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Abstract/resumé

English: Many classical sequences of groups Gn induce isomorphisms in group homol-
ogy from some point depending on the homology degree. We cover a spectral sequence
argument involving highly connected simplicial complexes Xn with Gn-actions that can
be used to establish such results, including tools to show that the simplicial complexes
are highly connected. We apply this to the sequence of braid groups and sequences of
mapping class groups of surfaces with increasing genus or number of boundary compo-
nents. Finally we apply it to a sequence of subgroups of mapping class groups of surfaces
called symmetric mapping class groups whose elements commute with fixed involutions
of the surfaces.

Dansk: Mange klassiske følger af grupper Gn inducerer isomorfier i gruppehomologi fra
et vist punkt, der afhænger af homologigraden. Vi gennemg̊ar et spektralfølgeargument,
der indebærer højsammenhængende simplicielle komplekser Xn med Gn-virkninger, som
kan bruges til at opn̊a s̊adanne resultater, herunder værktøjer til at vise, at de sim-
plicielle komplekser er højsammenhængende. Vi anvender dette p̊a følgen af fletnings-
grupper samt følger af afbildningsklassegrupper p̊a flader, hvor genus eller antallet af
randkomponenter øges. Endelig anvender vi det p̊a en følge af undergrupper af af-
bildningsklassegrupper p̊a flader kaldet symmetriske afbildningsklassegrupper, hvis ele-
menter kommuterer med bestemte involutioner p̊a fladerne.
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Introduction

A family of groups can often be arranged in a sequence Gk → Gk+1 → · · · . We say that
such a sequence satisfies homological stability with slope β if there is some increasing
function φ of slope β such that the induced maps Hi(Gk)→ Hi(Gk+1) are isomorphisms
for all i ≤ φ(k). Some examples of classical group sequences with this property are
symmetric groups, automorphism groups of free groups, and general linear groups.

In Section 1.1 we will go through a general method for proving such results, originally
due to Daniel Quillen. This method involves constructing for each n a simplicial complex
Xn and an action of Gn on Xn that respects the simplicial structure. This action must
be transitive on the vertices of Xn, and the stabilizer of a p-simplex must be conjugate to
Gn−r for some 1 ≤ r ≤ p+1. In some cases we always have r = p+1 so that the stabilizer
of a p-simplex can be seen as going p+ 1 steps back in the sequence of groups. Besides
a couple of other technical requirements, the complex Xn and the quotient Xn/Gn must
be ’sufficiently highly connected’ with respect to n. The last part, showing that the
complexes are highly connected, is usually the most demanding one. In Section 1.2 we
establish a number of tools that can be used to this end.

We will use Quillen’s method on a number of group sequences to show that they
satisfy homological stability. The first one is covered in Chapter 2. We consider the
sequence B0 → B1 → · · · , where Bn is the braid group on n strands. In order to define
the simplicial complex Xn, we define Bn as the boundary fixing mapping class group
of the 2-disk with n distinct marked points in the interior. For the spectral sequence
argument we use the complex of tethers Yn,1 in which a vertex is an isotopy class of arcs
from a specified point in ∂D2 to one of the marked points, and where a collection of
isotopy classes of tethers spans a simplex if all the tethers end in different marked points
and can be chosen to be disjoint except for their endpoints. A self-diffeomorphism of
the marked 2-disk then takes systems of tethers to systems of tethers, thus defining the
action Bn y Xn.

In Chapter 3 we cover homological stability for boundary fixing mapping class groups
of surfaces. Given two surfaces with boundary, we can glue them together along a
pair of boundary circles. Starting with some surface Sg,s of genus g with s boundary
components, we can glue on a copy of S1,2 along one boundary component to obtain the
surface Sg+1,s, or we can glue on a copy of S0,3, also known as a pair of pants, along
one boundary component to obtain the surface Sg,s+1. These two types of gluing give us
two sequences of surfaces, one with increasing genus, and one with increasing number of
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boundary components. These sequences induce sequences of mapping class group which
we will prove to be homologically stable with slope 2. We also show that the homology
groups of mapping class groups of closed surfaces are independent of genus in the same
range. Most of Chapter 3 follows the preprint [HV15b] which was published to arXiv
in August 2015 but has been circulating in a less polished version for the last decade.
Moreover, we import some methods and proofs from [HW07].

In 1985 John L. Harer published [Har85] in which he established a slope three function
φ such that the i’th homology group of the mapping class group of a genus g surface
with s boundary components is independent of g and r as long as g ≥ φ(i). Since then,
this result has been gradually improved. First Nikolai V. Ivanov improved the slope of φ
to 2 in three different papers [Iva87, Iva89, Iva93]. In an unpublished preprint [Har93],
Harer improved this slope to 3

2 , and the first complete proof of this is due to Søren K.
Boldsen [Bol12].

Thus the stability theorem that we present in this thesis is not the strongest one
known, but the complexes that we use are in some ways the natural ones, which is
interesting in itself and also makes the arguments relatively simple. Moreover, the
stabilizers of p-simplices correspond to moving p+ 1 steps back in the group sequences,
which is better than one could usually hope for.

While the first three chapters are based mainly on a preprint by Allen Hatcher and
Karen Vogtmann [HV15b], Chapter 4 is the new contribution of this thesis. We study
sequences of symmetric mapping class groups of surfaces. If S is a surface with boundary,
and κ is an involution on S, i.e. a self-diffeomorphism of order 2, we can define a subgroup
of the boundary fixing mapping class group of S consisting of elements that commute
with κ. We can then glue pairs of pants, i.e. surfaces of genus 0 with 3 boundary
components, with certain accompanying involutions onto S to get a sequence of surfaces
S = S0 → S1 → · · · where each Si comes with an involution κi. For each step in the
sequence, the number of points that are fixed by the resulting involution is increased
by one. Moreover, the genus is increased by one for every two steps. This sequence of
surfaces with involutions induces a sequence of symmetric mapping class groups, and we
prove that this sequence satisfies homological stability. The simplicial complexes that
we use for the spectral sequence argument are built from systems of symmetric arcs
between two chosen points b1, b2 ∈ Si. Here a vertex is an isotopy class of arcs from
b1 to b2 that are symmetric with respect to the involution κ, meaning that we must be
able to choose an arc a in the isotopy class such that κ(a) = a. A system of symmetric
arc classes then spans a simplex if the arcs can be chosen to be mutually disjoint. The
involution κi then takes systems of symmetric arcs to systems of symmetric arcs, thus
defining the group action used for the spectral sequence.



Chapter 1

Homological stability tools

This chapter is our toolbox. Here we will not prove any actual stability theorems, but
we will set the stage for the theorems in the later chapters. We begin with the central
spectral sequence argument. This requires some highly connected simplicial complexes,
and the second section of this chapter consists of a range of tools to help us showing
that such complexes are highly connected.

1.1 The spectral sequence argument

This section will form the backbone of our homological stability proofs throughout the
thesis. Assume that we have a sequence of group inclusions

· · · → Gn → Gn+1 → Gn+2 → · · · . (1.1)

After making some assumptions on this sequence we will prove that it is homologically
stable of slope 2, i.e. that Hi(Gn−1)→ Hi(Gn) is an isomorphism whenever n > 2i+ k
for some constant k. We will also prove that it is surjective for n = 2i + k. We will
prove this by induction using two spectral sequences. In one of these spectral sequence
the homomorphism Hi(Gn−1)→ Hi(Gn) will be a differential on the E1 page.

Assume that for each n we have a simplicial complex Xn (see Appendix A.1 for a
definition) and an action Gn y Xn that respects the simplicial structure as well as the
dimension of the simplices, i.e. it takes p-simplices to p-simplices for all p. This means
that if we denote by Xp

n the set of p-simplices in Xn, we get an action Gn y Xp
n. The

action Gn y Xn should satisfy the following conditions:

(1) Gn y Xn is transitive on the vertices of Xn, i.e. Gn y X0
n is transitive.

(2) For a p-simplex σp, the stabilizer stab(σp) fixes σp pointwise, and there is some
h ∈ Gn such that stab(σp) = hGn−rh−1 ∼= Gn−r for some r with 1 ≤ r ≤ p+ 1. In
particular if p = 0, then stab(σp) ∼= Gn−1.

(3) If e is an edge with vertices v and w, there is some g ∈ Gn such that gv = w and
such that gh = hg for all h ∈ stab(e).

(4) Xn and Xn/Gn are both sufficiently ’highly’ connected.

9



10 CHAPTER 1. HOMOLOGICAL STABILITY TOOLS

In many cases the action will be transitive on simplices of any dimension. This will
make Xn/Gn easier to describe, but is not strictly necessary, and we will in fact use the
argument in the greater generality described here. The second condition means that we
can see a simplex of Xn as something that ’undoes’ the homomorphisms of (1.1). For
instance when we prove that (1.1) is homologically stable for Gn =Mn,s, the mapping
class group of the surface Sn,s of genus n with s boundary components, a p-simplex
will be a constellation of arcs and curves that cuts Sn,s into the surface Sn−p−1,s. The
stabilizer is then isomorphic to the mapping class group of this cut up surface.

Remark 1.1. We assume for simplicity that Xn and Xn/Gn are highly connected, i.e.
that their homotopy groups vanish until some degree (assumption 4), since this will be
true in most of the cases that we investigate. However, we only need the homology
groups to vanish until that degree since this is enough for the terms of high total degree
to vanish in the spectral sequence that we will study.

Remark 1.2. By default we assume that the Xn’s are simplicial complexes since this is
true in most cases that we will encounter. However, we might as well assume that they
are only ∆-complexes (semi-simplicial sets) as the whole spectral sequence argument
works equally well in that setting.

1.1.1 Construction of the spectral sequence

We will now construct the two spectral sequences that we will use for the stability
argument. For G = Gn, let E∗G be a free resolution of Z by Z[G]-modules. Such a
resolution exists by Lemma A.7. Let

· · ·
∂p+1−−−−→ Cp

∂p−−→ Cp−1
∂p−1−−−−→ · · · ∂1−−→ C0

∂0−−→ C−1 = Z→ 0

be the augmented chain complex of X = Xn, i.e. Cp = Z[Xp] for p ≥ 0, the free Z-
module with generators in the p-skeleton Xp. The differentials are induced by the face
maps, i.e. ∂p =

∑p
i=0(−1)idi for p ≥ 0, and ∂0 is the augmentation homomorphism that

maps each copy of Z by the identity to C−1 = Z. Then the action G y X makes C∗
a complex of Z[G]-modules with the action generated by gZ[σ]

∼=−−→ Z[gσ]. This means
that we can form the tensor product over Z[G] to get a double complex

C∗ ⊗G E∗G := C∗ ⊗Z[G] E∗G.

Filtering this complex horizontally, respectively vertically, gives rise to two spectral
sequences both converging to the homology of the total complex Tot(C∗ ⊗G E∗G). For
a construction of these spectral sequences, see e.g. [Wei94, Section 5.6].

Using the horizontal filtration, E1
p,q is formed by taking the p’th homology with

respect to C∗ ⊗G EqG. If we say that X is c(X)-connected, this means that C∗ is exact
until (and including) dimension c(X). Thus since EqG is free, C∗ ⊗G EqG is also exact
in this range, so E2

p,q = 0 for p ≤ c(X). In particular, the spectral sequence converges
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to 0 in total degrees p+ q ≤ c(X), so this also holds for the spectral sequence obtained
by vertical filtration.

For the spectral sequence for the vertical filtration, we get E1
p,q = Hq(Cp⊗GE∗G) =

Hq(G;Cp). We can compute this. Namely,

Hq(G;Cp) = Hq (G;⊕σ∈XpZ[σ]) .

This can be expressed as

Hq

(
G;⊕σ∈Ωp ⊕τ∈orb(σ) Z[τ ]

)
,

where Ωp is a set of representatives, one for each orbit of p-simplices in X. By Theo-
rem A.9, this is isomorphic to

Hq

(
G;⊕σ∈Ωp ⊕[g]∈G/ stab(σ) Z[gσ]

)
= Hq

(
G;⊕σ∈Ωp ⊕[g]∈G/ stab(σ) gZ[σ]

)
,

where the action on Z[σ] is induced by the action on X. By Lemma A.11, this is
isomorphic to ⊕

σ∈Ωp

Hq(G;⊕g∈G/ stab(σ)gZ[σ]).

By Shapiro’s Lemma (Lemma A.12), this is just⊕
σ∈Ωp

Hq(stab(σ);Z[σ]). (1.2)

Note that this is also true for p = −1 if we consider a (−1)-simplex to be empty, so the
stabilizer is all of G, which means that we just get Hq(G;Z). Also, by assumption (2),
stab(σ) ∼= Gn−r for some r = r(σ) with 1 ≤ r(σ) ≤ dim(σ) + 1. Moreover stab(σ) fixes
σ, so Z[σ] is just a copy of Z. Thus we have

E1
p,q
∼=
⊕
σ∈Ωp

Hq(Gn−r(σ)).

Since Ωp has one element for each orbit, i.e. for each element of X/G, and since two
elements in the same orbit have isomorphic stabilizers by Lemma A.10, we have⊕

σ∈Ωp

Hq(stab(σ)) ∼=
⊕

orb(σ)∈X/G
Hq(stab(σ)), (1.3)

so the q’th row of the E1 page is just the augmented chain complex of X/G with
coefficients in the local system determined by Hq(stab(σ)). The differentials of this
complex, i.e. the d1-differentials of the spectral sequence, can be described explicitly.
Take a simplex σ ∈ Ωp and consider the restriction of d1 to the summand Hq(stab(σ))
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i Hi(Gn) Hi(Gn−1) Hi(Gn−2) · · ·

i−1 · · · Hi−1(Gn−1) Hi−1(Gn−2) Hi−1(Gn−3) · · ·

i−2 · · · Hi−2(Gn−3) · · ·

q = 0 H0(Gn) H0(Gn−1) H0(Gn−2) H0(Gn−3) · · ·

p = −1 0 1 2 · · ·

d

Figure 1.1: The E1 page of the spectral sequence for a transitive action Gy X

corresponding to σ. Let τ ∈ Ωp−1 be an orbit representative of the i’th face ∂iσ. Then
τ = g−1∂iσg for some g ∈ G, and we have a homomorphism

d1
i : Hq(stab(σ))→ Hq(stab(τ))

induced the group inclusion stab(σ) → stab(∂iσ) followed by conjugation with g. The
d1-differential is induced by the boundary map on the augmented chain complex and is
therefore given by

d1 =

p∑
i=0

(−1)id1
i .

1.1.2 The general proof of homological stability

We denote the homomorphism Hi(Gn−1)→ Hi(Gn) by d since we will see that it occurs
as the differential d : E1

0,i → E1
−1,i in the second spectral sequence given above by vertical

filtering. We will determine a linear function φ : Z≥0 → Z≥0 given by φ(i) = 2i+ k such
that d is an isomorphism for n > φ(i) and a surjection for n = φ(i). The constant k will
depend on the connectivity of the complexes Xn and the quotients Xn/Gn.

If the action Gn y Xn is transitive on all simplices and not just on vertices, and
if the stabilizer of a p-simplex is always conjugate to Gn−p−1, then the E1 page of
the spectral sequence looks like the picture in Figure 1.1. In general the action is not
necessarily transitive on simplices of dimension 1 and above. In the general case the
groups H∗(Gn−p) in column p for p ≥ 1 will be replaced by direct sums of groups
H∗(Gn−r) for 1 ≤ r ≤ ∗.

The differential d is induced by the inclusion of the stabilizer of a vertex v into all
of Gn. By assumption the stabilizer is isomorphic, by conjugation with some g ∈ Gn, to
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the image of Gn−1 under the standard inclusion into Gn, i.e. the diagram

stab(v) �
�

//

cg

��

Gn

cg

��

Gn−1
� � // Gn

commutes, where cg denotes conjugation with g. By Lemma A.13, the rightmost vertical
map induces the identity on homology, so on homology the upper horizontal map can be
identified with the lower one. Thus d is induced by the standard inclusion Gn−1 ↪→ Gn,
so this is the homomorphism that we will study.

We will prove the homology stability by induction, starting with the trivial case
i = 0. For the induction step, let n = 2i + k and assume that c(Xn/Gn) ≥ i and
that c(Xn) ≥ i− 1 where c(−) denotes connectivity. For the injectivity argument later
we will ramp these assumptions up by 1. Furthermore assume that for any j < i,
Hj(Gm−1)→ Hq(Gm) is an isomorphism for m > 2j+k and a surjection for m = 2j+k.
We then want to show that

Hi(Gn−1)→ Hi(Gn)

is an isomorphism for n > 2i+ k and surjective for n = 2i+ k.
We start with the surjectivity argument. By the connectivity of X we have E∞p,q = 0

for p+q ≤ i−1 by the earlier arguments. In particular, E∞−1,i = 0, so if we can show that
every differential dr : Err−1,i−r+1 → Er−1,r is 0 for r > 1, then the only option for killing
the (−1, i) term is for d to be surjective. We will show this by showing that Erp,q = 0
whenever p+q = i and q < i. In fact we will show that already on the E2 page, E2

p,q = 0
for such p and q.

So assume that p + q = i and q < i. Recall from (1.3) that the q’th row of the E1

page is the augmented chain complex of Xn/Gn with coefficients in the local system
given by Hq(stab(σ)), so E2

p,q is the (p + q)’th homology of Xn/Gn with coefficients in
the same local system. We claim that this local system is isomorphic to the local system
at Hq(Gn), i.e. that for q < i the inclusions of stabilizers into Gn induce isomorphisms⊕

σ∈Ωp

Hq(Gn−r(σ)) ∼=
⊕
σ∈Ωp

Hq(stab(σ)) ∼=
⊕
σ∈Ωp

Hq(Gn)

when p + q < i, that they induce surjections for p + q = i, and that the maps in
the local coefficient system given by Hq(stab(σ)) all reduce to the identity under these
isomorphisms. Then

E2
p,q = Hp(Xn/Gn;Hq(Gn)),

so if i ≤ c(Xn/Gn), then E2
p,q will be zero as long as p+ q = i and q < i.

Let us see how the coefficient groups can be replaced. Recall that the differentials
on the E1 page are induced by inclusion of groups followed by some conjugation. This
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means that they fit into commutative diagrams

Hq(stab(σp))

incl∗
��

∂i∗ // Hq(stab(∂iσp))
cg0∗ // Hq(stab(τp−1))

incl∗
��

Hq(Gn)
cg0∗ // Hq(Gn),

where cg0 denotes conjugation by a suitable element g0 ∈ Gn, and incl denotes the group
inclusions. The lower map is the identity by Lemma A.13. Thus if the vertical maps are
isomorphisms, then the local system {Hq(stab(σ))} is isomorphic to the constant system
at Hq(G).

Since σp is a p-simplex, stab(σp) is conjugate by assumption to Gn−r(σp) where 1 ≤
r(σp) ≤ p + 1. By the induction hypothesis we have an isomorphism Hq(Gn−r(σp)) ∼=
Hq(Gn) if

n− r(σp) ≥ 2q + k.

Since n− r(σp) ≥ n− p− 1, this holds in particular if

n ≥ p+ 2q + k + 1 which is equivalent to n > p+ 2q + k.

But

p+ 2q = (p+ q) + q = i+ q < 2i,

so

p+ 2q + k < 2i+ k,

and 2i+ k < n by assumption, so we get the result.
For injectivity, the argument is similar, but with an extra step. We now assume

that n > 2i + c, that c(Xn/Gn) ≥ i + 1 and that c(Xn) ≥ i. Then E∞0,i = 0 since it
has total degree ≤ i. Thus, similarly to before, it suffices to show that all differentials
dr : Err,i−r+1 → Er0,i, r ≥ 1 are 0 since this will force d : E1

0,i → E1
−1,i to be injective as

there are no non-trivial differentials out of Er0,i when r > 1. Once again we will argue

that all the terms E2
r,i−r+1 are 0 for r > 1, i.e. that E2

p,q = 0 if p+ q = i+ 1 and q < i.

But this time we also need the differential d1 : E1
1,i → E0

0,i to be zero. Showing that the

terms E2
p,q are 0 is done just like before, except we need to replace the condition that

i ≤ c(Xn/Gn) with the condition that i + 1 ≤ c(Xn/Gn) since everything is shifted to
the right by one.

We will now show that the differential d1 : E1
1,i → E1

0,i is the zero map. This will

follow from assumption (3). E1
1,i is the direct sum of groups Hi(stab(e)) where e runs

over edges in Xn. The differential restricted to the summand Hi(stab(e)) is induced
by the map δ = d1

1 − d1
0, where d1

i = cgi ◦ ∂i, where gi is the element such that the
conjugation cgi by gi takes stab(∂ie) to the stabilizer of the orbit representative of ∂ie.
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We can choose the orbit representatives such that g0 is the identity element and such
that g1 is the element that exists by assumption (3), and which takes one vertex of e to
the other and commutes with stab(e), see Lemma A.14. On the group level this gives a
diagram

stab(e) �
�

//

cg1=id

��

stab(∂1e)
cg1 // g1 stab(∂1e)g

−1
1

stab(e) �
�

// stab(∂0e)
cg0=id

// stab(∂0e).

(1.4)

The diagram commutes since either way around is just conjugation by g1. The top row
is d1

1, and the bottom row is d1
0, showing that d1

1 = d1
0, so δ = d1

1− d1
0 = 0. In particular,

δ induces the zero map on homology.

1.1.3 Examples

Theorem 1.3 ([HV15b, Example 1.1]). If Xn is (n−3)-connected and Xn/Gn is (n−2)-
connected, then the homomorphism d : Hi(Gn−1) → Hi(Gn) is an isomorphism for n >
2i+ 2 and a surjection for n = 2i+ 1.

Proof. The connectivity of Xn and Xn/Gn means that we want the inequalities i ≤ n−2
for surjectivity and i− 1 ≤ n− 2 for injectivity, or equivalently n ≥ i+ 2 for surjectivity
and n ≥ i+ 1 for injectivity. Thus, for the stable range function φ(i) = 2i+ k = 2i+ 1,
we want to have 2i + 1 ≥ i + 2 for all i ≥ 1. By the induction argument in Section
1.1.2, we always have φ(i) ≥ φ(i − 1) + 2, so it suffices to look at i = 1, i.e. we want
φ(1) = 2 + 1 ≥ 1 + 2 = 2 + 1. This means that the optimal value of k is k = 1.

Theorem 1.4. If Xn is n−2
2 -connected, and Xn/Gn is (n − 2)-connected, then the ho-

momorphism d : Hi(Gn−1)→ Hi(Gn) is an isomorphism for n > 2i+ 2 and a surjection
for n = 2i+ 2.

Proof. For surjectivity we need the inequality n−2
2 ≥ i− 1 which is equivalent to n ≥ 2i,

and we also need n − 2 ≥ i. For injectivity we need i ≤ n−2
2 which is equivalent to

n ≥ 2i + 2, and we also need n − 2 ≥ i + 1 or n ≥ i + 2. To satisfy these for i = 1, we
need

2 + k ≥ 2, k ≥ 1, 2 + k ≥ 4, 2 + k ≥ 3,

so the optimal value of k is k = 2.

Theorem 1.5 ([HV15b, Example 1.2]). If Xn is n−3
2 -connected, and Xn/Gn is still

(n − 2)-connected, then the homomorphism d : Hi(Gn−1) → Hi(Gn) is an isomorphism
for n > 2i+ 2 and a surjection for n = 2i+ 2.

Proof. For surjectivity we need i−1 ≤ c(Xn) = n−3
2 , which is equivalent to 2i−2 ≤ n−3,

which is again equivalent to n ≥ 2i + 1, and we still need i ≤ n − 2. For injectivity we
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need i ≤ c(Xn) = n−3
2 , which is equivalent to n ≥ 2i+ 3, and we still need n ≥ i+ 1. To

satisfy these for i = 1, we need

φ(i) = 2i+ c < 2i+ 3,

so the optimal value of k is k = 2.

Theorem 1.6. If each Xn is (n− 2)-connected, and each Xn/Gn is (n− 3)-connected,
then the homomorphism d : Hi(Gn−1) → Hi(Gn) is an isomorphism for n > 2i + 2 and
a surjection for n = 2i+ 2.

Proof. For surjectivity we need n ≥ i + 3, and for injectivity we need n ≥ i + 4. To
satisfy this for i = 1 we need φ(1) = 2 + k ≥ 4, so the optimal value of k is k = 2.

We will also need the following stable homology result, where the setting is slightly
different.

Theorem 1.7. Let G∞ be the direct limit of a sequence of group inclusions in : Gn ↪→
Gn+1 → · · · , and let λ : G∞ → G∞ be a self inclusion. Suppose that G∞ acts on a
contractible and infinite dimensional simplicial complex X∞ such that:

(1) G∞ y X∞ is transitive on the vertices of X∞.
(2) For a p-simplex σp, the stabilizer stab(σp) fixes σp pointwise, and the stabilizer

stab(σp) ⊂ G∞ is conjugate to the image of λp+1.
(3) If e is an edge of X∞ with vertices v and w, there is a g ∈ G∞ such that gv = w

and such that gh = hg for all h ∈ stab(e).
(4) X∞ and X∞/G∞ are both contractible.

Then the induced homomorphism

λ∗ : Hi(G∞)→ Hi(G∞)

is an isomorphism for all i.

Proof. All of the previous arguments used in Sections 1.1.1 and 1.1.2 can be used in this
case, replacing the groups Gn and the complexes Xn by G∞ and X∞, and replacing the
homomorphisms Gn → Gn+1 by λ. In fact, some of the arguments are simpler since we
no longer have to worry about connectivity.

1.2 Connectivity tools

Whenever we have a simplicial complex X which we want to show is highly connected,
it turns out that it is often convenient to embed it into a larger complex which is
highly connected. In fact, we will usually have a string of multiple embeddings where
the largest complex is contractible. Sometimes these embeddings can tell us that the
smaller complex inherits some connectivity from the larger one, and sometimes they will
even be homotopy equivalences. This section contains various ways to show this.
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1.2.1 Bad simplex arguments

Let M be a smooth n-manifold with a finite triangulation, let X be a simplicial complex,
let f : M → X be a simplicial map, and let Y be a subcomplex of X. We will show that
under some conditions f can be homotoped to a map with image in Y that is constant
on all simplices that already land inside Y . When M is some sphere Sk, this is can be
used to show that the subcomplex Y is highly connected. The trick is then to decide
which simplices are bad in the sense that they are far from mapping into Y and then
deforming the restrictions of f to these simplices to eventually obtain a map with image
in Y .

Definition 1.8. A set of simplices in X \ Y may be called a set of bad simplices if it
satisfies

(1) If a simplex σ in X has no bad faces (in which case we say that σ is good), it is
contained in Y .

(2) If σ and τ are bad simplices that are faces of the same simplex, then the join σ ∗ τ
is also a bad simplex.

A simplex with no bad faces is called a good simplex, and the faces of a bad simplex
need not be bad. Moreover, a simplex may be neither good nor bad. For a bad simplex
σ, we say that a simplex τ ∈ link(σ) is good for σ if any bad face of the join τ ∗ σ is
contained in σ. In that case, no face of τ is bad, so in particular τ is a good simplex
and therefore is contained in Y . We denote by Gσ the subcomplex of link(σ) consisting
of simplices that are good for σ.

Proposition 1.9 ([HV15b, Proposition 2.1]). Let f : M → X, Y and Gσ be as above.
If Gσ is (dim(M)− dim(σ)− 1)-connected for all bad simplices σ, then f is homotopic
to a map with image in Y by a homotopy that is constant on simplices whose images
already lie in Y .

Proof. Let a simplex µ in M be maximal such that σ = f(µ) is bad. Then we have
f(link(µ))∩ σ = ∅ by maximality of µ, so f(link(µ)) ⊂ link(σ). We claim moreover that
f(link(µ)) is contained in Gσ. Assume towards a contradiction that is is not. Then there
is a simplex ν ∈ link(µ) such that some face of f(ν) ∗ σ is bad and is not contained in
σ (note that f(ν) ∗ σ is a simplex in X since f(ν) ⊂ link(σ)). If we choose ν minimally
such that f(ν) ∗ σ is bad, we know that such a bad face must be on the form f(ν) ∗ σ0

for some face of σ. Then by property (2) the simplex

(f(ν) ∗ σ0) ∗ σ = f(ν) ∗ σ = f(ν) ∗ f(µ) = f(ν ∗ µ)

is bad since both f(ν) ∗ σ0 and σ are bad. This is a contradiction since µ is maximal
such that σ is bad.

We want to homotope f on starµ such that the number of simplices with bad images
is reduced. Note that since M is a smooth n-manifold, we can assume that M has a
finite piecewise linear triangulation such that the link of a simplex that is not included in
the boundary is a sphere, see Theorem A.4. In that case star(µ) = µ∗ link(µ) ∼= Dn−k+1,
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µ

Figure 1.2: Retriangulation of starµ

and link(µ) is either contractible or homeomorphic to Sn−k−1 where n = dim(M) and
k = dim(µ) ≥ dim(σ). In the case depicted in Figure 1.2, n− k − 1 = 2− 1− 1 = 0, so
Sn−k−1 = S0.

Since −k ≤ −dim(σ), Gσ is (n− k − 1)-connected by assumption, so the restriction
of f to link(µ) can be extended to a map g : Dn−k → Gσ over the disk Dn−k ⊂ star(µ),
which we can assume is simplicial by Theorem A.5. Then we can retriangulate star(µ)
as ∂µ ∗ Dn−k and modify f to a new map f̄ by defining it on the new triangulation
as f|∂µ ∗ g, as indicated on Figure 1.2. In the figure, µ is the 1-simplex in the middle,

link(µ) is the two red points, and Dn−k = D1 is the red line going through the new
triangulation. This new map f̄ agrees with f on all simplices except µ. In particular it
agrees with f on all simplices whose images already lie in Y . It is homotopic to f since
it agrees with f on ∂ star(µ) and star(µ) is homeomorphic to Dn−k+1. The homotopy
can be chosen to be constant on ∂ star(µ), in particular on all simplices whose images
already lie in Y .

Since g maps into Gσ, any bad faces of f̄(star(µ)) have to be contained in f(∂µ).
Thus we have passed to a situation where only proper faces of µ can have bad images,
so we have reduced the number of simplices with bad images. Since the triangulation of
M is finite, this process eventually ends such that no simplices of M have bad images.
Thus by property 1 for bad simplices, the image of the resulting map is contained in Y .
Since it is homotopic to f , we get the result.

Corollary 1.10 ([HV15b, Corollary 2.2]). Let Y be a subcomplex of an n-connected
complex X, and suppose X \ Y has a set of bad simplices satisfying (1) and (2) above.
If Gσ is (n− dim(σ))-connected for all bad simplices σ, then Y is n-connected.

Proof. Let g0 : Si → Y be a simplicial map with i ≤ n. We want to extend g0 to a map
g : Di+1 → Y which agrees with g0 on Si. Since X is n-connected, we can extend g0 to
a map f : Di+1 → X. Now use Proposition 1.9 with M = Di+1. For any bad simplex
σ, dim(Di+1)− dim(σ)− 1 = n+ 1− dim(σ)− 1 = n− dim(σ), so Gσ has connectivity
dim(Di+1) − dim(σ) − 1 by assumption. Thus f is homotopic to a map g : Di+1 → Y
which agrees with f on Si and therefore also with g0.

Let L be a finite set whose elements we call labels. Given a simplicial complex
X = (V, S), we can form a simplicial complex XL = (V L, SL) where V L = V × L, and
where a simplex in SL is the image of a map φ : σ → V L where σ ∈ S, and for all v ∈ σ,
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φ(v) = (v, l) for some l ∈ L. This means that the simplices in XL are the simplices from
X with all possible labellings by elements of L, so for each k-simplex of X, there are
|L|k+1 k-simplices of XL.

Corollary 1.11 ([HV15b, Corollary 2.3]). Let X = (V, S) be a simplicial complex and
L a finite set of labels. If X is n-connected, and the link of each k-simplex in X is
(n− k − 1)-connected, then XL is n-connected.

Proof. Let f : Si → XL be a simplicial map with i ≤ n. We want to extend f to a map
Di+1 → XL. Fix an element l0 ∈ L, and let Y be the subcomplex of XL consisting
of all simplices with vertices on the form (v, l0) with v ∈ V . Then Y is isomorphic to
X by just sending any (v, l0) to v, and X is n-connected. We want to show that f is
homotopic to a map with image in Y so that we can extend it over the disk since Y ∼= X
is n-connected.

We say that a simplex in XL is bad if all of its vertices have labels that are not
l0. Then a simplex with no bad faces in particular has no bad vertices and is therefore
contained in Y , so condition (1) of Definition 1.8 is satisfied. The join of two bad
simplices consists of the vertices of those two simplices, so no vertex of the join can be
on the form (v, l0), i.e. the join is also bad, and condition (2) is satisfied. If σ is a bad
simplex, a simplex in link(σ) is good for σ if and only if it consists only of vertices on
the form (v, l0). This is due to the fact that a simplex τ in linkσ contains a vertex (v, l′)
with l′ 6= l0 if and only if and only if τ ∗ σ has a bad face consisting of the vertices
of σ and (v, l′) which are not contained in σ. Thus Gσ is isomorphic to link(σ′) ⊂ X,
where σ′ consists of all vertices v where (v, l) ∈ σ for some l, i.e. σ′ is the simplex in X
corresponding to σ.

This means that Gσ is (n − dim(σ′) − 1)-connected for all bad simplices σ, so it is
(n−dim(σ)−1)-connected since dimσ = dimσ′. Thus by Proposition 1.9, f is homotopic
to a map with image in Y ∼= X and therefore extends over the disk.

Lemma 1.12 (Coloring lemma, [HW07, Lemma 3.1]). Assume that we have a triangu-
lation of Sk (see Appendix A.1.1) with its vertices labeled by elements of a set L with at
least k+2 elements. We say that a simplex in the triangulation is bad if each of the labels
used for its vertices occurs at least twice. This labeled triangulation can be extended to a
labeled triangulation of Dk+1 whose only bad simplices lie in Sk, where the triangulation
of Sk is a full subcomplex of that of Dk+1. Moreover, the labels of the vertices in the
interior of Dk+1 can be chosen to be contained in any subset of E0 ⊂ E with at least
k + 2 elements.

Proof. We prove the lemma by induction on the number k, starting with the case k = −1.
In that case Dk+1 = D0 is a point that can be labeled by any element of L0. The set L0

is non-empty since it has at least k + 2 elements and k + 2 = 1. Now assume that the
lemma holds for all numbers less than k, and consider any triangulation of Sk labeled
by L. Triangulate Dk+1 by adding a vertex in the center and then coning off Sk to that
vertex. Label the center vertex by any element of L0. We will modify this triangulation
without changing it on Sk until all bad simplices are contained in Sk.



20 CHAPTER 1. HOMOLOGICAL STABILITY TOOLS

If there are any bad simplices in Dk+1 that are not contained in Sk, choose one
such σ of maximal dimension p, i.e. such that σ is not contained in a bad simplex of
dimension strictly larger than p. We must have p > 0 since σ is bad. Let Eσ ⊂ E be
the set of elements occurring as labels of σ. Since σ is not contained in Sk, or in other
words the boundary of Dk+1, the link of σ is a (k + 1 − p − 1) = (k − p)-sphere by
Theorem A.4. The vertices of linkσ are labeled by elements of E \Eσ since σ is bad of
maximal dimension. Since k−p < k, we can use the induction hypothesis on linkσ using
labels from E0 \ Eσ ⊂ E \ Eσ, where E0 is any subset of E with at least k + 2 elemtns.
Namely, since |Eσ| ≤ p, |E0 \Eσ| ≥ k+ 2− p = (k− p) + 2. This gives a triangulation of
the disk Dk−p+1 ⊂ starσ bounded by linkσ = Sk−p. Join this triangulation with ∂σ to
get a new triangulation of starσ as in the proof of Proposition 1.9. This triangulation
agrees with the old one on simplices of ∂ starσ.

A simplex in the new triangulation must be of the form τ ∗ µ where τ is a face of σ
and µ is a simplex in the disk Dk−p+1. If τ ∗ µ is bad, then µ must be empty since the
set of labels of τ is disjoint from that of σ, and µ cannot be a bad simplex since then
it would be contained in Sk−p = linkσ, contradicting the maximality of σ. This means
that we have reduced the number of bad simplices of Dk+1 of dimension p. Repeat the
process until all bad simplices are contained in Sk.

To see that the fullness condition is still satisfied after retriangulating, note that
the initial coning preserves fullness. If the vertices of a simplex τ ∗ µ as above in the
new triangulation all lie in Sk, then µ must be contained in ∂Dk−p+1 by the induction
hypothesis on the sphere Sk−p = linkσ. Therefore, τ ∗ µ lies in the boundary of starσ
where the triangulation has not been changed, so τ ∗ µ ⊂ Sk by assumption.

1.2.2 Poset complexes

Let P be a poset. One can form a simplicial complex with vertices in P and a k-simplex
for each totally ordered chain p0 < · · · < pk in P . It is a simplicial complex since a face of
a simplex corresponds to a totally ordered subchain. The geometric realization of P
is then the geometric realization of this simplicial complex. A poset map (i.e. an order
preserving function of posets) induces a simplicial map on the geometric realizations.
When talking about topological properties of a poset or a poset map, we are talking
about the geometric realization. In this section we establish tools to show that certain
poset complex are highly connected as well as sufficient conditions for a poset map to
be a homotopy equivalence.

Let φ : P → Q be a poset map, and define the fiber φ≤q over an element of Q to be
the sub-poset of P consisting of all p ∈ P such that φ(p) ≤ q, and similarly define φ≥q
as all p ∈ P such that φ(p) ≥ q.

Lemma 1.13 (Quillen’s Fiber Lemma, [HV15b, Proposition 2.5]). Let φ : P → Q be a
poset map. If all fibers φ≤q are contractible or all fibers φ≥q are contractible, then φ is
a homotopy equivalence on the geometric realizations.

Proof. We can turn around the partial orders on P andQ without changing the geometric
realizations or the corresponding map φ. Thus the two conditions are equivalent, so let
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us just assume that all φ≥q are contractible. We will construct ψ : Q → P inductively
as follows. For each vertex q0 in Q, we let ψ(q0) be any vertex in φ≥q0 . This is possible
since φ≥q0 is contractible and thus non-empty. We now extend ψ to edges. An edge
in Q is a chain q0 < q1, and both ψ(q0) and ψ(q1) are in φ≥q0 since φ(p) ≥ q1 implies
φ(p) ≥ q0, so φ≥q1 ⊆ φ≥q0 . Now let ψ(q0 < q1) be any path inside φ≥q0 from ψ(q0) to
ψ(q1) (which is possible since φ≥q0 is contractible and thus path-connected). Similarly, if
we have defined ψ on (n−1)-simplices, then, given an n-simplex σ in Q, we have already
defined ψ on the boundary of σ as a map into φ≥σ0 where σ0 is the least vertex of σ
under the partial ordering of Q, and we can then extend ψ to σ since φ≥σ0 is contractible
and thus (n− 1)-connected.

We claim that ψ is a homotopy inverse to φ. Indeed, φψ sends a simplex q0 < · · · < qk
into Q≥q0 (i.e. the elements of Q that are weakly greater than q0) since ψ sends it into
φ≥q0 ,. Moreover Q≥q0 is contractible since it has a minimal element, so any simplex is a
face of a simplex containing q0 and thus there is a contraction from the whole space to
q0. This means that we can construct a homotopy from φψ to the identity inductively
as follows:

Since φψ sends each vertex q0 into Q≥q0 , and since each Q≥q0 is contractible and
contains q0, the restriction of φψ to vertices is homotopic to the identity. Now assume
that the restriction of φψ to (n−1)-simplices is homotopic to the identity by a homotopy
that maps each simplex τ0 < · · · < τn into Q≥τ0 at any stage, and fix such a homotopy
F . Let σ = (q0 < · · · < qk) be an n-simplex in Q. Then the restriction of φψ to the
boundary of σ (which is a sphere) is homotopic to the identity by the restriction of
F to the boundary of σ. This has image inside the subcomplex Q≥q0 . Since Q≥q0 is
contractible and contains σ, this homotopy can be extended to a homotopy from the
restriction of φψ|σ to the identity on σ. This can be done continuously for all n-simplices
since we only extend to the interiors of those n-simplices.

Similarly, ψφ maps each simplex p0 < · · · < pk into the contractible subcomplex
φ≥φ(p0) and so is homotopic to the identity by a similar homotopy.

Remark 1.14. If X is a simplicial complex, we can consider the poset X̂ of simplices
of X under face inclusion. The geometric realization of this poset can be identified with
the barycentric subdivision of X. A simplicial map φ : X → Y induces a poset map
φ̂ : X̂ → Ŷ . Under the canonical homeomorphisms X ∼= X̂ and Y ∼= Ŷ , the induced
poset map φ̂ corresponds to the original map φ.

Lemma 1.15 ([HV15b, Lemma 2.6]). Let f : X → Y be a simplicial map of simplicial
complexes, let X̂ be the poset of simplices in X, and let Ŷ be the poset of simplices in
Y . Let f̂ : X̂ → Ŷ be the induced poset map. Then for any simplex σ of Y we have the
following:

(1) f̂≤σ is homeomorphic to f−1(σ),
(2) f̂≥σ is homotopy equivalent to f̂−1(σ),
(3) f̂−1(σ) is homeomorphic to f−1(y) where y is the barycenter of σ.



22 CHAPTER 1. HOMOLOGICAL STABILITY TOOLS

Proof. For (i), f̂≤σ is the set of all simplices τ such that f(τ) ≤ σ, i.e. such that f(τ) is
a face of σ. But this is equivalent to f(τ) ⊆ σ, so f̂≤σ is just the barycentric subdivision
of f−1(σ).

For (ii), f̂≥σ consists of all simplices τ such that σ is a face of f(τ). Therefore, since
f is simplicial, some face of τ maps into σ. Let τσ be maximal such that this is the
case. Then τσ is uniquely determined, since if some other face τ ′σ of τ maps to σ, then
τσ ∗ τ ′σ is also a face of τ that maps to σ, and so by maximality τσ = τσ ∗ τ ′σ. The map
φ : f̂≥σ → f̂−1(σ) that takes each τ to τσ is a poset map since τ ⊆ τ ′ implies τσ ⊆ τ ′σ.
For any τ such that f(τ) ⊂ σ, consider

φ≥τ = {χ ⊂ X | χσ ⊃ τ}.

Since f(τ) ⊂ σ, τσ = τ , so this set has τ as minimal element and therefore is contractible,
so φ is a homotopy equivalence by Lemma 1.13.

For (iii), note that f̂−1(σ) is the subcomplex of X̂ consisting of all chains τ0 < · · · < τn
such that f(τi) = σ for all i = 0, . . . , n. Assume that τ0 < · · · < τn is a maximal such
chain. Then ν0 := f−1(y) ∩ τ0 is a point. More generally each νi := f−1(y) ∩ τi can be
identified with an i-simplex in such a way that νi is a face of νj whenever i ≤ j. Thus

f−1(y) can be identified with f̂−1(σ).

Corollary 1.16 ([HV15b, Corollary 2.7]). Let f : X → Y be a simplicial map of sim-
plicial complexes. If f−1(σ) is contractible for all closed simplices σ, or if f−1(y) is
contractible for all barycenters y, then f is a homotopy equivalence.

Proof. If f−1(σ) is contractible for all σ, then all lower fibers of f̂ are contractible by
Lemma 1.15 (1). Thus f̂ is a homotopy equivalence by Lemma 1.13, and therefore f is
a homotopy equivalence too by Remark 1.14.

If f−1(y) is contractible for all barycenters y, then all fibers f̂≥σ are contractible by
Lemma 1.15 (2) and (3), so f is again a homotopy equivalence.

Definition 1.17. If X is a simplicial complex, we denote by X̂m the high-dimension
subcomplexes of the poset complex X̂ consisting of all simplices of X̂ whose vertices
are simplices of X of dimension at least m − 1. Moreover, we say that a simplicial
complex is weakly Cohen-Macaulay of dimension n if it is (n− 1)-connected and the
link of any p-simplex is (n− p− 2)-connected.

Lemma 1.18 ([HW07, Lemma 3.8]). If X is weakly Cohen-Macaulay of dimension n,
then X̂m is (n−m)-connected.

Proof. The proof of this is similar to the proof of Proposition 1.9. We proceed by
induction on m. The base case m = 1 is true by assumption since X̂1 = X̂ and X is
(n−1)-connected. Now let m > 0, and let a map f : Sk → X̂m with k ≤ n−m be given.
By the induction hypothesis we can extend f to a map F : Dk+1 → X̂m−1 that agrees
with f on Sk since X̂m−1 is (n−m+ 1)-connected and k ≤ n−m < n−m+ 1. We now
say that a simplex of Dk+1 is bad if F maps each of its vertices to a simplex of X with
m− 1 vertices. Then any bad simplex must be contained in the interior of Dk+1. Let σ
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be a bad p-simplex, and assume that p is maximal, i.e. that there are no bad simplices
of higher dimension. Then f must be constant on σ since a simplex in X̂m−1 is a string
of strict inclusions of simplices of X, and f must map each vertex of σ to a simplex with
exactly m− 1 vertices. The link of σ is a (k− p)-sphere, so the restriction of f to linkσ
can be seen as a map

flinkσ : Sk−p → ̂linkX(f(σ)),

where linkX(f(σ)) is the link of f(σ) as a simplex in X. This is (n −m)-connected by
assumption since f(σ) is an (m−2)-simplex of X. We have k−p ≤ k ≤ n−m, so flinkσ

can be extended to a map

gσ : Dk−p+1 → ̂linkX(f(σ)).

We rewrite starσ as Dk−p+1 ∗ ∂σ like in Proposition 1.9, and we replace F on starσ
by (gσ ∪ f(σ)) ∗ F , where gσ ∪ f(σ) is the map that takes a simplex τ to the join

gσ(τ) ∗ f(σ). Since gσ maps into ̂linkX(f(σ)), gσ(τ) ∗ f(σ) has at least m vertices, so
it is a good simplex. This means that we has eliminated a bad simplex of maximal
dimension. If we continue this process until there are no more bad simplices, we get a
map Dk+1 → X̂m that agrees with f on Sk, showing that X̂m is (n−m)-connected.

1.2.3 Fiber connectivity

Lemma 1.19 ([HV15b, Lemma 2.8]). Let f : X → Y be a simplicial map of simplicial
complexes. Suppose that Y is n-connected and that the fiber f−1(y) over the barycenter
y of any k-simplex in Y is (n− k)-connected. Then X is n-connected.

Proof. Let a map g : Si → X with i ≤ n be given. Assume that g is simplicial. We want
to extend g to a map G : Di+1 → X. Consider the composition

h = fg : Si → Y.

Since Y is n-connected, we can extend h to a map

H : Di+1 → Y.

We will use H to construct G inductively over k by defining it on the k’th skeleton of
the barycentric subdivision D′ of Di+1.

First replace the complexes and maps by the simplicial posets and their corresponding
poset maps. This means that we look at the following diagram.

Ŝi
ĝ
//� _

��

X̂

f̂
��

D̂i+1 Ĥ // Ŷ
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For the induction start, we want to define G on vertices such that it agrees with g on
∂D′, so let a vertex τ ⊂ D′ be given, and view τ as a simplex in Di+1 (since vertices in
D′ correspond exactly to simplices in Di+1) or a vertex of D̂i+1. Since H is a simplicial
map, σ := H(τ) has at most dimension dim(Di+1) = i + 1 ≤ n + 1 (since we assumed
i ≤ n). By the assumption and Lemma 1.15, f̂≥σ is (n− (n+1)) = (−1)-connected, so it

is non-empty. Thus we can choose x ∈ f̂≥σ and define G(τ) = x. Note that if τ ⊂ ∂D′,
then σ = H(τ) = h(τ) = fg(τ), so g(τ) ∈ f̂≥σ. Thus we can choose x to be g(τ), i.e. we
can make G agree with g on ∂D′.

For the induction step, assume that we have defined G on the (k− 1)-skeleton of D′

as well as on ∂D′. Let

τ0 < · · · < τk

be a k-simplex in D′. We want to define G on τ0 < · · · < τk. Let σi = H(τi). Then for
any j and any simplex α in f̂≥σj we have

α ≥ σj ≥ σ0,

for all j, so f̂≥σj ⊂ f̂≥σ0 for all j. By construction G maps any face

β = (σ0 < · · · < σi−1 < σi+1 < · · · < σk)

to f̂≥β ⊂ f̂≥σ0 and thus maps the entire boundary of τ0 < · · · < τk into f̂≥σ0 . Now,
τ0 < · · · < τk is a simplex in D′, so it is a strictly increasing chain of simplices in Di+1.
Thus, since dim τk ≤ i+1, we have dim(τk−1) ≤ i, and so on. Continuing in this fashion,
we get dim(τ0) ≤ i+1−k. Since H is a simplicial map, it cannot increase the dimension
of a simplex, so

dim(σ0) = dim(H(τ0)) ≤ dim(τ0) ≤ i+ 1− k ≤ n+ 1− k.

Note that f̂≥σ0 is homotopy equivalent to f̂−1(σ0) by Lemma 1.15 (2), and this is home-
omorphic to f−1(y) where y is the barycenter of σ by Lemma 1.15 (3). By assumption
the connectivity of f−1(y) is at least n− (n+ 1− k) = k− 1, so f̂≥σ0 is at least (k− 1)-
connected as well. Since the boundary of τ0 < · · · < τk is Sk−1, and since G maps
τ0 < · · · < τk into a (k − 1)-connected subspace, we can extend G over the interior
of τ0 < · · · < τk such that the new extended map agrees with G on the boundary of
τ0 < · · · < τk. Since D′ is a simplicial complex and ∂D′ is a subcomplex, either the
simplex τ0 < · · · < τk is entirely inside ∂D′, or only (a part of) the boundary is. This
means that the extended map indeed does agree with G on ∂D′ as well.

1.2.4 Flowing into a subcomplex

Let X be a simplicial complex, and let Y ⊂ X be a subcomplex. Suppose that we have
a deformation retraction F : X × I → X of X onto Y . Then for each x ∈ X, we get a
path from x to a point in Y defined by F (x, t), t ∈ I. We want to work backwards and
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σ

vσ

∆vσ

Figure 1.3: Flowing towards a subcomplex

instead create a family of paths and assemble them to a deformation retraction, a flow,
onto Y . It will go as follows:

For each simplex σ ⊂ X \ Y , choose a preferred vertex vσ ⊂ σ and a simplex
∆vσ ⊂ link(vσ) such that σ ∗∆vσ is a simplex in X. Now there is a straight line segment
from vσ to the barycenter of ∆vσ which travels inside of σ ∗∆vσ. We then decompose
σ ∗∆v into line segments called flow lines that are parallel to this straight line, and we
will deform the complex along the flow lines. See Figure 1.3 for an example when σ is a
1-simplex and ∆vσ is a vertex.

The flow lines should in some sense correspond to moving the point of X \ Y closer
to Y . We measure this using a complexity function. A complexity function is defined
by first defining a function c from the vertices of X to Z≥0 such that c(w) > 0 for all
vertices w in X \ Y . We can then extend c to all simplices of X by letting the value on
a simplex be the sum of the values on its vertices. We will need to have a nice choice of
preferred vertices and a complexity function such that the following lemma establishes
a deformation retraction.

Lemma 1.20 ([HV15b, Lemma 2.9]). Let Y be a subcomplex of a simplicial complex X
with a complexity function c as described above. Suppose that for each vertex v ∈ X \ Y
there is a rule for associating a simplex ∆v ∈ link(v), and that for each simplex σ that
is not contained in Y there is a rule for picking a preferred vertex vσ ⊂ σ ⊂ X \ Y such
that it always holds that

(1) σ ∗∆vσ ∈ X,
(2) c(∆v) < c(v),
(3) if vσ ⊂ τ ⊂ σ, then vτ = vσ.

Then Y is a deformation retract of X.

Proof. For each simplex σ in X that is not contained in Y we construct flow lines
inside σ ∗∆vσ that are parallel to the line from vσ to the barycenter of ∆vσ. In terms
of barycentric coordinates in σ ∗∆vσ we are removing the coefficient of vσ and equally
distributing it among the vertices of ∆vσ while fixing the coefficients of the other vertices.
This means that we have moved all the points of σ into σvσ ∗∆vσ where σvσ is the face
of σ obtained by removing the vertex vσ. Note that σvσ has lower complexity than σ by
condition (2), so we have moved the points ”closer to Y ”.
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If σvσ ∗∆vσ is contained in Y , we stop, and if not we can repeat the process. Contin-
uing in this way, all points of σ travel by a polygonal path in X into Y since the process
eventually stops (when the complexity reaches 0 at the latest).

We want to do this to all of X simultaneously and continuously to get a deformation
retraction onto Y . This means that the flow of any face of any simplex should be
compatible with the flow of its ”mother simplex”. But this is ensured by condition (3).
Thus we can define the flow by letting each point follow its destined polygonal path,
but we need to do it continuously. Therefore we equip all simplices with the standard
Euclidean metric and define the flow by letting all the points not in Y follow their
polygonal paths at a constant speed such that they reach Y at exactly t = 1.

This concludes our toolbox chapter, and we are ready to move on and prove some
actual homological stability results.



Chapter 2

Stability for braid groups

The classical braid group Bn on n strands can be included in Bn+1 by adding a strand
that is not intertwined with the others, producing a sequence B0 → B1 → . . . . We will
show that this sequence is homologically stable. To do this we view Bn as the boundary
fixing mapping class groupMD(n) of a disk D(n) with n marked points. More precisely
we first form the group Diff+(D2 rel S1) of orientation preserving self-diffeomorphisms
of D2 fixing the boundary. We then take equivalence classes up to isotopy. The result
is a group MD2 that we call the boundary fixing mapping class group of D2. In fact,
this group can be constructed for any orientable smooth surface; we will study these in
the next chapter. Considering n distinct marked points in the interior of D2 we then
form the subgroup of MD2 consisting of isotopy classes of diffeomorphisms with some
representative that permutes the marked points. This group is isomorphic to the braid
group Bn as shown in [FM11, Section 9.1]. If x is some point in the interior of D(n),
any diffeomorphism of D(n) can be isotoped to a diffeomorphism that fixes x. Thus we
can embedMD(n) intoMD(n+ 1) as the mapping classes fixing the (n+ 1)’st marked
point, and this embedding corresponds to the inclusion Bn → Bn+1 described above.

2.1 Complexes of tethers

We will construct a simplicial complex of so called tethers with a Bn-action. Consider
as above the marked disk D(n). Then choose distinct points b1, . . . , bd on the boundary
of D2. A tether is an arc in D that connects a marked point pi to a boundary point bj
such that it is disjoint from all the other boundary points and marked points. A system
of tethers is a collection of tethers which are disjoint except at their endpoints such
that no two tethers in the system are isotopic to each other; here we require isotopies to
fix the endpoint pi, and the other endpoint is allowed to move only along the boundary.

Let X = Xn,d be the simplicial complex with one k-simplex for every isotopy class
of systems of k + 1 tethers. The faces of a simplex are the systems where some of the
tethers have been removed. Here the isotopies must fix the endpoints of the tethers. If σ
is a system of tethers, denote by [σ] its isotopy class, and if φ is a diffeomorphism, denote
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by [φ] its isotopy class. The mapping class group presentation of the braid group then
gives an action Bn y Xn,d defined by [φ][σ] = [φσ]. In the proof of the next theorem
we will use the concept of normal form, described in the following.

Definition 2.1 (Normal form). Let γ and δ be two systems of tethers. We may assume
that γ is chosen in its isotopy class such that it only intersects δ transversally and does
so in the minimal number of points. The minimality is equivalent to the requirement
that there is no bigon, i.e. a pair consisting of an arc of a tether in γ and an arc of a
tether in δ that together bound a disk in Sg,1 since any simply connected subsurface of
Sg,1 is a disk. If this is the case, we say that γ is in normal form with respect to δ.

Theorem 2.2 ([HV15b, Theorem 3.1]). The complex X = Xn,d is contractible.

Proof. Choose a fixed tether t. For any simplex [σ] in X we will construct a rule for
choosing a preferred vertex [vσ] of [σ], and for each vertex [v] of X an associated simplex
[∆v] in link[v] such that we can use Lemma 1.20. The value of the complexity function
on a system [σ] in X is defined to be the total number of points in which the interiors
(i.e. not endpoints) of tethers of σ intersect with t, assuming that σ is in normal form
with respect to t.

For every tether s which intersects t at an interior point, we let x be the point of
intersection of s and t which is closest to the boundary point bi in terms of t, i.e. the
first intersection point that t hits if we consider it as an arc starting in bi. We now cut
s into two arcs at x and move both of the new endpoints down along t to the boundary
point bi of t. This creates two new arcs that can be chosen such that they are disjoint
from s except at their endpoints (by maintaining a sufficiently close distance). We define
∆s to be the one of these two arcs whose other endpoint is at the marked point, so that
∆s is a tether. Then [∆s] has a lower complexity than [s].

Now we want to fit this into the context of Lemma 1.20, so we let Y be the star of
t (which is contractible), and for a simplex [σ] in X we choose the preferred vertex [vσ]
such that vσ is the tether of σ containing the point in the intersection of t and σ which
is closest to the boundary point bi of t. Then [σ] ∗ [∆vσ] is a simplex in X since we can
choose ∆vσ to lie close enough to vσ for it to not hit any of the other tethers, and since
we choose the intersection point closest to the boundary, the part of ∆vσ that arises by
following along t can also be chosen to be disjoint from σ. Thus condition (1) is satisfied.
Moreover, the complexity has been decreased, and condition (3) is satisfied since a face
is just a subcollection of tethers. This means that X is contractible by Lemma 1.20.

A system of tethers τ = {t1, . . . , tk} is said to be coconnected if the complement
D \ τ is connected. Note that τ is coconnected if and only if each ti ends at a different
marked point. Let Y = Yn,d denote the subcomplex of Xn,d that consists of isotopy
classes of coconnected tether systems. Note that in the following theorem we set d = 1
since this is all we need for the stability argument.

Theorem 2.3 ([HV15b, Theorem 3.2]). The complex Y = Yn,1 is contractible.
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Figure 2.1: Inner and outer components of D \ σ

Proof. We will prove that Y is contractible by induction on the number n of marked
points. If n = 1, then Y is already a single vertex. Now assume that Yk,1 is contractible
for all k < n. We will use Corollary 1.10, so we need to specify a set of bad simplices.
We say that a simplex of X = Xn,1 is bad if each tethered marked point is hit by at
least two of tethers. Then for every simplex [σ] with no bad faces, [σ] has no face with 2
or more tethers to a marked point, so it cannot itself have 2 or more tethers to any one
marked point. Thus σ is coconnected and therefore [σ] is contained in Y . Moreover, if
[σ] and [τ ] are two bad faces of the same simplex, then they each connect at least two
arcs to every marked point that they hit, so their join has to do it as well. This means
that our set of bad simplices satisfies Definition 1.8. Thus it suffices by Corollary 1.10
to show that G[σ] is contractible for every bad simplex [σ].

Let [σ] be a bad simplex. Then a simplex [τ ] ∈ link([σ]) is good for [σ] if and only if
any bad face of [τ ] ∗ [σ] is contained in [σ], which means that if [χ] ⊂ [τ ] ∗ [σ] has two
tethers for each marked point it hits, then [χ] ⊂ [σ], or again equivalently τ consists
of single tethers to marked point that are not touched by σ. Note that since we are
working inside Xn,1 there is only one boundary point. Moreover, since [σ] is bad, σ must
be separating. This means that σ separates the disk in some inner components (marked
in blue) and an outer component (marked in red), see Figure 2.1.

The inner components only touch the base point from the boundary, and the outer
component touches the rest of the boundary. Moreover, since none of the tethers can be
isotopic, there must be at least one marked point inside of each inner component since
if not, then the two tethers that make up the loop that bounds said inner component
would be isotopic. Also the outer component must contain at least one marked point
since if not, then the two outer arcs would be isotopic. Moreover, a component can
have at most n− 1 marked points. Now G[σ] is a join of complexes isomorphic to Yni,1
with ni < n ranging over i, each built form tethers living inside one of these components.
Since each Yni,1 is contractible by the induction hypothesis, their join G[σ] is contractible
as well, which is what we wanted.
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2.2 Stability theorems

Theorem 2.4 ([HV15b, Theorem 3.3]). The homomorphism Hi(Bn−1)→ Hi(Bn) is an
isomorphism for n > 2i+ 1 and a surjection for n = 2i+ 1.

Proof. We want to use the spectral sequence argument for the action on Y = Yn,1 which
arises from viewing Bn as the mapping class group of a disk with n marked points. This
means that we need to verify the four conditions on page 9.

Condition 1 : Since any system of k + 1 tethers in Yn,1 is coconnected, we can move
the tethers around each other in any way we like. Thus the action can take any k-simplex
to any other k-simplex, i.e. it is transitive on simplices of all dimensions, and thus in
particular on vertices. Note though that any isotopy must preserve the ordering of the
tethers, i.e they cannot swap places.

Condition 2 : Any system σ of k + 1 tethers coming out of the single basepoint
has a natural ordering determined by an orientation of the disk (e.g. by following a
sufficiently small circular arc around the basepoint). This ordering must be preserved
by any diffeomorphism that is the identity on the boundary of the disk. This means
that if some diffeomorphism of the disk sends σ to itself, it must send each tether in
σ to itself, and therefore the stabilizer of [σ] fixes each vertex and thus fixes the whole
simplex pointwise. Moreover, elements of the stabilizer are free to do whatever they want
on the other vertices of the complex. Thus, since we are in the coconnected case and
each tether therefore lands at a different marked point, stab([σ]) is exactly isomorphic
to Bn−k−1. Actually stab([σ]) = [φ]−1Bn−k−1[φ] where Bn−k−1 is considered as the
subgroup of tethers to the marked points p1, . . . , pn−k−1, and φ is a diffeomorphism that
maps the marked points p1, . . . , pn−k−1 to the marked points that are not hit by σ.

Condition 3 : Let [e] be an edge in Y , i.e. an isotopy class of systems consisting
of two tethers v and w ending in marked points pv and pw. We can simply define a
diffeomorphism of D supported in a small neighborhood of v and w that takes v to w
and also takes pw to pv. By choosing the neighborhood sufficiently small we can ensure
that this diffeomorphism commutes with stab([e]).

Condition 4 : Since Y is contractible, we only need to show that Y/Bn is highly
connected. Y consists of coconnected systems from one basepoint to n marked points,
so there can be at most n tethers in a system. This makes Y an (n − 1)-dimensional
simplicial complex. Since Bn y Y is transitive on k-simplices for all k, it puts all
simplices of each dimension in one orbit. Thus Y/Bn can be seen as the quotient of ∆n−1

where all k-dimensional faces have been identified with each other for each k. This makes
Y/Bn a ∆-complex (semi-simplicial set) with one k-simplex for each k ≤ n − 1. This
means that the augmented cellular chain complex has a copy of Z in each dimension.
The boundary maps are then alternating sums of the identity, so the chain complex look
like the following.

· · · → Cn−1(Y/Bn)
f−−→ Cn−2(Y/Bn)→ · · · → C2(Y/Bn)

∼=−−→ C1(Y/Bn)
0−−→ C0(Y/Bn)

∼=−−→ Z→ 0,
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We have f = 0 if n is even, and f is an isomorphism if n is odd. This means that
Hk(Y/Bn) = 0 for all k ≤ n− 2, and Hn−1(Y/Bn) is trivial if n is odd or Z if n is even.
Now Y/Bn may not be (n − 2)-connected, but the fact that the homology vanishes is
sufficient by Remark 1.1. This means that all the conditions for the spectral sequence
argument are satisfied, so the result follows by Theorem 1.3.

Theorem 2.5 ([HV15b, Theorem 3.4]). If n is odd, the stabilization Hi(Bn−1) →
Hi(Bn) is an isomorphism for all i. Moreover, if n ≥ 2 (of any parity), then Hi(Bn) = 0
for i ≥ n.

Proof. We consider the same spectral sequence as we used in Theorem 2.4. Firstly, note
that for any coconnected system of k+1 ≥ 2 tethers there is a diffeomorphism of the disk
that permutes the marked points and is supported in a small neighborhood of the tethers
such that it takes any subset of k tethers to any other subset of k tethers, as long as it
preserves their natural ordering. This commutes with the stabilizer of the union of the
two sets of k tethers by making the neighborhood sufficiently small. Thus we can do an
argument similar to what we did in Section 1.1.2. Namely all the terms of the boundary
map d1 : E1

p,q = Hq(stab(σ))→ E1
p−1,q are the same since each pair of two terms fits into

a diagram like (1.4). Thus if p is odd, d1 is a sum of an even number of equal terms, i.e.
p = 0. If p is even, then d1 is induced by the inclusion stab(σ) ∼= Bn−p−1 ↪→ Bn−p.

We prove the first statement by induction. For the base case n = 1, note that both
B0 and B1 are trivial, so Hi(B0) → Hi(B1) is the zero map if i > 0 and the identity
Z → Z if i = 0. Now for the induction step, assume that Hi(Bk−1) → Hi(Bk) is an
isomorphism for all odd k with k < n and for all i. Then the map E1

p,q → E1
p−1,q is

the map Hq(Bn−p−1) → Hq(Bn−p) induced by the inclusion. This can be rewritten as
Hq(B(n−2)−(p−2)−1)→ Hq(B(n−2)−(p−2)), which by assumption is an isomorphism for all
p even with 2 ≤ p ≤ n− 1. This means that the spectral sequence looks like the picture
in Figure 2.2.

i Hi(Bn) Hi(Bn−1) Hi(Bn−2) · · ·

i−1 · · · Hi−1(Bn−1) Hi−1(Bn−2) Hi−1(Bn−3) · · ·

i−2 · · · Hi−2(Bn−3) · · ·

q = 0 H0(Bn) H0(Bn−1) H0(Bn−2) H0(Bn−3) · · ·

p = −1 0 1 2 · · ·

0 ∼=

0 ∼= 0

∼= 0

0 ∼= 0

Figure 2.2: The spectral sequence for the action Bn y Y
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Since Yn−1 has dimension n−1, the last non-vanishing column of the spectral sequence
is the (n− 1)’st one. In fact E1

n−1,0 = H0(B0) is the only non-zero term in this column

since B0 is the trivial group. Since n is odd, the d1-differentials going out of this column
must be isomorphisms. This means that every E1

p,q with p ≥ 1 is either the domain or
the target of an isomorphism and thus gets killed on the E2-page. Thus no differential
beyond the E1-page can be non-zero. But the spectral sequence converges to 0, so in
particular E∞−1,i = 0, i.e. d1 : E1

0,i → E1
−1,i which is the map Hi(Bn−1)→ Hi(Bn), must

be an isomorphism for any i.
We also prove the second statement by induction on n. The base case H1(B1) is

true since B1 (like B0) is the trivial group. Now assume that the statement holds for all
2 ≤ k < n. The diagonal of total degree p+ q = n− 1 in the spectral sequence contains
the groups Hj(Bj). By the induction hypothesis, these as well as the terms above them
are 0 except for the column p = −1 which is not covered by the induction hypothesis.
But any differential on the E1-page or later that hits the (−1, n)’th term or above must
come from above this diagonal and therefore must be 0, so since the spectral sequence
converges to 0, E1

−1,n = Hn(Bn) must be 0 since it cannot be killed by anything.



Chapter 3

Stability for mapping class
groups of surfaces

Any compact, connected and oriented smooth surface can be determined up to diffeo-
morphism by its genus and the number of boundary components, so let S = Sg,s denote
a compact orientable smooth surface of genus g with s boundary components. Denote by
Mg,s the boundary fixing mapping class group of S as defined in the beginning of Chapter
2. One can then form homomorphisms Mg,s →Mg+1,s. Moreover, for s ≥ 1 there are
homomorphisms Mg,s → Ms+1, and finally there are homomorphisms Mg,1 → Mg,0.
These homomorphisms will be described below, and the goal of this chapter is to prove
that they induce isomorphisms on group homology Hi for g sufficiently large with re-
spect to i. The main challenge in this is to prove that the simplicial complexes that we
will use are highly connected. There are many complexes involved on the way, but in
the end the complexes we are interested in are the complex of tethered chains and the
complex of rooted curves. The connectivity of these is established in Theorem 3.27 and
Theorem 3.13 respectively.

3.1 Curve Complexes

For the proofs of both Theorem 3.27 and Theorem 3.13 we first need to establish the
connectivity of the complex C0(S) of coconnected curve systems stated in Theorem 3.10.
A k-simplex of C0(S) is an isotopy class [σ] of k+ 1 curves such that S \σ is connected.
To show that this complex is highly connected, we first show that the complex C(S)
of all curve systems is highly connected. We do this by showing that it is homotopy
equivalent to a complex of subsurfaces of S which is again homotopy equivalent to a
certain complex of arcs on S.

We proceed in reverse order. An arc system on S is a set of disjoint embedded arcs
ai from points pi to points qi such that

(1) pi and qi are points in ∂S,
(2) if i 6= j, then ai is not isotopic to aj ,
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(3) no ai is isotopic to an arc that is contained in ∂S,

where the isotopies are restricted such that the endpoints of the arcs must remain in
∂S at all times. Now choose a component ∂0S of ∂S. We define a simplicial complex
A(S, ∂0S) with a k-simplex for each isotopy class of arc systems of k + 1 arcs.

If α is a structure on S, e.g. an arc, a chain, a tethered chain etc., then [α] denotes
the isotopy class that α represents.

Proposition 3.1 ([HV15b, Proposition 4.1]). The simplicial complex A(S, ∂0S) is con-
tractible if it is non-empty, i.e. if there exists an arc that is not isotopic to an arc in
∂S, or equivalently if S is not a disk or an annulus.

Proof. We will use Lemma 1.20 similarly to before, i.e. we will use surgery to create a
flow into the star of some fixed arc class [a]. So fix an arc a inside S that starts and ends
in ∂0S and is not isotopic to an arc in ∂S. We define the complexity of an arc system
that is in normal form with respect to a as the number of points in which it intersects a.
Choosing an orientation of a, take an arc system σ that is in normal form with respect
to a with non-empty intersection. Consider the point in σ ∩ a that is closest to the head
of a. We cut the arc b that intersects a in this point in two at the intersection point
and redirect the two new endpoints to the head of a such that the two new arcs only
intersect a in the endpoint and such that two arcs do not intersect σ anywhere else. We
can do this since we chose the intersection point that was closest to the head of a, so
we can just follow a closely enough to not hit anything else. This means that we have
replaced b by an arc system ∆b of two arcs that meets a in one point fewer than b such
that [∆b] has lower complexity than [b]. Thus the three requirements in Lemma 1.20 are
satisfied, showing that A(S, ∂0S) is contractible.

In the proof Corollary 3.3 as well as several proofs later in this paper we will use the
concept of cutting along arcs and curves. We describe the concept here for arc systems,
but it can be defined analogously for the other structures that we will be using.

Remark 3.2 (Cutting along arcs). Let α be an arc system on S with endpoints in ∂0S.
Let N be a regular neighborhood of α ∪ ∂0S. By a regular neighborhood we mean a
band (0, 1)× (0, 1) for each arc in α such that the arc lies in {1

2}× (0, 1). We also include
a band [0, 1)× S1 around ∂0 such that ∂0 is {0} × S1. Assume that the bands intersect
each other only in disks and that they do so a minimal number of times. See Figure 3.1
for an example of the closure a regular neighborhood of an arc. Now Sα := S \ N is a
surface with boundary, and we say that Sα is the surface obtained from S by cutting
along α. The two sides of a band in N around an arc a in α can be seen as two ’copies’
of a. This fact is important in a lot of arguments in the rest of the paper as it allows us
to do computations using Euler characteristic.

We say that an arc system in A(S, ∂0S) is at infinity if its complement has some
component which is neither a disk nor an annular neighborhood of a boundary compo-
nent. Here a disk does not necessarily mean a closed or open one, i.e. it could be a closed
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disk with some parts of the boundary removed. We let A∞(S, ∂0S) be the subcomplex
consisting of arc systems at infinity.

Corollary 3.3 ([HV15b, Corollary 4.2]). The complex A∞(S, ∂0S) of arc systems at
infinity is (2g + s− 5)-connected.

Proof. Note that Sg,s has Euler characteristic 2 − 2g − s, that the annulus has Euler
characteristic 0, and that the disk has Euler characteristic 1. Consider an arc in S with
endpoints in ∂0. We can assume without loss of generality that the arc as well as its
endpoints are already simplices in a triangulation of S. Then cutting along the arc adds
two vertices and one edge, i.e. it increases the Euler characteristic by 1.

Since the disk and the annulus both have non-negative Euler characteristic, we must
increase Euler characteristic by at least 2g+s−2 in order to cut S in to disks and annuli.
Thus, since each cut increases Euler characteristic by 1, we need at least 2g+ s− 2 arcs
to do so. This corresponds to a (2g+s−3)-simplex of A(S, ∂S), so A∞(S, ∂0S) contains
at least the (2g + 2− 4)-skeleton of A(S, ∂0S).

Any map f : S2g+s−5 → A∞(S, ∂0S) can be assumed to be simplicial by Theorem A.5.
Moreover, since A(S, ∂0S) is contractible, f can be extended to a map F : D2g+s−4 →
A∞S, ∂0S that we can also assume to be simplicial. But then F maps into the (2g+s−4)-
skeleton and thus into A∞(S, ∂0S), showing that A∞(S, ∂0S) is (2g+s−5)-connected.

For a surface S = Sg,s, we now define the curve complex C(S) to be the simplicial
complex in which a vertex is an isotopy class of simple closed curves in S which do not
bound a disk and are not isotopic to a component of ∂S. A set of vertices in C(S) span
a simplex in C(S) if we can choose curve representatives that are all pairwise disjoint.
A collection of such curves is then called a curve system.

We now define the subsurface complex S(S, ∂0S) as the poset of isotopy classes
of compact connected subsurfaces S′ of S such that S′ contains ∂0S and ∂S′ \ ∂S is
a non-empty curve system in S. Note that it may contain parallel copies of the same
curve, and that in particular no component of ∂S′ \ ∂S bounds a disk in S or is isotopic
to a component of ∂S because ∂S′ \ ∂S must be a curve system.

Let α ∈ A(S, ∂0S) be an arc system. We can associate to α a subsurface S(α) of S
by first taking the closure of a regular neighborhood N of α∪ ∂0S and then adding to it
any components of S \N that are disks or annuli (with one boundary circle in ∂S). In
this case the closure of a regular neighborhood is made up of one embedded I × I strip
around each arc such that I × {0} and I × {1} are both contained in ∂S and such that
{1

2} × I corresponds to the arc. These strips should be chosen small enough such that
they intersect only in disks and do so a minimal number of times. See Figure 3.1 for an
example of this when α is a single arc.

This means that [α] /∈ A∞(S, ∂0S) if and only if S(α) = S, so the simplices of
A∞(S, ∂0S) correspond exactly to systems [α] such that S(α) ( S. Now let Â∞(S, ∂0S)
denote the poset of simplices in A∞(S, ∂0S). Then [α] 7→ [S(α)] defines a poset map
f : Â∞(S, ∂0S)→ S(S, ∂0S) since α ⊂ β implies S(α) ⊂ S(β).
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∂0S

Figure 3.1: An arc α and its associated subsurface S(α)

∂0S ∂0S

Figure 3.2: A curve system γ and its associated subsurface S(γ)

Proposition 3.4 ([HV15b, Proposition 4.3]). The map f : Â∞(S, ∂0S) → S(S, ∂0S) is
a homotopy equivalence.

Proof. We will use Quillen’s Fiber Lemma, Lemma 1.13. If [S′] ∈ S(S, ∂0S), then f≤[S′]

consists of all classes of arc systems [α] such that S(α) ⊂ S′, which is just Â(S′, ∂0S)
since ∂0 ⊂ S′. Since no component of ∂S′ is allowed to bound a disk or to be isotopic to
a component of ∂S, S′ cannot be a disk or an annulus, so Â(S′, ∂0S) is contractible by
Proposition 3.1 since it is homeomorphic to A(S′, ∂0S). Thus Lemma 1.13 shows that f
is a homotopy equivalence.

Let γ be a curve system on S. We want to define a subsurface S(γ) ⊂ S that is
related to γ. If necessary we can isotope γ such that it is disjoint from ∂S, and then
we can choose a regular neighborhood N(γ) of γ such that N(γ) is disjoint from ∂S.
Similarly to the case of arcs, a regular neighborhood of γ consists of a band I × S1 for
each curve in γ such that the curve lies in {1

2} × S
1 and such that the bands intersect

in disks a minimal number of times.

We then denote by S(γ) the component of S \N(γ) that contains ∂0S as illustrated
in Figure 3.2. We can choose the neighborhoods N(γ) such that if γ ⊂ γ′, then N(γ) ⊂
N(γ′), so that S(γ) ⊃ S(γ′). Thus [γ] 7→ [S(γ)] defines a poset map g : Ĉ(S) →
S(S, ∂0S). This poset map reverses the ordering, but this does not matter since we can
just consider the reverse ordering on either Ĉ(S) or S(S, ∂0S) without changing it as a
topological space.

Proposition 3.5 ([HV15b, Proposition 4.4]). The map g : Ĉ(S) → S(S, ∂0S) is a ho-
motopy equivalence.

Proof. Let [S′] ∈ S(S, ∂0S) be given. Then g≥[S′] consists of curve system classes [δ]
where δ can be chosen such that S′ ⊂ S(δ), i.e. such that δ ⊂ S \ S′ since S′ is
connected and contains ∂0S. Here the curves in δ are allowed to be parallel to those
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in γ(S′) := ∂S′ \ ∂S. In particular [∂S′ \ ∂S] is an element of g≥[S′] since ∂S′ \ ∂S
can be isotoped to an appropriate curve system. The curve system class [γ(S′)] can be
added to any curve system class in g≥[S′] since for g≥[S′] we must be able to choose curve
representatives that do not cross ∂S′. Thus g≥[S′] = star([γ(S′)]), seen as the star of
[γ(S′)] inside g≥[S′], which is contractible by (A.2).

Corollary 3.6 ([HV15b, Corollary 4.5]). If ∂S 6= ∅, then C(S) is (2g+s−5)-connected.

Proof. By Proposition 3.5 and Proposition 3.4 we have homotopy equivalences

C(S) ' S(S, ∂0S) ' A∞(S, ∂0S),

and A∞(S, ∂0S) is suitably connected by Corollary 3.3.

Corollary 3.7 ([HV15b, Corollary 4.6]). If S has genus 0, then C(S) is homotopy
equivalent to a wedge of spheres of dimension s− 4.

Proof. If S has genus 0, then C(S) is (s−5)-connected by Corollary 3.6. Thus, since C(S)
is (s − 4)-dimensional and its (s − 5)-skeleton is contractible, C(S) must be homotopy
equivalent to a wedge of spheres of dimension s− 4.

3.1.1 Curves on closed surfaces

Lemma 3.8. Let S = Sg,s, and let γ be a maximal curve system on S. Then
• If g > 1, γ cuts S = Sg,s into pairs of pants, i.e. copies of S0,3,
• If g = 1, then γ cuts S into pairs of pants if s ≥ 1 or into a single cylinder if s = 0,
• If g = 0, then if s ≤ 3, γ has to be empty, and if s > 3, then γ cuts S into pairs of

pants.

Proof. We will prove the first statement by a process of elimination. We need to show
that γ cannot cut S into any of the following:

(1) A disk S0,1,
(2) A cylinder S0,2,
(3) Any S0,s with s > 3,
(4) Any Sg,s with g > 0,

which will leave S0,3 as the only remaining opportunity. (i) is impossible since at least
one of the curves would have to be trivial. (ii) is impossible since two curves would
have to be isotopic to each other, or one curve would have to be isotopic to a boundary
component. (iii) is impossible since we could cut along a curve that separates two
boundary components from the others and thus cuts S0,s into S0,3 and S0,s−1, so the
curve system would not be maximal. Finally (iv) is impossible since we can cut Sg,s along
a non-separating curve to get Sg−1,s+2, so the curve system would not be maximal.

For the second statement, if g = 1 and s = 0, our only choice is to cut along a
non-separating curve, so we get a cylinder. If g = 1 and s ≥ 1, we must at least cut
along a curve to get S0,s+2 which must then be cut into pairs of pants as we already
argued.
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If g = 0 and s ≤ 3, then any curve will be trivial or isotopic to a curve around a
boundary component. If g = 0 and s > 3, we can cut around two of the boundary
components to get S0,3 and S0,s−1.

Theorem 3.9 ([HV15b, Theorem 4.7]). Let g ≥ 1, and let φ : C(Sg,1) → C(Sg,0) be
the map induced by filling in the single boundary circle of Sg,1 with a disk. Then φ is a
homotopy equivalence.

Proof. If g = 1, then C(Sg,1) and C(Sg,0) both consist of a single curve system of
one curve which cuts them into S0,3 and S0,2 respectively by Lemma 3.8, so φ is an
isomorphism.

Now assume that g > 1. Then the dimension of C(Sg,1) is one greater than that
of C(Sg,0) since we will need one extra curve to cut S into pairs of pants. Choose a
maximal curve system δ on Sg,1. Then δ cuts Sg,1 into pairs of pants by Lemma 3.8.
Let P denote the subsurface of Sg,1 corresponding to the pair of pants that contains the
circle ∂Sg,1. Let d1 and d2 denote the two components of ∂P that are curves in δ.

We can isotope any curve system γ in Sg,1 to be in normal form with respect to δ.
If γ is in normal form with respect to δ, then some arc of γ ∩ P must either cross P
from d1 to d2 or enter in one di, go around ∂Sg,1 and go out again through the same di.
Otherwise it would bound a circle together with an arc in di. An arc of the latter type
that goes around ∂Sg,1 will be called a return arc.

Step 1, removing return arcs: Let c be a curve in normal form with respect to δ that
contains at least one return arc. Let b be the innermost return arc, the one closest to
∂Sg,1. We can push b across ∂Sg,1 to get a new curve ∆c with one return arc fewer
than c. By staying sufficiently close to ∂Sg,1, we can assume that ∆c is disjoint from c.
Let C0 ⊂ C(Sg,1) denote the subcomplex of curve complexes with no return arcs, and
define a complexity function on C(Sg,1) by counting the number of return arcs. For any
simplex [γ] in C(Sg,1) \ C0, we let cγ be the curve in γ containing the innermost return
arc of γ.

We now want to use the flow lemma, Lemma 1.20. Note that [∆cγ ] is in the link
of [cγ ] since ∆cγ is disjoint from cγ and [∆cγ ] ∪ [cγ ] is a 1-simplex in C(Sg,1). This is
because we assumed γ to be in normal form with respect to δ so that it has the minimal
amount of return arcs, so cγ cannot be isotopic to ∆cγ which has fewer return arcs. Note
that [γ] ∗ [∆cγ ] is also a simplex in C(Sg,1) since either ∆cγ is not isotopic to any other
curve in γ, or [γ] ∗ [cγ ] = [γ]. We can choose cγ to be disjoint from γ since we chose
the innermost return arc and therefore do not have to intersect anything. Since we have
eliminated a return arc from cγ , the complexity is now strictly lower. Moreover, if [γ′]
is a face of [γ] that contains [cγ ], then cγ will still contain the innermost return arc of
γ′, i.e. [cγ′ ] = [cγ ]. Therefore Lemma 1.20 shows that C0 is a deformation retract of
C(Sg,1).

Step 2, filling ∂Sg,1 with a disk: There is a map ψ : C(Sg,1) → C(Sg,0) induced by
i : Sg,1 ↪→ Sg,0, the map obtained by attaching a disk to ∂Sg,1. Since the attached out
disk gives more room for isotopy, some non-isotopic curves in C(Sg,1) may map to the
same isotopy class in C(Sg,0). The map ψ restricts to a map φ : C0 → C(Sg,0). We want
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to show that the induced poset map φ̂ : Ĉ0 → Ĉ(Sg,0) is a homotopy equivalence. By

Lemma 1.13 and Lemma 1.15 (2) it suffices to show that all fibers φ̂−1([σ]), where σ is a
curve system on Sg,0, are contractible. Note that these are in fact fibers since simplices
are turned into vertices in the poset complex.

The map φ is surjective since moving a return arc across ∂Sg,1 does not change the
isotopy type of a curve when viewed in C(Sg,0). So let σ ∈ C(Sg,0) be given, and choose
[γ] in C0 such that φ([γ]) = [σ]. We may assume without loss of generality that γ is in
normal form with respect to δ. Note that the isotopy representative δ can be isotoped
slightly to a curve representative δ′ that is disjoint from δ. Then δ′ in particular has no
return arcs and thus is an element of C0. This means that φ([δ]) is well-defined.

Since γ is in normal form with respect to δ and has no return arcs, it does not bound
a disk together with δ when viewed as curve systems in Sg,0. Therefore σ = i(γ) is in
normal form with respect to i(δ). Assume first that γ ∩P = ∅. The curve system γ may
contain a curve that is isotopic to d1 or d2. If a curve c is isotopic to d1, and another
curve c′ is isotopic to d2, then c and c′ are not isotopic, but φ([c]) = φ([c′]) since d1

and d2 are isotopic when we are allowed to fill ∂Sg,1 with a disk. There are now four
possibilities for the curve system γ, namely

(1) γ contains a curve that is isotopic to d1, but not one isotopic to d2,
(2) γ contains a curve that is isotopic to d2, but not one isotopic to d1,
(3) γ contains a curve that is isotopic to d1, and another one that is isotopic to d2,
(4) γ contains no curve that is isotopic to d1 or d2.

In the first case, we can add a curve that is isotopic to d2 without changing the image
under φ, and in the second case we can do the same, only now with d1. Thus if γ satisfies
any of the three first cases, we can assume without loss of generality that it is the third
case, and then

φ−1([σ]) = φ−1([i(γ)]) = φ−1(φ([γ])) = {γ, γ1, γ2},

where γ1 is obtained from γ by removing the curve isotopic to d2, and γ2 is obtained
by removing d1. This means that φ̂−1([σ]) = {[γ], [γ1], [γ2], [γ1] < [γ], [γ2] < [γ]}, i.e. it
consists of three vertices connected by two edges, so it is homeomorphic to I = [0, 1] as
indicated by the following picture, i.e. it is contractible.

γ1

γ

γ2

Now assume that γ does not contain a curve that is isotopic to d1 or d2. Recall that γ
does not intersect P . If c is a curve on Sg,1 such that i(c) is isotopic to a curve in i(γ),
then either c is isotopic to a curve in γ, or c has a return arc. Thus the fiber φ−1([σ])
consists of the single element [γ], so it is contractible.

Now assume that γ intersects P . Since γ has no return arcs, it must intersect P
in arcs a1, . . . , ak with k ≥ 1 that enter through one di and exit through the other. In
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this case we do not have the problem above since if γ contained a curve isotopic to di,
it would have to intersect itself. The arcs a1, . . . , ak are contained in curves c1, . . . , ck,
some of which may coincide since a curve may pass through P multiple times. We can
choose the numbering such that the disk D that attaches to ∂Sg,1 lies in between the
arcs ak and a1, and such that ai is adjacent to ai+1 for all i = 1, . . . , k. By pushing
a1 across D, c1 is converted to a curve c′1 which we can assume to be disjoint from c1.
Then [γ1] = [γ] ∪ [c′1] is a simplex in C0. Note that γ1 will be equal to γ if c′1 is isotopic
to a curve in γ. In any case the image is not changed, i.e. φ([γ1]) = φ([γ]) = [σ]. Let
[γ0] = [γ] \ [c′1] and [γ2] = [γ1] \ [c1]. Then [γ1] 6= [γ] if and only if γ2 = γ. We get
inclusions

[γ0] ( [γ1] ) [γ2],

i.e. a simplicial subcomplex of C0 consisting of a line built from three vertices and two
edges. Since we have pushed a1 across D, a2 is now adjacent to D, so we can push a2

across D to get a new curve c′2 and new curve systems [γ3] = [γ2]∪[c′2] and [γ4] = [γ3]\[c2].
We can continue this process to get inclusions

[γ0] ( [γ1] ) [γ2] ( [γ3] ) [γ4] ( [γ5] ) · · · .

Similiarly we could have worked the other way, starting by pushing ak across D, to get
inclusions in the other direction. Combining these, we get a doubly infinite string

· · · ) [γ−4] ( [γ−3] ) [γ−2] ( [γ−1] ) [γ0] ( [γ1] ) [γ2] ( [γ3] ) [γ4] ( · · · .

Note that if we wanted to add two curves to γ without removing another and without
changing the image under φ, we would get into trouble since the second curve would
have to either intersect γ or be isotopic to the first added curve or a curve in γ. This
is because we are in the complex without return arcs, so if we want to leave the image
under φ unchanged, we should not change anything outside of P . This means that what
we have done above covers all of φ̂−1([σ]) which is then homeomorphic to the real line,
i.e. is contractible.

3.1.2 Complexes of coconnected curve systems

For a curve system γ on S, it might be the case that S \ γ is connected, for example if
γ is a non-trivial circle on the torus. In that case we say that γ is coconnected, and
we let C0(S) denote the complex of coconnected curve systems on S.

To each curve system γ we associate an undirected graph D(γ), called the dual
graph of γ, with one vertex for each connected component of S \ γ. Moreover, for
each curve c in γ there is an edge in D(γ) between the vertices corresponding to the
components on each ’side’ of c. These two components are the same if c does not separate
a component of S \ (γ \ c), in which case the corresponding edge is a loop. This means
that γ is coconnected if and only if D(γ) consists of one vertex with a number of loops.
Whether or not a curve is separating i stable under isotopy, so we can consider the graph
D([γ]), which is isomorphic to D(γ).
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Theorem 3.10 ([HV15b, Theorem 4.8]). The complex C0(S) is g−3
2 -connected if S has

genus g.

Proof. The statement is vacuous for g = 0, so assume that g ≥ 1. Note first that
by Theorem 3.9 there is a homotopy equivalence C(Sg,1) ' C(Sg,0), so it suffices to
prove the theorem for s ≥ 1. Moreover, C(Sg,s) is (2g − 4)-connected for any s ≥ 1 by
Corollary 3.6 since g ≥ 1. This means that C(S) is (g− 3)-connected and therefore g−3

2 -

connected for g ≥ 2. For g = 1, C(S) is g−3
2 -connected since it is non-empty. We will

proceed by a bad simplex argument, using Corollary 1.10 with C0(S) as a subcomplex
of C(S). We define a set of bad simplices in C(S) \ C0(S) as the curve systems γ such
that the dual graph D([γ]) has no loops. This means that a curve system γ represents
a bad simplex if and only if each curve c in γ separates a component of S \ (γ \ c).

If a curve system γ is not coconnected, then if necessary we can remove all curves
c in γ that do not separate a component of the complement of the other curves. This
results in a curve system γ0 ⊂ γ such that D([γ0]) has no loops, i.e. [γ0] is a bad face of
[γ]. By contraposition this shows that any curve system with no bad faces must be in
C0(S), i.e. the first condition of Definition 1.8 is satisfied.

If [γ1] and [γ2] are bad faces of some [γ], i.e. faces such that D([γ1]) and D([γ2]) have
no loops, then [γ1] ∗ [γ2] has no loops by the following argument. Start with [γ1]; the
dual graph D([γ1]) has no loops, and if we add a curve class [c] to [γ1], none of the curves
already in [γ1] will be turned into loops in the dual graph since we can only separate
S into more pieces, not fewer. Similarly, adding curve classes to [γ2] does not create
any loops in the dual graph. This means that D([γ1] ∗ [γ2]) will not have any loops, so
[γ1] ∗ [γ2] is a bad simplex. This means that the bad simplices also satisfy the second
condition of Definition 1.8.

Now let [σ] be a bad simplex in C(S). The simplices that are good for [σ] are the
simplices [τ ] ∈ link([σ]) such that any bad face of [τ ] ∗ [σ] is contained in [σ], i.e. the
curve systems [τ ] such that if a subsystem [γ] of [τ ] ∗ [σ] has no loops, then [γ] ⊂ [σ].
Thus each curve class [c] in [τ ], when added to [σ], constitutes a loop in the resulting
dual graph D([σ]∪ [c]), which is equivalent to the statement that [c] ∈ C0(Si), where Si
is the component of the surface Sσ obtained by cutting S along σ that contains c. This
means that G[σ] is the join ∗iC0(Si), where i ranges over all components of Sσ.

We want to proceed by induction on the lexicographically ordered pair (g, s), so we
need to show that (gi, si) < (g, s), where Si = Sgi,si . Suppose that we cut S along some
non-trivial curve. This may cut S into two components, or it might not. In any case, the
total Euler characteristic of the surface(s) is preserved since we can do the cutting by
adding one vertex and one edge. Now suppose that we cut S along a bad curve system.
Then the Euler characteristic is still preserved. The total genus of all the components
cannot be greater than g since that would require at least one of the cuts to add at least
two additional components, which is impossible. Suppose now that the genus gk of some
Sk is not lower than g, i.e. gk = g. Then gi = 0 for all i 6= k, and since the total Euler
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characteristic is preserved, we have

χ(S) =
∑
i

χ(Si).

Let now dimσ = n−1, and let c be the number of components Si of Sσ. Then since each
cut increases the total number of boundary components by 2, we have

∑
i si = s + 2n.

Thus

2− 2g − s =
∑
i

(2− 2gi − si) = 2c− 2g −
∑
i

si = 2c− 2g − s− 2n,

so that 2 = 2c− 2n, i.e. c = n+ 1. But then since each Si with i 6= k must be S0,si with
si ≥ 3, we have

sk =
∑
i

si −
∑
i 6=k

si = s+ 2n−
∑
i 6=k

si ≤ s+ 2n− 3(c− 1) = s+ 2n− 3n = s− n,

which shows that sk < s.

Now we know that for each i, either gi < g or si < s. Thus we can proceed by
induction on the lexicographically ordered pair (g, s), the base case being (1, 1). The
base case holds since C0(S1,1) is non-empty, i.e. it has connectivity −1 = g−3

2 .

Since cutting along a curve preserves Euler characteristic and adds 2 boundary com-
ponents, it must either be separating or reduce genus by 1. This means that if [σ] is a bad
simplex of dimension k, then the total genus of Sσ is gσ = g−k−1+c−1 = g−k+c−2,
where c is the number of components of Sσ. By Lemma A.2, the join of a g1−3

2 -connected

complex with a g2−3
2 -connected one has connectivity at least(

g1 − 4

2
+ 2

)
+

(
g2 − 4

2
+ 2

)
− 2 =

g1 + g2 − 4

2
. (3.1)

Note that we have to round gi−3
2 down to gi−4

2 in case gi is even. Successive use of

(3.1) tells us that Gσ has connectivity at least gσ−2−c
2 . Thus it suffices to show that

gσ−2−c
2 ≥ g−3

2 − k, which is equivalent to gσ ≥ g − 2k + c − 1. As argued above,
gσ ≥ g − k −+c− 2, so the statement gσ ≥ g − 2k + c− 1 holds whenever k ≥ 1.

We treat the case k = 0 specifically. In this case σ is a single separating curve, and
we need to show that Gσ has connectivity g−3

2 . If g is even, then g−3
2 is not an integer,

so we can round down to g−4
2 , so Gσ has the desired connectivity by (3.1). If g is odd,

then one of the gi’s is odd while the other is even. Assume that g1 is odd. Then by
Lemma A.2, Gσ has connectivity(

g1 − 3

2
+ 2

)
+

(
g1 − 4

2
+ 2

)
− 2 =

g1 + g2 − 3

2
=
g − 3

2
,

which concludes the induction step.
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3.1.3 The complex of rooted curves

We will now establish the connectivity of the complex of rooted curves which we will use
for the stabilization by boundary components. The complex of rooted curves is analogue
to the complex Y A of [HW07, Theorem 8.6], and the proof of connectivity is inspired
by the proofs of that paper. Consider the surface Sg,s with s ≥ 3. Let x0 be a point
in one boundary component, and let x1 be a point in another. A rooted curve is a
pair (c, r) where c is a coconnected curve and r is an arc from x0 to x1 that intersects c
transversally exactly once. The essential property of a rooted curve is that cutting along
it reduces genus by one while preserving the number of boundary components. As usual,
this can be verified by an Euler characteristic argument since the cut increases Euler
characteristic by 2. We define a simplicial complex C0

R(S, x0, x1) in which an n-simplex
is the isotopy class of a coconnected system of n+ 1 rooted curves, where the isotopies
are required to fix the endpoints x0 and x1. Usually we will just write C0

R(S).

By gluing a copy of S1,2 onto Sg,s along a boundary component disjoint from x1 and
x2, we obtain the surface Sg+1,s as well as an inclusion Sg,s ↪→ Sg+1,s. Let S∞,s be the
direct limit under these inclusions. The inclusions also induce inclusions C0

R(Sg,s) ↪→
C0
R(Sg+1,s) as no rooted curves become trivial under the inclusions of surfaces. We

then define the complex C0
R(S∞,s) as the direct limit under the inclusions C0

R(Sg,s) ↪→
C0
R(Sg+1,s). The objective of this subsection is to show that C0

R(S∞) is contractible. To
do this, we first need to study the complex C0(S∞,s) defined similarly to C0

R(S∞) as the
direct limit under the inclusions C0(Sg,s) ↪→ C0(Sg+1,s) induced by Sg,s ↪→ Sg+1,s. For
simplicity we write S∞ = S∞,s and Sg = Sg,s for the remainder of this section.

Lemma 3.11. The complex C0(S∞) is contractible.

Proof. Let k ≥ 0 be given, and let f : Sk → C0(S∞) be any simplicial map. Since Sk

is compact, the image of f must be compact and therefore contained in some C0(Sg).
If we choose g ≥ k + 2, then C0(Sg) is k-connected by Theorem 3.10. Thus f is null-
homotopic, showing that C0(S∞) is contractible by the Whitehead Theorem since it is
connected.

To show that C0
R(S∞) is contractible, we first embed it into a larger simplicial

complex MC0
R(S∞) called the complex of multi-rooted curves. The vertices of

MC0
R(S∞,s) are the same as those of C0

R(S∞,s), but there are more higher-dimensional
simplices. Namely, a collection of rooted curves (ci, ri) span a simplex in MC0

R(S∞,s) if
the ci’s are pairwise disjoint or equal, and if there are regular neighborhoods Ai of the
ci’s such that the following holds:

(1) Ai = Aj when ci = cj and Ai ∩Aj = ∅ when ci 6= cj .
(2) Each root ri intersects ∪jAj in a single arc crossing Ai from one component of ∂Ai

to the other.
(3) The roots ri only intersect each other at their endpoints or inside ∪jAj .

Inside ∪jAj , the roots are allowed to intersect without restrictions. For example a
simplex in MC0

R(S∞,s) can be constructed from a vertex (ci, ri) by adding modified
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Figure 3.3: The rerouting in Lemma 3.12

roots obtained from ri by applying any power of a Dehn twist around ci. Note that a
system of multi-rooted curves need not be coconnected.

Lemma 3.12. The complex MC0
R(S∞,s) is contractible.

Proof. Consider the projection MC0
R(S∞,s)→ C0(S∞,s) that only remembers the curves

ci. The complex C0(S∞,s) is contractible by Lemma 3.11. Thus, by Corollary 1.16 it
suffices to show that the preimage π−1([σ]) is contractible for any simplex [σ] of C0(S∞,s)
represented by curves c1, . . . , ck.

Let a map f : Sp → π−1([σ]) be given. Then f has compact image f(Sp) ⊂MC0
R(Sg0)

for some g0 < ∞. For each ci choose two curves c′i and c′′i in S∞ \ Sg0 such that
A = ∪i(ci∪c′i∪c′′i ) forms a coconnected curve system on Sg0 . This is possible since cutting
along each curve reduces genus by 1, and we can choose g0 ≥ 3k + 3. Choose a simplex
[σ̂] = [(c1, a1), . . . , (ck, ak)] in MC0

R(S∞) such that each ai intersects A transversely in
exactly three points: Starting from xo it first intersects c′i, then ci and then c′′i before
reaching x1. This is possible since A is coconnected.

We will use Lemma 1.20 with Y = star[σ̂] and X = f(Sp). Namely, we will construct
a flow of f(Sp) onto the star[σ̂] to show that the image of f is contractible and therefore
f is null-homotopic. Let [τ ] be a simplex in the image of f represented by rooted curves
(d1, b1), . . . , (d`, b`). The complexity of [τ ] is measured by the number of intersection
points of τ with σ̂, assuming that τ is in normal form with respect to σ̂. We now divide
each root ai of σ̂ into four arc segments,

(1) one from x0 to c′i,
(2) one from c′i to ci,



3.1. CURVE COMPLEXES 45

(3) one from ci to c′′i , and
(4) one from c′′i to x1.

Starting with a1 choose the intersection point between the first arc segment of a1 and
∪jbj that is closest to c′i. If there is no such intersection point, choose the intersection
point with the second arc segment of a1 closest to c′i. Then proceed similarly with the
third and fourth segments, only with c′′i instead of c′i. Then proceed with a2, and so
on. If no intersection points are found in this way, τ is already contained in the star of
σ̂. If there are intersection points, we have a preferred vertex [(dj , bj)]. We then define
a new vertex ∆[(dj , bj)] represented by a rooted curve (dj , b

′
j). The root b′j is defined

by following bj closely from x0 until close to ai, then following ai closely until close to
c′i, then following c′i closely to reach the other side of ai, then following ai closely until
close to bj again, and then finally following bj back to x1 as depicted in Figure 3.3. This
reduces the number of intersection points with σ̂, and the new root can be chosen to be
disjoint from bj . The third condition of Lemma 1.20 is also satisfied, so we get a flow
into the star of [σ̂].

Theorem 3.13. The complex C0
R(S∞,s) is contractible.

Proof. Let a simplicial map f : Sk → C0
R(S∞) be given. Since Sk is compact, the

image of f is contained in C0
R(Sg) for some g. We want to show that for some g1, f

can be extended over the disk to a map G : Dk+1 → C0
R(Sg1) that is homotopic to f

when restricted to the boundary sphere. We do this by first expanding f to a map

F : Dk+1 → M̂C0
R(Sg0)k+2 for some g0 and then modifying F to obtain the map G.

Step 1: Construction of F : Sk → M̂C0
R(Sg0)k+2: Assume that f is simplicial with

respect to some triangulation T0 of Sk. Let T′0 be the barycentric subdivision (poset
complex) of T0. We want to construct a simplicial map F from a subdivision T1 of T′0
to M̂C0

R(Sg0)k+2; see Definition 1.17 (later we will extend over the disk). Moreover, the
subdivision T1 and the map F must satisfy the following additional property: For any
vertex v of T1 such that v lies in the interior of a simplex (σ0 < · · · < σp) of T′0, f(σ0)
is a monic subset of F (v), meaning that every curve of f(σ0) intersects only one arc of
F (v).

We proceed by induction over the skeleta of T′0. For every vertex σ of T′0 such that
f(σ) is a p-simplex in C0

R(Sg), we extend f(σ) to a (k + 1)-simplex F (σ) = f(σ) ∗ τ
of C0

R(Sg0) for a suitable g0. This is possible because dim f(σ) ≤ k and we can choose

g0 ≥ k+ 2. Then F (σ) can be considered as a vertex of M̂C0
R(S)k+2, so we have defined

F on vertices.
For the induction step, assume that F is defined on ∂τ for some p-simplex τ =

(σ0 < · · · < σ) of T′0. We want to extend F over τ . Assume also that the monic subset
property mentioned above is satisfied. Then for any vertex v of ∂τ , F (v) contains f(σ0)
as a monic subset, i.e. every curve of f(σ0) intersects only one arc of F (v). Thus we can
cut Sg0 along f(σ0) to obtain a surface Sf(σ0), and the remaining rooted curves will not
be affected by the cutting. This means that we can consider the restriction of F to ∂τ as

a map gτ : ∂τ → M̂C0
R(Sf(σ0))k+2−q, where q is the number of vertices in f(σ0) that we
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have ’removed’ by cutting along them. By Lemma 3.12 and Lemma 1.18 we can replace

g0 by some g1 ≥ g0 such that M̂A
0

R(Sf(σ0))k+2−q is (p − 1)-connected. Rooted curves
in Sf(σ0) correspond to rooted curves in Sg1 that are disjoint from and not isotopic to
rooted curves of f(σ0). Thus we can extend F over the interior of τ by extending in

M̂A
0

R(Sf(σ0))k+2−q and then pulling back to M̂A
0

R(Sg1)k+2−q and finally joining with

f(σ0) to get a map into M̂A
0

R(Sg1)k+2. The monic subset property is still satisfied since
the extension was done with rooted curves disjoint from f(σ0).

Since the triangulation T′0 must be finite, this shows that we can modify f to a map

F : Sk → M̂C
0

R(Sg1)k+2 for some sufficiently large g1. We can then expand F over the

disk simply by choosing g1 large enough such that M̂C
0

R(Sg1)k+2 is sufficiently highly

connected. This gives a map F : Sk → M̂C
0

R(Sg1)k+2. Moreover, we can assume that F
is simplicial with respect to a triangulation on Dk+1 that restricts to the triangulation
T1 of Sk.

Step 2: Construction of G : Dk+1 → C0
R(Sg1): We construct G by induction on the

skeleta of T1 using a subdivision T2 of T1 with the extra property that if w is a vertex
of T2 in the interior of a simplex τ = {v0, . . . , vp} of T1 with F (v0) ≤ · · · ≤ F (vp) in

M̂C0
R(Sg1)k+2, then G(w) is a vertex of F (v0). If w ∈ Sk and w lies in the interior of a

simplex (σ0 < · · · < σq) of T′0, we moreover assume that G(w) is a vertex of f(σ0). This
is possible since f(σ0) ⊂ F (v0) by the construction in step 1.

To define G on the 0-skeleton of T1 as well as on all of Sk, note that the additional
property mentioned in the previous paragraph does not concern vertices of T1, so this
leaves no obstruction to the definition of G. If w is a vertex of T1 that lies in the interior
of a simplex σ of T0 in Sk, then G(w) must lie in f(σ), so set G(w) = f(v) for some
vertex v of σ. Since T1 is a subdivision of T0, we can extend G over Sk in this way, and
the resulting map will be homotopic to f . This means that it only remains to define G
on higher dimensional simplices in the interior of Dk+1.

Suppose that G is defined on the (p− 1)-skeleton of T1. Let τ = {v0, . . . , vp} be a p-
simplex of T1 that is not contained in Sk. For each vertex w in the triangulation T2 which
exists on ∂τ by induction hypothesis, either G(w) lies in the interior of a face of τ , or w
is a vertex vj of τ . In the former case we use the assumption on G, and in the latter case
we already have G(w) = f(w). Consider now the projection π : MC0

R(Sg1) → C0(Sg1)
that only remembers the curves ci, and denote also by π the resulting projections on
poset complexes. Let L be the set of vertices of πF (vp), and let L0 be the set of vertices
of πF (v0). Since ∂τ is a sphere, we can apply the Coloring Lemma, Lemma 1.12. This
gives us an extension of the triangulation T2 over τ where vertices in the interior of τ
are labeled by L0, and bad simplices only occur in ∂τ . For a vertex w in the interior of
τ , we define G(w) as any vertex in F (v0) mapping by π to w. For this definition to be
valid, we need to check that for each simplex σ = {w0, . . . , wq} in T2, G(σ) is a simplex
of C0

R(Sg1). We know that G(σ) is already a simplex of MC0
R(Sg1) since it is a face of

g(vp), so we only need to show that each G(wi) has a different associated curve. But
G is defined such that if wi or wj or both are in the interior of Dk+1, and i 6= j, then
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πG(wi) 6= πG(wj). If wi, wj ∈ Sk, then we could have πG(wi) = πG(wj), but in that
case G has already been defined to map {wi, wj} to a simplex of C0

R(Sg1).

3.2 Complexes of connecting arcs

Let S = Sg,s with s > 0, and let P and Q be two disjoint 1-dimensional non-empty
compact submanifolds of ∂S. Then P and Q consist of disjoint arcs and/or curves inside
the boundary components of S. We consider isotopy classes of non-trivial arcs each with
one endpoint in P and one in Q, where the arcs are not allowed to land in the endpoints
of the components of P or Q. We let isotopies vary the endpoints as long as the endpoints
stay inside P , respectively Q, and we say that an arc is trivial if it is isotopic to an arc
inside ∂S which only touches P ∪Q in its endpoints. These isotopy classes of arcs are the
vertices in a complex A(S, P,Q) in which a k-simplex has as vertices k+1 isotopy classes
of arcs for which it is possible to choose representatives that are mutually disjoint.

A component of ∂S might contain arcs of P , arcs of Q, or arcs of both. We consider
the components of ∂S \(P ∪Q). Such a component is either a component of ∂S or an arc
between (possibly identical) components of P ∪Q only touching P ∪Q at its endpoints.
If it goes between P and Q, we say that the arc is mixed, and if it goes from P to P or
Q to Q, we say that it is pure. The number of pure arcs can be any integer u ≥ 0, but
the number of mixed arcs must be an even number 2t for t ≥ 0. Moreover we consider
the number s′ of boundary components that intersect P ∪Q. The goal of this section is
to prove the following theorem.

Theorem 3.14 ([HV15b, Theorem 5.1]). The complex A(S, P,Q) is (4g+s+s′+t+u−6)-
connected.

To prove this, we first need to take into account some special cases, which we will do
in the following.

3.2.1 Contractible cases

The following lemmas give sufficient conditions for A(S, P,Q) to be contractible, but this
is not always the case. Namely, if S = S0,3, a pair of pants, and P and Q each consist of a
single component in the same boundary component, then A(S, P,Q) is zero-dimensional
since cutting along an arc separates S into two copies of S0,2 which each inherit a part of
P and a part of Q in the same boundary component, so there can be no more non-trivial
arcs. A(S, P,Q) is not contractible since it consists of infinitely many vertices. Namely,
it has a vertex for each integer as indicated by Figure 3.5.

Lemma 3.15 ([HV15b, Lemma 5.2]). If some component ∂0S of ∂S intersects either P
or Q, but not both, then A(S, P,Q) is contractible.

Proof. Let an arc [a] ∈ A(S, P,Q) such that a has one end in ∂0S (it must have the other
end in another boundary component by assumption). We will do a surgery flow towards
the star of the arc class [a], i.e. we will use Lemma 1.20. So consider star([a]) as a
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Figure 3.4: Surgery in Lemma 3.16
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Figure 3.5: Elements of the complex A(S0,3, P,Q)

subcomplex of A(S, P,Q), and define a complexity function on A(S, P,Q) that measures
the number of times an arc must intersect a. If an arc a0 intersects a, we cut it at the
intersection point and redirect the two arc ends to the same component of P ∪Q in ∂0S
that a lands in. This results in two arcs, one of which is a well-defined arc, i.e. it goes
between P and Q, and it is non-trivial because it travels from some other component of
∂S to ∂0S. Moreover, if we always choose the intersection point of a curve system and
a that is the closest to ∂0S, the conditions of Lemma 1.20 are satisfied, which shows
that star([a]) is a deformation retract of A(S, P,Q), i.e. A(S, P,Q) is contractible by
(A.2).

Lemma 3.16 ([HV15b, Lemma 5.3]). If some component ∂0S of ∂S contains three
adjacent arc components of P (or equivalently of Q), then A(S, P,Q) is contractible.

Proof. If ∂0S contains no components ofQ, then the statement is covered by Lemma 3.15.
Thus we can label the consecutive components by P1, P2 and P3 and assume that P1 is
adjacent to some component Q1 of Q. Let a be a boundary-parallel arc from Q1 to P2.
We want to use Lemma 1.20 by creating a surgery flow into star([a]). We will measure
the complexity of an arc system class [σ] by how many times σ must intersect a. The
preferred arc is obtained by choosing the arc that intersects a the closest to P2. We cut
the arc and redirect the ends to P2. One of the resulting arcs hits P1 and is discarded.
The other can be chosen to not intersect a, and it is non-trivial since P2 is separated
from Q on both sides by P1 and P3 respectively, so no arc landing in P2 can be trivial.
The complexity is reduced since we reduced the amount of intersection points with a
by 1. The third condition of Lemma 1.20 is also satisfied, showing that star([a]) is a
deformation retract of A(S, P,Q), so A(S, P,Q) is contractible by (A.2).
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Figure 3.6: The setting of Lemma 3.17

3.2.2 Adding a component to P

Lemma 3.17 ([HV15b, Lemma 5.4]). Suppose that some component of ∂S contains
some component P1 of P surrounded by components Q1 and Q2 of Q, possibly with
Q1 = Q2. Now modify P by adding an extra component P2 between P1 and Q2 to form
P ′. If A(S, P,Q) is k-connected, then A(S, P ′, Q) is (k + 1)-connected.

Proof. Let a be a boundary-parallel arc from Q1 to P2, and let a′ be a boundary-parallel
arc from P1 to Q2, as illustrated in Figure 3.6. Let A′ be the subcomplex of A(S, P ′, Q)
consisting of arc system classes not containing [a′]. Then by the same argument as in
Lemma 3.16, A′ is contractible since we can deform all of its arcs into star([a]). We
pick the intersection point closest to P2 for our surgery, so that we can shift the ends
of the arcs into P2. The whole complex A(S, P ′, Q) is the union A′ ∪ star([a′]), and
the intersection of these two complexes (which are both contractible) is link([a′]). This
means that star([a′]) sits as a cone on top of the contractible complex A′, so by collapsing
A′ inside A(S, P ′, Q), we get the suspension of link([a′]) since the suspension can always
be obtained as the cone modulo the base. This means that the suspension of link([a′])
is homotopy equivalent to A(S, P ′, Q).

Now, a simplex in link([a′]) consists of classes of arcs that are disjoint from a′ and
not isotopic to a′. Such arcs cannot land in P2, and if they land in P1, they cannot
come from Q2. But this is exactly the description of the smaller complex A(S, P,Q). In
conclusion,

A(S, P ′, Q) ' S(link([a′])) ' S(A(S, P,Q)),

so the connectivity of A(S, P ′, Q) is one higher than the connectivity of A(S, P,Q).

3.2.3 Filling with a disk

Lemma 3.18 ([HV15b, Lemma 5.5]). Suppose that ∂S has some component ∂0S that
is disjoint from P ∪ Q. Let S′ be the surface obtained by attaching a disk along ∂0S.
If A(S, P,Q) is non-empty, then the connectivity of A(S, P,Q) is one greater than the
connectivity of A(S′, P,Q).

Proof. By Lemma 3.15 we can assume that no component of ∂S intersects one of P
or Q without intersecting the other. Since moreover we have assumed P and Q to be
non-empty, we can choose adjacent arcs P1 and Q1 in some component ∂1S 6= ∂0S of
∂S. Now consider arcs from P1 to Q1 that are non-trivial in S, but trivial in S′. For
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Figure 3.7: Pushing an arc across ∂0S

any choice of P1 and Q1, we call this kind of arcs special arcs. Let a be a special arc.
Then a cuts from S an annulus which has ∂0S as its inner boundary component, and
whose outer boundary component is assembled from the arc a, a part of P1, a part of Q1

and an arc ca in ∂1S between P1 and Q1. Regardless of how P1, Q1 and a are chosen,
there is an arc ba from ca to ∂0S. We can even choose ba such that it is disjoint from a.
Special arcs a are then in bijective correspondence with such arcs ba since a special arc
is always isotopic to an arc that travels closely around such an arc ba and the boundary
component ∂0S.

Since we have assumed A(S, P,Q) to be non-empty, there exists a non-trivial arc
and therefore also a special arc. Moreover, the fact that P1 is adjacent to Q1 ensures
that two special arcs would either have to intersect, or one would have to be inside the
annulus cut out by the other, in which case they would be isotopic.

Let A′ ⊂ A(S, P,Q) be the subcomplex consisting of arc systems with no special arcs,
and let a be a special arc. By the argument in the previous paragraph, link(a) ⊂ A′.
We can use Lemma 1.20 to create a flow from A′ into link(a). An arc system that is
in normal form with respect to a and intersects a must also intersect bP1,Q1 , so we can
choose the preferred arc to be the one that intersects bP1,Q1 the closest to ∂0S. This
can then be pushed across ∂0S as illustrated in Figure 3.7, and since it is non-special it
will not become trivial. It will not become special either since then it would have been
trivial in the first place. This flow satisfies the conditions of Lemma 1.20, so we can
conclude that A′ deformation retracts onto the link of a.

A(S, P,Q) is the union of A′ with the stars of all special arcs. Since different special
arcs cannot appear in the same arc system, these stars are disjoint except for their
links, and the links are included in A′. The complex A′ ∪ star(a) is contractible since
A′ deformation retracts onto link(a). If a is the only special arc, then A′ ∪ star(a) =
A(S, P,Q), so A(S, P,Q) is contractible. If there are other special arcs, we contract
A′ ∪ star(a) inside of A(S, P,Q) to see that A(S, P,Q) is homotopy equivalent to a
wedge sum of the suspensions of the links of special arcs. Note that with the usual
meaning of suspension, this might not be the case, but we can fix that by regarding
suspension as joining with S0 which raises the connectivity by 1 also in the empty case.

Moreover, the link of a special arc a can be identified with the arc complex on the
surface obtained by cutting S along a and removing the resulting annulus containing
∂0S. This complex is isomorphic to A(S′, P,Q). Thus A(S, P,Q) is homotopy equivalent
to a wedge of suspensions of A(S′, P,Q), so the connectivity is one higher.
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3.2.4 Connectivity of B(S,R)

To prove Theorem 3.14, we will embed A(S, P,Q) into a larger arc complex in which
the conditions for being non-trivial are the same, but now the endpoints of the arcs are
allowed to be anywhere in P ∪Q. This means that we don’t have to specify the sets P
and Q individually, so we just denote this complex by B(S, P ∪Q), or just B(S,R) for
any 1-dimensional non-empty compact submanifold R of ∂S.

Lemma 3.19 ([HV15b, Lemma 5.6]). If the complex B(S,R) is non-empty, it is con-
tractible except in the following two cases:

(1) If S is a disk, then B(S,R) is homotopy equivalent to Sr−4, where r is the number
of arcs in R.

(2) If S is an annulus, and R is contained in one of the boundary components, then
B(S,R) is homotopy equivalent Sr−2.

Proof. Assume that B(S,R) 6= ∅. If some boundary component ∂0S of S contains exactly
one component R1 of R, fix an arc b landing in R1, and fix an endpoint p of this arc in
R1, since it might have both endpoints there. We will do a surgery flow towards star(b).
For an arc system that intersects b, make a cut at the intersection point closest to p,
and redirect the two resulting arcs to R1. Since R1 is the only component of R in ∂0S,
at least one of the two new arcs is non-trivial since otherwise the original arc would
have been trivial in the first place. This reduces the complexity (amount of intersection
points with b) of the arc system by one, and defines a surgery flow into star(b).

We will reduce the general case to this scenario by an argument similar to the one that
we used in Lemma 3.17. We claim that adding an arc component R2 to R is equivalent
to suspending B(S,R) up to homotopy equivalence. Suppose that R′ is obtained from
R by adding a component R2 next to an existing R1. Denote by R3 the arc next to R1

opposite to R2, and denote by R4 the arc next to R2 opposite to R1. If the total number
of arcs in ∂0S ∩ R′ is 3, then R3 = R4, and if the number is four, then R3 = R2 and
R4 = R1. Let now a be a boundary parallel arc from R3 to R2, and let a′ be a boundary
parallel arc from R1 to R4. Denote by B′ the subcomplex of B(S,R′) consisting of arc
systems not containing a′. Then by Lemma 1.20, B′ deformation retracts onto star(a)
by shifting arcs landing in R1 over to R2. The new arcs are non-trivial since if not,
then the original arc would have to be trivial or isotopic to a′. This means that B′ is
contractible. Moreover we can view B(S,R′) as the union of B′ with star(a′), and then
star(a′) is attached to B′ along link(a′). By contracting B′ inside B(S,R′), we see that
B(S,R′) is homotopy equivalent to the suspension of link(a′), but link(a′) is isomorphic
to B(S,R), so B(S,R′) is homotopy equivalent to the suspension of SB(S,R).

This means that we can reduce to the case where some boundary component contains
exactly one component of R. If this is the case, and if S is not a disk, or an annulus
with R contained in one boundary component, then B(S,R) is non-empty and therefore
contractible by the argument in the beginning of the proof.

If S is a disk, then R must have at least four components for B(S,R) to be non-empty.
If it has exactly four, then B(S,R) ∼= S0, and the suspension argument gives the result.
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If S is an annulus, and R is contained in one boundary circle, then R must have at least
two components in order for B(S,R) to be non-empty. If R has exactly two components,
then again B(S,R) ∼= S0, and the rest follows by the suspension argument.

Now follows a lemma that we will need for the proof of Theorem 3.14.

Lemma 3.20. All maximal arc systems in B(S,R), i.e. arc systems that are not strictly
contained in any larger arc system, have the same number of arcs, provided that R
intersects all boundary components of S.

Proof. Consider a single arc a such that [a] is a vertex in B(S,R). Suppose that a is
separating. Then both of its endpoints must in the same boundary component of S
since otherwise the cutting along a reduces the number of boundary components by 1.
Since moreover it increases Euler characteristic by one (since it adds two vertices and
one edge), it cannot be separating as that would further increase Euler characteristic by
2. Thus cutting along a increases the total number of boundary components by one, so
since a separating arc also increases Euler characteristic by one, we have

(2− 2g − s) + 1 = (2− 2g1) + (2− 2g2)− (s+ 1),

where g1 and g2 are the genera of the two components of the surface cut up by the
separating arc. It follows that g = g1 + g2, i.e. a separating arc preserves the total
genus.

Suppose now that a is non-separating. Then it still must increase Euler characteristic
by one, so it may reduce s by one, or it may reduce g by one and increase s by one. It
cannot reduce g by more than one since then it would have to increase s by three or
more, which is impossible.

Now consider any arc system class [σ] in B(S,R). Since no boundary component of
S is disjoint from R, the same holds for each component Si of the surface obtained from
S by cutting along σ and the set Ri inherited from R. This means that a maximal arc
system must cut S into disks since if not, we could just take one more non-trivial arc
that is not isotopic to and does not intersect the others, which either reduces the genus
or the number of boundary components of the surface Si that it lives in. Such a disk Si
contains a non-trivial arc if and only if Ri contains at least four arcs. Thus a maximal
arc system must in fact cut S into disks Si such that each Ri contains exactly three arcs.
We denote a surface Sg,s with a corresponding 1-manifold R ⊂ ∂Sg,s by Sg,s(n) if R has
n components. Note that cutting along any arc divides the components of R adding two
extra components. Considering the individual arcs, cutting along them can thus do the
following three things:

(1) Reduce g by one, increase s by one and increase n by two.
(2) Reduce s by one and increase n by two.
(3) Separate into two surfaces, increase the total n by two and increase the total s by

one.
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We now claim that any maximal sequence of these operations will separate Sg,s(n) into
n + 4g + 2s − 4 copies of Sg,s(3). We prove this by induction on the lexicographically
ordered triple (g, s, n). The base case (0, 1, 3) is trivial since there are no non-trivial arcs.
For the induction step, we consider each of the above operations separately. The first
operation takes Sg,s(n) to Sg−1,s+1(n+ 2), which by the induction hypothesis separates
into

n+ 2 + 4(g − 1) + 2(s+ 1)− 4 = n+ 4g + 2s− 4

copies of S0,1(3), which coincides with the statement. The second operation takes Sg,s(n)
to Sg,s−1(n+ 2) which again by the induction hypothesis separates into

n+ 2 + 4g + 2(s− 1)− 4 = n+ 4g + 2s− 4

copies of S0,1(3). Finally, the third operation separates into two surfaces Sk,l(m) +
Sg−k,s−l−1(n − m + 2) where 0 ≤ k ≤ g, 1 ≤ l ≤ s, and 3 ≤ m ≤ n − 1. Then
n −m + 2 ≤ n − 1, so the induction hypothesis applies to both surfaces. This means
that these two surfaces together separate into

(m+ 4k + 2l − 4) + (n−m+ 2 + 4g − 4k + 2s− 2l + s− 4) = n+ 4g + 2s− 4

copies of S0,1(3). This shows that any maximal arc system cuts S into the same amount
of disks, so the Euler characteristic is raised by the same amount, and therefore the
amount of arcs must be the same as well.

3.2.5 Connectivity of A(S, P,Q)

We are now ready to prove Theorem 3.14. We restate it here.

Theorem 3.14 ([HV15b, Theorem 5.1]). The complex A(S, P,Q) is (4g+s+s′+t+u−6)-
connected.

Proof. Let c = 4g + s + s′ + t + u − 6 denote the desired connectivity number. Recall
that we assumed both P and Q to be non-empty. We will also want to assume that
A(S, P,Q) is non-empty. There are only four cases where A(S, P,Q) is empty, and the
third one actually covers two cases by interchanging P and Q. These four cases are

(1) g = 0, s = 1, s′ = 1, t = 1, and u = 0;
(2) g = 0, s = 2, s′ = 1, t = 1, and u = 0;

(3+4) g = 0, s = 1, s′ = 1, t = 1, and u = 1;
(5) g = 0, s = 1, s′ = 1, t = 2, and u = 0,

as illustrated in Figure 3.8. In these cases we can just determine the connectivity number,
which in the respective cases is c = −3, c = −2, c = −2 and c = −2, so in all cases the
statement is vacuous. Therefore we can now assume that A(S, P,Q) is non-empty. We
will prove the theorem by induction on the dimension (as a simplicial complex) of the
complex B(S, P ∪Q). Note that A(S, P,Q) is a subcomplex of B(S, P ∪Q) by definition.
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Figure 3.8: The cases where A(S, P,Q) is empty
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Figure 3.9: The cases where A(S, P,Q) is empty and B(S, P ∪ Q) is non-empty and
1-dimensional

Therefore if the dimension of B(S, P ∪ Q) is −1, i.e. it is empty, then A(S, P,Q) is
empty as well, and these cases have already been covered. If dimB(S, P ∪Q) = 0, then
B(S, P ∪Q) only contains arc systems of one arc. This means that S must be 1) a disk,
or 2) an annulus with P ∪Q contained in one boundary component, since otherwise we
could have two non-isotopic and non-trivial disjoint arcs. In the first case where S is
a disk, P ∪ Q must have exactly 4 components for B(S, P ∪ Q) to be non-empty and
1-dimensional. There are three cases where this happens with A(S, P,Q) non-empty.
These are indicated in Figure 3.9.

In the second case, where S is an annulus with P ∪ Q contained in one boundary
component, P ∪Q must contain exactly two components for B(S, P ∪Q) to be non-empty
and 1-dimensional. In that case A(S, P,Q) is empty, which we have already covered.

We will now proceed with the induction step, so assume that the theorem holds for all
S′, P ′, Q′ with dimB(S′, P ′ ∪Q′) < dimB(S, P ∪Q). By Lemma 3.15 and Lemma 3.16,
A(S, P,Q) is contractible whenever S has a boundary component touching one of P
or Q, but not both, or whenever some boundary component contains three consecutive
arcs of either P or Q, so the theorem holds in these cases. Thus we may assume that
these are not the case. By Lemma 3.17, separating a component of P or Q in two and
leaving a pure arc in between raises the connectivity of A(S, P,Q) by one, but it also
accordingly increases c by one, so we may assumme that there are no pure arc segments,
i.e. that u = 0. Moreover, Lemma 3.18 tells us that adding a boundary component
not intersecting P ∪Q also raises the connectivity of A(S, P,Q) by one. Since this also
increases c by one accordingly, we may assume that there are no boundary components
not intersecting P ∪Q, i.e. that s = s′. Thus we can write

c = 4g + s+ s′ + t+ u− 6 = 4g + 2s+ t− 6,
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or just

c = 2e+ t− 2,

where e = −χ(S) = 2g− 2 + s, the negative of the Euler characteristic of the surface S.
Remember that we assumed A(S, P,Q) to be non-empty. We want to show that

A(S, P,Q) is (2e+t−2)-connected, so let f : Sk → A(S, P,Q) be given with k ≤ 2e+t−2.
We want to extend f to a map Dk+1 → A(S, P,Q). In order to do this, we first extend
f to a map g : Dk+1 → B(S, P ∪ Q) and then modify this map without changing its
homotopy class, such that its image is contained in A(S, P,Q). To show that we can
extend f to such a map g, note that Lemma 3.19 says that B(S, P ∪Q) is contractible
in most cases, so we only have to consider the case when S is a disk since we have
already taken care of the other case mentioned in Lemma 3.19. When S is a disk,
B(S, P ∪Q) ∼= S2t−4 since 2t is the number of mixed arcs and therefore the number of
components of P ∪Q as there are no pure arcs. Thus B(S, P ∪Q) is (2t− 5)-connected,
and in this case

c = 2e+ t− 2 = −2 + t− 2 = t− 4

which is less than or equal to 2t − 5 since t ≥ 1. In fact t ≥ 3 since A(S, P,Q) is
non-empty.

We can assume that f is simplicial with respect to a piecewise linear triangulation of
Dk+1. We will use a bad simplex argument to show that f can be homotoped to a map
Dk+1 → A(S, P,Q) that is simplicial with respect to a modified triangulation of Dk+1,
and that this new map still extends the original map f on Sk.

We will introduce a definition of badness for an arc system in B(S, P ∪Q), although it
will not satisfy the original criteria for badness. To carry out the bad simplex argument,
we will have to study what happens when we cut S along an arc system. Assuming
that any arc representative is chosen such that its endpoints are in the interiors of the
components of P ∪ Q that it touches, we will get a finite collection of surfaces Si and
corresponding collections Pi and Qi of arcs in ∂Si. If Pi or Qi is empty, we say that Si is a
pure piece, and if they are both non-empty, we say that Si is a mixed piece. Note that for
any non-empty arc system, the dimension of each B(Si, Pi, Qi) for mixed pieces is strictly
less than the dimension of B(S, P ∪ Q) since at least one arc has taken up room from
the others. Thus by the induction hypothesis A(Si, Pi, Qi) is (2ei + ti + ui)-connected,
where ei, ti and ui are the numbers for Si corresponding to e, t and u for S. Note that
the surfaces Si may contain pure arcs, but cannot contain ’loose’ boundary components,
i.e. boundary components that don’t intersect Pi∪Qi, hence the connectivity statement
with ui but without s′i.

We now define bad vertices as the arc classes that have both endpoints in only one
of P or Q since A(S, P,Q) is a subcomplex of B(S, P ∪Q) containing no such arcs. The
naive definition of higher-dimensional bad simplices would then be the simplices all of
whose vertices are bad. This however will not suffice in order to use Corollary 1.10.
Namely, if [µ] is a maximal simplex in Dk+1 such that the image [σ] := f([µ]) consists
of only bad arc classes, then by maximality link[µ] must map to good arc classes and
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Figure 3.10: An example of why the naive definition of bad simplices does not work

therefore to vertices disjoint from [σ]. This means that link[µ] maps into the join of the
complexes A(Si, Pi, Qi) for the mixed pieces Si. If this join were always (k − dim[µ])-
connected, we could use Corollary 1.10, but it might not be. In fact it might even
be empty, e.g. if S = S0,3, and P and Q each have one component as illustrated in
Figure 3.10 where P is drawn in red and Q is drawn in blue. Here [µ] is a 1-simplex, and
the image consists of two arcs that are both bad. These two arcs cut S into three pieces,
but two of the pieces are pure, and the third piece is the third example of A(S, P,Q)
being empty in Figure 3.8.

We can however solve the problem by employing a more strict version of badness.
We say that an arc is bad if it has both its endpoints in one of P or Q, and we say that a
simplex [σ] is bad if all of its vertices are bad, and if no arc of σ has pure pieces on both
sides. With this definition the 1-simplex illustrated in Figure 3.10 is no longer a bad
simplex. Note that an arc of σ that does not separate a component of the complement
of the other arcs of σ has the same piece on both sides, and so such a piece is not allowed
to be pure. Moreover, if [a] is a single bad vertex in B(S, P ∪ Q), then a can in fact
never have pure pieces on both sides since then either P or Q would have to be empty.

This definition does not satisfy the original second criterion for badness. For exam-
ple an edge might have two bad vertices but not be bad itself. The edge illustrated in
Figure 3.10 is an example of this. We can however use a similar strategy again. We will
retriangulate star([µ]) to reduce what we will call the complexity. To define the com-
plexity of a simplex µ, we first define the complexity of a pure piece Si. The complexity
of Si is defined as the number of arcs in a maximal arc system in B(S, P ∪Q).

For a simplex µ with bad image [σ] := f(µ) we then define the complexity as the
ordered pair

(d([σ]),dimµ),

where d([σ]) is the sum of the complexities of all pure pieces of S \ σ. The complexities
of simplices with bad images are then ordered lexicographically. Now assume that µ is
a bad simplex in Dk+1 of maximal complexity, i.e. the complexity (d, l) of µ is maximal
among bad simplices. The restriction of f to linkµ then maps to link[σ] since if some
vertex of linkµ mapped into [σ] it would contradict the maximality of µ. Moreover,
any arc in the image of linkµ can be seen as a vertex of A(Si, Pi, Qi) for some Si since
otherwise it would contradict the maximality of (d([σ]), dimµ). Therefore we denote by
J the join of the complexes A(Si, Pi, Qi) for the mixed pieces and B(Si, Pi ∪Qi) for the
pure pieces, such that linkµ maps into J .
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We will show that J is (k− l)-connected, but first let us assume that it is. Then note
that linkµ ∼= Sk−l by Theorem A.4 since the triangulation on Dk+1 is piecewise linear,
so we can extend f| linkµ to a map F : Dk−l+1 → J . Like in the proof of Proposition 1.9
we modify f on starµ by retriangulating star(µ) to obtain a new map f|∂µ ∗F . We now
claim that a simplex with bad image under this new map on the new triangulation has
strictly lower complexity than µ, i.e. if ν is such a simplex with bad image [τ ], then
either 1) d([τ ]) < d([σ]), or 2) d([τ ]) = d([σ]) and dim ν < dimµ. To see this, we note
that ν must be the join of a simplex α in ∂µ with a simplex β in Dk−l+1 such that
F (β) ⊂ J . The image of α ∗ β is [τ ], which is a bad simplex, so each vertex of F (β)
is bad. Thus if β is non-empty, the vertices of F (β) must be in some pure piece of the
original S \σ since they are bad and therefore cannot be in any A(Si, Pi, Qi). Therefore
these arcs can only cut pure pieces into pure subpieces, so they most have pure pieces
on both sides, i.e. σ ∗ F (β) cannot be a bad simplex. Thus since [τ ] is bad, [τ ] must
be of the form [σ0] ∗ F (β) for some proper face [σ0] of [σ]. This forces d([τ ]) < d([σ])
since the arcs of [σ] are bad, so, disregarding F (β), removing vertices can only eliminate
pure pieces since they can only be merged with mixed pieces. Even if no pure pieces are
eliminated, the non-emptiness of β ensures that at least one vacant space for an arc in
the pure pieces is taken.

Conversely, assume that β is empty. Then ν is a simplex in ∂µ, so [τ ] ⊂ [σ]. Thus
we either have d([τ ]) < d([σ]) or d([τ ]) = d([σ]), but in the latter case we use the fact
that dim ν < dimµ since ν ⊂ ∂µ.

After a finite number of iterations of this procedure it will no longer be possible
because there is a lower limit to complexity. At that point there are no more bad
simplices, in particular no more bad vertices. This means that the image of the final
map that we get contains no bad simplices, i.e. it is contained in A(S, P,Q).

It remains to show that J is (k− l)-connected. The dimension of [σ] is at most l, so
since f is simplicial, q−1 ≤ l, where q is the number of arcs in σ. Thus k−(q−1) ≥ k−l,
so that it suffices to show that J is k−(q−1)-connected. Since k ≤ 2e+t−2, we can even
get away with showing that the connectivity of J is at least 2e+t−2−(q−1) = 2e+t−q−1.
If there is a pure piece Si which is not a disk, then B(Si, Pi ∪ Qi) is contractible by
Lemma 3.19, so J is contractible. Thus we can assume that all pure pieces are disks, so
that each B(Si, Pi ∪ Qi) is (ui − 5)-connected by Lemma 3.19, where ui is the number
of (pure) arcs in the pure piece. By the induction hypothesis we may assume that
each A(Si, Pi, Qi) for mixed pieces is (2ei + ti + ui − 2)-connected. By Lemma A.2, the
connectivity of J is greater than or equal to∑

mixed pieces

(2ei + ti + ui) +
∑

pure pieces

(ui − 3)− 2. (3.2)

Now let p denote the number of pure pieces of S \ σ. Then, since pure pieces have no
mixed arcs, we can rewrite (3.2) as

2
∑

mixed pieces

ei +
∑
i

ti +
∑
i

ui − 3p− 2. (3.3)
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Moreover, since the pure pieces are all disks, they have Euler characteristic 1. Thus,
since cutting along an arc increases Euler characteristic by 1, we have

−χ(S) = e = (
∑
i

ei) + q =
∑

mixed pieces

ei − p+ q.

Cutting S along a bad arc only introduces pure arcs, not mixed ones, so
∑
ti = t. In

fact it introduces two pure arcs, so
∑

i ui = 2q since we assumed u = 0. Therefore we
can rewrite (3.3) as

2(e+ p− q) + t+ 2q − 3p− 2 = 2e+ t− p− 2.

By the badness assumption, no arc of σ touches more than one pure piece, and each
pure piece is a disk. Moreover each of these disks must have at least 3 arcs of σ in their
boundary since S has no pure arcs by assumption, so that a pure piece, being a disk,
must be constructed by joining 3 or more pieces of either P or Q with arcs of σ. Thus
3p ≤ q, so q > p if p > 0. If p = 0 it is the case since q ≥ 1 by assumption. In conclusion,
the connectivity is greater than 2e + t − q − 1 since the fact that q > p implies that
−q − 1 ≤ −p− 2, and this was what we wanted. The connectivity 2e+ t− q − 1 is the
one we wanted.

Let A0(S, P,Q) denote the subcomplex of A(S, P,Q) consisting of coconnected arc
systems. The next result will be needed in the next section.

Proposition 3.21 ([HV15b, Proposition 5.7]). If the arc components of P and Q al-
ternate in ∂S, i.e. u = 0, then A0(S, P,Q) is (2g + s′ − 3)-connected, where s′ is the
number of components of ∂S intersecting P or Q.

Proof. Consider the surface S′ obtained by attaching a disk to each boundary component
of S that is disjoint from P ∪ Q. Let e = −χ(S′). Then e − 1 = 2g + s′ − 3. Since
0 ≤ 2g + s+ t− 3 in all cases except when g = 0 and s = t = 1, we have

2g + s′ − 3 ≤ 4g + s+ s′ + t− 6,

in those cases. In case s = t = 1, we have s′ = 1 as well, so the connectivity number
is 0 + 1 − 3 = −2, i.e. the statement is vacuous. We will proceed by a bad simplex
argument, so we need to define a set of bad simplices of A(S, P,Q) such that the good
simplices are contained in A0(S, P,Q). We say that a simplex in A(S, P,Q) is bad if its
dual graph contains no edges that are loops, i.e. all arcs separate the complement of the
other arcs. Let [σ] be a bad simplex in A(S, P,Q). Then σ separates S into a collection
of surfaces S1, . . . , Sj , where j ≥ 2 since [σ] is bad. We will proceed by induction on
the lexicographically ordered triple (g, s, t) to show that S is (e− 1)-connected. For the
induction start we consider the cases where g = 0 and s ≤ 2. If s′ = 1, the statement is
vacuous by the same argument as above. When s′ = 2, we must at least have one arc
between two boundary components. This arc will then will be coconnected as an arc
system. Thus A0(S, P,Q) will be non-empty, which is sufficient since the connectivity
number is 0 + 2− 3 = −1.
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We want to use Corollary 1.10 to show the connectivity, so consider the complex G[σ]

of simplices in link[σ] that are good for [σ], i.e. the simplices [τ ] in link[σ] such that any
bad face of [τ ] ∗ [σ] is a face of [σ]. We want to show that

G[σ] = ∗
i
A0(Si, Pi, Qi) =: A′,

i.e. that G[σ] is the join of all the coconnected arc complexes of the surface components
obtained from S by cutting along σ. These complexes A0(Si, Pi, Qi) can be seen as
subcomplexes of A(S, P,Q). Let us first show that A′ ⊆ G[σ]. It is obvious that A′ ⊆
link[σ]. Moreover, if [τ ] is a simplex in A′, then a bad face of [τ ] ∗ [σ] cannot contain a
vertex of [τ ] as such a vertex would correspond to a loop in the dual graph. This shows
that [τ ] is good for [σ], i.e. [τ ] ⊆ G[σ].

Now let us show that G[σ] ⊆ A′. We will show this by contraposition, so suppose
that [τ ] is not in A′. If even [τ ] is not in link[σ], then certainly [τ ] is not in G[σ].
Thus suppose that [τ ] is in link[σ], but not in A′. Then remove all vertices of [τ ] ∗ [σ]
corresponding to loops in the dual graph of [τ ] ∗ [σ]. Since we remove non-separating
arcs, the constellation of complementary components does not change, so the resulting
simplex is bad. But since [σ] is already bad, we have only removed vertices of [τ ]. Thus
we get a bad face of [τ ] ∗ [σ] of the form [τ0] ∗ [σ] for some face [τ0] of [τ ]. But since [τ ]
is not in A′, [τ0] is non-empty, showing that [τ ] is not good for [σ].

This shows that G[σ] = ∗iA0(Si, Pi, Qi). For each i, (gi, si, ti) < (g, s, t), and the
induction hypothesis is that each A0(Si, Pi, Qi) is (ei−1)-connected, where ei = −χ(S′i),
and S′i is the surface obtained from Si by attaching a disk to each boundary component
of Si that is disjoint from Pi ∪Qi. Thus by induction and Lemma A.2, the connectivity
of G[σ] is at least ∑

i

(ei − 1 + 2)− 2 =
∑
i

ei + j − 2,

but since cutting along an arc increases Euler characteristic by one, and the number
ei does not depend on the boundary components not intersecting P or Q, we get e =∑

i ei+k+1 since dim[σ] = k. Thus since equivalently
∑

i ei = e−k−1, the connectivity
of G[σ] is at least

e− k − 1 + j − 2 = e− k + j − 3,

which is greater than or equal to e− k − 1 since j ≥ 2. Since

(2g − s′ − 3)− k = e− 1− k = e− k − 1,

the hypothesis of Corollary 1.10 is satisfied, and we get the result.

3.3 Chains and tethered chains

A chain in S is an ordered pair c = (a, b) of simple closed curves embedded in S
which intersect each other transversely in exactly one point. The transverse intersection
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condition means that the direction vectors of the two curves in the intersection point
span a plane and not just a line. This means that the curves pass through each other
instead of just touching. Let Ch(S) denote the simplicial complex with one k-simplex for
each isotopy class of systems of k+1 disjoint and pairwise non-isotopic chains. Moreover,
if s ≥ 1 we fix a point p ∈ ∂S. A tethered chain is then an ordered pair (c, t) of a chain
c = (a, b) and an arc t embedded in S that joins a point in b \ a to p. Now let TCh(S)
denote the simplicial complex with one k-simplex for each isotopy class of systems of
k + 1 tethered chains that are pairwise non-isotopic and disjoint except at p.

3.3.1 Chains and multichains

To show that TCh(S) is highly connected we will first show that Ch(S) is highly con-
nected. To show that, we embed Ch(S) into a larger complex MCh(S) of multichains.
Similarly to the complex of multi-rooted curves, it has the same vertices as Ch(S) but
many more higher dimensional simplices. Namely, a set of chains cij = (ai, bij) forms
a simplex in MCh(S) if the curves ai form a coconnected curve system in S and have
disjoint annular neighborhoods N(ai) such that

(1) Each bij is disjoint from N(ak) if i 6= k, and each bij intersects N(ai) in an arc
from one the boundary circles of N(ai) to the other. The curves bij can intersect
as much as needed, as long as they only do so inside of N(ai).

(2) Outside of ∪iN(ai), two different bij ’s must be either disjoint or coincide com-
pletely, and their union must be a coconnected arc system in S \ ∪iN(ai).

The complex Ch(S) of chains is contained in MCh(S) as the collections of chains
(ai, bij) such that there is only one bij for each ai. Note that while Ch(S) is finite-
dimensional, MCh(S) is not, since there is no bound on the number of bij ’s that can
be assigned to each ai. For example, some bij can be distorted by multiple Dehn twists
arbitrarily many times. Note that the isotopy classes of chains are inherited from Ch(S),
so we do not require the isotopies to be fixed on the boundaries ∂N(ai). This means
that if some bij travels around a Dehn twist inside of N(ai), that Dehn twist can be
pushed outside of N(ai) as long as the curves do not intersect outside of N(ai) and the
other N(ak)’s.

Proposition 3.22 ([HV15b, Proposition 6.1]). The complex MCh(S) of multichains is
(g − 2)-connected.

Proof. Consider the map

f : MCh(S)→ C0(S)

which forgets the [bij ]’s and sends [(ai, bij)] to [ai] for each i, j, and consider the map f̂
on the poset complexes. Let [α] = {[a0], . . . , [ak]} be a simplex in C0(S), and consider
the fiber Fα = f̂−1([α]). By Lemma 1.19 it will suffice to show that Fα has connectivity
g − k − 2.
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To show this we first consider the subsurface Sα of S given by removing the neigh-
borhoods N(ai), namely

Sα = S \ (∪i intN(ai)) .

Then each N(ai) contributes with two boundary components of Sα which we will call a′i
and a′′i . Let now [γ] be a simplex of MCh(S), and let γα = ∪i,jbij ∩ Sα. Then γα is a
coconnected arc system in Sα whose arcs each join some a′i with the corresponding a′′i .
This is due to the construction of MCh(S).

Let now Aα denote the full poset of isotopy classes of coconnected arc systems in Sα,
where each arc joins some a′i to the corresponding a′′i . Because of the construction of
MCh(S) we have to allow isotopies that move the endpoints of the arcs as long as they
stay inside ∂Sα. This means that an arc from a′i to a′′i can be distorted by a Dehn twist
around a curve parallel to a′i or a′′i without changing its isotopy class. The isotopy classes
under this definition of isotopy are exactly the isotopy classes inherited from MCh(S).

We can now form the poset map g : Fα → Aα sending a simplex [γ] to [γα]. For
some γ′ to map to some σ, γ′ must coincide with σ outside of ∪iN(ai), but there is no
restriction on γ′ inside of ∪iN(ai). This also means that any γ0 coinciding with σ can be
added to anything in g−1([σ]). Thus any [γ′] in g−1([σ]) lies inside a simplex in g−1([σ])
containing [γ0], namely [γ] ∪ [γ0]. Thus all of g−1([σ]) is contained in star([γ0]), where
[γ0] is seen as a simplex inside of g−1([σ]), and we can contract all of g−1([σ]) to [γ0],
showing that g is a homotopy equivalence by Corollary 1.16, so it suffices to show that
Aα is (g − k − 2)-connected.

Now we introduce the general notation Ak for Aα since there are k + 1 boundary
pairs being joined by arcs, and since up to isomorphism Ak = Aα only depends on the
dimension of [α]. Removing the annular neighborhoods N(ai) from S is equivalent to
cutting along the curves ai. This reduces the genus by one for each ai since the ai’s form
a coconnected curve system. Thus Sα has genus gα = g − k − 1, and we want to show
that Ak is (gα − 1)-connected. We will proceed by induction on k:

For the induction start k = 0, note that A0 is the poset of isotopy classes of cocon-
nected arc systems joining one boundary component to another, where the isotopies are
allowed to move the endpoints along the boundary. Since A0 consists of arcs joining one
component of ∂, which we will call P , to another, which we call Q, A0 is isomorphic to
A0(P,Q), so it has connectivity at least (2gα + 2− 3) = (2gα − 1), and 2g − 1 ≥ g − 1,
which is what we wanted.

For the induction step, consider the poset map f0 : Ak → A0 that only remembers
arcs going from a′0 to a′′0. For each simplex [σ] in A0, the fiber f−1

0 ([σ]) must contain
all the arc classes of [σ], but it cannot contain any other classes of arcs from a′0 to a′′0.
However for the other ai’s the arcs can be whatever they want, as long as they do not
touch N(a0). Thus f−1

0 ([σ]) can be seen as the complex Ak−1 for the surface obtained
from Sα by cutting along σ. Say that [σ] has dimension m. Cutting along the m + 1
arcs of σ can decrease genus by at most m since the first cut just joins two boundary
components and thus cannot decrease genus as it increases Euler characteristic by 1.
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Therefore we can use the induction hypothesis which shows that f−1([σ]) is at least
(gα −m− 1)-connected. Thus by Lemma 1.19 Ak is (gα − 1)-connected.

Lemma 3.23. A system of chains or a system of tethered chains is always non-separating,
i.e. the surface obtained by cutting S along the system is connected.

Proof. First consider a chain c = (a, b) without a tether. Any one of the two curves, say
a, must be non-separating since the other curve b intersects it transversally only once, so
if a were separating, b would have to intersect it twice to get back to the same component
of S \ a. Thus if we cut S along a, we get a connected surface Sa, and b becomes an
arc between two different components of ∂Sa and therefore cannot be separating. This
means that cutting S along the chain c gives a connected surface Sc, and a tether t for c
then becomes an arc between two different components of Sc, so it cannot be separating.

Now we know that a system consisting of a single tethered chain is coconnected, so
we can proceed by induction on the dimension (number of tethered chains). Assume
that [σ] is a system of tethered chains that is non-separating. Then for any vertex [v] in
link[σ], v can be seen as a tethered chain in the surface Sσ obtained by cutting along σ,
and so it must be non-separating by the above argument. This is what we wanted.

Theorem 3.24 ([HV15b, Theorem 6.2]). The complex Ch(S) of chains in S is φ(g) =
(g − 3)/2-connected, where we round down if the number is not an integer.

Proof. It follows from Lemma 3.23 that a system of chains is always coconnected. Thus
Ch(S) embeds into MCh(S) as the systems of multichains with only one bij for each
ai. We will prove the theorem by a bad simplex argument on the inclusion Ch(S) ↪→
MCh(S). We define the bad simplices to be the systems of with at least two bij ’s for
each ai. Note that in particular a bad simplex must have dimension at least 1. For a
bad simplex [σ], G[σ] consists of simplices [τ ] in link[σ] such that any bad face of [τ ] ∗ [σ]
is contained in [σ]. We can pick the representatives τ and σ such that the bij ’s of τ do
not coincide with or intersect any of the bij ’s of σ. Thus τ and σ cannot share any ai’s
since then there would be a bad simplex [τ0] ∗ [σ0] with [τ0] non-empty. Moreover, τ has
to lie outside of all the N(ai)’s obrained from σ, and no ai of τ can have two associated
bij ’s. By definition any system of multichains is coconnected, so the surface Sσ obtained
by removing the neighborhoods N(ai) from S and cutting along the bij ’s is connected.
In conclusion, G[σ] = Ch(Sσ).

If [σ] has dimension 1, then the genus gσ of Sσ cannot be less than g − 2. This is
because cutting along σ adds 6 vertices and 4 edges, so Euler characteristic is increased
by 2 while the number of boundary components is increased by 2. This leaves room for
reducing genus by at most 2, and this is only if σ is non-separating. This number g − 2
cannot be improved to g − 1 since it might actually happen that the genus is reduced
by two. For example the double chain illustrated in Figure 3.11 is non-separating, so it
reduces genus by 2. In general if dim[σ] = k, the genus can be decreased by at most
k + 1, i.e. gσ ≥ g − k − 1.

We proceed by induction on g. For g = 0, g−3
2 = −3

2 which rounds down to −2, so

the statement is vacuous. For g = 1, g−3
2 = −1, and Ch(S) is indeed non-empty when
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Figure 3.11: A double chain that reduces genus by 2

g = 1, so we can continue to the induction step. Let’s analytically find out how we
should define φ. If we manage to successfully use Corollary 1.10, we will get that Ch(S)
has the connectivity of MCh(S), i.e. it is (g − 2)-connected, so the function φ from the
statement of the theorem must satisfy φ(g) ≤ g − 2.

The condition for using the corollary is that Ch(Sσ) is (φ(g)−k)-connected, so since
gσ ≥ g − k − 1, it suffices to have φ(g − k − 1) ≥ φ(g)− k. For k = 1 this inequality is
φ(g) − 1 ≤ φ(g − 2) or equivalently φ(g) ≤ φ(g − 2) + 1. This means that φ needs to
have slope ≤ 1

2 .
Write φ as φ(g) = 1

2g+B since we want φ to be affine. Then the condition φ(g)−k ≤
φ(g − k − 1) becomes

1

2
g +B − k ≤ 1

2
(g − k − 1) +B.

This is equivalent to k ≥ 1 which is true since [σ] is bad. If we set B = −3
2 , we get the

number from the theorem statement, so this works for g = 0 and g = 1 by the above.
Also, the statement φ(g) ≤ g − 2 becomes

1

2
g − 3

2
≤ g − 2 ⇔ −1

2
g − 3

2
≤ −2 ⇔ −g − 3 ≤ −4 ⇔ g ≥ 1,

but we can just assume this since the statement is vacuous when g = 0. The number
B = −3

2 is the best possible since setting B = −1 would mean that Ch(S) would have
to be non-empty for g = 0 which is not true.

3.3.2 Tethered chains and multi-tethered chains

We will now define a new complex MTCh(S) of what we call systems of multi-tethered
chains. Choose points p1, . . . , pm ∈ ∂S. The vertices of MTCh(S) are then isotopy
classes of tethered chains (c, t) on S where t attaches c to some pk. An isotopy class
of systems of tethered chains (ci, ti) then spans a simplex if the ci’s can be chosen to
be either pairwise disjoint or equal, and the ti’s can be chosen to be disjoint from each
other as well as the ci’s except for their endpoints. Note that there is no condition on
coconnectedness, so although a system of tethered chains is coconnected by Lemma 3.23,
a system of multi-tethered chains might not be.

Proposition 3.25 ([HV15b, Proposition 6.5]). The complex MTCh(S) is g−3
2 -connected.
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Figure 3.12: Surgery in Proposition 3.25

Figure 3.13: Cutting along a tethered chain

Proof. There is a forgetful map MTCh(S) � Ch(S) that forgets all the tethers since
inside MTCh(S) the ci’s are mutually disjoint or equal. Let [σ] be a simplex in Ch(S).
The preimage over [σ] by the mentioned forgetful map consists of all classes of systems
of multi-tethers for σ. Choose such a system τ with exactly one tether ti for each chain
ci in σ. We will do a surgery flow into the star of [τ ], defining complexity as the number
of intersection points with τ , assuming that σ is in normal form with respect to τ . To
do so, let a system consisting of (c′i, t

′
i)’s be given such that for each i, c′i = cj for some

j. We begin at t1 and choose the point of (∪t′i) ∩ t1 that is closest to the point pk ∈ ∂S
that t1 lands in. Cut the intersecting tether t′i at the intersection point, and redirect
both pieces closely along t1 to pk. One of the resulting arcs is a tether attached to
c′i. This is illustrated in Figure 3.12. The other resulting arc is discarded. Continue
the process until no tethers intersect t1. Then continue with t2, and so on. Then by
Lemma 1.20, the star of the chosen system is a deformation retract of the preimage over
σ, so the preimage is contractible. Thus MTCh(S) � Ch(S) is a homotopy equivalence
by Corollary 1.16, so the connectivity follows from Theorem 3.24.

We now consider the subcomplex TCh(S) of MTCh(S) consisting of systems with
only one tether to each chain, but where the tethers are allowed to connect to any pi,
though we will only use the special case with one pi = p1 for the spectral sequence
argument. We first need the following lemma.

Lemma 3.26. Cutting along a system of k tethered chains reduces genus by k and
preserves the number of boundary components.

Proof. We can consider any tethered chain together with the boundary component it
is tethered to as consisting of 3 vertices and 4 edges, and then consider the rest of the
surface (except for the other boundary components) as one face, as indicated by the first
drawing in Figure 3.13.
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Cutting along the blue curve increases this to 4 vertices, 5 edges and one face, and
cutting along the rest of tethered chain (indicated in the second drawing with the result
in the third drawing) increases this to 9 vertices, 8 edges and 1 face. This means that
the Euler characteristic rises by 2. But the sides of the whole tethered chain together
with the boundary component it is tethered to becomes just one boundary component
in the new cut up surface, so the amount of boundary components is preserved. Thus
the genus must decrease by one.

Any of the tethered chains in a system of tethered chains can be seen as a tethered
chain in the (connected) surface obtained by cutting up S along all the other tethered
chains, so the result follows by induction on k.

This makes us able to establish the connectivity of TCh(S).

Theorem 3.27 ([HV15b, Theorem 6.6]). The complex TCh(S) is g−3
2 -connected.

Proof. We will do a bad simplex argument on the inclusion TCh(S) ⊂ MTCh(S). We
define bad simplices to be those with at least two tethers for each chain. Let [σ] be a
bad simplex. The simplices [τ ] in G[σ] good for [σ] are usual tethered systems since if
some chain of τ has more than one tether, then there is a bad face [τ0] ∗ [σ] of [τ ] ∗ [σ],
where [τ0] consists of the chosen chain and all of its (> 1) tethers. Moreover, for any [τ ]
in G[σ], τ is not allowed to intersect or coincide with any tethered chains of σ, so G[σ] is
the join of the complexes TCh(Si) for each component Si of the surface Sσ obtained by
cutting up S along σ. We need to check that G[σ] has connectivity g−3

2 in order to use
Corollary 1.10.

Cutting along a tethered chain reduces genus by one by Lemma 3.26, and then
each additional tether can reduce genus by at most one since each cut increases Euler
characteristic by 1 and either increases or decreases the number of boundary components
by one. In case the number of boundary components is increased, cutting along the tether
will either separate the surface or reduce its genus by 1, and if the number is decreased,
neither of these happens. Thus cutting along a multi-tethered chain system can decrease
genus by at most the number of tethers minus the number of separations. Let gσ denote
the genus of Sσ, understood as the sum of the genera of the components of Sσ. Then
we have gσ ≥ g − k − 1 + c − 1 = g − k + c − 2, where k is the dimension of σ and c
is the number of components of Sσ. Thus we can use the argument from the proof of
Theorem 3.10 to conclude that Gσ is (g−3

2 − k)-connected since k ≥ 1 as σ is bad.

3.4 Stability theorems

Let S = Sg,s with s ≥ 1. We will deal with the case s = 0 later. Let Mg,s be the
boundary fixing mapping class group of Sg,s.
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3.4.1 Genus stabilization

Theorem 3.28 ([HV15b, Theorem 7.1]). For any s ≥ 1 the homomorphism

α∗ : Hi(Mg−1,s)→ Hi(Mg,s)

induced by the map α : Sg−1,s ↪→ Sg,s formed by gluing a copy of S1,2 onto Sg,s along a
boundary circle is an isomorphism for g > 2i+ 2 and a surjection for g = 2i+ 2.

Proof. We consider the action of Mg,s on the complex TCh(S) of tethered chains, and
we want to show that it satisfies the conditions on page 9 for the spectral sequence
argument, and then use Theorem 1.5.

Condition 1 : Let σ and σ′ be any two systems of k tethered chains on S. Then the
surfaces Sσ and Sσ′ obtained by cutting S along σ and σ′ respectively are both diffeo-
morphic to Sg−k,s. Thus they are homeomorphic to each other by some diffeomorphism
f : Sσ → Sσ′ . We can assume right away that f fixes the boundary components not con-
taining any instances of the tethering point p (cutting along a tether splits the tethering
point into two points).

Now consider an oriented half-circle in S around p that is small enough such that
each of the tethers of σ and σ′ intersect it only once. These intersection points determine
an ordering of the tethers of σ, respectively σ′. As long as we preserve this ordering, we
can choose f such that the parts of the boundary of Sσ corresponding to the tethered
chains of σ each map to corresponding parts of the boundary of Sσ′ . This means that
the homeomorphism f can be glued together to a homeomorphism S → S that takes σ
to σ′.

Condition 2 : Cutting along a tethered chain system σ of k tethered chains reduces
genus by k and preserves s by Lemma 3.26. The stabilizer of [σ] cannot non-trivially
permute the vertices of [σ] since it must preserve the ordering of the tethers. Also, while
a diffeomorphism might ’distort’ the tethered chains, this does not matter since we are
working with isotopy classes. Thus we can view stab[σ] as the subgroup of the mapping
class group of S of isotopy classes of homeomorphisms that fix ∂S as well as σ. Thus we
can view stab[σ] as the boundary fixing mapping class group of the surface Sσ obtained
by cutting S along σ. This means that stab[σ] is isomorphic to Mg−k,s.

To see that stab[σ] is actually conjugate toMg−k,s ⊂Mg,s under the inclusion that
we use for the stabilization, note that there is some system of tethers σ′ which ’undoes’
αk so that stab[σ′] = Mg−k,s. Since we already know that the action is transitive on
simplices of each dimension, we can simply choose [φ] ∈ Mg,s such that [φ][σ′] = [σ].
Then Lemma A.14 tells us that

stab[σ] = [φ] stab[σ′][φ−1] = [φ]Mg−k,s[φ
−1].

Condition 3 : Let [e] be an edge in TCh(S). Then e is a system of two tethered chains.
Let N(e) be the closure of a small neighborhood of e and the boundary component ∂0S
containing p. Then N(e) is a surface of genus 2, and every tethered chain representative
in link[e] can be chosen to be disjoint from N(e). By the same transitivity argument as
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for Condition 2, there is a diffeomorphism φ that is supported in N(e) and which fixes
the boundary of N(e) and maps one of the tethered chains to the other. We cannot
interchange the two tethers, but this is not needed anyway. Let [ψ] ∈ stab[e] be given.
Then ψ can be chosen such that it is supported in S \N(e). Thus, since φ is supported
in N(e), φψ = ψφ. We conclude that [φ] commutes with stab[e].

Condition 4 : Since the action of Mg,s on S is transitive in each dimension, the
quotient space TCh(S)/Mg,s is the ∆-complex with precisely one cell in each dimension
≤ g − 1 since the maximal number of tethered chains is g. Thus it is (g − 2)-connected
as noted in the proof of Theorem 2.4. Moreover TCh(S) is (g − 3)/2-connected by
Theorem 3.27, so the conditions of Theorem 1.5 are satisfied, and we get the result.

3.4.2 Stabilization by boundary components

Consider the map α : Sg,s ↪→ Sg+1,s of Theorem 3.28. This map can be seen as the
composition ηµ of two maps µ : Sg,s → Sg,s+1 and η : Sg,s+1 → Sg+1,s, where µ is formed
by gluing a pair of pants S0,3 onto Sg,s along a boundary component, and η is formed
by gluing a pair of pants onto Sg+1,s along two boundary components. The goal of this
section is to show that the sequence of homomorphisms on mapping class groups induced
by the maps µ satisfies homological stability. The proof of this is inspired by the proof
of [HW07, Theorem 1.8] as well as the method presented in [HVW06].

The compositions αµ = ηµ2 and µα = µην are then both obtained by gluing a copy
of S1,3 along one boundary component, so up to isotopy they are the same map. This
means that we have a commutative diagram

Hi(Mg,s)

µ∗
��

α∗ // Hi(Mg+1,s)

µ∗
��

α∗ // · · · α∗ // Hi(Mg+k,s)

µ∗
��

α∗ // · · ·

Hi(Mg,s+1)
α∗ // Hi(Mg+1,s+1)

α∗ // · · · α∗ // Hi(Mg+k,s+1)
α∗ // · · ·

This means that if µ∗ is an isomorphism for some very large k, it must also be an
isomorphism in the same range as α∗. In fact, it suffices to show that µ becomes an
isomorphism after passing to the direct limit with respect to α∗, which is what we will
do here. Let µ̄∗ : Hi(M∞,s) → Hi(M∞,s+1) denote the homomorphism of the direct
limit induced by the homomorphisms µ∗. Note that this expression of the direct limit
comes from the fact that homology commutes with direct limits.

First note that µ̄∗ is injective since µ always has a left inverse obtained by gluing a
disk onto one of the boundary components of the copy of S0,3 that has been glued on by
µ. It remains to show that µ̄∗ is surjective. This follows if we can show that the direct
limit homomorphism β∗ = (µη)∗ obtained from the maps β = µη is an isomorphism.
Although β also increases genus by one, it is not isotopic to the map α since µη glues
on S1,2 along two boundary components instead of just one. This also means that we
cannot use the same simplicial complex as we did for α. The complex we will use in this
case is the complex of rooted curves C0

R(S∞,s) which is contractible by Theorem 3.13.



68 CHAPTER 3. STABILITY FOR MAPPING CLASS GROUPS OF SURFACES

We will look at the maps α and β in a slightly different way. Namely, we consider
α : Sg,s → Sg+1,s as the map obtained by identifying a half-circle in the boundary of S1,1

with a half-circle in the boundary of Sg,s, and we consider β as the map obtained by
identifying a half-circle in each of the two boundary components of the cylinder S0,2 with
half-cirlces in two boundary components of Sg,s. Although these maps are not exactly the
same as the original maps α and β, they induce the same homomorphisms on mapping
class groups, which is why we let them keep their names. Let φ be a diffeomorphism
β(Sg,s)→ α(Sg,s), and let λ = φ ◦ β.

Theorem 3.29. LetM∞,s be the direct limit of the sequenceMg,s →M(g+1, s) induced
by the maps α. For any s ≥ 2 the homomorphism : λ̄∗ : Hi(M∞,s)→ Hi(M∞,s) induced
by the maps λ : Sg,s ↪→ Sg+1,s is an isomorphism.

Proof. We consider the action of M∞,s on the complex C0
R(S∞,s) of rooted curves, and

we want to show that it satisfies the conditions necessary for Theorem 1.7.

Condition 1 : We will show that the action is transitive on vertices. Let (c, r) and
(c′, r′) be any two rooted curves on S∞,s. Since (c, r) and (c′, r) are both compact as
subspaces of S∞,s, they both lie inside some common Sg,s, so it suffices to show that
the action of Mg,s on C0

R(Sg,s) is transitive on vertices. The surfaces S(c,r) and S(c′,r′)

obtained by cutting Sg,s along (c, r) and (c′, r′) respectively are both diffeomorphic to
Sg−k,s by some diffeomorphism f : S(c,r) → S(c′,r′). As in the proof of Theorem 3.28, we
can assume that f takes the parts of ∂S(c,r) corresponding to (c, r) to the corresponding
parts in S(c′,r′), so that f can be glued together to a diffeomorphism of Sg,s that takes
(c, r) to (c′, r′).

Condition 2 : The stabilizer of any simplex fixes the simplex pointwise since the
orientations of the roots near x1 and x2 must be preserved. We need to show that the

inclusion stab(σp) ↪→M∞,s of the stabilizer of a p-simplex σp is conjugate to λ
p+1
∗ . The

stabilizer stab(σp) can be seen as the subgroup of M∞,s fixing the closure of a small
regular neighborhood N of the union of σp and the two boundary components ∂1S∞
and ∂2S∞ it touches. The neighborhood N is a copy of Sp+1,4, two of whose boundary
components lie in S∞,s.

The image of the map λ
p+1

is the subgroup of M∞,s fixing the surfaces that have

been glued on by λ
p+1

. For a small neighborhood M of these glued on surfaces and
the two boundary components it touches, the closure M is also a copy of Sp+1,4, two of
whose boundary components lie in S∞,s. Denote these boundary components by A and
B.

Let now φ : S∞ → S∞ be a diffeomorphism that maps N to M such that ∂0S maps
to A and ∂1S maps to B. Then

im(stab[σp]) = im([φ−1]λ̄p+1[φ]).

Condition 3 : Once again, it suffices by compactness to consider the case of finite
genus g. Let e be a system of two rooted curves v and w. The closure of a small
neighborhood of e and the two boundary components containing x0 and x1 is a copy
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of S2,4, and the stabilizer of [e] can be seen as the subgroup of Mg,s of classes of
diffeomorphisms that fix this copy of S2,4. By the same argument as for Condition 1,
there is a diffeomorphism that takes v to w. Moreover, this can be chosen such that it
is supported in S2,4, i.e. it commutes with the stabilizer of [e].

Condition 4 : The complex C0
R(S∞,s) is contractible by Theorem 3.13. To show that

the quotient Q∞ = C0
R(S∞,s)/M∞,s is contractible, we will show that for any g, the

quotient Qg = C0
R(Sg,s)/Mg,s is (g− 2)-connected. While it is not a simplicial complex,

Qg is a ∆-complex since we can choose an ordering of the vertices of a simplex using the
ordering of the arcs along a small half circle around x0, say from ’left’ to ’right’.

The action Mg,s is almost transitive in the sense that it can map a k-simplex σ to
any other k-simplex σ′ if the ordering of the roots at x0 as compared to the ordering
at x1 coincides for the two simplices. This means that the ordering of the roots at x1

uniquely determines a simplex of Qg. This also means that the map Qg−1 → Qg induced
by the inclusion C0

R(Sg−1,s) → C0
R(Sg,s) is injective, and we can extend it to the cone

CQg−1 by mapping the cone tip to an extra rooted curve whose root ends both lie to
the right of all the other root ends at both x0 and x1. This is possible since genus has
been increased by one.

Let a map f : Sg−2 → Qg be given. The image of the inclusion Qg−1 ↪→ Qg contains
the entire (g − 2)-skeleton since we already have all possible orderings of (g − 1) arcs at
x1, so we can factor f through Qg−1. Then we have the following commutative diagram,
where the map CSg−2 → CQg−1 is given by sending the cone point to the cone point
and using the composition Sg−2 → Qg−1 ↪→ CQg−1 on the base.

Sg−2
jJ

ww ��

f

##

Dg−1 = CSg−2

''

Qg−1
� � //

� _

��

Qg

CQg−1

;;

This shows that the map Sn−2 → Qn extends over the disk, so Qn is (n− 2)-connected.

As explained above this gives the following result.

Theorem 3.30. For any s ≥ 1, the homomorphism

µ∗ : Hi(Mg,s)→ Hi(Mg,s+1)

is an isomorphism if g > 2i+ 1.

3.4.3 Closed surfaces

Let Ch±(S) denote the simplicial complex in which a vertex is an isotopy class of chains
together with an orientation, and where a collection of oriented chains spans a simplex
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if the corresponding unoriented chains are all non-isotopic and span a simplex in Ch(S),
i.e. they form a system of chains.

Lemma 3.31. The complex Ch±(S), like Ch(S), is g−3
2 -connected.

Proof. We can consider the assignment of an orientation to a chain as the assignment
of a label + or −, where the +’s and −’s are assigned arbitrarily (but fixed once and
for all) to each isotopy class of chains on S. We want to use Corollary 1.11. The link of
a k-simplex [σ] in the usual complex Ch(S) can be identified with Ch(Sσ), where Sσ is
the surface obtained from S by cutting along σ. Any system of chains is coconnected,
and cutting along each chain reduces genus by one. Thus Sσ has genus g − k − 1, so
linkσ ∼= Ch(Sσ) is g−k−1−3

2 -connected. Thus it suffices to show that g−k−4
2 ≥ g−3

2 −k−1.
But this is equivalent to g − k − 4 ≥ g − 2k − 5 which is true for any k ≥ −1.

Theorem 3.32 ([HV15b, Theorem 7.4]). The stabilization Hi(Mg,1) → Hi(Mg,0) in-
duced by the map obtained by filling the single boundary circle of Sg,1 with a disk is an
isomorphism for g > 2i+ 2 and a surjection for g = 2i+ 2.

Proof. Our strategy for this proof is to show stability of the mapHi(Mg−1,1)→ Hi(Mg,0)
and then factoring this as Hi(Mg−1,1) → Hi(Mg,1) → Hi(Mg,0) to show stability for
the latter map, which is the one from the statement of the theorem.

The complex TCh(S) of tethered chains is not defined for s = 0, so instead we
will consider the modified version Ch±(S) of the complex Ch(S) of chains. We do
this because, while the action of Mg,s on the original complex Ch(S) is transitive on
simplices in each dimension, and the stabilizer of a simplex [σ] of k chain classes contains
Mg−k,s+k, it does not necessarily fix [σ] pointwise. This is due to two problems:

(1) Elements in stab[σ] may reverse the orientations of the two curves in a chain, as
long as they are both reversed.

(2) Elements in stab[σ] may permute the chain classes in [σ] since we are no longer
restricted by the tethers.

To address the first problem we consider the complex Ch±(S). This complex is (g−3)/2-
connected by Lemma 3.31. Using this complex instead of Ch(S), we no longer have the
problem with the stabilizers.

For the second problem we use a general construction of a ∆-complex ∆(Z) from
any simplicial complex Z. The k-simplices of ∆(Z) are the maps ∆k → Z which are
simplicial, i.e. they are linear expansions of maps that take vertices to vertices. Note
that there is no condition that these maps are injective. The condition that the maps
are simplicial ensures that the vertices of ∆(Z) correspond to those of Z, but since they
do not have to be injective, ∆(Z) usually has far more higher-dimensional simplices.
For instance when Z is just a 1-simplex, ∆(Z) contains four 1-simplices and a lot of
higher-dimensional simplices too.

A simplicial map Z → Z ′ induces a map ∆(Z)→ ∆(Z ′) by sending a map ∆k → Z
to the composition ∆k → Z → Z ′, making ∆(−) a functor. Let ∆(Z) → Z be the
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projection defined by sending a map ∆k → Z to its image. This projection is natural
since the diagram

∆(Z) //

��

Z

��

∆(Z ′) // Z ′

commutes.
We will show that this projection induces an isomorphism on homology when Z is

finite dimensional (which it will be in our case). We will show this by induction on the
number of maximal simplices in Z, i.e. simplices that are not contained in a strictly
larger simplex. For the induction start we consider the case where Z itself is a simplex.
In this case ∆(Z) is contractible since every k-simplex ∆k → Z is contained in a (k+1)-
simplex ∆k+1 → Z where the additional vertex is mapped to a fixed vertex v of Z. This
means that the whole complex ∆(Z) can be contracted to ∆0 → v. For the induction
step we use Mayer-Vietoris sequences on the ’decomposition’ of Z into a closed simplex
σ and the complement of its interior together with the five lemma to conclude that in
the diagram below, the middle vertical map is an isomorphism.

Hn(∆(∂σ)) //

��

Hn(∆(Z \ intσ))⊕Hn(∆(σ)) //

��

Hn(∆(Z))
∂ //

��

Hn−1(∆(∂σ)) //

��

Hn−1(∆(Z \ intσ))⊕Hn+1(∆(σ))

��

Hn(∂σ) // Hn(Z \ intσ)⊕Hn(σ) // Hn(Z)
∂ // Hn−1(∂σ) // Hn−1(Z \ intσ)⊕Hn+1(σ)

In the first, second and fourth squares, the horizontal maps are sums of homomorphisms
induced by maps in Z, so since the projection ∆(−)⇒ − is natural, and H∗ is a functor,
these squares commute. To see that the third square commutes, we look at the definition
of the boundary maps ∂. A homology class β ∈ Hn(Z) is given by a cycle z ∈ Cn(Z). If
needed, then after a barycentric subdivision, such a cycle can be given as a sum z = x+y
where x is a chain in σ, and y is a chain in Z \ intσ. Since z is a cycle, ∂z = ∂x+∂y = 0.
Then ∂β is defined as ∂β = ∂x = −∂y. Now, a cycle in Hn(Z) can be written as
the homology class of the cycle z =

∑
nα(∆k → Z). Let x =

∑
n′α(∆k → Z) and

y =
∑
n′′α(∆k → Z). Then going horizontally in the third square and then vertically

amounts to [∑
nα(∆k → Z)

]
=
[∑

n′α(∆k → Z)
]

+
[∑

n′′α(∆k → Z)
]

7→ ∂
[∑

n′α(∆k → Z)
]

7→ ∂
[∑

n′α(im(∆k → Z))
]
,

and going vertically and then horizontally amounts to[∑
nα(∆k → Z)

]
7→
[∑

nα(im(∆k → Z))
]

=
[∑

n′α(im(∆k → Z))
]

+
[∑

n′′α(im(∆k → Z))
]

7→ ∂
[∑

n′α(∆k → Z)
]
,
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so also the third square commutes. By the induction hypothesis the first, second, fourth
and fifth vertical maps are isomorphisms, so Hn(∆(Z))→ Hn(Z) is an isomorphism by
the five lemma.

Now, sinceMg,0 acts on Ch±(S), it acts on ∆(Ch±(S)) too. Namely let [φ] ∈Mg,0,
and let f : ∆0 → Ch±(S) be a vertex in ∆(Ch±(S)). Then f maps ∗ = ∆0 to some
vertex v in Ch±(S). We define [φ]f to map ∆0 to [φ]v and extend by linearity.

The complex ∆(Ch±(S)) is not a simplicial complex, but only a ∆-complex (semi-
simplicial set). However, all the arguments of the spectral sequence argument still apply
as noted in Remark 1.2.

Now we want to show that the quotient ∆(Ch±(S))/Mg,0. The mapping class group
Mg,0 acts transitively on simplices of Ch±(S) in each dimension, and it can also per-
mute the chains. Thus a class [∆k → Ch±(S)] in the quotient ∆(Ch±(S))/Mg,0 is
determined only by the number of distinct vertices (chain classes) it hits. This means
that ∆(Ch±(S))/Mg,0 is isomorphic to ∆(∆g−1)/Σg, where the symmetric group Σg

on g elements acts on ∆g−1 by permuting the vertices, since the complex Ch±(S) has
dimension g − 1.

The ∆-complex ∆(∆g−2)/Σg−1 sits inside of ∆(∆g−1)/Σg as the classes of non-
surjective maps since modding out by Σg makes sure that it does not matter which face
of ∆g−1 a map lands in. Moreover, the (g − 2)-skeleton of ∆(∆g−1)/Σg is contained in
∆(∆g−2)/Σg−1 since (g−2)-simplices cannot arise from surjective maps. It then suffices
to show that ∆(∆g−2)/Σg−1 can be contracted inside of ∆(∆g−1)/Σg.

The inclusion map ∆(∆g−2) ↪→ ∆(∆g−1) induced by the inclusion ∆g−2 ↪→ ∆g−1 that
skips a vertex v of ∆g−1 extends to a map on the cone, i.e. C(∆(∆g−2)) → ∆(∆g−1)
defined by sending the tip of the cone to the map ∆0 → v. This map passes to a quotient
map C(∆(∆g−2)/Σg−1) → ∆(∆g−1)/Σg since if two maps represent the same class in
∆(∆g−2)/Σg−1, they will also be identified in ∆(∆g−1)/Σg, and joining with the cone tip
preserves this identification. Thus the inclusion ∆(∆g−2)/Σg−1 ↪→ ∆(∆g−1)/Σg extends
over the cone and therefore is null-homotopic.

Now, although the third condition for the spectral sequence argument in Section 1.1
is satisfied for degenerate 1-simplices (maps from ∆1 to a single vertex in Ch±(S)), it
is not satisfied in general since a non-degenerate 1-simplex maps to two disjoint chain
classes, and any diffeomorphism that maps one chain to the other must be supported in
a neighborhood that at least contains an arc a between the two chains. Such a diffeo-
morphism does not commute with the stabilizer of the two chains since some elements
of that stabilizer may not fix a. However, we can still proceed with the argument for
injectivity of the differential d : Hi(Mg−1,1) → Hi(Mg,0) which is what we need this
condition for. For a small neighborhood N of the two chains and the arc a between
them, there is a diffeomorphism φ supported in N that takes one chain to the other, so
the isotopy class of this diffeomorphism commutes with the subgroup E of the mapping
class group that fixes the isotopy class of the two chains and the arc a. By Theorem 3.30
for s-stability the subgroup inclusion Mg−2,1 ↪→Mg−2,2 from E to the stabilizer of the
two chains is surjective whenever g− 2 ≥ 2i+ 1, i.e. g > 2i+ 2. The subgroup inclusion
is the same as that we used for s-stabilization since in the stabilization we glued a pair
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of pants onto a single boundary component, and cutting along the arc a undoes such a
map. Thus, denoting the system consisting of the two chains by e, we get a commutative
diagram

Hi(E) // //

cg1=id

��

Hi(stab([e]))

cg1
��

Hi(E) // // Hi(stab([e])).

This makes sure that the conjugation cg1 by g1 induces the identity on Hi(stab(e)), so the
argument centered around the diagram (1.4) on page 15 still holds, i.e. Hi(Mg−1,1) →
Hi(Mg,0) is injective for g > 2i + 2. The surjectivity argument did not use the third
condition, so d is also surjective for g ≥ 2i+ 2 in this case.

Now we consider the factorization of d : Hi(Mg−1,1) → Mg,0 into Hi(Mg−1,1) →
Hi(Mg,1)→ Hi(Mg,0). The composition d is surjective for g ≥ 2i+ 2, so the latter map
in the factorization (from the statement of the theorem) is surjective in this case as well.
Moreover we just showed that the composition is an isomorphism when g > 2i+ 2, and
the first map in the factorization is an isomorphism in this range as well by Theorem 3.28,
so the latter map must also be an isomorphism in this range.





Chapter 4

Stability for symmetric mapping
class groups

For a smooth surface S, consider the group Diff+(S) of orientation preserving diffeomor-
phisms of S onto itself. An order 2 element of Diff+(S) is called an involution. For an
involution κ on S, denote by Diff+

κ (S) the centralizer of κ in Diff+(S), i.e. the subgroup

Diff+
κ (S) = {φ ∈ Diff+(S) | φκ = κφ} ≤ Diff+

κ (S).

We then define the κ-symmetric mapping class group as the subgroup Mκ(S) of
the boundary-fixing mapping class group M(S) consisting of all isotopy classes of dif-
feomorphisms with a representative in Diff+

κ (S).

4.1 Involutions and the stabilization map

If S is a closed surface, it admits a certain involution called the hyperelliptic invo-
lution. This is defined by a 180 degree rotation around a central axis as depicted in
Figure 4.1. If S is a surface with boundary, there is still a notion of hyperelliptic in-
volution, although one must make a choice. Namely, a hyperelliptic involution ι is still
defined by a 180 degree rotation, but it can now do two different things to a component
∂0S of ∂S; it can rotate it around itself such that ι∂0S = ∂0S, or it can interchange it
with another boundary component ∂1S such that ι∂0S = ∂1S and ι∂1S = ∂0S. For the
type of parametrization of Sg,0 ⊂ R3 indicated in Figure 4.1, Sg,0 has 2g+ 2 intersection
points with the x-axis (dashed line): 2 in each genus void and 1 in each end. Since the
hyperelliptic involution revolves Sg,0 around the x-axis, these 2g+ 2 points are the only
ones that are fixed by ι.

In order to pass from closed surfaces to surfaces with boundary, we need to remove
open disks D̊2 from Sg,0. In order to still have a hyperelliptic involution as given above,
we need to choose these disks in a certain way. Namely we need to choose them such
that each disk is either rotated by ι onto itself or mapped to one of the other disks.
For the type that rotates onto itself, the center must be a fixed point. Consequently,

75
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180◦

Figure 4.1: Hyperelliptic involution on a closed surface

there can be at most 2g + 2 of that type. The only requirement for the second type
is to find two disjoint antipodal disks, which we can do an arbitrary number of times.
Thus we can have a hyperelliptic involution on any Sg,s, but only 2g+2 of the boundary
components can be of the type that are rotated by ι. For non-negative integers a and b
with a + 2b = s, we denote by Ma,b

H (Sg,s) the hyperelliptic mapping class group where
the hyperelliptic involution rotates a of the boundary components and interchanges b
pairs of boundary components. For a ≥ 1, we will show that the sequence

Ma,b
H (Sg,s)→Ma−1,b+1

H (Sg,s+1)→Ma,b
H (Sg+1,s)→ · · ·

obtained by successively gluing on pairs of pants in a certain way is homologically stable.
In fact, we will show this in a greater generality where the starting surface is any surface
with an involution that rotates at least one of the boundary components. The stabi-
lization will depend on the number of fixed points, which is described in the following
lemma.

Lemma 4.1. Let κ be an involution on S. If S has genus g, the set of κ-fixed points,
i.e. those x ∈ S such that κ(x) = x, is discrete, i.e. it consists only of isolated points.

Sketch of proof, see e.g. [FM11, Section 7.1.2]. Let x be any point that is fixed by κ.
First choose any Riemannian metric h on S. We consider h′ = h + κ∗h. This is a
Riemannian metric since h and κ∗h are both Riemannian metrics, and it is non-zero
since h and κ∗h are positive definite. We have κ∗h′ = κ∗h + κ∗κ∗h = κ∗h + h = h′, so
κ is an isometry with respect to h′. Moreover, a neighborhood of x is a disk which is
either fixed, reflected or rotated by κ. Since κ is an isometry, the first case would force
κ to be trivial, which is not the case since it is an involution. The second case would
mean that κ was orientation reversing which leaves us with the third case, which shows
that x is an isolated fixed point.

Remark 4.2. In fact, a calculation using the Lefschetz fixed point theorem shows that
there can be at most 2g + 2 fixed points, but we do not need this fact here.

Consider a surface S with an involution κ, and assume that there is at least one
component ∂0S of S that is rotated by κ. We create a sequence of surfaces by successively
gluing pairs of pants onto S. A pair of pants S0,3 has only one type of hyperelliptic
involution, namely one that rotates one of the boundary components and interchanges
the two others. This hyperelliptic involution has one fixed point. Let ∂0S0,3 be the
boundary component that is rotated by the hyperelliptic involution. We can glue S0,3
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onto S along ∂0S0,3 and ∂0S. This gives us a new surface S1 with an involution κ1.
Instead of the boundary component ∂0S, S1 has two boundary components and an
additional fixed point. We can now proceed with gluing a new copy of S0,3 onto the
resulting surface, only now we glue along the interchanging boundary components. This
gives us a surface S2 with involution κ2. S2 has one more fixed point than S′, its genus
is one greater, and the interchanging boundary components have been replaced by a
rotating one again. Thus we can repeat the process to get a surface S3 with involution
κ3, and so on. Our goal is to show that the sequence

Mκ(S) =Mκ0(S1)→Mκ1(S1)→Mκ2(S2)→Mκ3(S3)→ · · · (4.1)

is stable in group homology. Here we let κ0 = κ and S0 = S for notational purposes.

Remark 4.3. Let S be a surface with an involution κ. In the following we will consider
the quotient S/κ obtained by identifying each x ∈ X with κ(x). For x ∈ S, let x̄ denote
the image in S/κ. If x is not a fixed point, then x̄ has a small neighborhood which is an
open smooth disk and whose preimage in S consists of two open smooth disks. However,
if x is a fixed point, then x̄ is a cone point of order 2, i.e. a small neighborhood of x̄
comes from wrapping a disk in S around itself by a 180 degree rotation. The quotient
has a smooth structure except for those cone points, so it can be viewed as a smooth
surface with marked points, one for each κ-fixed point. A diffeomorphism of S/κ that
permutes the marked points then lifts to a diffeomorphism of S that commutes with κ.

4.2 The complex of symmetric arcs

In order to prove that the sequence (4.1) is homologically stable, we can no longer use the
same complexes as we did in the previous chapter. For example transitivity now fails for
tethered chains. What we need to do is to create a complex of symmetric structures, i.e.
the vertices must be structures that in some way commute with the chosen involution.
An arc complex satisfying this must consist of symmetric arcs, i.e. arcs a satisfying
κ(a) = a.

Consider a set ∆ = {b1, b2} ⊂ ∂S with κ(b1) = b2. The precise complex we will use
is the complex A0

κ(S,∆) in which a k-simplex is an isotopy class of systems of k+ 1 arcs
from b1 to b2 that are pairwise non-isotopic and disjoint except for their endpoints. The
isotopies must fix the endpoints of the arcs, and an arc may not be isotopic to an arc
whose interior is contained in ∂S \ ∆, i.e. a line segment of ∂S between two adjacent
points of ∆. Moreover, for any simplex [σ] in A0

κ(S,∆) we require that:

(1) σ can be chosen such that each arc a of σ is symmetric, i.e. κ(a) = a, and
(2) σ is non-separating, i.e. S \ σ is connected.

The second requirement ensures that if we choose σ to be symmetric, then the surface
obtained by cutting S along σ is a connected surface with an involution determined by
κ.

An isotopy class of k+1 symmetric arcs spans a k-simplex in A0
κ(S,∆) if the arcs are

pairwise non-isotopic and the arcs can be chosen such that they are disjoint. Note that
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a symmetric arc must consist of two half arcs meeting at a point on S that is fixed by κ.
Since there are at most 2g+ 2 such fixed points, the complex A0

κ(S,∆) has dimension at
most 2g + 1. Note also that a symmetric arc cannot pass through two different κ-fixed
points since then it would contain a symmetric closed curve through those two points.
We still work with usual non-restrictive isotopy classes of arcs, so if a is a symmetric
arc, its isotopy class is going to contain non-symmetric arcs, but usually we will choose
a symmetric representative.

To prove that A0
κ(S,∆) is highly connected we will proceed by induction. For the

induction argument we will make use of the complexes of symmetric arcs on surfaces
cut up by symmetric arc systems. When cutting along a symmetric arc, its endpoints
in ∆ will be split up into four new endpoints. Thus we will have to look at the more
general complex where ∆ is not neccessarily a set of two points, but may contain any
even number of points as long as κ(∆) = ∆. To show that A0

κ(S,∆) is highly connected,
we will embed it into the larger complex Aκ(S,∆) of arc systems that may be separating.
This will again be embedded into an even larger complex A∩κ(S,∆) in which the arcs are
allowed to intersect in the κ-fixed points. We start with the largest complex. First we
will find out when the two largest complexes are non-empty.

Proposition 4.4. The complexes A∩κ(S,∆) and Aκ(S,∆) are non-empty if S contains
at least one point that is fixed by κ and S is not a disk with |∆| = 2.

Proof. This proof holds for both complexes since in either case we just need the existence
of one symmetric arc. If S is a disk with |∆| = 2, any arc with endpoints in ∆ is trivial,
so we have to leave that example out of account, hence the exception in statement of
the proposition. If S is a disk with |∆| > 2, the complex Aκ(S,∆) is indeed non-empty
since an arc is trivial only if it is isotopic to an arc whose interior lies inside ∂S \∆. If
S is a cylinder S0,2 and ∂S consists of two components that are interchanged by κ then
Aκ(S,∆) is certainly non-empty. If ∂S consists of two components that are rotated by
κ, then there are no κ-fixed points, so that case is not relevant. If S = S0,3, the presence
of the two additional boundary components makes sure that there are non-trivial arcs,
so Aκ(S,∆) is non-empty. Similarly Aκ(S,∆) is nonempty when S = S0,s for all higher
s.

If S has genus g ≥ 1, then Aκ(S,∆) is non-empty by the following argument: There
is a symmetric arc since the quotient S/κ is connected, and an arc in S/κ corresponds
to a symmetric arc on S. The question is whether this symmetric arc is non-trivial. For
a symmetric arc to be trivial, it must be isotopic to an arc in ∂S. Therefore it must
separate S into two components, one of which is a disk. But since the arc is symmetric,
the other component must be a disk as well. This means that S is a disk since it can
be obtained by gluing together two disks along a single arc in each of their boundaries,
contradicting the fact that S has positive genus. A simple example of a non-trivial arc
when S has genus 1 and κ is a hyperelliptic involution is given in Figure 4.2, and a
slightly more complex one can be seen on the front page.

Proposition 4.5. The complex A∩κ(S,∆) is contractible whenever it is non-empty.
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180◦

Figure 4.2: Non-trivial symmetric arc for g = 1

Proof. Suppose that A∩κ(S,∆) is non-empty and fix a symmetric arc a. We will use
Lemma 1.20 and do a surgery flow of A∩κ(S,∆) into the star of [a], i.e. we set X =
A∩κ(S,∆) and Y = star[a]. We define the complexity c(σ) of a system σ of symmetric
arcs by first putting it in normal form with respect to a and then counting the number of
intersection points with a except the κ-fixed point pa that a passes through. Note that
we can put σ in normal form with respect to a and still retain a system of symmetric
arcs. Namely, any bigon D is either symmetric such that κ(D) = D, or it has a ’twin’
D′ such that κ(D′) = D.

If [σ] is a simplex in A∩κ(S,∆) but not in the star of [a], then σ intersects a in at
least one pair of points p, κ(p) ⊂ a that are not fixed under κ. Perform surgery on the
arc vσ that intersects a closest to the boundary. This results in a partition of vσ into
three sub-arcs, one of which is the ’middle’ arc from p to κ(p). Redirect both of the
endpoints of this middle arc along a and away from pa so that they land in the two
boundary components. If we do this symmetrically with respect to κ in both ends, we
get a symmetric arc ∆vσ which only intersects σ in the κ-fixed point that vσ passes
through, i.e. [∆vσ] is in the link of [σ]. The number of intersection points is reduced by
at least two, so the complexity is reduced. The third condition of Lemma 1.20 is also
satisfied, so this defines a surgery flow, and we get the result.

We will pass to the smaller complex where the arcs are only allowed to intersect at
their endpoints. We lose some connectivity, but we retain enough in order to get the
stability results.

Proposition 4.6. If S has k κ-fixed points, the complex Aκ(S,∆) is (k − 2)-connected
when S is not a disk with |∆| = 2.

Proof. We proceed by induction on the number k of κ-fixed points. For the case k = 0 the
statement is vacuous, but for k = 1 the statement is that Aκ(S,∆) is non-empty, which
is true by Proposition 4.4. The base case is therefore k = 1. We will do the induction
step with a bad simplex argument using Corollary 1.10 for the inclusion Aκ(S,∆) ↪→
A∩κ(S,∆). We say that a simplex [σ] in A∩κ(S,∆) is bad if, regardless of the isotopy class,
each arc of σ intersects at least one of the others, i.e. if every κ-fixed point that is hit
by σ is hit by at least two distinct arcs of σ. Note that a bad simplex has dimension at
least 1.

The complex G[σ] of simplices good for [σ] is then built from disjoint symmetric arcs
in S \ σ that are not isotopic to each other or to any arcs of σ. This can be viewed
as the join ∗iAκi(Si,∆i) where the Si’s are components of the surface Sσ obtained
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by cutting S along σ, where ∆i is the set of boundary points inherited from ∆, and
where κi is the involution inherited from κ. For this to make sense we need to discard
the components that are not closed under the inherited hyperelliptic involution since
if σ is separating, there might be some components that are mapped by the inherited
hyperelliptic involution to each other and not to themselves. These components have no
symmetric arc complex since that requires a hyperelliptic involution. Also, they cannot
contain any fixed points. Note that none of the the Si’s can be a disk with |∆i| = 2
since only a trivial arc could create that situation, so the induction hypothesis applies
to all of the Si’s.

In order to use Corollary 1.10, we need to show that G[σ] is (g − 2 − n)-connected,
where n is the dimension of [σ]. Say that each component Si has ki fixed points. Then for
each i we must have ki < k since at least one fixed point has been eliminated by cutting
along σ. Thus, the induction hypothesis holds, so for each i, Aκi(Si,∆i) is (ki − 2)-
connected. Each arc of σ hits at most one fixed point, and at least one fixed point is
hit twice. Thus, since the discarded components of Sσ contain no fixed points, we have∑

i ki ≥ k − n. Moreover, by Lemma A.2 the connectivity of Gσ ∼= ∗iAκi(Si,∆i) is at
least ∑

i

(ki − 2 + 2)− 2 =
∑
i

ki − 2 ≥ k − n− 2,

so by Corollary 1.10 Aκ(S,∆) is (k − 2)-connected.

We are now ready to prove the connectivity of the complex A0
κ(S,∆) of coconnected

symmetric arcs.

Proposition 4.7. If Aκ(S,∆) is non-empty, the complex A0
κ(S,∆) is (k−3)-connected,

where k is the number of κ-fixed points of S.

Proof. Let a be a symmetric arc on any surface. If a is separating, then because it is
symmetric, it must separate S into two components that are interchanged by κ. Thus
these components cannot contain any κ-fixed points. This means that a separating arc
system must consist of at least k arcs. Thus A0

κ(S,∆) contains the entire (k−2)-skeleton
of Aκ(S,∆). Let a map f : Sk−3 → A0

κ(S,∆) be given. Then since Aκ(S,∆) is (k − 2)-
connected, f extends to a map f̄ : Dk−2 → A0

κ(S,∆). By Theorem A.5 we can assume
that f̄ is simplicial, so that it maps into the (k − 2)-skeleton of Aκ(S,∆) and therefore
into A0

κ(S,∆).

4.3 The stability theorem

Recall the sequence

Mκ0(S0)→Mκ1(S1)→Mκ2(S2)→Mκ3(S3)→ · · · (4.2)

defined on page 77. We now want to show that this sequence stabilizes in homology by
putting it into the context of the spectral sequence argument of Section 1.1. The result
we need to prove is the following.
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Theorem 4.8. The homomorphism Hi(Mκi−1(Si−1)) → Hi(Mκi(Si)) induced from the
sequence (4.2) is surjective for i ≥ 2k + 2 and an isomorphism for i ≥ 2k + 3.

Proof. We need to assign to each Mκi(Si) a simplicial complex Xi with an action
Mκi(Si) y Xi. If i is even, Si has a component ∂0S that is rotated by κi. Let ∆i

consist of two points in ∂0Si such that κi(∆i) = ∆i. Then let Xi = A0
κi(Si,∆i), and

assign to Mκ(S) the simplicial complex X0 consisting of just one vertex. If i is odd, we
have instead two boundary components ∂0Si and ∂1Si that are interchanged by κi. Then
for a point x ∈ ∂0Si we let ∆i = {x, κi(x)} and define Xi in the same way as before.

An element [φ] of Mκi(Si) then acts on a simplex [σ] of Xi simply by [φ][σ] = [φ(σ)].
We have to show that the four conditions of section 1.1 are satisfied.

Condition 1 : We will show that the actionMκ(S) y A0
κ(S) is transitive on simplices

of any dimension for any surface S with involution κ. Let σ and σ′ be two coconnected
systems of k + 1 symmetric arcs on Sg,s. Let π : S → S/κ denote the quotient map. By
Remark 4.3, both π(σ) and π(σ′) are systems of k+1 arcs from a point in ∂(S/κ) to k+1
distinct marked points (cone points). Since we can move these arcs around each other
in any way we like, we can simply choose a diffeomorphism of S/κ (seen as a marked
smooth surface) that permutes the marked points and takes π(σ) to π(σ′). This lifts to
a diffeomorphism of S that commutes with κ and takes σ to σ′.

Condition 2 : Let i ≥ 1 be given. For any [φ] ∈ Mκi(Si), φ must fix the boundary
∂Si. Therefore it must preserve the ordering of the arcs given by a small half-circle
around a point of ∆i. Therefore, if σ is a coconnected system of symmetric arcs on Si
and [φ] is an element of stab[σ], then [φ] must fix each vertex of [σ], i.e. it fixes [σ]
pointwise. This means that stab[σ] is the subgroup ofMκi(Si) of elements [φ] such that
[φ] fixes [σ]. This is exactly the group Mκσ(Sσ) where Sσ is the surface obtained by
cutting along σ, and κσ is the resulting involution inherited from κi. If σ has dimension
k, then Sσ is a copy of Si−k−1, and stab[σ] ∼=Mκi−k−1

(Si−k−1).
The stabilizer of [σ] is conjugate to Mκi−k−1

(Si−k−1) since the action is transitive
on simplices of each dimension by the same argument as we used in the proof of Theo-
rem 3.28.

Condition 3 : Let [e] be an edge in Xi. Then e consists of two symmetric arcs a and
a′ in Si. Now pass to the quotient by the quotient map π : Si → Si/κi. Then π(a) and
π(a′) are two arcs to two different marked points on Si. A small neighborhood N of these
two arcs is a disk with two marked points. We can easily choose a diffeomorphism φ
of Si/κi with support in this neighborhood which interchanges these two marked points
and which takes π(a) to π(a′). Then φ lifts to a symmetric diffeomorphism φ̂ on Si that
takes a to a′. Since φ is supported in N , [φ̂] commutes with the stabilizer of [e].

Condition 4 : The action Mκi(Si) y Xi is transitive on simplices of each dimension,
and since S has no κ-fixed points, Xi is (i−1)-dimensional, so Xi/Mκi(Si) is the quotient
of ∆i−1 identifying all simplices of each dimension. Thus the homology of Xi/Mκi(Si)
vanished up to degree (n − 2) by the same argument as in the proof of Theorem 2.4,
which is enough for Condition 4 since we already know from Proposition 4.7 that Xi is
(i− 3)-connected. Thus the result follows from Theorem 1.6.





Prospects for further work

The key property of a symmetric arc a is that a small neighborhood of a is a copy of S0,3

with a hyperelliptic involution. This made us able to prove that the sequence obtained
from attaching such copies of S0,3 is homologically stable. However, the involution on
the initial surface was not necessarily a hyperelliptic one. It may be possible to prove
similar results for sequences obtained by gluing surfaces with more exotic involutions.
In our case the stabilization was closely related to the number of fixed points. Perhaps
we just need to know that the surface that we glue on has a fixed point in order to be
able to prove a stability theorem.

In our proof of Theorem 4.8 we did not use the number of fixed points of the initial
surface. If this surface has fixed points, we might be able to obtain a slightly better
stability result. Although it would not improve the slope of the stable range function,
it could shift it down.

The homology of symmetric mapping class groups of closed hyperelliptic surfaces
does not stabilize; see e.g. [Kaw97]. Theorem 4.8 can be used to show that in the
non-closed case they do stabilize nonetheless. It would be interesting to understand on a
deeper level what it is that makes our sequences stabilize in comparison with the closed
case.
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Appendix A

Auxiliary lemmas

A.1 Simplicial complexes

Definition A.1. An abstract simplicial complex X = (V, S) is an ordered tuple con-
sisting of a finite set V called the set of vertices and a set S of non-empty subsets of V
caled the simplices of X such that

(i) For all v ∈ V , {v} ∈ S,
(ii) If σ ∈ S and ∅ 6= σ′ ⊆ σ, then σ′ ∈ S.

A subcomplex of X is a simplicial complex X ′ = (V ′, S′) such that V ′ ⊂ V and
S′ ⊂ S. The full subcomplex of X spanned by some V ′ ⊂ V is the subcomplex
(V ′, SV ) of X where SV consists of all simplices of X with vertices in V ′. For simplicity
we will sometimes identify a full subcomplex by the spanning V ′. A map of simplicial
complexes X = (V, S) → X ′ = (V ′, S′) is a function f : V → V ′ such that f(σ) is a
simplex of X ′ if σ is a simplex of X.

Let σ be a simplex in X. We will typically just write σ ∈ X. If a simplex σ has
n + 1 elements for some n ≥ −1, we say that the dimension of σ is n, and we write
dim(σ) = n. The closure Cl(σ) is the full subcomplex spanned by σ. If B is a set of
simplices in X, the closure Cl(B) of B is the full subcomplex complex spanned by the
union of all elements of B. If σ′ ⊂ σ is non-empty, we say that σ′ is a face of σ, and if
moreover σ′ 6= σ, we say that σ′ is a proper face of σ. The star star(σ) of a simplex
σ in X is the subcomplex consisting of simplices τ in X such that some face of σ is a
face of τ . The star of a set B of simplices in X is the union of the stars of each simplex
in B. The link link(σ) of a simplex σ in X is Cl(star(σ)) \ star(Cl(σ)), and the link of
a set B of simplices is Cl(star(B)) \ star(Cl(B)). For two simplices σ and τ , their join
σ ∗ τ is the simplex with vertices σ ∪ τ . This is now always a simplex of X, but starσ is
the subcomplex of σ consisting of simplices τ such that σ ∗ τ ∈ X, and linkσ is the full
subcomplex of starσ spanned by the vertices disjoint from σ. Thus these can be joined,
and

star(σ) = σ ∗ linkσ. (A.1)
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Moreover, joining is associative, so we can unambiguously join more that two spaces at
once.

From a simplicial complex X one can form a topological space called the geometric
realization of X, which is usually also denote by X. This is a cell complex where each
n-cell is a copy of the standard n-simplex ∆n. The standard n-simplex is the convex
hull of all unit vectors in Rn+1, and the faces of ∆n are the convex hulls of subsets of the
set of unit vectors and thus are standard simplices of lower dimensions. The standard
n-simplex is homeomorphic to the n-disk Dn, and its boundary is homeomorphic to the
(n− 1)-sphere Sn−1. The space X is defined inductively over its skeleta. The 0-skeleton
is the discrete space of all 0-simplices of X, and the n-skeleton is formed from the (n−1)-
skeleton as follows: For each n-simplex σ we glue a copy of the standard n-simplex along
its faces to the (n− 1)-cells corresponding to the faces of σ.

If f : X → X ′ is a map of simplicial complexes, then f induces a continuous map
of the geometric realizations by mapping vertices to vertices and expanding linearly. In
terms of geometric realizations a join σ0 ∗ · · · ∗ σn is homeomorphic to the topological
join of the relizations of the complexes. Thus a point in σ0 ∗ · · · ∗ σn be described as a
weighted sum

t0x1 + · · ·+ tnxn,

where each ti ∈ I and xi ∈ σi and
∑

i ti = 1. We have the following lemma for the
connectivity of joins, due to Milnor.

Lemma A.2 ([Mil56, Lemma 2.3]). Let A0, . . . , An be non-empty spaces such that for
each i, Ai is (ci− 2)-connected. Then the join A0 ∗ · · · ∗An is ((

∑n
i=0 ci)− 2)-connected.

Remark A.3. We sometimes talk about topological properties of a simplicial complex
X, e.g. that X is n-connected. In those cases we are referring to the geometric realization
of X.

A.1.1 Triangulations

For a manifold M we say that M admits a triangulation if M is the geometric realization
of a simplicial complex. The following is a consequence of a theorem first proved by
Whitehead in [Whi40]. It boils down to the fact that any smooth manifold has a so
called piecewise linear triangulation.

Theorem A.4. Any smooth n-manifold M has a triangulation in which the link of any
k-simplex σ is contractible if σ is included in ∂M or homeomorphic to Sn−k−1 if not.

Given a simplex σ of a simplicial complex X, we can subdivide σ by removing it
from X but instead adding an extra vertex and then joining that vertex with ∂σ. We
say that Y is a subdivision of X if Y can be obtained from X by doing so a number
of times. The geometric realization of Y is then homeomorphic to X. The following
theorem dates back to J.W. Alexander [Ale15], and a modern proof can be found in
Spanier’s book [Spa66, section 3.4].
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Theorem A.5. Let X and X ′ be simplicial complexes, and let f be a (not neccesarily
simplicial) map of their geometric realizations. Then f is homotopic to a simplicial map
f : Y → X ′ for some subdivision of X.

For some of the proofs of Section 1.2 we will need the fact that the star of any simplex
is contractible. Moreover, we need to be able to retriangulate the star of a simplex in a
certain way. The following lemma will help us in that regard

Lemma A.6 ([Hud69, Lemma 1.13]). Assume that we have triangulations of Sm, Sn,
Dm, and Dn and that these can all be joined together. Then

(1) Dm ∗Dn is homeomorphic to Dm+n+1,
(2) Dm ∗ Sn is homeomorphic to Dm+n+1, and
(3) Sm ∗ Sn is homeomorphic to Sm+n+1.

Using (A.1) and Theorem A.4 this means that for any k-simplex σ in a piecewise
linear triangulation of an n-manifold we have

star(σ) = σ ∗ link(σ) ∼= Dk ∗ Sn−k−1 ∼= Dn. (A.2)

A.2 Lemmas from algebra

Lemma A.7. Let G be a group. There is always a free resolution

· · · → E2G
φ1−−−→ E1G

φ0−−−→ Z[G]
ε−−→ Z→ 0,

of Z by Z[G]-modules, where ε is the augmentation map that sends 1 ∈ Z[G] to 1 ∈ Z.

Proof. The kernel of ε is a submodule of Z[G], so it is the homomorphic image of some
φ0 : E1G→ Z[G] where E1G is a free module. Then the kernel of φ0 is the homomorphic
image of φ1 : E2G→ E1G, where E2G is also free, and so on.

Definition A.8. Let X be a set with a G-action, and let x ∈ X. The stabilizer
subgroup stab(x) of x is the smallest subgroup of G that fixes x pointwise.

Theorem A.9 (Orbit-stabilizer Theorem). Let X be a set with a group action for a
group G. For each x ∈ X, let G/ stab(x) denote the set of left cosets of stab(x) in G,
and let [g] denote g stab(x) for g ∈ G. Then the map

φ : orb(x)→ G/ stab(x)

given by φ(gx) = [g] is a bijection. Moreover, the set {gx | [g] ∈ G/ stab(x)} is well-
defined and equal to orb(x).

Proof. To show that φ is well-defined, let g, h ∈ G be given such that [g] = [h]. Since
1 ∈ stab(x), g ∈ [g], so there is some a ∈ stab(x) such that ha = g. But then

φ([g]) = gx = hax = hx = φ([h]).
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The map φ is obviously surjective. To see that it is injective, assume that g, h ∈ G and
gx = hx. Then h−1gx = g−1hx = x, so h−1g, g−1h ∈ stab(x). Thus

[g] ⊆ [gg−1h] = [h] ⊆ [hh−1g] = [g].

The last statement follows simply because stab(x) acts trivially on x.

Lemma A.10. If x and y are in the same orbit of X, then stab(x) is conjugate to
stab(y).

Proof. Let g ∈ G such that y = gx, and let h ∈ stab(y). Then hy = hgx = gx, so
g−1hgx = g−1gx = x i.e. g−1hg ∈ stab(x), and vice versa, if g−1hg ∈ stab(x), then
h ∈ stab(y). Thus stab(y) = g−1 stab(x)g.

Lemma A.11. Let G be a group, and for each α in some index set A, let Mα be a
G-module. Then there are isomorphisms

H∗(G;⊕αMα) ∼=
⊕
α

H∗(G;Mα).

Proof. This is just due to the fact that tensor product and homology both respect direct
sums. I.e.

H∗(G;⊕αMα) = H∗(F ⊗G ⊕αMα) ∼= H∗(⊕α(F ⊗GMα))
∼= ⊕αH∗(F ⊗GMα) = ⊕αH∗(G,Mα),

where F is a projective resolution of Z over Z[G].

Lemma A.12 (Shapiro, [Wei94, Lemma 6.3.2]). If H is a subgroup of G, and M is an
H-module, then there are isomorphisms

H∗(H;M) ∼= H∗(G, IndGHM) ∼= H∗(G;⊕g∈G/HgM),

where G/H denotes a set of representatives of left cosets of H in G.

Lemma A.13 ([Wei94, Theorem 6.7.8]). Any automorphism G → G that is given by
conjugation with some g ∈ G induces the identity on group homology.

Lemma A.14. Let G be a group, and let X be a set with an action G y X. Let
g1, g, g

′ ∈ G, and let v, w be subsets of X. If g1v = w, then stab(w) = g1 stab(v)g−1
1 , and

if gv = g′v = w, then the conjugations cg and cg′ induce the same map H∗(stab(v)) →
H∗(stab(w)) on group homology.

Proof. Assume that g1v = w, and let x ∈ stab(w). We want to show that stab(w) =
g1 stab(v)g−1

1 , so we need to show that g−1
1 xg1 ∈ stab(v). This follows since

g−1
1 xg1v = g−1

1 xw = g−1
1 w = g−1

1 g1v = v.
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Now let y ∈ stab(v). We want to show that g1yg
−1
1 ∈ stab(w). This follows since

g1yg
−1
1 w = g1yg

−1
1 g1v = g1yv = g1v = w.

For the second part, assume that gv = g′v = w. We want to show that the homomor-
phism cgcg′−1 : stab(w)→ stab(w) induces the identity on homology, since then

cg = cggg′−1cg′

induces the same map as cg′ on homology. But this follows since

gg′−1w = gg′−1g′v = gv = w,

so gg′−1 ∈ stab(w), and thus conjugation by gg′−1 induces the identity by Lemma A.13.
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