...,mg) such that
Zle m; = n. Recall the Langlands decomposition (cf. |1.1.5): (KN P)x Ap x Np — P, where

Ap = {(a;) diagonal | aj,4; = a;,,, > 0for j=1,... ,miy1, i=0,...,k—1},

Np = {(us;) upper triangular | u; > 0fori=1,...,n
and T w4 g, 45 = 1for i =0,... k- 1}.

Recall the Siegel normal coordinates on A (Definition [3.1.14), ¢;: A — Rsq, t;(a) = =%~ and

. Qjt1’
consider the map
Tp: Ap —> ngol, given by pr;oT =t,. (4.1)

This is an isomorphism of Lie groups (by the same arguments as in Construction [3.1.13)).
Recall also that we have a diffeomorphism Ap x Np — X, (a,u) — t.(au) = ggu (Corol-

lary [2.1.14)).

35
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Construction 4.1.1 (Geodesic Action).

Consider the action of A on X given by left multiplication of A on (K N B)\B = X. This is
well-defined because A commutes with K N B, the subgroup of diagonal matrices with +1 on the
diagonal. In terms of quadratic forms and symmetric matrices, the action is given as follows: if
q € X is represented by s = b'b for b € B, then for a € A, a.q is represented by (ab)ab.

For a BUT P, let Ap < A inherit the above left action on X. This is easily seen to be equivalent
to defining the action as left multiplication of Ap on (K N P)\P = X, exploiting that Ap
commutes with K N P: If ¢ € X is represented by s = b'b for b € P, then for a € Ap, a.q is
represented by (ab)lab.

This action is called the geodesic action of Ap on X.

PROPOSITION 4.1.2. The action of A, and hence of any Ap, on X is smooth.

Proof. The multiplication map m: A x AN — AN is smooth as it is the restriction of mul-
tiplication in G and the inclusions AN — G and A — G are smooth. Then A x X — X,
(a,q) — a.q, is smooth, being equal to the composite

: -1
Ax X L9 0 A AN ™ AN & X,
where p: AN — X is the diffeomorphism b — (q: = — xb'bx). O
PROPOSITION 4.1.3. The action of A, and hence of any Ap, on X is free.

Proof. Let b € B and assume that a € A satisfies (ab)!(ab) = b'b. Then a'a = id, so a is
orthogonal. Being a diagonal matrix with positive entries, we must have a = id. O

Remark 4.1.4. 1t follows from the above propositions that the orbits of Ap in X are diffeomorphic
to Ap, and therefore via 7p to ]R];_Ol, so we get a partition of X into copies of }R’;}l.

If we let Ap act on Ap x Np by left multiplication on the first term, then the diffeomorphism
Ap X Np = X, (a,u) — qqau, is equivariant, so the partition of X into Ap-orbits is given by this

product.

4.2 CONSTRUCTION

In this section, we get our hands dirty: The aim is to construct a manifold with corners X with
the desired properties. For every subgroup of block upper triangular matrices P, we add the
boundary to each Ap-orbit and, in addition, to each y-translate of an Ap-orbit, v € I". In this
way, we partially compactify X, obtaining a space X. We can equip this with the structure of
a manifold with corners, extend the action of I' to it and using Siegel reduction theory, we see
that X /I is compact.

Construction 4.2.1 (Corner associated to a Subgroup of Block Upper Triangular Matrices I).
Let P be a BUT given by a partition kp, with kp given by 0 = lp < I3 < -+ <l = n, or
equivalently (mq,...,mg) such that Zle m; = n. Set Ap := R%l and interpret Ap as a
subspace of Ap using the diffeomorphism 7p: Ap — ]R];_Ol - ]RI;_Ol = Ap. Let Ap act on Ap by
coordinatewise multiplication and note that this simply extends the action of Ap on itself. In
the case P = G, Ap = Ap = *.

Given v € I, let Ap act on X.v from the left by

: -1
Apx Xy P Apx X —5 X = X,
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where the middle map is the action map of the geodesic action of Ap on X, so the composition
maps (a,q.y) € Ap x X.y to (a.q).y € X.y. The orbits of this action are simply the ~-translates
of the Ap-orbits in X.

For any [y]p € (I'N P)\T, set

X(P)['Y]P = Ap XAp XY =Ap x X/ ~y P

where the equivalence relation ~. p is defined as (a.a,q.y) ~.p (a,(a.q).y) for all @ € A,
p=qgy€X,ac€ Ap.

We must show that X (P)(,),, is well-defined: Suppose v = 87 for somen € I', € N P, and let
g€ X,a€ Apanda € Ap. Let b € P such that g is given by x — 2(b’b)z. Then the quadratic
form (a.q).3 is represented by the matrix (abB)!(abB). The quadratic form q.3 is represented by
(bB)H(bB), and as bB € P, a.(q.B) is represented by (abB3)!(abB), so (a.q).B = a.(q.). Therefore

(@.a,q.v) = (a.a, (q.8).n) ~n.p (@, (a.(¢.0)).n) = (@, ((a.q).0).n) = (@, (a.q).7y).

We conclude that ~, p and ~;, p are equal, and thus that X (P),;, is well-defined.
Equipping X (P),),, with the quotient topology, t(y,: X — X(P)}y),, ¢ = [(id, q)]
open inclusion. We identify X with ¢[,), (X) for all [y]p.

bl 15 an

PROPOSITION 4.2.2. The map Apx Np — X(P)wp» (@ u) = [@ qu-7][y)p» is @ homeomorphism.

Proof. Consider the smooth quotient Ap x Ap x Np — Ap x Np, (@,a,u) — (@a,u) and
let ¢: Ap x Np — X denote the diffeomorphism (a,u) +— ¢qu. Then the diffeomorphism
idx (yop): Apx Apx Np — Ap x X induces a homeomorphism on the quotients, as illustrated
in the following diagram, given by (@, u) — [@, gu.7]

(p-
o idx (yoyp)_
APXAPXNP APXX
ZPXNP X(P>[’Y]P

O]

Construction 4.2.3 (Corner associated to a Subgroup of Block Upper Triangular Matrices IT).

We equip the space X (P)p), with the structure of a manifold with corners inherited from

Ap x Np = R];Ol X Rw% under the above homeomorphism. With this structure, the
quotient map Ap X X — X (P)(,], is smooth. X(P), is the corner associated to P and 7.

Let Op € Ap denote the origin and let e(P)},), € X(P)},], denote the image of {Op} x Np
under the diffeomorphism Ap x Np — X (P) This is the boundary component associated to

P and ~.

7P
['Y]P'

Remark 4.2.4. Note that the boundary component associated to P and ~ is not necessarily the
same as the boundary of the corner associated to P and . This is unfortunate, but defining
them in this way eases the construction considerably.

Note also that for P = G, we have X(G)jq), = €(G)jiq); = X-

G

ProrosiTION 4.2.5. For BUTs P < @, v € I', we have an open embedding of manifolds with
corners

X @plo — X(P)pyp  [@dlp1 = @ dlp,-
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Proof. For R equal to P or @, denote by kr: 0 = lopgp < li,r < -+ < lp,r = n the parti-

tion defining R (note that xp is finer that xg) and denote by 7g the Lie group isomorphism

TrR: Agp — Ri%_l, pr;(7(a)) = alalliR The inclusion Ag < Ap extends to an inclusion of
i+1,R

Ag — Ap: Interpreting Ap and Ag as Ri%fl, respectively, ]Rl;%fl via the maps 7p and 7p,

Ag — Ap is given by

ko—1

kp—1 ko—1 kp—1
RS = REG, (ri)icy  — ()i

with
S =Ty, if l@p = lj,Q and S; = 1 if li’p 75 lj7Q for all ] = 1, .. .,k‘Q — 1.

Replacing strictly positive with weakly positive in the above gives us the inclusion Ag — Ap.
Interpreting Ag as a subset of Ap, it is easy to see that if @ € Ag, a € Ap satisfy that aa € Ag
(where the multiplication takes place in Ap), then we must have a € Ag:

Indeed, let (r;) € Ri%_l and (a;) € Ri%_l and denote by (s;) € ngfgqf)l the image of (r;) under
the above map. Then (r;)(a;) = (si)(a;) = (s;a;) and this element belongs to Ag C Ap if and
only if s;a; = 1 for all ¢ such that I; p # [; o for all j = 1,...,kg — 1. This in turn implies that
a; = sja; = 1 for all such 7 since (s;) belongs to ZQ C Ap.

It follows that ~, p restricts to ~, o on ZQ x X.

Now, the inclusion ZQ x X < Ap x X induces a smooth map on the quotients as illustrated
below, and it is given by [a, ¢] Mo P [@, q][y)p- It is injective as ~, p restricts to ~ o on Agx X
by the above:

Agx X X(@pq
Zp x X X(P)[’Y]P

O]

Remark 4.2.6. In view of the above observation, we will interpret X (@), as a subspace of
X (P)pyp for BUTs P < @Q, v € I'. We can also view e(Q)y, as a subspace of X (P),],, which
leads to the proposition below. Note that for a different choice of representative of [y]g, we may
get a different class in (P NI)\I" and thus an inclusion into a different corner — this will be
quite essential in the understanding of the construction of the Borel-Serre compactification (see

Remark |4.2.9).

PROPOSITION 4.2.7. For any BUT P < G, [y]p € (I' N P)\ P, we have

X(P)['Y]P = H e(Q)MQ'

P<Q BUT

Proof. For a given BUT @ containing P, denote by rq: 0 =1y <lig < -+ <lgy =n, the

partition defining ) (note again that xp is finer than kg). Recall the Lie group isomorphisms
TQ: Ag — Ri%_l, pr;(7(a)) = i@ Define

Ui1,Q

AP,Q ::{aeAP|alj’Q+1---alj+17Q:1, jZO,...,k‘Q—l}.
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In other words, Apg consists of the elements in Ap (diagonal matrices with positive entries and
determinant 1 such that the entries in each block defined by P are equal) such that each block
defined by @ has determinant 1. Then the multiplication map

AP,Q X NP —>NQ

is a diffeomorphism, and we have the following commutative diagram, where the second upper
map is the identity on the first factor and multiplication of the second and third factor, and the
third upper map is multiplication of the first and second factor and the identity on the third
factor:

~ ~

AQXARQXNP—)ZPXNP

{0} x No —— Aq x Nq Xx(P)

P,

Thus, to identify e(Q),), as a subset of X(P)},),, we simply need to identify the image of
the composition of the upper sequence of maps; in other words, we must identify the image of
{0g} x Apg x Np in Ap x Np under multiplication of the first two factors.

Recall that the inclusion Ag C Ap is given by

ko—1 kp—1 kg—1 kp—1
Rz% - RZ}B ) (7“7;)2-21 = (Si)i£1

with
Si =Ty if l@P = lj,Q and S; — 1, if li’p 7& lj7Q for all j = 1, .. .,k‘Q —1.
Note that 0g = (ri)fifl € Apis given by r; = 01if [; p = I ¢ for some j = 1,...,kg — 1, and

r; = 1 for all other 7.
The inclusion Apg — Ap = ]Ri%fl is given by a = (a;) +— (si)fﬁfl with

i+1,P

L P il p A g forall j =1,... kg — 1,
;=
pi(a) ifl; p=1;q forsome j=1,... kg —1.

for some functions ; : R];%_kQ — R: The conditions on the elements of Apg are such that the

l; o’'th coordinates are completely determined by the rest, which may take any strictly positive
value. Thus the image of the composition

{OQ} XARQ — Zp — ]Rl;%_l,

where the first map is multiplication and the second is 7p, is Hfj 1 L RZQ with

()

RQ: {0} li7p7élj7Q foralljzl,...,kQ—l '
R>0 l@p = lj7Q for somej: 1,...,kQ -1

It is easy to see that

kp—1

R = T 1T 72

P<Q i=1
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and thus we conclude that

Ap x Np = [ Im({0q} x Apg x Np),
P<Q

which finally gives the desired

Construction 4.2.8 (Partial Compactification of X).
We can now define our space X as the disjoint union of the boundary components e(P)

Xi= H e(P)pps

P,["]p

P

P)\T.

where P runs over all BUTs and [y]p runs through all the elements in (I' N
C X for all BUTs P and

In view of Proposition , we identify X (P)},), with [[pge(Q)p,
e € (PATNT,
Now, for any BUTs P,Q and ~,n € I', we have

X(P)pp NX(@Q)pg = [T B = X (Ro)a), -

PQ<R
yn~leR

where Ry is the smallest BUT such that yn~! € Ry and P,Q < Ry.
The inclusions X(Q)[y), <> X(P)}], are open embeddings of manifolds with corners, and for a
BUT P with k blocks, we have diffeomorphisms
k—1 nntd) g =5
RZO xR™2 _>AP><NP—>X(P)MP-

Hence, the inclusions X (P),}, < X form an atlas on X, defining a structure of a manifold with

corners on X such that the corners X (P) are open submanifolds with corners of X (note

P
that we do not here require a manifold with corners to be Hausdorff — we show below that X
is in fact Hausdorff and thus X is a manifold with corners in the usual sense).

Note that the interior of X is equal to e(G)pa, = X. It follows that the inclusion X — X is
a homotopy equivalence as a topological manifold with boundary is homotopy equivalent to its

interior (cf. [22, p. 297]).

Remark 4.2.9. What we have done in the above construction is to add the boundary to all Ap-
orbits and their ['-translates in X. Picturing the Ap-orbit or its translate as Rl;_ol, we simply
add all points with at least one coordinate equal to zero, obtaining R’;Bl.

Note that we can interpret X as the union of the corners X (P)[y) under the condition that
we glue these corners together along the inclusions of subcorners X(Q)py, € X(P)y,, P < Q.
This interpretation is nice to have in mind when trying to visualise the construction. It does not
unfortunately come into play in our running example n = 2 as we have just two BUTs, namely
B and G, and here we easily see the enormous difference in complexity between the cases n = 2
and n = 3. We go through the construction in the case n = 2 below and also try to give an idea
of what happens in the case n = 3 to get a better grasp of this glueing interpretation.
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Construction 4.2.10 (Extending the action of T').

For a BUT P, set X(P) := U, X(P)p, € X, where [y]p runs through all elements in
b

(PNT)\I' and define a right action of I" on X (P) by

(@ D)y = @ V) py1p,  for any [(@, @)l € X(P)gp, Y €T

This action is well-defined, as

(@.a,(gn)y) = (@.a,q.(n7)) ~yy.p (@, (a.q).(ny)) = (@.a, ((a-q).n)-7),

for all@ € Ap, a € Ap, ¢ € X, n,7 € I. In addition, it extends the action of I' on X C X (P):
(id, qJjy1-n = [id, @1y - B
For BUTs P < @, the inclusion X(Q) < X(P) given by [a,ql,), = [a,q]},), for all @ € Ag,
g € X, €T, is equivariant. Hence, as the sets X (P) form an open cover of X, this defines a
right action of I' on X, which extends the action of I on X.

Remark 4.2.11. T acts on the boundary components of X as follows: v € I' maps the boundary
component e(P)(,, to the boundary component e(P),,,; in particular, if v € PN T, then v
simply translates the elements of a boundary component along the component itself.

PROPOSITION 4.2.12. For v € I, the map v: X — X, 2 — 2.7, is smooth.

Proof. As X(P) C X is an open submanifold, it suffices to prove that the restriction of v to
X (P) is smooth for all BUTs P. Consider the commutative diagram

Y _ -
X(P) X(P) @, qul ) p —— (@ qu ]
ZPXNP?ZPXNP (E,U)T(aa,?))

where uy = kav is the Langlands decomposition, so q,.7 is given by (av)!(av). Then ¥ is smooth
as it is equal to the composition

idxLanglands — xid, —
—g>ApXK><Ap><NpL>APXNp

Zp x N, P m} Zp x G
of smooth maps, where « here denotes multiplication by ~ restricted to Np, and m is the map
which multiplies the first and third factor while forgetting the second, and we have extended
the Langlands decomposition to G. That the multiplication map K X Ap x Np — G is a
diffeomorphism is a consequence of the Iwasawa decomposition. We conclude that « is smooth.

O

4.3 (OBSERVATIONS AND PROPERTIES

In this section, we prove that X satisfies the properties that we are after: It is Hausdorff, so an
actual manifold with corners, the action of I' on X is properly discontinuous and the quotient
X /T is compact.

We will consider sequences (g, )men of quadratic forms. This should not be confused with our
notation g, for the quadratic form given by the matrix ¢g'g, g € G — it should be clear from the
subscripts which it is.
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LEMMA 4.3.1. Let P be a BUT, 7,7 € I and let (¢m)men be a sequence in X converging to a

point € e(P)p),- If (¢gm-n)men converges in X(B),),, then yny~t € P.

Proof. Let P be given by the partition 0 = [y < I3 < --- < [y = n and assume that (¢mn-1)men
converges in X (B)y,-

Assume first that v = id. As {gm }men, {@m-N}men are relatively compact in X (B)[q),,, we have
{@m}men, {gm-n}tmen € Sy for some A, § > 0. For every m € N, let a,, € Ay, up, € Ns such
that g, is given by (amum ) (amum).

Now, write z = [0p, qaulfia), € €(P)jq), for v € N, a € A, using the Iwasawa decomposition
restricted to Np. Then in X (B)};q), we have

r = [0p, qaulfid]p = [0P; Gaulfia); = [0P@; Gulfia) -

Note that Op € Ap C A = Rggl is the element with (0p);, = 0foralli=1,...,k—1 and all
other coordinates equal to 1. Then, since (am,um) — (0pa,u) in A x N as m — oo, we have

(am)li

—0 foralli=1,...,k—1,
(G’m)li+1

AU, AmUmn € KA\ Ns, with
and Proposition [3.3.2] yields n € P, as desired.
For « # id, consider the sequence (¢m.7 Hmen € X (B) id] converging to zy~t e X(B)pp-
Then the sequence ((gm-y™1).(y77"))men = ((gm-1)-7™)men converges in X (B)jq,, and by
the above yny~! € P as desired. O

PROPOSITION 4.3.2. The space X is Hausdorff.

Proof. Let 3,9/ € X and assume that V,,V/ C X, m € N, are open neighbourhoods of v,
respectively, ¥’ such that V,, NV, # 0 for all m € N and the sequences (Vi,)men, (Vi) )men are
strictly decreasing. We will show that y = v/.

If y € X, then there is a relatively compact neighbourhood V' C X of y. This is bounded, hence
V NOX = 0. It follows that ¥/ € X, and hence, y = 3/ as X is Hausdorff.

We may therefore assume that y,7y’ € 0X. We will show that y and ¢’ belong to the same corner.
Let P, P" be BUTs and v,7" € T' such that y € e(P)},),, ¥ € e(P'),,- As Vi NV, is non-
empty and open for all m € N and X is an open dense subspace of X, we have V,, "V, N X # ()
for all m € N. Let for all m € N, x,,, € V,,, N V), N X. For n = v/~ 17, we have

X (P, = X(P')py,, € X(B)

V] p B

Therefore, as the action of I on X is continuous, the sequence (., )men C X satisfies

T —> Y € e(P)y), € X(B)y,, Tmn —y' 0 € e(P)y),, € X(B)y), asm— oo
=1 _ -1 : : — [~/
Then by Lemma 4.3.1} v9/~* = yny~! € P, implying [y]p = [7/]p, and thus
e(P)pp = e(P)py1p € X(B)y5-
But then y,y € X(B)y,, and we have y = ¢ as X (B)},, = A x N is Hausdorff, O

The following observation is immediate from the composition of diffeomorphisms

n(n—1)

X(B)jgy — AxN —RI xRz,

n(n—1)

which maps the Siegel set &) 5 to (0, A"t x [-4,8] z :
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LEMMA 4.3.3. For any A, > 0, the closure of the Siegel set )5 C X in X is equal to
Sis = {1@ qu)]ja), € X(B)ja), @ €[0,A]""1 C A, uwe Ny}
DEFINITION 4.3.4. The closure in X of a Siegel set in X is a Siegel set in X.

LEMMA 4.35. Let 6 = 6y 5 = KA\N; C G, A\,0 > 0, be a Siegel set in G, and let M C M,,(Z)
be a set of invertible (n x n)-matrices with integer coefficients such that |detm| < ¢ for all
m € M and some constant ¢ > 0. Then the set {m € M | &.m N & # 0} is finite.

Proof. See [5, Theorem 4.6]. O
PROPOSITION 4.3.6. The action of I on X is properly discontinuous.

Proof. We have to prove that for any two compacts K1, Ko C X, theset {y € I' | K1NKy.y # 0}
is finite. Since X is locally compact, we may for any K1, Ko C X take compact neighbourhoods
C1,Cy C X of K respectively Ky. As X isdense in X, C1NCa.v # 0 will imply C1NCa.yNX # (.
Hence,

Vel | KiNKyy# 0} C{yel | C1NCeyNX #0},

so it suffices to show that for any two compacts K1, Ko C X, theset {y € ' | KiNKy.yNX # (0}
is finite.

Let K C X be a compact subset. The corners X (B)y],,,
of X, so K is covered by finitely many of them, say the ones associated to 1, ...,7m € I'. Being
bounded, any compact subset of X (B)},, is contained in Gy 5. for some A, § > 0. It follows
that there exist A,0 > 0 such that K C J", @Aﬁ.%. For a second compact subset K’ C X, let
Yy € Tand N, 8" > 0 such that K C UZI Sy 5.7, We may assume A = X and § = ¢’
and we see that

[v]s € (' " B)\I', form an open cover

!

{(VeT|ENK' 4ynX #0} C{yeT||{JGrsvnJGrsaivn X # 0}
i=1 i=1

= J{veT | &rsminGrsjy N X #0},
i?j

and for any n,{ € T,

{yeT | GrsnNGrs.(yNX #0} ={y €T | GrsNGrs.Cyn ' NX #0}
={7el |G sNGr57NX #0}
={vel|GrsNGy57#0}

— {y €T | KA\N; N K AxNgy £ 0.

It is enough to prove that this latter set is finite; this is a consequence of Lemmal.3.5|above. O
PROPOSITION 4.3.7. &, 5.' = X for any A > 4/3, § > 1/a.

Proof. As & := G, is compact in X, the family {S.v},er is locally finite: Indeed, for any
r € X, we may take a relatively compact neighbourhood U of z; then U N &.y # 0 for only
finitely many ~ as I' acts properly discontinuously on X.

Being locally finite, the union U’yEF S.y = &.I' is closed in X. From Theorem , we know

that X C &.I, and as X is dense in X, we have &.I' = X as desired. O
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As an immediate consequence, we see that this construction does indeed satisfy what we set out
to fix:

COROLLARY 4.3.8. The space X /I is compact.

Remark 4.3.9. Recall that I' contains a normal subgroup of finite index which is torsion free.
For such a subgroup, I", there is a finite set C' C I" such that I' = C'T. The inherited action
of I'" on X is properly discontinuous and free, and so the space X /I"” inherits the structure of
a manifold with corners from X. Moreover, (&, 5.C).I" = X for any XA > 4/3, § > 1/2. Hence,
X /T is compact, being the image of a finite union of compact sets. The inclusion X /I — X /T
is a homotopy equivalence (cf. [22, p. 297]).

4.4 THE CASE n = 2 PART III AND THE CASE n =3

We will take a closer look at the cases n = 2 and n = 3 to give ourselves a better understanding
of the construction of the Borel-Serre compactification. The formal construction above is very
technical, but the geometry behind it is actually not so bad (if we ignore the fact that the
dimensions very quickly get out of hand). In the case n = 2, we can go through the complete
construction and are able to visualise it as X and X are two-dimensional. The case n = 2
is, however, almost too simple: It all becomes a lot more complicated for n > 2 and not just
because the dimension of X exceeds our abilities of perception. Essentially, this is because there
is only one proper subgroup of block upper triangular matrices in SLy(R), namely the subgroup
B of upper triangular matrices, therefore there is no glueing to be done (cf. Remark [§4.2.9).
Therefore we also try to give a picture of the case n = 3, where we have three proper subgroups
of block upper triangular matrices, so we see how this glueing comes into play.

THE CASE n = 2

We identify the geodesic action on X on the model #Z and show what happens when we add
the boundary to the orbits under this action. We will use both the upper half plane model and
the Poincaré disk model as both have their advantages in visualising the construction.

Recall from Section that we can identify X with the hyperbolic plane, #, under the map
X —Z, g z2q = 1/s1: (s12 + 1),

where g € X is given by the positive definite matrix s = (s;5).
Simple calculations show that the geodesic action of A on # is given by

(3 1(/&) z=Re(z) +1/\°Im(2)i,  A>0, zeZ.

The following proposition is immediate:

PROPOSITION 4.4.1. The orbits of A are vertical lines in the upper half plane, . Under the
diffeomorphism A — Ry, (a;) — Z—; = a?, the orientation of the orbits is such that 0 sits at
infinity.

Adding zero to each A-orbit then corresponds to “adding a real line at infinity”, i.e. the corner
X (B)fiq), can be interpreted as the set R x (0, 0c], and the boundary component e(B)jq), as
the line {(x,00) € R x R x (0,00]}. We then have:
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COROLLARY 4.4.2. The corner X (B)jq), is diffeomorphic to a strip {z € C | 0 < Im(z) < a}
for any choice of a > 0, and the boundary component e(B)jq), corresponds to the boundary of
this corner, i.e. the line {z € C | Im(2) = a}.

Remark 4.4.3. Below, in Figures and we draw the corner X (B)[q), in both the upper
half plane model and the Poincaré disk model, where we interpret the corner as a strip as in the
above corollary; we also include some A-orbits.

Figure 4.1:  The corner X (B)jq), for n = 2 in the upper half plane. The hatched area is the
corner X (B)jq), interpreted as the strip {z € C | 0 < Im(z) < a}; the boundary component
e(B)[iq), is then the line {z € C | Im(z) = a}. We have drawn some of the A-orbits, the arrows

denoting the orientation under the diffeomorphism A — Ry, (a;) = 2.
2

PROPOSITION 4.4.4. Let v € I'. The ~-translates of the A-orbits are parallel lines in % C C,
and the orientation is such that all the orbits have zero located at infinity or at the same rational
point on the real axis.

Proof. As the metric is I-invariant and the A-orbits are parallel, clearly the v-translates of the
orbits are parallel. Write

_ (e ? (X0
’Y—(C d) and /\.z.—(ol/x).z for A\ >0, z € C.

Then for any z € C, A > 0, we have

(A2)y = d(\z)+b _ (d(X.z) + b)(c(A.z) + a)
AT D Fa T (eha) ta)ehn) ta)
cdRe(2)? + (ad + be) Re(z) + cdA™* Im(2)? + ab + A2 Im(z)i
c?Re(z)? + 2A\~41m(z)? + 2acRe(z) + a?

We see that if ¢ # 0, then
Im((A.z).y) — 0 and Re((A.z)y) — d/c  as A —0.
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0

Figure 4.2: The corner X (B)[iq),, for n = 2 in the Poincaré disk. The hatched area is the corner
X (B)iq), interpreted as the strip {z € C | 0 < Im(z) < a} € # mapped into the disk model;
the boundary component e(B)}q),, is the circumference of the smaller circle minus the point on
the boundary of the disk. The lines are A-orbits, where the arrows denote the orientation under
the diffeomorphism A — Ry, (a;) — %

e
If ¢ =0, we simply get
(A2)y = ai?(ad Re(z) + ab 4+ A2 Im(2)i),
and thus
Im((A.z)y) — o0 as A =0 and Re((\.z).y) = 1/a(dRe(z) +b) for all A > 0.

O

Remark 4.4.5. We view the corner X (B)[,), as a strip in # .y as in Figure . For v = (CCL 2),
the point % takes the place of infinity, so this amounts to cutting out an open disk in # which
touches the real line at %. Doing this for all [y]p € (I'n B)\I', we get the upper half plane with

a disk cut out at every rational point on the real axis and also at infinity. See Figures and
for illustrations of X in the upper half plane and Poincaré disk models.

Remark 4.4.6. The element v € T acts on X as follows:

- On X, ~v acts as it did before.

- Suppose n € I' is such that [n]p = [7]p. Viewing e(B)
Figure and Figure , v acts by translations.

- Suppose n € T" is such that [n]p # [y]s. Then v maps e(B)
some translation as well.

(s @ a copy of the real line (see

15 to e(B); possibly with

[n B>
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. @Q@Q@Q@@@L {00 4

Figure 4.3: The Borel-Serre compactification of X for n = 2 in the half plane model. The
hatched area is diffeomorphic to X, which is the upper half plane % with an open disk removed
at every rational point on the real axis and at infinity. The different sizes of the disks are simply
for the sake of fitting in more of them.
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Q
Figure 4.4: The Borel-Serre compactification of X for n = 2 in the Poincaré disk model. The
hatched area is diffeomorphic to X, which is the Poincaré disk with a small open disk removed
at every rational point on the boundary. The different sizes of the disks are again simply for the
sake of fitting in more of them.

o @ike
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THE CASEn =3

We go through the ideas of the Borel-Serre compactification for n = 3 to get a better grasp of
the glueing involved in the construction.

In SL3(R), there are three proper subgroups of block upper triangular matrices

B: 5 P:

o O ¥
* X X
O ¥ ¥
* X X

*
, and Q=1{0
0

S ¥ ¥
O ¥ ¥
* X X

Since B = PNQ, we have to glue the different corners associated to B together along the corners
associated to P and Q. In SL3(R), A = Ap is diffeomorphic to R?, and both Ap and A are
diffeomorphic to Rsg. For v € I, consider the corner associated to B and ~:

X(B)py, 2 Ax N =R, x N.

VB

Its boundary looks like the product of the boundary of the upper quadrant in R? and N. The
boundary component associated to B and 7, e(B) is the preimage of {0} x N under the
above composition of diffeomorphisms.

For v € T', consider now the corner associated to P and ~:

B>

X(P)[ gZPXNp:RZQXNP.

7P

Under the inclusion X (P),),, € X(B)}y],, the corner corresponds to R x R>g x N C RQZO x N
under the above diffeomorphisms. This is better seen from the commutative diagram below,
where u € Np is decomposed as u = bv for b € A, v € N; note that Np = (AN Np)N, so
b € ANNp is of the form b = (b, 1/, 1), b € R5¢. Recall that the inclusion R>g = Ap < A =R2

is given by @ — (1,a).

ZP X Np i X(P)[fy]P (avu) — [a’ q“'Py]['Y}P

| [ I I

Ax N T~ X(B)pp (@b, v) —— [@, qu 1 = [a0, @A

From this diagram, it is also easy to see that the boundary component associated to P and +,
e(P)[yp, i-e. the image of {0} x Np under the upper horizontal diffeomorphism, corresponds to
Rso x {0} x N C R, x N. Similarly, the corner associated to @ and 7, X(Q) corresponds
R>o x Rso x N C Ry x N in X(B))
to {0} X Rsg X N.

For a given v € I', there exists n € I' such that [y]p = [n]p, but [y]p # [n]p. Then we
have to identify the corners X(B),), and X(B)y,, along the corner X(P)y;,. Consider
the commutative diagram below, where the middle isomorphism is the one defined using ~:
Ap x Np — X(P)p» (@ u) = [@ qu-7](y),- The upper right inclusion is given by the equality
X(P)pyyp = X(P)mp-

Me>

and the boundary component, e(Q)M Y corresponds

B’

vp

X

—~

By —— X(P)p)p —— X(B)y,

= | % |=

R%y X N «——R>o x Np — RE; x N

[P
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The lower row induces a map R>g X R>9 X N — R5g xR x N. It can be shown that this map
reverses the orientation of the first factor. So glueing X(B)(y), and X(B)[y, together along
X(P)pyp = X(P)[yp corresponds to glueing two copies of RQZO x N together along RsgxR>ox N
with the orientation of the first factor reversed in one of the copies, see Figure [4.5] There is also
some translation going on in the other factors, but we will not go into that.

Glueing along a corner associated to @ is similar. Now, we have to glue all the corners together
along their “intersections”, i.e. along the corners associated to P and @); this amounts to glueing
lots of copies of R% together as above, yielding a kind of “infinite polygon”, see Figure .

W)
7" m

Figure 4.5: Glueing the corners associated to B together for n = 3. A cross section of the
corner X (B),), = Ron x N at some u € N looks like R2207 similarly a cross section of X(P),,
at u looks like Rsg X R>p. In the cross section (which may be twisted in some way), glueing
two corners associated to B together along a corner associated to P looks like identifying the
upper and lower square above along the middle square included into the upper, respectively,
lower square in the way they are drawn. In the cross section, the resulting space then looks like
the shape on the right.

|
I
Figure 4.6: Glueing several corners associated to B together for n = 3. Glueing several corners
associated to B together along the corners associated to P and () amounts to, when viewing the
cross section, glueing several copies of Rng together along R~o x R>g and R>g x R~ where the

orientation of the first, respectively, second factor are reversed in one of the copies. This results
in a kind of “infinite polygon”.






5) LOGARITHMIC FORMS

We want to exploit the geometric setting, so we are going to work with the de Rham complex
of the manifold X/I" for an appropriate torsion free subgroup I' < SL,(Z). The complex is,
however, too wild to consider all at once. What we would like is to be able control the growth of
the differential forms as they approach the boundary of X. To this end, we consider a subcomplex
of forms which behave “nicely” near the boundary and it turns out that the inclusion of this
into the de Rham complex is a quasi-isomorphism. In addition, this subcomplex satisfies two
very convenient properties, which will be essential in the final chapter, where we show that
Q*(X)% — *(X)' induces an isomorphism on cohomology in low degrees. This chapter is a
technical nightmare — enjoy!

As usual, G = SL,(R), X is the manifold of Section A the subgroup of diagonal matrices
with positive entries, N the subgroup of upper triangular matrices with 1’s on the diagonal, and
gg € X denotes the quadratic form given by the matrix g'g, g € G. Let a denote the Lie algebra
of A, that is the set of diagonal matrices with trace zero, and let n denote the Lie algebra of N,
that is the set of strictly upper triangular matrices.

5.1 PRELIMINARIES

Before we dive into the real content of this chapter, we need to do some foot work: We explore
the structure of X in more detail. More specifically, we fix convenient bases of the tangent and
cotangent bundles, T(A x N) and T*(A x N), go on to define a G-invariant metric on X and
do a lot of calculations.

Let t;: A — R-g denote the Siegel normal coordinates (Definition [3.1.14)), ¢;(a) = azl, a € A.
Then the maps

logt;: A — R, respectively, d(logt;) = % A— TA", i=1,...,n—1
(]

form a coordinate system on A, respectively a basis of the cotangent bundle, T*A. Moreover, if
0: R"! — Ais the diffeomorphism such that pr;00~' = logt;, then for a = 0(z), {D,0(e;)}1—}
is a basis of the tangent space T, A with dual basis {d(logt;)(a)}7=}" of (T,A)*.

Consider the basis {Ejj}i<;j of n = TigN and the dual basis {Eij}i<j of n*. For i < 7, let
7;; denote the right-invariant differential 1-form on N which is equal to the dual of F;; at
the identity, i.e. 7;;(u)(z) = Eij(DyR,-1(x)) for all u € N, x € T,N. Then {n;}ic; is a
right-invariant basis of the cotangent bundle TN*. For uw € N, n;;(u) € T, N* is the dual of

Dc.R,E;; € T,N. Fix an enumeration of this basis, {m}ifln(n_l); we will write I; < k; for the
pair corresponding to ¢ under the chosen enumeration, i.e. 1; = n,, .
Now, set €; := md(logt;) fori =1,...,n—1 and set ¢; := wyn; for i =n,...,m, where w4, mn

denote the projections onto A and N, respectively, and m = 1/2n(n+ 1) — 1. Then {¢}/", is a
basis of the cotangent bundle 7%(A x N) and the elements

€0 = €5(1) VASRREIVAY €o(k)> (S Ek,m—kv
form a basis of Q¥(A x N). Any differential k-form on an open subset V C A x N can then be

written uniquely as a linear combination of the €,. In particular, if p: A x N — X denotes the

o1
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diffeomorphism (a,u) — gay, then for any open subset U C X and w € Q¥(U), we can uniquely
write

Cw=Y fots,  fo€CT(eNU)).

Let eq,...,e,_1 denote the standard basis of R?~1.

PROPOSITION 5.1.1. With #: R"! — A asabove, z € R" ! §(x) =a = (a;) and 1 < j < n—1,
we have

7—1 n—1
D.0(e;) =1/n ((n—j)al, ey (=) @1, —j A,y —f A1, (j—n)zaz’ + jzai>7
=1 Py

where the tuple should be interpreted as a diagonal matrix in T, A.

Proof. Let 7: A — ]Rgal denote the Siegel normal coordinatisation map, pr; o7 = t;. Then
6~! =logor and 6 = 7! o exp, where log and exp denote the maps which apply the logarithm,
respectively, the exponential map coordinatewise. Recall that the inverse 77 !: R’;Bl — Ais

given by
YIS o
) = A for b= (b;) € RYGL

by---bj1

nal; pr;ok(a) = a; for a = (a;) € A, we see that

Composing with the coordinatisation xk: A — RY

Dg-1(a)(k08) = Dygy(k o 1o Diog 7(a) €XP: Rt - R

We have a%ipri exp(z) = €%, z = (r;) € R"!, and %pri exp(z) = 0 for i # j, 50 Digg7(a) €XD
logr(a) — _ai_

aj+1”
Now we determine the matrix D,(,)(ko77"). For b= (b;) € R",

is a diagonal matrix with i’th diagonal entry e

pry o ko1 1(b)
= cj7k ?
r=b prj(b)

n—1 . 1
[T« m)

--.xi
i=1 k=l

i(plrko,%OT_l)(b) ? <

a.%'j - 675]

where ¢jp = M =J)/nif k < j, and ¢j, = —i/n if j < k. Thus, D;g)(ko 71 has entry (k,7)
equal to

_ 0 _ pry o ko7 L(1(a)) aji1
D D= 2 1 — oy Dk — e ML,
(@) (K0T )k o (pry o ko7 ) (7(a)) = cjk o, (r(@) ik g O
Hence,
(Dg-1(a) (5 © 0))ij = (Dray (k077 1))ij © (Diog r(a) €XP);j = Cjis
and
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To finish off, note that D,k : T, A — R™" ! is given by pr; o Dyrk(z) = z; for x = (z;) € T, A, and
thus (Dgr)~1: R*™1 — T, A is given by

b; for ¢ < n,

(Da/g)fl(b)i = {_ Z?;ll b; fori=n.

With this we get

Dgfl(a)é?(ej) = (Daﬁ)_l o Dgfl(a)(/-i o 9)(63)

J

-1
1 . . . . . .
= n((” _.])alu" .,(n—j)aj,—](lj+1,.. '7_.7@77,—17(.] _n)zal +] Z ai)7
i=1 i=j+1
as claimed. O
Remark 5.1.2. In particular, the diagonal matrices expressed as tuples
Doe(ej):(1,...71,—4,...,—71%].), jzl,...,n—l,

n=j

where the first j entries of Dof(e;) are 1 and the last n — j entries are —n%j, form a basis of
a = TiqA, and the dual basis of a* is {d(logt;)(id)}?=}!. Note also that 6 is a group isomorphism
from the additive group R"! into A, so Ry06 = 6o +o-1(q) for all a € A, where R, is right
multiplication by a and + is translation by b € R"~!. Hence, D,R,-1 o Dg-1(4)80 = Dqf.

PROPOSITION 5.1.3. The map go: g X g — R given by go(z,y) = tr(zy'), z,y € g, defines a
right invariant Riemannian metric on G.

Proof. Define a smooth section g: G — TG ® T*G as follows: For g € G, let
24 TyG x TyG — R begiven by g,(x,y) = go(DyRy1x,DyRy1y), z,y € TyG,

where we interpret T,G*®T,G* as the set of bilinear maps T,GxT,G — R. Thisis a (0, 2)-tensor
field on GG and clearly it is right invariant.

To see that ¢ is a Riemannian metric, we simply need to show that g, is an inner product on
T,G: Tt is symmetric as tr(zy") = tr((zy")") = tr(yz’) for all z,y € g, and it is positive definite
as a positive semi-definite matrix, xa?, has trace zero, if and only if z = 0. ]

Remark 5.1.4. The above defined gg: g X g — R is proportional to the positive definite form
(xvy) = —B($,9(y)) for all T,y €9,
where B is the Killing form on g and 6 the Cartan involution y — —y’.

Let G act on AN from the right such that the diffeomorphism AN — X, p — ¢, is equivariant;
explicitly, this action is given by p.g = au, p € AN, g € G, where pg = kau is the Iwasawa
decomposition of pg. Let \g: AN — AN denote map p — p.g; it is equal to the composite

AN < G oy ¢ Lwesawa, pe o AN s AN,

Note that for g = au € AN, Ay, is given by Ay (bv) = (ba)(a ‘vau) for b € A, v € N. The
restriction of g to AN, g: AN — T*(AN) ® T*(AN), is a G-invariant Riemannian metric on
AN (we also denote it by ¢). It is given by

2p(7,y) = go(DpApy-12, DpA,-1), z,y € Tan(AN).
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Let v: AXN — AN denote the multiplication map and set % := v*(g); this is a metric on Ax N
which is invariant under the inherited action of G, namely the one given by (a,u).g = (b,v),
where aug = kbv is the Iwasawa decomposition, a,b € A, u,v € N, g € G, k € K — we
denote also by A\g: A x N — A x N the map (a,u) — (a,u).g. Note that for g = au € AN,
we have (b,v).g = (ba,a 'vau). We wish to determine % a little more explicitly. Recall that
{Daf(ei)}'= U {Ejjuli<; forms a basis of the tangent space Tauy(A x N) = T,A X T, N at
(a,u) € A x N, where we interpret a € T,A and @ € T, N as the elements (a,0), respectively,
(0,4) in T,A x T,N.

PROPOSITION 5.1.5. For (a,u) € A X N, a = (a;), we have

7 (a,u)(Dab(er), De Ry Eij) =0 for any [ and any i < j,

Y (au)(DeRuEij, De Ry Eyg) = 0 for any distinct @ < j and [ < k,
% (au)(DeRuEij, DeRuEij) = (54)? for any i < j,

% (au) (Dab(ei), Dab(ej)) = 1/n* mi jn for any 1, j,

for an integer m; ;, € Z depending only on n, ¢ and j.

1

Proof. As (au)™! = a~!(au"ta™1) is the Iwasawa decomposition of (au)~!, we see that

Aau)-1 (bv) = (ba™t, ava " Hau"ta™t) = (ba™ L, avuta Y,

80 A(qu)—1 = Rg-1x(cq0R,-1), where R(_) is right multiplication and ¢(_) is conjugation. Hence,
DouAigu)-1 = DaRg-1 x Ad(a) o DyR,-1. Recalling that D(q)v: ToA X TyN — Tou(AN) is
given by (v, w) — v + w, we see that for any (a,u) € A x N and (v,w), (v',w') € T,A x T, N,
£ oy (0,0), (0, 10)) = Ny 1)y (0 0), (& 0'))
= 7 (ia,id) (D(a,) Maw) -1 (U, W), D 1) Aguy-1 (v, 0"))
= (V*g)(id,id)(D(a,u)A(au)—l(U w) D au)/\ (au) 1( ' ))
= g0(Diqv(DyRy-1v,Ad(a) o DyR,—1w), Digv(DgRy-1v', Ad(a) o DR, —1w'))
= g0(DoRy-1v + Ad(a) o DyRy,—1w, Dy R,—1v" + Ad(a) o DyR,—1w').

We now apply this expression to our chosen basis of T, A x T, N. Recall first that

DaRa—l o] D@—l(a)e = Dy and Ad(a)EZ-j = %Eij, 1< g,
aj

(cf. Remark and the proof of Proposition [1.2.15)).

For any ¢ < 7, [, we have

ﬁ(a’u)(D9_1(a)¢9(el)7DeRuEiju) == (D R -1 0 D9_1(a)0( ) Ad( )O D R -1 0 DeRuEij)

= go(Dob(er), “‘E”) —tr(DOH( DEL) = 0.
J

For ¢ < j, 1 < k, we have

ﬁ’(a,u) (DeRuEz'j, DeRuElk> = go(Ad(a)Eij, Ad(a)Elk)

(ai/aj)Q 1= l? ] = kv
0 else .

a; ap

= ——tr(EyEp) = {
k

aja
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Lastly, for some ¢, j, we may assume that ¢ < j. Then, using Proposition we have
% (au)(Dab(ei), Dab(ej)) = go(Dob(e;), Dob(e;)) = tr(Dob(ei) Dob(e;))
n—1 ~(n=i)(n—37
ooy =)

= 5 (in? (G~ i)(n — i) + (0~ i)(n — ).

=i—(j—i)

O]

Recall from Sectionthat the metric % induces inner products (—, _<Eia,u) on Ak(T((w) (AxXN)*
and a measure pu; on A x N. We have the following corollaries.

COROLLARY 5.1.6. In terms of the basis {Dgy-1(4)0(e;) ;‘:_11 U {D¢RyE;ij}i<j, the isomorphism
ToAxTyN — (T,A x T,N)* induced by %, is given by the matrix

v 0
Z(aw) = (Z@au)ij) = <n2() Ad(a)|§> ’

where M € GL,,_1(Z) is independent of the choice of (a,u), and Ad(a)|, is the diagonal matrix
with entry i < j equal to .
J

COROLLARY 5.1.7. The volume form wy; on A x N induced by # is given by

a
(wﬁ)(aﬂ) = /| det $(a,u)| €id = # H CTz €id, (a,u) € Ax N.
J

1<j

Let pa be the measure on A given by the volume form d(logti) A ... Ad(logt,—1), and let un
be the measure on N given by the volume form 7, A ... A ny,. The n; are by definition right
invariant and the forms d(logt;) are right invariant, as t; o Ry = t;(b) t;. Thus

1

Npd(logt;) = Ry (L dt;) = t(0) 4

———d(t;o Ry) =
1 tioRb( ° b)

t;(b)dt; = d(logt;) foralli=1,...,n—1,

where Rp: A — A denotes right multiplication by b € A. So the measures p4 and py are right
Haar measures (and therefore also left Haar measures as A and N are unimodular). Finally, let
1z be the measure on A x N defined by #, i.e. given by the volume form wy.

COROLLARY 5.1.8. With p: A — R given by p(a) =[], Z—]‘, a € A, and 74 the projection onto
1

A, we have 11 = (;)" ! (p o ma).(1a ® p).

For (a,u) € A x N, let (—, —>§f’u) denote the inner product on A¥(T,A x T,U)* induced by %
(the power k will be implicit from the context).

COROLLARY 5.1.9. Let 0,7 € Xj yn—k, (a,u) € AXN. Then for the elements e;, € € QF(AXN),
we have

((€0) (am)s () () 5™ = 0 it {o ()} ozn 7 {70} r2n.
i=1,... i=1,...

ap .\ 2
(0o () )| < en T <’”>) it {0(0)} oom = {7(0)} 5o

n
o(i)>n Al i=1,..k i=1,..k

for some constant ¢, > 0 depending only on n.
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(a,u)

Proof. The point (a,u) will be implicit: We write €, = (€5)(q,u); (= =)z = (=, —); , and
T = Z(q,). Writing z~! = (2¥), we have by definition that

(e, )y = det (;coww).

From Corollary we see that

-1 _ 7’L2M71 0
o= 0  Ad(a"Y)2

and we know that M is independent of the point (a,u). Write M~! = (m%¥) and define for any
l=1,....n—1,a,8 € X p—1-1, an [ X [-matrix M;é = (mo‘(i)ﬁ(j)). Set

¢, = max{| detMO;H ll=1,....n—1, a,f € Xy pn_1-1}.
If
{o(i)|o(@)>n,i=1,...k} #{r(@) | 7(i) >n,i=1,...k},

then the elements 7;; appearing in €, and €, are not the same and therefore the matrix (m"(i)T(j))
has a zero row or column, so (€, €:)5 = 0.

If
{o(@)|o(i) >n,i=1,...k} ={7() | 7({) > n,i=1,...k},

let 1 < p < k, such that o(i),7(i) < n—1fori < p and o(i),7(i) > n for i > p. Let

o', 7" € ¥p n_1-p denote the restriction of o, respectively, 7 to {1, ..., p}, extended to permuta-
tions on {1,...,n — 1} in whatever way possible. Then
) (5 2 1 Uko i) 2 2n—1) 1 Ao (i) 2
<Eg,€7—>ﬁ’ = |det [ 27070 )| = p2P ‘ det M, H —r0 ) < 2 )Cn H —Z2 ).
o(i)>n R0 o(i)>n U i)

5.2 LOGARITHMIC FORMS

The scene is set and we can now define the notion of a differential form having logarithmic
growth near the boundary. This in turn allows us to define the subcomplex of logarithmic forms
on X/I' for an appropriate torsion free subgroup I' < SL,,(Z). We prove that the inclusion into
the de Rham complex is a quasi-isormorphism, that logarithmic forms of low degrees are square
integrable and that the G-invariant forms on X are mapped to logarithmic forms under the
chain isomorphism Q*(X)' = Q*(X/I'). The section relies heavily on the calculations of the
previous section and is in itself very heavy on calculations.

Recall the diffeomorphisms
0: Ax N = X, (a,u) = qau, J:Ax NS X(B)ja, — X, (@,u) — [a@,qu]

In the following, the notion of open Siegel sets will be useful, the definition of which is rather
obvious:
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DEFINITION 5.2.1. For A\, § > 0, set

A()\) ::{a:(ai)€A|a?ﬁ<)\, Z':l,...,n—l},
Z()\) ::{a:(ai)€Z|ai<)\,i:1,...,n—1},
N((;) = {u:(uij) €N||uij| <(5, Z<j}

The open Siegel sets of X, respectively, X given by A and § are defined to be the sets

6()\,5) = Q(A()\) X N(5)), respectively, @(}H(S) = Q(Z(A) X N((;))
Remark 5.2.2. 1t is immediate that &y ) is open in X and in fact equal to the interior of &) s;
likewise, @(/\’5) is open in X and equal to the interior of 6&5'

Recall that SL,(Z) contains a normal torsion free subgroup I' of finite index. Then X/T’
is a smooth manifold, X/T" is a compact smooth manifold with corners and the inclusion
X/T < X/T is a homotopy equivalence (cf. Remark . Let 7: X — X/T denote the
projection and let C' C SL,,(Z) be a finite subset such that SL,(Z) = CT. Then X/T' = 7(&(.C)
and X /T = 7(&.C), where &g = Suy1),.

DEFINITION 5.2.3.

i) For an open subset U C &(y5), A6 > 0, and w € QF(U), write o*w = 3. fre, for
fr € C®(0~1(U)). We say that w has logarithmic growth if there exists a real polynomial
p in n — 1 variables such that for all (a,u) € o~}(U) C Ay X Ny, 0 € Xpmts

|f0(a> u)| < |p(10g 41 ((I), ..., log tnfl(a)”- (5'1)

ii) For an open subset U C &y 5).C, A,0 > 0, a differential form w € Q*(U) has logarithmic
growth if the restriction of v*w to Uy~ N S(»,6) has logarithmic growth for all v € C.

iii) For an open subset V C X/T, a differential form w € Q¥ (V) has logarithmic growth if m*w
has logarithmic growth on 771(V) N &, 4).C for some A > 4/3, 6 > 1/2.

DEFINITION 5.2.4. Let V' C X/I' be an open subspace and let w € Q*(V N X/I'). We say
that w has logarithmic growth near the boundary of V if for every point y € OV, there exists a
neighbourhood U of y such that the restriction of w to U N X/T" has logarithmic growth.

If V=X/I', and w € QF(X/T') has logarithmic growth near the boundary of X /T', we say that
w has logarithmic growth at infinity, and we let O (X/I') C Q*(X/I') denote the subcomplex
of forms w € Q*(X/T") for which both w and dw have logarithmic growth at infinity. We also
call these forms logarithmic.

LEMMA 5.2.5. A differential form w € Q*(X/T") has logarithmic growth at infinity, if and only
if there exist A > 4/3, § > 1/2 such that y*7*w has logarithmic growth on &, 5 for all v € C.

Proof. The right to left implication is clear. For the converse, note that X /I is compact, being
the image of 06.C, and 08, = 624/3 X Nijp. Hence, if w has logarithmic growth at infinity,
then there is a finite cover Uy,...,U, of X /I such that the restriction of w to each U; has
logarithmic growth. Then there exist A\ > 4/3, § > 1/2 for which the restriction of v*7*w to
Y U)y7tN &(5,5) has logarithmic growth for all y € C, i =1,... k.

Let v € C, set V; := o~ Hm 1 (Us).y 1) N (A X Nigy) and write o*y*m*wly, = 3 fi €5 for some
fie C>®(V;) for all i. Let pi,...,px be real polynomials in n — 1 variables such that

|fi(a,u)| < |pi(logti(a),...,logt,—1(a))| forall (a,u) €V, 0 € Sppmp, i =1,.... k.
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Now, let A > X >4/3 6 > ¢’ > 1/2 and write
Q*’y*w*w\A(A)XN(é) = ng €, for fg € COO(A()\) X N((;))

Then we must have f,|y, = fi foralli = 1,... k. Note that F := Ay x Ny —J"_, V; € Ay x Ny
is compact, being closed in Ay X Ng and not intersecting the boundary. Let p be a real
polynomial in n — 1 variables satisfying

Ip(logti(a),...,logt,—1(a))| > |pi(logti(a),...,logt,—1(a))
and |p(logti(a),...,logt,—1(a))| > max {|fs(b,v)|}.
o, (byw)eF
for all (a,u) € Ay X Ng/, i =1,...k. This polynomial satisfies
|fo(avu)| < |p(10gt1(a)v s 710gtn71(a))|7 for all (avu) € A()x’) X N((S’)? OIS Zk,m—ka
and we conclude that v*7*w has logarithmic growth on &y 5. O

We go on to prove three important properties of the complex Qf‘og(X /T).

PROPOSITION 5.2.6. Under the chain isomorphism Q*(X)I' = Q*(X/T), the subcomplex of
G-invariant forms on X is mapped into the subcomplex of logarithmic forms.

Proof. Let w € Q*(X)% and let ¢: Q*(X)'' — Q*(X/T) denote the chain isomorphism (see
Proposition @ . To see that ¢(w) € Q). (X/I'), we have to show that p(w) and dp(w) have
logarithmic growth at infinity. Note first that w is closed: This is an immediate consequence of
the chain isomorphism Q*(X)% = C*(g, £, R) as the latter chain complex has trivial differential
(see Proposition [6.2.3)). Then dy(w) = ¢(dw) = 0 trivially has logarithmic growth at infinity.
In view of Lemma ¢(w) has logarithmic growth at infinity if for some A > 4/3, § > 1/2,
v*m*p(w) has logarithmic growth on &, 5 for any v € C. As m* = ¢! and w is G-invariant, we
have Y*1*p(w) = w.

Write o*w = Y fo €5, fo € C°(Ax N). At this point we are only going to use that w is invariant
under the inherited right action of A. Recall the right action of G on A x N from the previous
section (with this action on A X N, ¢ is equivariant), and let for b € A, \p: AXx N - A X N
denote this action, i.e. A\p(a,u) = (ab, b~ ub).

Recall that d(logt;) is right invariant and note that for ¢,-1: N — N conjugation by b~!, we

have ¢;_mi; = b—inij as
N _ b ~ .
(cy-1mi5)id(Ek) = (1i5)ia(Ad(b YER) = b—’;Eij(Elk) foralli < j, 1 <k.

Hence, if 14, t)y denote the canonical inclusions of A, respectively, N into A x N, we have

Ap€i = Tatadymad(logt;) = Ty Ryd(logt;) = €; foralli=1,...,n—1,
b,
and  A\j&; = TNINNTNT = TNCh-11)i = b—qu foralli=n,...,m,
l;

where [; < k; correspond to ¢ under the chosen enumeration. With these observations, we see
that

Sleto=0w=gVw=Now=3 f0N ( 11 l;f“)

o(i)>n o (i)
i=1,....k
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SO

b ..
fa — < H ka(z)) fo‘ o )\bu for all o € Ek,m—k-
o(i)>n lo (i)

=1,k
In particular, for a given (a,u) € A x N we can take b = a~! and then
fola,u) = ( H %) fo(id, aua™t) = <Tﬁti(a)”iv”>fg(id,aua_1)
a(i)>n Ok i) i=1

i=1, .k

for some n; , € Np.

Let A > 4/3,§ > 1/2. We know from Lemma that V = U,ca, aNsa~1 is relatively compact.
Thus there exists ¢ > 0 such that |f,(id,aua™")| < ¢ for all (a,u) € A,y X N(s), and therefore
by the above

| fr(a, )| < eX2imio for all (a,u) € A¢y) X N

Being bounded on A(y) X Ns), the f, trivially have logarithmic growth, which is what we needed
to show. O

LEMMA 5.2.7. If A <3/ and f € C(A(y) x N(s)) satisfies
|f(a,u)| < |p(logti(a), . .., logtn-1(a))]

for some polynomial p and all (a,u) € Ay X Ng), then for any 0 < e < 1 there is a constant
ce > 0 such that

n—1 £
|f(a,u)] <ce H (aZH) for all (a,u) € A(xy X Ng).

Proof. Suppose the map f € COO(A()\) X N((;)) and the polynomial p satisfy the inequality above.
Note first that for any 0 < ¢ < 1, |log(z)| < %x_f for all 0 < 2 < A. Then for a given 0 <& < 1
and any n € N, replacing € by ¢/n in the above inequality yields

[log(z)|" < (nfea™ /)" < (n/-)"2~° and |log(z)®=1< (A\)z° forall 0 <z < A

Then there is some constant ¢, > 0 for which

X 3
H <al+1> for all a € A,.
Qg

n—1
[p(logt1(a), . log tn-1(a))| < e [] ti(a) = = c
=1

O]

Equip X with the G-invariant Riemannian metric g% := 0*(%). Equip X/T" with the inherited
metric g’, i.e. the metric given by gz;(p)(v,w) = gg{((Dpw)_l(v),(Dpw)_l(w)) for p € X,
v,w € Ty (X/T) (this is well-defined as g~ is G-invariant and thus in particular -invariant).
Then g* = 7*g’. Similarly, we let G/T inherit the right invariant metric from G. For future

use, we note the following:

PROPOSITION 5.2.8. The manifolds G, X, G/T and X/T" are all complete.
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Proof. G and X are complete as they are homogeneous and the metrics are G-invariant, so the
isometries act transitively (cf. [1, Lemma 5.2]). As the projections G — G/I', X — X/I' are
local isometries, it follows that G/T" and X/T" are complete. O

Now X and X/I' are connected oriented Riemannian manifolds (cf. the above and Proposi-

tion [2.1.17]), so we can apply the machinery of Section . Let pu,x, py denote the measures
induced by ¢, respectively, ¢’ and note that Py = Txprgx. Recall that g~ and ¢’ induce

inner products <—,—)2X on A¥(T,X)*, respectively, <—,—);§p) on A*(Tr(p (X/T))* for p € X
and that
(W) W) o) = (T W)y, (FW)p)0 s w0 € QF(XT), p€ X,

Recall finally that a differential form w € Q*(X/T") is square integrable if

= [ ity digs () < .

k

PROPOSITION 5.2.9. For k < 271, any w € QF .

(X/TI') is square integrable.

Proof. Let w € Q{“Og(X/F) for some k < “51. By definition of the metric ¢’ on X/T', and using
that X/T' = 7(6(.C), we have by the abstract change of variable formula

2 _ 7(p) * * P
ety = | oty or) 5 it (1) < [ (0 iy o),
Noting that

/. Ay (e ditgxp) = /. (O (s i 0)

= /60<('y*7r*w)p, (’y*ﬂ*w)p>gx dgx (p),

we have

* Kk K Kk (a,u)

yeC VA X Ny

1 * k% * k% a,u
— o D [ U T e (€ T W ) 0la) dliea © v e ),
"}/EC A4/3><N1/2

where we use that g% = o*(4) and ps = (1/n)" (poma).(ua ® un).

For an arbitrary v € C, write o*y*n*w = > fr€, for f, € C*°(A x N). Then

* ok ok * ok % (a,u) (a,u)

<(Q v w)(a,u)v (Q v w)(a,u)>}%7 = ZfU(a7u)fT(a7u)<((60)(a,u)7 (67)(a,u)>ﬁ
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and the only non-zero terms in this sum are the ones for o, 7 satisfying
{o(@i)|o(i) >n,i=1,...,k} ={70) | 7(i)) >n,i=1,...,k}

(cf. Corollary [5.1.9)). If we can show that for all such o, 7, we have

/ | oy 0) F (s 0) (oo (€0) ) ) (@) d(pia © i) (0, 0) < oo,
AaszX Nij

then by the above calculations, we must have HwH; < 00, Le. w € Q) (X/T).
Using Corollary [5.1.9] we see that

/ | fo(ay )| £ (a)| [ (o) amys (Er) (a5 || 0(@)] A1 @ pine) (a, )
A4/3><N1/2
ar .\ 2 @
< o\Y T\Yy n ‘70)) <l>d 7 .
< /44/3XN1/2 | fo(a, u)|l fr(a,u)| U(Zlgn( it g py (na ® pn)(a,u)

Let 0 <e < % We know from Lemma that the f, have logarithmic growth in the sense of
Definition Equation (5.1) on some neighbourhood of Aij; x Nij,. Then, by Lemma |5.2.7,

we have

i)\ *
/A o Vi@l @l en TT (%m) I1

a(i)>n 1<y

n—1 2e 2
Qit1 Uk i) @i
< [T(%) TT(-22) T1( %)« ,
o Cecn ~/144/3><N1/2 i=1 < ai ) . (alg(i) ) <a’]> (MA ® uN)(a U)

o(i)>n 1<j
= aiv1\ ay 2 a;
() o( 7
= [ TH(%) T (G ) () dnate
Asss -4 @i o U i) 1<j @

(i)>n
for some constant c. > 0, and where py(Nij) < 0o as Nij, is compact. Note that

n—1 2e 2 n—1 2e n—1 2ng ; n—1 i(n—i
H <ai+1> H <aka(i)> H (Cli) (‘%‘—H) H <ai+1> i H ( a; ) (n=9)
=1 \ % a aj 4 a; a; ajt1

a(i)>n e /iy i i=1 i=1

() dua & a0

J

Il
—

n—
a;

) i(n—1)—2nqs,;—2¢

a;
1 141

I
A
PO

7

for ng; € Ng equal to the cardinality of the set
{.] = 17 . '7k ’ la(j) <1< ka(j)—l}‘

Then ny; < k < ”T_l and therefore o oo :=i(n—1) —2n,; —2e >0foralli=1,...,n—1. We
can now use the fact that the map §~1: A — R"~! of the previous section, pr; 0 0~ (a) = logt;,
is a group isomorphism from A to the additive group R”~! and the image measure v = 0 4
is the Lebesgue measure:

/

This finishes our proof. O

n—1 n—1 log(4/3)
H ti(a)* s dua(a) = H / exp(a g e7) dz < 00.

4/3 =1 =17 ">



62 Mikala Orsnes Jansen

We will need a version of the Poincaré Lemma for logarithmic forms to prove the next proposition.

LEMMA 5.2.10 (Poincaré Lemma for Logarithmic Forms). Let z € X/I" with V C X/T a
neighbourhood of x and let & > 1. If w € QF(V N X/T') has logarithmic growth near the
boundary of V and dw = 0, then there is a neighbourhood V' C V of z and a differential form
W' € QF1(V' N X/T) with logarithmic growth near the boundary of V' such that w = dw’ on
V.

Proof. If x € X/T, this is just the standard Poincaré Lemma. So suppose x € X /T. We may
assume that w has logarithmic growth on V' N (X/T") (we can just replace V by a neighbourhood
of =, on which this holds true). Then there exist A > 4/3, § > 1/2 such that 7*w has logarithmic
growth on 7= 1(V) N Sr6)-C.

For a given y/ € 7 !(x) N &(.C, let v € C such that y := y'.y~! € &y. Take a neigh-
bourhood U C 7~ H(V).4y~1 NSy 5 of y for which w|y: U — «(U) is a diffeomorphism. As
y € 06) C 0X (B)fiq), it must belong to the boundary component corresponding to some
BUT P and id: Let P be a BUT defined by the partition 0 = lg < -+ < [ = n such that
y € e(P)ia, € X(B)[iq,- Finally, let a, € A, u, € N such that a,u, € Np and (0p, ayuy)
corresponds to y under the diffeomorphism Ap x Np — X (P)iia)p> (@u) = [@ quljiq),- De-
note by 9: A x N — X(B)jid)> (@u) = [@qu]jiq), the diffeomorphism extending o. Then
o (y) = (ay,uy), where @, = Opa,, so

(@), =0 forj=1,...,k—1,

0<(ay)¢:M<)\ for all 4 # [,
(ay)i+1

|(uy)if| <6 for all i < j.

We consider a ball around the point (@, u,): Let ¢ > 0 such that
U, .= {(a,u) €AxN | ]ai — (ay)i| <t, |uij — (uy)ij| < t} - @_1(U).

Set Uy := U N (A x N). We pick a different set of coordinates on A x N: Fix some 0 < to <t
and define

z;0 A — R, ry,(a) = logt,(a) — logto forj=1,...,k—1,
zi: A— R, zi(a) :ti(a)—M for i # 1,

(ay)i+1
Tjj: N —R a:lj(u) = U5 — (uy)i]’, for i < 7.

Clearly, these form a coordinate system on Ax N. We see that dx; = d(logt;) are our chosen basis
elements of TA* forall i =1;, j =1,...,k—1, and for i # [;, we see that dz; = dt; = t;d(logt;)
and ¢; is bounded on ma(Uyy)). On mn(Ugy), do = 32, fijnij for some fi; € C*(Uyy) and
these f;; must be bounded; conversely the 7;; can be written as a linear combination of the dx;;
with bounded coefficients on mx (U, ). Pull the coordinates back to A x N, keeping the same no-
tation, fix an enumeration of the coordinates z;; from n, ..., m and let dr, = dz, 1)\ -Adz, (1),
0 € Xkm—k, denote the basis of Qk(U(t)) given by this coordinate system. For an arbitrary

[OAS Qk(U(t)),

o = Zfoea = Zgadxaa
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and we see that the f, have logarithmic growth in the sense of Definition Equation (5.1)
if and only if the g, do as the dz; which differ from the ¢; can be written as linear combinations

of these with bounded coeﬂi((:lerll)ts and vice versa.
Let ¢: Ax N - R%;" xR~ 2 denote the map (a,u) = ((;(a))=, (zi(u))™,); then

Y(Up) ={z € R™ [ z;; <log(tft,) for all j =1,...,k =1, |z;| <t for all other i}.

In particular, 1 (Uy) € R™ is star-shaped with respect to the origin.
Let z1,...,2m denote the standard coordinates on R™ and dz, ..., dz,, the induced basis of the
cotangent space. Then for a = 3" g,dz, € QF(U,),

1)*a = ZQU © djildza = Z hedzg,

and the g, have logarithmic growth if and only if there exists a real polynomial p in n — 1
variables such that

ha(2)| =1go 0™ (2)] < Ip(2)]  forall 2 € p~H(Uy) CR™,

where 2 € R"! is given by Z, =z, =1,...,k =1, and % = log(z;) for all other i. For
i # lj, pr;(¥(U))) is bounded, so the above condition is equivalent to the existence of a real
polynomial p in k — 1 variables such that

lhe (2)] < Ip(21y5 -y 21 ,)] for all z € ¢~ ( H) S R™. (5.2)

We consider the standard homotopy operator on Euclidean space (see Appendix [A.3)
H: QFR™) — QFL(R™) given by H(hydz,) = Z Cpi AZyi,

where 0 € Sj_1,-kt+1 is the permutation skipping o(i), i.e. o%(j) = o(j) for j < i and
o'(j) = o(j + 1) for j > i. The coefficients c,: € C°°(A x N) are defined as

1
cyi(z) = (—1)2‘—120(2-)/ ho(2t)tF 1 dt.
0

On ¢ (Uyy)), we know that dH + Hd = id, so for o € QF(p(Uyy)) satisfying da = 0, we have
a = dH(a). Thus, we need only show that H preserves logarithmic growth in the sense of
Equation (5.2) above. Write

Z hedzs, and H(a)= Z crdzr.
€Y L m—k TEXE—1,m—k+1
Then

cr(z) = Z cyi(z) = Z — l”)/ (zt)t" dt.

Gezk,'mjfk Uezk m— k
T=0" T=0"

If |ho(2)| < Ip(21y,-- -5 21,,_,)| for all 2z € ¥(Uy)), 0 € Xgm— and some polynomial p, then as
the integral of a polynomial is itself a polynomial and |z,(;)| is bounded for all i # I;, it is clear
that there exists a real polynomial P in k — 1 variables such that

’CT(Z)| S ‘P(le, s 7zlk71)’ for all z € '¢(U(t))7 TE Zk*l,mfkﬂ*l'
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To conclude, set V' := 7(o(U;).y). We know that (¢~ 1)*o*y*n*w = dH((¢~ )*g*'y*ﬂ*w) on
Y(Uyy), and H((¢~ )*g*fy*ﬂ*w) has logarithmic growth in the sense of Equation (5 . Then
w = dw on m(o(Ugy).v)) = V' N X/T for

W = () ) () ey W) € QL (VN XD,

where ¢: Q*(X)I' — Q*(X/I') is the inverse of 7*, and by the observations above, w’ has
logarithmic growth near the boundary of V”. O

For the proof of the following proposition we will use some basic sheaf theory (we refer to [21]
and [8]). In fact, the proof is analogous to the proof of De Rham’s Theorem using sheaf theory.

PROPOSITION 5.2.11. The inclusion O (X/T') < Q*(X/I') is a quasi-isomorphism.

Proof. Let % (X /T') denote the category of open sets on X /I" (that is the category with objects
open sets in X /T’ and morphisms the inclusions) and let R-Vect denote category of real vector
spaces. Then define F*: %(X/I') — R-Vect by F*()) = 0 and for any non-empty open set
V C X/T, set

FEV) = {w e Q*(V N (X/T)) | w and dw have logarithmic growth near the boundary of V'}.

Clearly, an inclusion V C U of open subsets of X /T" induces a restriction map F*(U) — F*(V),
and this correspondence preserves compositions and the identity, so F* is a presheaf. It is easy
to see that F* satisfies the equaliser condition, so it is a sheaf.

Then F* is a differential sheaf with the differential simply being exterior differentation of differ-
ential forms. Note that F*(X/T) = Qe (X/T) and F*(X/T) = Q*(X/T"). We will prove that
F* is a fine resolution of the constant sheaf R+ /s X /T is a compact Hausdorff space and thus
paracompact, so the notion of a fine sheaf makes sense.

First, we prove that % is fine, i.e. that it possesses a “partition of unity” Let f € C*=(X/T).
For a given v € C, express o*y*m*df in terms of the basis {dt;}7=' U {nij}i<; on A x N:

o'y mrdf = Zfzdt + Zfz]m]v fis fij € c (A4/3 X N1/2)

1<j

As o*v*m*df extends smoothly to the compact set Z4/3 X N1j, and the dt; extend to a basis of the
cotangent space on A, the f; and the fij must be bounded in absolute value. Now, expressing
o*y*m*df in terms of our chosen basis {d(logt;)}1=\' U {n;}i<; as

n—1 dts
Q*’Y*W*df = ;fz/ ?ZZ + Z;fi/jniﬁ leafz/] S C’00(144/3 X N1/2)7
we must have f/ = fit; and f]; = f;; from which it follows that the f] and f]; are bounded in
absolute value. In particular, both f and df have logarithmic growth at infinity. Then for any
VeUX/T),we F*(V), both fw and d(fw) = df Aw + fdw belong to F(V)* as the exterior
product preserves logarithmic growth.

Now, let % = {U;} be a locally finite open cover of X/I" and let {\;} be a partition of unity
subordinate to %. Define sheaf morphisms

CGi: Fr—>F* by (i(w)=Nw forwe F(V), Ve%uX/T).
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Then (; is trivial on the complement of suppA; for all ¢ and ), {; = idg~. We conclude that F*
is indeed fine.

Now we prove that ™ is a resolution of R+ ) where we take the inclusion as the augmentation
map € using that R .(U) consist of the locally constant functions on U.

We will use the fact that a sequence of sheaves over Y/ r With values in R-Vect, & 5 € Y, g,

is exact if and only if the sequence of stalks &, — &, — & is exact in R-Vect for all
x € X /I (cf. |21, Theorem 5.85]). Recall that the stalk of a sheaf @ at x € X/T is the object
Gy = ligieU g(U).
Let x € X/T" and consider the sequence

oy gkl Doy gk doy gkl oy
Suppose [w] € FF is such that 0 = d,[w] = [dw] and w € F*¥(V) for some neighbourhood V' of
x. Then there is a neighbourhood x € W C V such that dw|y = 0. By the Poincaré Lemma for
logarithmic forms (cf. Lemma [5.2.10)), there is a neighbourhood x € U C W and a differential
form w’ € F*¥~1(U) such that w|y = dw'. So [w] = [w|y] = [dw'] = d.[w'] in FF. As d?® =0, we
conclude that the sequence is exact for k > 0.
Now, for [f] € F2, d.[f] = 0 if and only if f is locally constant at z. Hence, the sequence

o €x ovO dg 1 dcc
0—>]RX/F—> — F,

O *

is exact at &, 0 and we conclude that F* is a resolution of R¢ /-

Being a fine resolution of Ry, F*(X/T) calculates the sheaf cohomology of Ry /p (cf. [21)
Section 6.3]). So does the differential sheaf associated to the presheaf of singular cochains on
X /T (cf. [8, 1.7]), so by independence of the chosen resolution in computing derived functors, we
get a canonical isomorphism H, (92 _(X/T')) — H*(X/T), where H*(X/T') denotes the singular
cohomology of X /T'; on chain level, it is the map over idRy/F given by the Comparison Theorem
(cf. |21, Theorem 6.16]).

Let ¢: X/F — X /T denote the inclusion. The de Rham sheaf Q}/F is a fine resolution of Rx
and " F* = QF /T The inverse image of the sheaf associated to the presheaf of singular cochains
on X /T is exactly the sheaf associated to the presheaf of singular cochains on X/T'. Finally,
'Ry = Rx/r. Consider the diagram below:

log

H.,(Q,,(X/T)) — H*(X/T)

| J

H. (" (X/T)) —— H*(X/T)

The upper horizontal map is the isomorphism mentioned above, the vertical maps are the ones
induced by the inclusion ¢ (on chain level, they are the maps over /*: R = Rx/r given by
the Comparison Theorem) and the lower horizontal map is the de Rham isomorphism (on chain
level, the map over idg, . given by the Comparison Theorem). The diagram commutes as it
comimutes on chain level.

Now, ¢ is a homotopy equivalence, so the vertical map on the right is an isomorphism. Thus we

conclude that H. (€2, (X/I')) = H.(Q*(X/I)) is an isomorphism, as desired. O
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We collect the above propositions in one theorem:

THEOREM 5.2.12. The subcomplex Qf . (X/I') € Q*(X/TI') satisfies:

0). J(Q*(X)%) C O, (X/T), where j: Q*(X)¢ — Q*(X)' = Q*(X/T).

ii). The inclusion Qf

fog(X/T) = Q*(X/TI') is a quasi-isomorphism.

iii). QF, (X/T) C Qf) (X/T) for all k < 271,



§) FINISHING OFF

In this final chapter, we show that the inclusion Q*(X)S%®) — Q*(X )34 (2) induces an isomor-
phism on cohomology in low degrees. To do this, we first review some results on harmonic and
square integrable differential forms and briefly recap the definition of Lie algebra cohomology.
Using a result of Borel and Garland, we prove a version of the Matsushima Vanishing Theorem
applicable to our case which turns out to be last ingredient needed. We will see that our hard
work in the previous chapter pays off: With the existence of the subcomplex of logarithmic
forms and the Matsushima Vanishing Theorem, the fact that Q*(X)Sln®) <y Q*(X)SLn(Z) jp-
duces an isomorphism on cohomology in low degrees almost comes for free. Finally, we use this
isomorphism to calculate the real cohomology of SL,,(Z) in low degrees using a clever little trick
that enables us to consider the compact Lie group SU(n) instead of SL,(R). Our calculations
show that the cohomology stabilises and we can calculate the real cohomology of SLoo(Z).

6.1 PRELIMINARIES

To finish off, we need some results about harmonic and square integrable forms and we apply the
theory of Lie algebra cohomology. Much of this is well-known and in any case it will take focus
from the actual content of this project to introduce the theory in full formality and prove these
results, so we opt to give a very brief overview, state the results needed and supply references.

HARMONIC FORMS AND SQUARE INTEGRABLE FORMS

We define the notion of a differential form being harmonic and review some important results.

Let M be a connected oriented complete Riemannian manifold of dimension n. Recall that
Q’("Q)(M ) denotes the space of square integrable forms on M with respect to the inner product
(-, —)um induced by the metric tensor on M (cf. Section [1.3). Let || — [|as denote the induced
norm. We denote by (—, —) and || — || the induced inner products and norms on A*T}, M* for all
r €M, ke Ny.

Let x: Q4(M) — Q" 9(M) denote the Hodge star operator: *w € Q" 4(M) is uniquely defined
by the condition that

(M A*w)z = (Mg, wg)volpy  for all x € M, n e QI(M),

where the inner product on the right is the one on AT, M induced by the metric tensor on M and
volys the induced volume element. The Hodge star « is invertible with inverse «~ 1 = (—1)9(*=9x,
Define the codifferential § := (—1)7 %~ dx: QI(M) — QI=1(M) and the Laplace-Beltrami oper-
ator A :=dé +dd: QI(M) — QI(M).

By definition of %, we have:

PROPOSITION 6.1.1. (o, B)pr = [ aA*B for all o, 8 € QI(M).

DEFINITION 6.1.2. A form w € Q*(M) is said to be harmonic if Aw = 0. Let %é)(M) denote
the space of square integrable harmonic forms.

As M is complete, we have the following result:

67
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PROPOSITION 6.1.3 (Andreotti-Vesentini). A form w € Qa)(M) is harmonic if and only if
dw = éw = 0.

Proof. See [12, Theorem 26]. O

It follows that (¥,

) (M), d) is a chain complex with homology ) (M).

PROPOSITION 6.1.4 (Kodaira). Any closed square integrable form w € Q‘(ZQ)(M) can be written
uniquely as w = W' + dw” for ' € %’é)(M) and w” € QM) .

Proof. See [12], Theorems 24 and 14]. O

LEMMA 6.1.5. There exist compact sets C,, C D,, smooth functions A,.: M — [0,1], » > 0 and
a constant ¢ > 0 satisfying

i) M =U,5Cr,

ii) C, contains the interior of Cy for s < r,
iii) A (Cr) =1 and \.(DS) =0,
iv) [|[dA\(z)]] < & for all z € M.

Proof. See the proof of [12, Theorem 26| (see also [0, Lemma 1.2]). O

The exterior derivative and the codifferential are adjoint in the following sense:

PROPOSITION 6.1.6. If a € Q4(M), B € QItL(M) are such that a,B,da,d3 are all square
integrable, then

(dOé, ﬂ)]u = (Oé, (5,3)]\4

Proof. Suppose first that one of the forms « or 5 has compact support. Then Stokes’ Theorem
and Proposition yield

0—/d(a/\*ﬂ)—/da/\*ﬁ—/(—l)“%z/\d*ﬁ
— (do, B) — /oz/\*(—l)‘”l L dx B = (do, B) — /a/\*éﬁ — (dov, B) — (o, 58).

If neither « nor £ has compact support, let A, » > 0, as in Lemma Then Ay« is compactly
supported for all » > 0, so by the above we have

(A, 08) = (d(M\a), B) = (dA\ A o, B) + (Arday, B) for all r > 0.

As p is inner regular and M = (J,cg Cr, (Ara,68) and (A\da, §) tend to (o, 683) and (do, ),
respectively, as 7 — co. We need to show that (d\, A a, ) tends to zero as r — oo.

Let z € M and take an orthonormal basis of T, M*; this gives rise to orthonormal basis of
AFT,M* and the norm of an element in AT, M* is the square root of the sum of the squares
of its coeflicients with respect to this basis. The coefficients of a wedge product are sums of
products of a coefficient of the first factor and a coefficient of the second factor, multiplied by
some sign, and each product occurs exactly once. Then the Cauchy-Schwarz inequality implies
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that ||w A W'|| < |lw||||o’|| for all w,w” € A*T, M*. The Cauchy-Schwarz inequality for (—, —)
then yields

[(dXr A, B < (1B NldN A iy = 118113 / [dA () A o || Pdp

2
c
< Hﬁ\%/\Id&(fv)ﬁll%lﬁdu < Sllell3 118115
and we immediately get the desired. O

PROPOSITION 6.1.7. If w € 73 (M) satisfies w = dw' for W' € Qfy) (M), then w = 0.

Proof. Indeed, by Propositions [6.1.3] and [6.1.6] we have (dw’,dw’)y = (w',éw) = 0 and thus
w=dw =0. n

Lastly, we need the following result of E. Cartan:
PROPOSITION 6.1.8. Any G-invariant differential form w € Q*(X)¢ is harmonic.

Proof. See for example [4] 1T §3]. O

LiE ALGEBRA COHOMOLOGY

We briefly recap the definitions of Lie algebra cohomology and of relative Lie algebra cohomology
for use in the following section. We refer to [4] for details.

Let g be a finite-dimensional real Lie algebra. Given a real g-module V', the Chevalley-Filenberg
chain complex (C*,d) is defined as

C1= Cq(ga V) = HomR(Aqg’ V)

with differential d: C?7 — C*! given by
df (o, - . ., ) :Z(—l)ixi f X0y iy )

—I-Z ZJ”f ([zs, zj], z0s ooy iy ooy &y Tg)
1<j

for f € C9 xp,...,2x4 € g. The Lie algebra cohomology of g with coefficients in V' is the
homology of this complex, denoted by H9(g, V).
For a given = € g, we have maps i,: C9 — C971, 0,: C? — C4 given by

(i f)(@1,. .. xg—1) = f(z,21,...,2¢-1),
Oz f)(x1,...,xq) = f(21,...,2q) +fo1,.. (@i, x],...,2q)

for f € C9 x1,...,24 € g. The map i, is the interior product and 0, is related to the Lie
derivative of differential forms.

Let € be a subalgebra of g and let C'?(g, €, V) denote the subspace of C%(g, V') consisting of the
elements f € C(g, V) such that i, f = 0, f = 0 for all z € £. These subspaces are preserved by
d and we define the relative Lie algebra cohomology of g relative to € with coefficients in V' as
the homology of the complex (C*(g,¥,V),d). It is easy to show that

C%(g,t, V) = Home(A(g/¢), V)
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with £ acting on A%(g/€) by the adjoint representation, i.e.

2 (TN AT =Y T A A m| A AT, mER T g,
7

where 3 denotes passing to the quotient. Then C%(g, €, V) is the subspace of Hompr(A9(g/¢),V)
congisting of the maps f satisfying

z f@,. ) =Y f@. ], T),  wEb meg.

Assume now that g is semisimple and let B denote the Killing form on g, i.e. B: gx g — R,
B(z,y) = tr(ad(x) o ad(y)). Let (y;) be a basis of g and let (y}) be the dual basis of g with
respect to B, that is, y is such that B(y;, y;) = d;;.

DEFINITION 6.1.9. The Casimir element is the element C' := ). y;3; € %(g) in the universal
enveloping algebra of g.

Remark 6.1.10. The Casimir element is independent of the choice of basis, and it belongs the
centre of %(g).

Remark 6.1.11. There is an intricate relationship between the Casimir element and the Laplace-
Beltrami operator, which is the reason why we will need the element in the following, but we do
not need the explicit relation (see Kuga’s Formula in for example [4, IT Theorem 2.5]).

6.2 MATSUSHIMA’S VANISHING THEOREM

In this section, we prove a version of the Matsushima Vanishing Theorem. More specifically, we
prove that in low enough degrees, a harmonic form on X/I" is pulled back to a G-invariant form
on X via the projection X — X/T" for an appropriate torsion free subgroup I' < SL,,(Z). We
exploit a result by Borel and Garland which we state without proof. The fact that a harmonic
form is pulled back to a G-invariant form is the last piece of the puzzle; with this we can finally
prove that the inclusion Q*(X)¢ — Q*(X)S(2) induces an isomorphism on cohomology in low
degrees.

Let G = SL,,(R) with Lie algebra g = sl,,(R) and K = SO(n) with Lie algebra € = so(n). Let
X be as in Section ; we will identify X with K\G. Finally, let I" be a torsion free normal
subgroup of SL,(R) of finite index. Recall that G, G/T'; X and X/T" are complete orientable,
Riemannian manifolds. We denote the projections as follows:

T

G G/T

|l

X = K\G — X/T

A RESULT OF BOREL AND (GARLAND

After making the necessary introductions, we state the needed result of Borel and Garland.

First we define the G- and g-module structure on C*°(G) and C*°(G/T):
Left and right multiplication induce actions of G on C*(G): g.f = fo Ly, f.g= fo Ry
for f € C*°(G), g € G. Likewise, left multiplication by G on G/I" induces a left action of G' on
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C>(G/T). We identify g with the right invariant vector fields on G and in turn with the induced
vector fields on G/I', i.e. x € g is the vector field on G/I" given by x5, = Dy7 o D.Ry(x). We
denote by Z,: Q*(—) — Q*(—) the Lie derivative with respect to the vector field = € g, where
the manifold in question is either G or G/T.

We consider C*°(G) and C*°(G/TI') as G-modules with left multiplication as described above.
AsRxG — G, (t,9) = Lexp(tz)(9), is the flow of the right invariant vector field x € g, it is clear
that the corresponding g-module structure on these vector spaces is given by the Lie derivative
with respect to the right invariant vector fields.

Recall that the cotangent bundle of a Lie group is trivialisable via the map TG — g* x G,
(T4G)* 5 x — (D.Rgyx,g), where Ry is right multiplication by G. This provides a trivialisation
of the bundle A*T*G:

o: A*T*G — (AFg)* x G, (A*T,G)* o f s (f o A*D.Ry, g).
This in turn allows us to make the following identification
1 QF(G) — Homg(A'g, C*(G)) = C*(9,C¥(G)),  w = (pow)”,

where for n: G — (AFg)* x G, we define 7j: A¥g — C®(G) as 7j(u)(g) = pry(n(g))(uw). More
explicitly, ¥ is given as follows:
(Yw)(z1,...,25)(9) = wg(DeRg(x1), ..., DeRg(x)) forall z; € g, g € G,
(¢_1f)g(vl, RRRIES f(DgRg_l(vl), ... ,_DgRg—l(’Uk))(g) for all g € G, v; € TyG.

The invariant formula for the exterior derivative immediately shows that ¢ is a chain isomor-
phism.

PRrOPOSITION 6.2.1. The composition 1 o p* o 7* induces a chain isomorphism
U QY(X/T) — C*(g,t,C*(G/T)).

Proof. 1t is easy to see that the maps ¢, and 6, on C*(g,C*°(G)) correspond to ¢, and &£, on
2*(G). We know from Lemma that a form w € Q*(G) is the pullback of a differential
form on X if and only if ,w = Z,w = 0 for all z € €. We therefore immediately have a chain
isomorphism

Yop': AN(X) — C*(g,t, C°(Q)).

Then it simply remains to show that 1 o p* restricted to Q*(X)' induces the desired chain
isomorphism. Let w € QF(G). For all v € T', we have

(W) (@1, 2k) 7 ™) (9) = (Ww) (@1, 24)(97) = Woy (DeRgy(21), - - -, DRy ()
= (RJw)g(DeRy(1), ..., DeRy(z1)) = (YRIW) (21, -, 2k)(9)

for all z1,...,2; € g, g € G. Hence, w € QF(G)" if and only if yw € C*(g, £, C°(G)"), where
Q" (G, respectively, C*(G)' denotes the right invariant differential forms, respectively, smooth
maps on G. If w = p*n, then as p* is injective and p is equivariant, we see that w € Q*(G)' if
and only if n € Q*(X)I'. Tt follows that 1 o p* o 7* is a chain isomorphism

Q*(X/T) — C*(g,t,C>=(G)Y).

Finally, as 7: G — G/T is a local diffeomorphism, it is easy to see that the induced map
7% C®(G)T) — C®(QG) yields an isomorphism C*®(G/I') = C*(G)" which respects the G-
module structure. O
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Remark 6.2.2. Explicitly, the isomorphism ¥: Q*(X/T") — C*(g, ¢, C°°(G/T")) is given by
(W) (@1, ., 25) (7(9)) = Wape)(Dymp 0 DeRy(w1), .., Dympo DoRy (1))
for we Q*(X/T), z1,...,2 €9, g € G.
PRrROPOSITION 6.2.3. Evaluating at the identity coset yields a chain isomorphism
O(X)9 — C*(g, & R),
where g acts trivially on R.

Proof. This is an immediate consequence of Lemma [2.1.16] and the invariant formula for the
exterior derivative. O

We exploit the following result due to Borel and Garland without proof (see [2] for details, in
particular Proposition 5.6):

THEOREM 6.2.4 (Borel-Garland). There exists a unitary g-module V satisfying
i) V is a submodule of C*°(G/T),
ii) The Casimir element acts trivially on V,
iii) W restricts to an isomorphism #5 (X/I') — C*(g, ¢, V).

Remark 6.2.5. Being a unitary g-module means that V' is an inner product space with inner
product (—, —) satisfying

(x-v,w)+ (v,z-w) =0, forallv,weV, x €g.

Remark 6.2.6. V is a subspace of the separable Hilbert space L?(G/T) on which G acts by left
multiplication. Therefore the completion of V' has a countable orthonormal basis — we will use
this in the following section.

MATSUSHIMA’S VANISHING THEOREM

We will show that 7 yields an isomorphism 7, (X/T) — Q*(X)% in low enough degrees. We
follow the proof of Matsushima’s Vanishing Theorem as given in [4] (Chapter II).

First, we need to set the scene. Let g = €@ p be the Cartan decomposition of g (cf. [1.1.2)),
ie. £ = s0(n) and p consists of the symmetric matrices with trace 0. Then the Killing form
B:gxg— R, B(z,y) = tr(ad(z) o ad(y)) is positive definite on p and negative definite on .
Moreover

B(tp)=0, [egct  [6p]Cp, and [pp]=t (6.1)

Set m := l2n(n + 1) — 1. Now, fix orthogonal bases (z;)1<i<m of p and (24)m41<a<n2—1 of
such that

B(zj,xz;) =1, 1<i<m, B(zg,74) = -1, m+1<a<n®-1.

From now on we always let 4, j, k.1 run from 1 to m and a,b run from m + 1 to n? — 1. In terms
of this basis, the Casimir element in U(g) is C = Y, 2? — >, 22 (cf. Definition |6.1.9).

a“’a
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Let (w') denote bases of p* dual to (z;). As g/ is canonically isomorphic to p, we may identify
C(g,t, V) with Homg (A%, V'), where £ acts on p by the adjoint representation; in other words,
we identify C9(g, ¢, V') with the space of R-linear maps f: A% — V satisfying

q
- fyt,. .., Yq) = Zf(yl,...,[x,yu],...,yq) forall x € ¢, y; € p. (6.2)
u=1
Set
Wt Ia = T A A e for 1 <ji,...,Jq <m.

If the set I = {ji,...,j,} is ordered, we write w! := w/t~Ja. Then any element n € C(g, &, V)
can be written uniquely as

n= Zm w! with nr = nj,..5, = n(xj,...,2;,) €V, (6.3)
i

where I = {j1,...,jq} runs through ordered subsets of {1,...,m}. We also define n;,..; as
above for unordered sets {j1,...,74} € {1,...m}. Note that for any ordered I = {j1,...,j4},

w! = sign o wle " Jo@) N1 = SigN 0 Nj, ) -joy for all o € 3.
Define a symmetric bilinear form L: € x £ - R by
L(l‘,y) :tr(adp(x)oadp(y))v r,y 687

where ady(z) = ad(z)|, = [, —]: p = p, © € £&. Let By denote the Killing form on & by [6.1} we
see that

ad(z) = (adpo(x) adgo(x)) for all z € &.

Hence, Bl = Be + L.
LEMMA 6.2.7. L is negative definite.

Proof. Let x € t. Being skew-symmetric, x has purely imaginary eigenvalues; moreover it is
diagonalisable by a unitary matrix. In particular, there exists a set of n linearly independent
eigenvectors for =, say uq, ..., u, with corresponding eigenvalues A1,..., A,. Consider the Kro-
necker products of these: uy = up ® uf with entry 7, j equal to the product of the ¢’th entry of
ug and the j’th entry of w;. By direct calculations, these matrices are seen to satisfy

Tug — upr = (A + Ap)ug forall 1 <k,l <n,

and thus we conclude that ad(z) has purely imaginary eigenvalues. Applying ad,(z) to the
elements E;; — Ej; € p, we see that if ady(z) is identically zero, then z is a diagonal matrix and,
being skew-symmetric, it must be zero. Therefore for any « # 0, we must have ady(x) # 0, and
thus ad, has a non-zero eigenvalue, so we conclude that

L(z,z) = tr(ady(z)*) <0 forallz € ¢

with equality if and only if x = 0. O
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In view of we can write

[z, 2] = E i iTa, [a, 2] E a:j, and [:Ui,{l)a]zg c;afcj

J

i cl, eR.

for uniquely given constants ¢ ia

’L]’

LEMMA 6.2.8. The constants above satisfy

o _ _ 0. o a _ b
Cij = ~C C(ym_ Cg,a’ and ¢ ; = Cq 5

Proof. The first two identities are clear. The third follows from invariance of the Killing form:

0 = B([w4, 7], 2a) + B(wi, [Ta, 75]) = —¢fj + cfw

LEMMA 6.2.9. L(q,25) = — >, ; ¢} i¢b ;.

Proof. First, we note that as ady(zq)(xj) = [2e,25] =), € asz, the mafrix of ady(x) in terms
of the basis (z;) of p is the (m x m)-matrix with entry i, j equal to ¢, .. Therefore

L(za, ) Zcu ch Cji = ZCJ Cij-

O

We assume from now on that the basis (z,) of € is orthogonal with respect to L (this is possible
as Be and L can be simultaneously diagonalised).
Define constants

Rijp == — Z CiiChps

a

and set
A:=min{—-L(z,z) |z € ¢, B(z,z)=—1}.

Note that 0 < A < 1 as both L and By are negative definite. For ¢ € N, define a real quadratic
form F? in m? variables by

ng + > Rgwmane  for n=(nij)ij-
0,5,k
It is immediate that if p < ¢ and FY is positive definite, then so is FP.
DEFINITION 6.2.10. The Matsushima constant of g is the number
m(g) := max({0} U {q | F? is positive definite}).
Remark 6.2.11. In [6], the Matsushima constant is denoted by m(G).

We refer to [16, Theorem 4.1] for the calculation of Matsushima’s constant:

+1
PROPOSITION 6.2.12. m(g) > “F=.
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We first prove a representation theoretic version of the Matsushima Vanishing Theorem which
we can then apply to our case using Theorem The proof follows that of [4] which in turn
follows the structure of Matsushima’s own version in [19].

THEOREM 6.2.13 (Matsushima Vanishing I). Let V be a unitary g-module on which the Casimir
element acts trlvmlly and such that its completion is separable. If 0 < ¢ < 7=, then any element
n=>,;nmw! €Cl(g,t V) satisfies n; € V? for all I, where we write 7 as in .

Proof. As in the above, i, j, k, I run from 1 to m, while a, b run through m+1ton?—1, and I, J
run through all ordered subsets of {1,...,m} of ¢ elements. In addition, we let j; run through
1 to m for fixed ¢, and u run from 1 to q. It should in all cases be clear from the context what
the indices are, this is just to make perfectly clear the conventions.

Let (—,—) denote the inner product on V and (e, ),en the orthonormal basis of the completion
of V. Recall that being unitary means that

(x-v,w)+ (v,z-w) =0 forallz e g, v,weV.

Let n = Y ;mw! € Cg,€ V). To show that n; € V? for all I, we have to show that
x;-nr = xq-nr = 0 for all i and a. As the Casimir element C = Y, 22 — > 22 € %(g)
acts trivially on V', we have

0= (Cor,np) =) (aF-nr,n) = Y (@t npnn) = Y lleant® =) . (6.4)

% a

It therefore suffices to show that z; - ny = 0 for all ¢« — this also follows readily from the fact
that [p,p] = ¢.
We define a real number, ®(n), as follows

q - 1!
®(n) := ZH (i, 2] - e |* = Z s, 5] - mjygi |12

1,9,1 0]
]17~--Jq
The second equality follows from the fact that ||[zi, z;] -1l = [z, 2] -0j, 1), | for all o € Xy,
I =1{j1,...,74}, so there are q! occurances of ||[z;, z;] - n;||* in the last sum.

We will write ®(n) in two different ways in order to exploit the fact that the above defined
quadratic form F? is positive definite as ¢ < m(g). First, using that [x;,2;] = >, ¢! 2, and

a “i,j
L(za,mp) = =3, c”ci’], we get

q—l
E ng zg I’a nr, Ty - 77[) ( § L ZEa,ZEb) (IEa nr, Ty - 7][)
i,7,a,b,1 a,b,]

- 1)!
_ _<q2>§jL<xa,xa> -
a,l

®(n) =

where we use that the x, are orthogonal with respect to L for the final equality. Then using the
definition of A and we get

®(n) = ZH% nrl* = ZH zi -l = Z i - g 1% (6.5)
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Now, we use the equality [z;,z;] = }_, ¢ ;74 on only one entry of the inner product in ®(n) to
get

o) =5 D et @a My [0 2] )
1 ija
temda

=% > <C?,j (@a * Mjyojgr T - (X5 - Mjrgy)) + G (xa'njl---jqafj'(xi'ﬁjl---jq))>
i7j7a
Jisesda

== ) i (Ta Mgy i (25 Mjygy),
i’j?"’
jl»~~-:jq

where we use that ¢f; = —c7,. Invoking the fact that n: A%p — V' is a t-linear map (cf. ,
we see that

Taq  Mjyowjy = Ta - N Tjys -5 Tj,) = Zn(le, v [Tas Ty 2,)
u
— k ) .
= andu (g, Tl s Tj,)
k,u
= Z(—l)“_lclg,ju DTy Ty vy Ty o Tjy)s
k,u

where in the second sum, zj, is in the w’th place. Then

@) = 3 0 (Sl ) O i (5 )

?7j7k7y a
J1se-3dq

= D (D" Ry (@i Mgy 5 T M)

?7;7"]{:’1""
J1s--50q

= D Bk (80 g, G T3 Wiy
,5,k,u
J15--+50q

where we use the definition of the constants R;j; and that V' is a unitary module.
Note that for fixed k,1, 1 <ia,...,iq < m, we have

Meiaria = Mgy AN Mizdg = Mooy

for all w and j1, ..., j, satisfying

’ir+1 ?”:1,...,’[1,—1,
Jr=191 r=u,

. r=u+1,...,q.

There are exactly ¢ such tuples in the above sum, one for every u = 1,...,q. Hence,

q(n) =q Y Rijkt (Ti - Mhjojys Tj * M)
i7j7k7l
J25--0q
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Then, as Rjj = —Riju, we get

() =— D Rijit (Ti Mjgeojyr Tj * Mhjgeriy)- (6.6)
Z'7‘j7’€7l
J2s-Jq

Combining and we obtain

A
Z <2q Z 125+ Mg lI” + Z Rijrt (T Mjyejg, T - nka---jq)) < ®(n) —®(n) =0. (6.7)
j27~~~:jq ’L,] iaj»k»l

We now use the orthonormal basis, (e, )cn, of the completion of V. Each term in the above
sum can then be written as

A
27(1 Z 2(3«"@' “Mjja-jg €r)2 + Z Rijii Z(ivi Mjgeejgs €r) * (L5 Mhjo-rejgr €r)

i,j reN 05,k reN
A
—E <2q§ ($1'77JJ2~--](17€T> + Rzykl(xz nlyz---yqaer) (xj 77ka---qu€7") .
TGN ’L,j i7 '7k’l
J

For all r € N, ja, ..., jg, define

J2yeedq . T7j »'“9.]’ . ij ""7j _ . - 3
grizeda = (E727), 4, where &7 = (2 jjye gy, €r)-

Then [6.7 reads

S X Fg <o

j27--~,jq reN

Asqg < ”T‘H < m(g), F?is positive definite, so the above inequality implies that £™7/2Ja = ( for
all  and jo, ..., jg. Then x;-n;j,..5, = 0 for all 4,7, ja, ..., jg, which exactly says that x;-n; =0
for all ¢ and I, so ny € V9 for all I. O

The property we need is a corollary of the above:
COROLLARY 6.2.14 (Matsushima Vanishing II). If w € ?{kq?)(X/F) and ¢ < ™ then the
pullback via 7 is G-invariant, i.e. 7*w € Q9(X)%.

Proof. Let V be as in [6.2.4f This is a unitary g-module, the Casimir element acts trivially on
it, and its completion is separable, so we can apply the above theorem to C*(g, ¢, V).

Let w € #% (X/T'). Then by Theorem Yw € Cg,t,V); write Yw = > (Vw)w! as in
Equation (6.3). If ¢ = 0, then d(VYw) = ¥(dw) = 0 implying that (Yw)y = Yw € V. If ¢ > 0,
then Theorem implies that (Pw); € V¢ for all I. Using that elements are g-invariant if
and only if they are G-invariant, i.e. V% =V, we see that the coefficients are constant:

(Yw); = (Yw)ro L,  forall g€ G.
Now, for any g € GG, we have
(Vw)1(7(g)) = (p*m"w)g(DeRy(2,), - -, DeRy(25,)) = (Rgp™m*w)e (o, - -, 5,),
s0 g+ (Ryp*m*w)e(zj,, ..., 2j,) is constant on G for any fixed I = {j1,...,j,}. For fixed g € G,
we have
(Rep m ) DeRn(w3,), - DeBi(w3,)) = (R w*)elass, . 3,)
= (Rpp*m*w)e(wjy, ..., 25,) = (P T W)p(DeRp(xj,), . . ., DeRp(y,))
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for all h € G, I = {4j1,...,jq}- Moreover, for all h € G and {iy,...,i,} C {1,...,n* — 1}, we
have

(p* " W) (DeRp (24, ), - - -, DeRp(i,)) = 0,

if i, > m + 1 for some 1 < u < q as ty(p*7*w) = 0 for all y € € (cf. Lemma [2.1.16)). Then, as
{DeRp(x;i) }1"y U{DcRp(xq) Zi;ll_ﬂ forms a basis of T;,G, and a differential form is completely
determined by its values on ordered subsets of distinct basis vectors at a given point, we conclude
that Ryp*m*w = p*r*w. From p* being injective and p being equivariant, we finally deduce that
T*w e NI(X)C. O

COROLLARY 6.2.15. The map 7*: %z)(X/F) — Q*(X)Y exists in degrees * < "l and for
+1

R

Proof. Existence is a consequence of the above Corollary[6.2.14]and injectivity of 7* is immediate.

Let w € Q9(X)¢ for some ¢ < . We know that w is a harmonic form on X (cf. Proposi-

tion [6.1.8)). Harmonic being a local condition, it is immediate that pw = (7*) " lw € QI(X/T) is

harmonic. For n # 3, ¢ < %‘1, so by Theorem [5.2.12[iii) we have pw € 7/(%) (X/T). For n =3,

we have to require ¢ < ”TH =1 in order to have ¢ < "Tfl =1. O

n # 3 it is always an isomorphism. For n = 3, it is an isomorphism in degrees x <

Remark 6.2.16. In [0], Borel refers to the proof of Theorem 1 in the paper On Betti Numbers
of Compact, Locally Symmetric Riemannian Manifolds by Yozd Matsushima ([19]) to prove
that the harmonic square integrable forms on X/I" are mapped to G-invariant forms. Given a
harmonic square integrable form, he pulls it back to G/T" and constructs sequences converging
to the coefficients in L2(G/T'); he then states that all the steps of Matsushima’s argument follow
through applied to the elements of the sequences. We have chosen to use the algebraic version of
the Matsushima Vanishing Theorem as proved in [4] instead, exploiting first the result of Borel
and Garland.

DEFINITION 6.2.17. For n € N, define a number c(n) as ¢(n) = 2 for n # 3 and ¢(3) = 0.

AND FINALLY...

Now we are ready to prove what we set out to, namely that the inclusion Q*(X)% — Q*(X/T)
is an isomorphism on cohomology in small degrees.

THEOREM 6.2.18. The map j: Q*(X)¢ — Q*(X/I") induces an isomorphism on cohomology in
degrees x < c(n).

Proof. Consider the following commutative diagram in degrees * < ¢(n) and the induced diagram
on cohomology:

5 (XT) . 7,y (X)T) 5 (X/T) HY, (X/T)
@ (x)9 ap, (X/T) HL(2°(X)) HL(0, (X/T))
Q" (X) ———— Q*(X/T) Ho (@ (X)) H*(X/T)
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The map j: Q*(X)¢ — Q*(X/I') is the composition of the lower left vertical map and the
lower horizontal map and we know that the image of j is in Qj,(X/T') by i), thus giving
rise to the middle horizontal map. The lower right vertical map is a quasi-isomorphism by
Theorem ii). The top horizontal map is surjective on cohomology by Proposition ,
and the top left vertical map is an isomorphism by Corollary [6.2.15]

The top right vertical map Qf,(X/I') — QZ‘2)(X/F) exists by [5.2.12 iii), as * < 5%, and it
induces an isomorphism on cohomology as Q4 (X/I') = Q*(X/I') is a quasi-isomorphism.

We wish to show that the middle horizontal map induces an isomorphism on cohomology; the
lower right vertical map being a quasi-isomorphism, this will imply that j induces an isomorphism
on cohomology. Surjectivity is clear by commutativity of the upper square. Injectivity is seen
as follows: Assume [w] € H,(Q*(X)%) is mapped to zero in H (4 (X/T')). Then w is a
harmonic form satisfying w = dw’ for some w’ € O, (X/T) C Q) (X/T"). Hence, w = 0 by

Proposition O

Remark 6.2.19. Note that in the above proof, we actually show that j induces an injective map
on cohomology in degrees * < "7*1

By Theorem we have proved Theorem [2.3.6] as we set out to several pages ago, namely
that the inclusion Q*(X)¢ — Q*(X)5L(2) induces an isomorphism in degrees % < ntl for n # 3
and * < " for n = 3. Combining this with Proposition and the fact that Q*(X)“ has
trivial differential, we have:

THEOREM 6.2.20.

HY(SL,(Z)) = H (Q*(X)Y) = Q4(X)Y  for all ¢ < ¢(n).

6.3 CALCULATING H*(SL,(Z)) IN Low DEGREES

We will now put to use the results of our hard work and actually calculate the cohomology of
SL,,(Z) in low degrees. We use the compact real form of sl,,(R), allowing us to use the fact that
the inclusion Q*(M)H < Q*(M) is a quasi isomorphism when H is a compact Lie group and
M a homogeneous H-space. We also consider the issue of stability.

Consider again the Cartan decomposition of g = € @ p into a direct sum of skew-symmetric
matrices with trace zero, ¥, and symmetric matrices with trace zero, p. Consider the subspace
ip C g ®gr C; then the direct sum € @ ip is a Lie algebra with the Lie bracket defined in the
obvious way and it is in fact isomorphic to the special unitary Lie algebra

toip={rcgrC|z"=—-z}={recM,(C)|z"=—z tr(z) =0} = su(n).

Recall that the special unitary group, SU(n) = {g € SL,(C) | u* = u~'}, is a compact real Lie
group. Recall also that for a compact Lie group H and homogeneous H-space M, the inclusion
Q*(M)H — Q*(M) is a quasi-isomorphism (see [23, Theorem 13.6.30] — the idea is to construct
an inverse by averaging the translations of a closed differential form on M over H).
Write G, := SU(n). Evaluating at the identity coset yields isomorphisms

Q'(X) = C*(g,&,R) = Home(A(g/t), R),

Q*(K\G,)% = C*(e@ip, &, R) = Home(A"(( @ ip)/8), R),
and the isomorphism p — ip,  — dx, induces a vector space isomorphism and hence an

isomorphism of chain complexes as both complexes have trivial differential:

Home(A*(ip), R) —» Homg(A*p, R).
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So we have the following sequence of chain complex isomorphisms:

Q*(X)Y = Home(A*(g/t), R) = Home(A*p, R) = Homg(A*(ip), R)
>~ Homg(A*((€ @ ip)/8), R) 2 QO (X\G.,) % .

Composing this with the quasi-isomorphism Q*(X\G, )% — Q*(K\G,), we get
0(X)C = H,(@F(X)) = B (K\G).

The calculation of the cohomology of K\G,, can be done using spectral sequences (see [20, page
92] or [13, Proposition 7.2|):

PROPOSITION 6.3.1.
H*(SO(n)\SU(n),R) = A*{z; | deg(z;) =4i+1, i=1,..., %]}
Combining the above results with Theorem [6.2.20] it follows directly that:
THEOREM 6.3.2.
HY(SL,(Z)) 2 A z; | deg(x;) =4i+1, i=1,..., 2|}, forany ¢ < c(n).

For a given n, the computable range is quite small. For n = 2,3 for example, we only get
information about the zero’th cohomology group, which we already knew. We also see, however,
that the bound ¢(n) tends to 0o as n — 0o, encouraging us to consider the question of stability.
Consider the inclusion f;,: SLy(R) < SL;41(R). This induces maps

SLn(Z) — SLn+1(Z), Xn — Xn+1, and Xn/Fn — Xn+1/1—‘n+1
which we also denote by f,. By tracing through the isomorphisms defining
HY(SL,(Z)) = Q9(X,,)%",

we see that these commute with the maps f;:

2

HY(SLy,(Z)) ——— QI(X,,)Cn
] |5
H(SLy,+1(Z)) = Qq(Xn-i-l)G"“

The only non-trivial observation to be done here is that the map f,: X,,/T, — Xpnt1/Tnta
induces the map f,: SL,(Z) — SLy,+1(Z) on 71, but this is immediate from the definition of
the f,,. This implies that when interpreting the group cohomology in terms of these classifying
spaces, the maps f} on H*(T';,) and H*(X,,/T,;R) are compatible.

The following result is due to H. Cartan (see [10, Exp. 16])

PROPOSITION 6.3.3. The sequence (Q9(X,,)%, f*) stabilises, i.e. given ¢ > 0, there exists
n(q) > 2 such that

lim Q(X,,) % = QU(X,,) 9 = A 2 | deg(ay) = 4i+ 1, i =1,..., [ "]}

for all m > n(q).



Chapter 6. Finishing off 81

As a corollary, we have:
COROLLARY 6.3.4. The limit of (Q*(X,,)%", ) is

@Q*(Xn)an = A*{x; | deg(x;) = 4i+1, i € N}.
Thus the real cohomology of SL,,(Z) stabilises:

THEOREM 6.3.5. For a given ¢ > 0, the sequence (HY(SLy,(Z)), f¥) stabilises, i.e. there ex-

ists n’(¢) > 2 such that the composition fy,—10---0 fu(g: SLn/(q)n(Z) — SL,,(Z) induces an
isomorphism
HY(SLyn(Z)) = HY(SLy(g)(Z))  for all m > n'(q).
THEOREM 6.3.6. The real cohomology of the stable special linear group, SLo(Z), is
H*(SLoo(Z)) =2 A*{x; | deg(x;) = 4i+ 1, i € N}.

Proof. Indeed, we have the following sequence of isomorphisms

H*(SLoo(Z)) = H*(lim SLy,(Z)) = lim H*(SLy(Z))
@Q*(XH)G" = AN*{z; | deg(z;) =4i+1, i € N}.

I

For any ¢ > 0, we have isomorphisms H9(SL,,(Z)) = Q*(X,,)%" for all n > 4¢ and they commute
with the maps f;; defining the limit. This shows the second isomorphism. The first isomorphism
is a consequence of the fact that homology commutes with limits, the fact that Homg(—,R)
takes colimits to limits and the Universal Coefficient Theorem. O






A APPENDIX

A.1 PROPER GROUP ACTIONS

In this section, we consider the notion of an action being proper. As the action to which we
shall apply the following results is a right action, we shall consider only right actions, but it is
immediate that all results hold for both right and left actions.

DEFINITION A.1.1. Let G be a topological group acting on a space X. The action is proper, if
the map X x G —» X x X, (z,g9) — (x.g,x), is proper, i.e. inverse images of compact sets are
compact. We also say that G acts properly on X.

If G is discrete and acts properly on X, then we say that it acts properly discontinuously or that
the action is properly discontinuous.

ProproOSITION A.1.2. Let G be a topological group acting on a space X. If X is Hausdorff, then
the following are equivalent:

1. The action, X « G, is proper.
2. For any compacts K1, Ko C X, the set {g € G | K1gN Ky # (0} is compact.
3. For any compact K C X, the set {g € G| KgnN K # 0} is compact.

Proof. Let a: X x G — X x X denote the map (x,9) — (z.g,z), let 7x: X x G — X,
mg: X X G — G denote the projections, and let m;: X x X — X denote the projection onto the
i’th coordinate, ¢ = 1,2. Note that for any compacts K1, Ko C X

{g eG ‘ KignN Ky # @} = Wg(a_l(KQ X Kl)) (Al)

Indeed, if g € G satisfies K19 N Ky # 0, then there exists x; € K;, i = 1,2, such that x1.g = z2.
Hence, a(r1,g) = (z2,71). Conversely, if g € my(a™! (K2 x K1)), then there exists x € X such
that z.h € Ky and = € Ky, implying z.g € K1h N K.

The implication (1) = (2) follows immediately from and (2) = (3) is obvious. For the
implication (3) = (1), let F¥ C X x X be compact and set K; := m(F), Ky := mo(F), and
K : =K UKs. Then F C K| x Ko C K x K, and thus

a Y F)Ca YK x Ky) Ca Y (K xK)C K x A,

where A := {g € G| KgN K # 0}. As X is Hausdorff, F is closed. We conclude that a~!(F)
is compact, being closed in a compact space. O

PRrROPOSITION A.1.3. For any topological group G, the action of G on itself by right multiplica-
tion is proper.

Proof. Let K C G be a compact subset. Then {g € G | KgNK # ()} = K~'K is compact being
the image of K~ x K C G x G under multiplication. The action is proper by Proposition [A.1.2]
O

PROPOSITION A.1.4. Let G be a topological group acting on spaces X and Y. If f: X — Y is
a proper surjective equivariant map and X v G is proper, then Y «~ G is proper.

83
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Proof. Let ax: X xG — X x X, ay: Y x G = Y x Y denote the action maps described in
Definition [A.1.1] Let K C X x X be a compact subset and note that ay o(f xid) = (f x f)oax.
Then

ay ' (K) = (f xid)(a' o (f x /)"H(K))

as f x id is surjective. By assumption, (f x f) o ax is proper, so (f x id)(ax o (f x £)7H(C))
is compact. We conclude that ay is proper. O

COROLLARY A.1.5. Let G be a topological group, K C G a compact subgroup. Then the action
of G on the coset space K\G by right multiplication is proper.

Proof. The canonical projection 7: G — K\G is equivariant and surjective. To see that it is
proper, allowing us to apply Propositions [A.1.3] and [A.1.4] let ' C K\G be a compact subset.
Let W C G such that W contains exactly one representative of each coset contained in F. We
claim that W is compact. Let {U; };er be an open covering of W. For every i € I, set V; := KUj;.
The V; are open by homogeneity of the topology on G. Then {7(V;)}icr is an open cover of
F as n1(n(V;)) = KV; = V; is open for all i € I. Let J C I be a finite subset such that
F C Ujey;m(Vi). Then W C 7= H(F) C ;e Vi, and since W N V; = W N U; for all i by our
choice of W, we conclude that W C |J,c; Ui. Now, 7=} (F) = 7! (x(W)) = KW is compact as
it is the image of the compact set K x W under multiplication. ]

PROPOSITION A.1.6. A closed inclusion into a Hausdorff space is proper.

Proof. Let i: X — Y be a closed inclusion with Y Hausdorff. Identify X with its image i(X),
which must be closed in Y by assumption. Let K C Y be any compact subset; as Y is Hausdorff,
K is closed, and K N X is compact as it is closed in a compact space. ]

COROLLARY A.1.7. If G is a Hausdorff topological group acting properly on a Hausdorff space,
and H is a closed subgroup of G, then the inherited action of H on X is proper.

Proof. This is a consequence of the previous proposition as X x H — X x G is a closed inclusion
and thus the composite X x H - X x G - X x X, (z,h) — (x.h, z), is proper. O

A.2 SMOOTH ACTIONS AND QUOTIENT SPACES

We are interested in group actions of Lie groups on smooth manifolds and will need the following
results about smooth structures on quotients. We do not prove these results but refer to [18] for
details.

ProOPOSITION A.2.1. Let M be a smooth manifold and G a Lie group acting smoothly on M
(from the right). If the action M « G is proper and free, then the quotient space M/G can
be equipped with a unique smooth structure such that the canonical projection M — M /G is a
smooth submersion.

Proof. |18, Theorem 21.10]. O

PROPOSITION A.2.2. Let G be a Lie group and H a closed subgroup of G. There is a unique
smooth structure on the coset space H\G such that the canonical projection G — H\G is a
smooth submersion. With respect to this smooth structure, right multiplication of G on H\G
is a smooth action.

Proof. [18, Theorem 21.17]. O
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We have the following smooth version of the orbit-stabiliser theorem.

PRrROPOSITION A.2.3. Let M be a smooth manifold and G a Lie group acting smoothly on M
(from the right). For a given x € M, the stabiliser of z, G, is a closed subgroup of G and
the orbit of x, x.G, is a submanifold of M. Moreover, the map G — M, g — x.g, induces
an equivariant diffeomorphism G,\G — x.G, where the coset space G,\G is equipped with
the smooth structure described in In particular, if the action is transitive, then M is
diffeomorphic to Gz\G.

Proof. [18, Theorem 21.18|. O

Remark A.2.4. A smooth manifold which is diffeomorphic to H\G for some Lie group G and
closed subgroup H C G, is called a homogeneous space. Equivalently, it is a smooth manifold
on which G acts smoothly and transitively.

A.3 STANDARD HOMOTOPY OPERATOR

We define the standard homotopy operator and prove that it is indeed a homotopy operator.

For m € N, let ej,...,e, be a basis of R"™ and denote by €1,..., €, the dual basis of (R")*.
Then €5 = €,1) A+ A €k, 0 € Sk m—k, form a basis of QF(R™). Consider the map

M=

H: Q*R™) —» QFYR™)  givenby H(feo) =Y cpicpi, fECTR™), 0 € Spm,

=1

where o' € Yg_1,m_ks1 is the permutation skipping o(i) (ie. oi(j) = o(j) for j < i, and
o'(j) = o(j + 1) for j > i) and the coefficients c,: € C°(A x N) are defined as

) 1
i () = (—1) Lo /0 Pttt dt.

PrROPOSITION A.3.1. On any subset U C R™ which is starshaped with respect to the origin, we
have dH + Hd = id for k > 1.

Proof. First we see that

=1 i
=1,...k
and
k
f _
(feo) = H(df Nes) = Z H<ax6]/\ea = Z Cgﬁg-i-ZCJJLe]/\eUz ,
j#o(l) J j#o(l) i=1
1=1,... k 1=1,...k
where
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For j # o(1), we have

Ocgi k—1 i—1 Laf k
= Ot dt = (—1) ; = (xt)t" dt
S (@) sy [ ot (V) [ (et
and
%(:g}: )i= 1/ Flat)tblat + (- / zt)tk dt.
al‘g(i) 6:60(1
We see that &, . = — 2%l 5o
C]va-z - 8CEJ )
b 4 Ocgi
(dH + Hd)(fe,) = Z(—w*lax Tyt Y Cieo
i=1 (?) o)

Finally, setting h,: I — R, h,(t) = f(xt), for a given x € R™, we have

k k
0c,i !
i—1 (o k k—1
E (-1) Do) ——(x) +. E g x]/ &U xt)t® dt + E /o flzt)t™ dt
= ljjg( )k ’ =

/ija xttkdt—i—k/ flat)th= at

1 1
:/O t’fd;t (t) 4 kt*Tha(t ()dt:/o %(hw<t)tk)dt: [ha (£)t"]5 = f ().

We conclude that (dH + Hd)(fe;) = fe, as desired. O
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