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Abstract

This thesis introduces E∞-ring spectra and cyclotomic spectra and their invariants topological
Hochschild homology and topological cyclic homology respectively. The thesis is divided into
four chapters: In the first we introduce the necessary ∞-categorical prerequisites. In the second
we introduce the theory of symmetric monoidal ∞-categories, a K-theory machine analogous
to Segals infinite loop space machine, and lastly topological Hochschild homology. In the third
part we introduce the Tate construction and the Tate diagonal. In the last part we introduce
different versions of cyclotomic spectra, and show in which cases these coincide.
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Introduction

K-theory started as an algebraic invariant; as the Grothendieck group of isomorphism classes of
finitely generated projective R-modules. This has since been ported to the realm of topology in
the form of a spectrum, first by D. Quillen [41] using the plus-construction. It is an extremely
delicate invariant which contains a lot of information about its input, be it ring or permutative
category. The downside to having such a refined invariant as K-theory is that it is extremely
hard to calculate, hence it became evident that approximations were needed. An important and
classical approximation result is due to T. Goodwilie [1], which asserts that for A a certain type
of algebra there is a functorial trace map tr ∶ K(A) → HC−(A). This trace map fits into the
following cartesian square induced from a surjection A→ B with nilpotent kernel,

K(A)⊗HQ HC−(A⊗Q)

K(B)⊗HQ HC−(B ⊗Q).

trQ

There is one immediate downside with this approximation, besides the rationality: K(−) is an
topological object, while HC−(−) is an algebraic object. Hence we would like a more general
result which is non-rational, and which is given in terms of a topological version of cyclic homol-
ogy. The topological version of cyclic homology was given by M. Bökstedt, W.C Hsiang and I.
Madsen [31], and is called topological cyclic homology, and is denoted TCgen(−). The domain
of this functor is the ∞-category of genuine cyclotomic spectra, or the ∞-category of E∞-ring
spectra. The main issue with this definition, is that it was not model-independent: it relied on
the fact that any cyclotomic spectrum or E∞-ring spectrum has a lift to an orthogonal spectrum.
Despite of this issue, topological cyclic homology has been an immensely fruitful invariant: as
an example the desired analog of the above result was proved by B.I Dundas, T. Goodwillie and
R. McCarthy [1], using this definition of topological cyclic homology, and genuine cyclotomic
spectra. These results are our motivation for developing the theory of topological cyclic homol-
ogy, cyclotomic spectra and E∞-rings in the best and most computable way. To this end we
shall mainly be introducing theory and results from the article [38] of T. Nikolaus and P. Scholze.

The fundamental framework of these ideas are that of (∞,1)-categories, and are as many
other ideas of modern stable homotopy theory inspired by G. Segal in [46]. This thesis begins
with a brisk overview of the most prominents results for the most popular model for (∞,1)-
categories namely quasi-categories (also called ∞-categories) introduced by R.M. Vogt [11], and
most completely described by J. Lurie in [22], building on the work of A. Joyal. These are
merely prerequisites, and as such are taken for granted and are only included for easier refer-
encing, see chapter 1. After the ∞-categorical prerequisites, we begin translating Segal’s ideas
to ∞-categories. Again a comprehensive treatments has been made also by J. Lurie, see [25].
One insight again due to J. Lurie is how to port the notion of commutative algebra objects of a
symmetric monoidal category to ∞-categories. The insight is that to give a symmetric monoidal
structure on an ∞-category C , it is enough to give a a simplicial set C ⊗ and coCartesian fibra-
tion p ∶ C ⊗ → N(Γ) satisfying the Segal condition, such that the fiber p−1(⟨1⟩) ≃ C . We shall
consider this insight in more detail in chapter 2. Furthermore to give a commutative algebra
object in the symmetric monoidal structure p on C , it is enough to give a section of p with
some mild conditions. If one is familiar with the 1-categorical definition of symmetric monoidal
categories and their algebra objects, it is rather surprising that it is possible to package all the
commutative diagrams of this definition and the coherence data afforded by the ∞-categories in
question in such a concise way. Furthermore in the 1-categorical setting there is often associated
a significant amount of work to see that the symmetric monoidal structure is compatible with
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the model structure. The first part of chapter 2 is devoted to describing this theory, namely
to give the definition of E∞-rings. Next we shall consider a version of K-theory which we shall
define is for symmetric monoidal ∞-categories, and will be analogous to the classical definition
of K0. As we shall see K-theory gives rise to E∞-ring spectra, analogous to the classical K-
theory which gives rings. We introduce a closely related invariant called topological Hochschild
homology, THH(R), which we introduce for R an E∞-ring spectrum. We shall briefly see its
relation to the classical Hochschild homology, where we will see one of the philosophical reasons
for insisting on the ∞-categorical framework in arithmetic, namely the vanishing of denomina-
tors - which is interpreted as the process of counting over S somehow remembers the different
ways of counting contrary to counting over Z.

Once we have described the theory of E∞-rings, their topological Hochschild homology and
indicated how to give their K-theory, we consider a functor, called the Tate-construction, (−)tG ∶
SpBG → Sp, where G is a nice group. The meaning of nice will depend on the context. This
functor is introduced in chapter 3. The Tate construction and the fact that Sp is the universal
stable ∞-category freely generated by the sphere spectrum S, gives rise to a unique lax symmetric
monoidal transformation ∆p ∶ idSp → Tp see proposition 3.4.8. Here Tp is the Tate diagonal
which is an exact endofunctor on the ∞-category Sp. The first main theorem of this thesis is
the following.

Theorem 1. Let X ∈ Sp be a bounded below spectrum. Then the map

∆p ∶X → (X ⊗ ...X)tCp

exhibits (X ⊗ ...⊗X)tCp as the p-completion of X.

This is theorem 3.4.5. This result is a generalization of the Segal conjecture, as explained
in example 3.3.6. Using the transformation ∆p ∶ idSp → Tp it is possible to endow the topolog-
ical Hochschild homology THH(R), for R an E∞-ring spectrum, with a cyclotomic structure,
i.e. THH(R)tCp has the T/Cp ≅ Cp-action, see proposition 4.2.9. In this chapter we also show
the most fundamental technical lemma of the thesis namely the Tate orbit lemma, see theorem
3.3.4. This theorem does only hold for bounded below spectra as seen in example 3.3.8. This is
roughly due to the non-availability of the main proof strategy of the thesis, namely utlizing the
Eilenberg-MacLane spectrum version of the fundamental theorem of finitely generated abelian
groups. This is essentially utilizing that the Postnikov-tower of bounded below spectra is far
more well-behaved than their unbounded counterparts. This strategy is as follows: first show
the desired result for the Eilenberg-MacLane spectrum HFp, then for HM for M a finitely
generated abelian group, and then to reduce from bounded below spectra to HM . This is also
the proof technique used to proof theorem 3.4.5. This is to a large extend why, all the main
theorems of this thesis are only for bounded below spectra.

Once we have discussed the Tate construction, the Tate diagonal, and the Tate-lemmas, we
begin the construction of the ∞-categories of cyclotomic spectra. We begin with the construction
of the ∞-category of naive cyclotomic spectra, in which objects consist of a spectrum X with a T-
action together with T-equivariant maps ϕp ∶X →XtCp for all primes. This approach is due to T.
Nikolaus and P. Scholze [38], which is the main source of this thesis. The construction of this ∞-
category relies heavily on the notion of an lax equalizer, which we introduce in chapter 4 section
1. Analogous to genuine cyclotomic spectra, there is a version of topological cyclic homology
of naive cyclotomic spectra. We introduce this version in chapter 4 section 2. Utilizing the
cyclotomic structure of THH(R), for R an E∞-ring spectrum, we define TC(R) = TC(THH(R)).
It is possible to calculate TC(R) through an equalizer diagram, which for a bounded below E∞-
ring spectrum, takes the following especially aesthetically pleasing form,

TC(R) TC−(R) TP(R)∧p ,
ϕ

can
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see corollary 4.2.15, where TP(R) and TC−(R) are related invariants. The form presented
above is the p-typical version, there is also a “global version”. That we have this formula is of
computational importance.

Next we construct the ∞-category of genuine cyclotomic spectra, which objects consist
roughly of a spectrum X with a continuous T-action together with homotopy-coherently com-
patible equivalences X ≃ ΦCnX for all n ≥ 1. This is the classical approach to topological cyclic
homology, though we present it ∞-categorical rather than model categorical. Here ΦCn is the
geometric fixed point functor, which is one of three fixed point functors which we shall need in
the description of these objects. Genuine cyclotomic spectra are constructed through orthog-
onal spectra, and as such we shall need many more or less classical results from equivariant
homotopy theory. One of the most important notions from equivariant homotopy theory for us,
is that of a Borel complete spectrum, i.e. one for which genuine fixed points and homotopy fixed
points coincide. Furthermore we introduce the notion of topological cyclic homology of genuine
cyclotomic spectra.

The first main theorem of this thesis and the formula above was for bounded below spectra
and the theme that we can show remarkable relations once we assume our spectra to be bounded
below continues. Once we have described these two different versions of cyclotomic spectra and
their topological cyclic homology, we show that for bounded below genuine cyclotomic spectra
the two formulas for topological cyclic homology coincide, i.e. the following theorem, which is
the global version.

Theorem 2. Let X be a genuine cyclotomic spectrum such that the underlying spectrum is
bounded below. There is is a canonical equalizer diagram

TCgen(X) XhT ∏p∈P(XtCp)hT.
∏p∈P(ϕ

hT
p )

can

Hence we obtain an equivalence TCgen(X) ≃ TC(X).

Here Borel completion and the Tate orbit lemma are key components in the comparison.

Furthermore in chapter 4 sections 4 and 5 we realize the ∞-category of genuine cyclotomic
spectra as an ∞-category of fixed points of the coalgebra induced from the geometric fixed point
functor ΦCp ∶ TSpF → TSpF . The theory of coalgebras of endofunctors and their fixed points
are introduced in chapter 4 section 1. Through this recasting it is possible to show that there
is an equivalence of ∞-categories of the full subcategories spanned by bounded below spectra,
CycSpgen+ → CycSp+. I.e. the following theorem, which is global version.

Theorem 3. There exists a functor CycSpgen → CycSp which induces an equivalence of ∞-
categories of bounded below naive and genuine cyclotomic spectra, CycSpgen+ → CycSp+.

This is the last main theorem of the thesis, see theorem 4.6.11. We construct the functor
CycSpgen → CycSp explicitly.
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1 ∞-Categorical Prerequisites

The entirety of this thesis is formulated in the language of ∞-categories. This is a setting for
doing abstract homotopy theory introduced by by R.M. Vogt in [11], and further developed
by J. Lurie and A. Joyal. We shall primarily use results contained in the books Higher Topos
Theory and Higher Algebra both by J. Lurie these are [22] and [25] respectively. We shall use
many results and notions concerning these, these are not necesarily the most important results
from the theory, but those we shall use. This chapter should be seen as prerequisites, and as a
warm-up to the actual content which begins in the next chapter. We shall assume the reader to
be familiar with these results, and include them for completeness.

1.1 ∞-Categories

We begin with a definition of ∞-categories.

Definition 1.1.1. An ∞-category is a simplicial set S, which has all inner horn fillers. More
explicitly, any map f0 ∶ Λni → S for 0 < i < n extends to an n-simplex f ∶ ∆n → S.

We view ∞-categories as a generalization of the theory of categories, by identifying C with
its nerve N(C ), and using the following lemma.

Lemma 1.1.2. The nerve of any category is an ∞-category.

Recall that we have the Quillen-Kan model structure on sSet∗, which yields a Quillen-
equivalence of this model category, with the category of pointed compactly generated weak
Hausdorff topological spaces equipped with the classical model structure. The fibrant objects of
the Quillen-Kan model structure on sSet yields a class of important examples of ∞-categories.

Example 1.1.3. Any Kan complex is an ∞-category. In particular the singular simplicial
complex of X, Sing(X), is an ∞-category, for every X ∈ Top∗, where Top∗ denotes the category
of pointed compactly generated weak Hausdorff topological spaces.

In ordinary category theory we have that Hom(C,D) ∈ Set for every C and D in a category
C , in some sense we think of every category as being enriched over Set. In ∞-categories Set is
replaced by the ∞-category of spaces.

Definition 1.1.4. The ∞-category of spaces, denoted S is defined as N∆(sSetfc), where sSetfc
is the collection of (co)fibrant objects of sSet equipped with the Quillen-Kan model structure.
From this point onwards we shall refer to sSetfc as Kan, because the (co)fibrant objects are the
Kan complexes.

The enrichment over S for every ∞-category is the following theorem(which is contained in
[22] chapter 1.), and the Joyal model structure we shall define shortly.

N infty cat Theorem 1.1.5. Let C be a simplicial category for which the simplicial set MapC (X,Y ) is a
Kan complex for every pair of objects X,Y ∈ C . In this case N(C ) is an ∞-category.

Due to theorem 1.1.5 we define the ∞-category of ∞-categories as follows.

Definition 1.1.6. Let cat∞ be the simplicial category which objects are ∞-categories, and which
mapping spaces Map(C ,D) for C ,D ∈ cat∞ are the largest Kan complexes inside Hom(C ,D)
as a simplicial category. We then define the ∞-category of ∞-categories as Cat∞ ∶= N∆(cat∞).

Recall that there is yet another model structure on sSet, this is called the Joyal model
structure which we will describe now:
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Theorem 1.1.7. There exists a left proper combinatorial model structure on sSet with the
following properties:

1. A map p ∶ S → S′ of simplicial sets is cofibration, if it is a monomorphism.

2. A map p ∶ S → S′ is a categorial equivalence if the induced simplicial functor C[S]→ C[S′]
is an equivalence of simplicial categories.

Moreover the adjoint functors C and N∆ functor (For a definition of these see chapter 1 of [22]),
determine a Quillen equivalence between sSet and Cat∆, where Cat∆ are simplicially enriched
categories.

The collection of fibrant objects of the Joyal model structure are exactly the collection of
∞-categories.

fibrants Proposition 1.1.8. Let sSet be the category of simplicial sets equipped with the Joyal model
structure, then the fibrant objects are exactly the ∞-categories.

As we can see above many of the notions in the theory of ∞-categories somehow related to
model category theory, this is no coincidence. That this is so is the content of the following two
results, which are A.3.7.6 and A.3.7.7 of [22].

A.3.7.6 Proposition 1.1.9. The ∞-category C is presentable if and only if there exists a combinatorial
simplicial model category D and an equivalence C ≃ N∆(Dfc).

A.3.7.7 Proposition 1.1.10. Let C and D be combinatorial simplicial model categories. Then the
underlying ∞-categories N∆(Cfc) and N∆(Dfc) are equivalent if and only if C and D can be
joined by a chain of simplicial Quillen equivalences.

Using the Joyal model structure it is possible to prove the ∞-categorical analog of the
Grothendieck construction, called the Straightening/Unstraightening equivalence. To state this
we need the notion of a coCartesian fibration, and their 1-categorical analog. These will play
an important role throughout the thesis, which is because we shall need them for the definition
of a symmetric monoidal ∞-category.

Definition 1.1.11. Let p ∶X → S be a map of simplicials sets. The map p is an inner fibration
if it has the right lifting property with respect to all inner horns. The map p is a categorical
fibration if it has the right lifting property with respect to all cofibrant categorical equivalences.

Definition 1.1.12. Let p ∶ X → S be an inner fibration. An edge f ∶ ∆1 → X, say x → y is
p-coCartesian if the induced map

Xx/ →Xy/ ×Sp(y)/ Sp(x)/

is a trivial Kan fibration. Here Xx/ denotes the under-category.

Remark 1.1.13. An alternative, and perhaps a bit more tangeble definition is the following. The
edge f ∶ ∆1 → X is p-coCartesian if for all n ≥ 2 there exists a dotted arrow in the following
diagram rendering it commutative,

∆{0,1}

Λn0 X

∆n S

f

p

Definition 1.1.14. Let p ∶ X → S be a map of simplicial sets. The map p is a coCartesian
fibration if it is an inner fibration and if there for all edges f ∶ x→ y ∈ S and all x ∈X such that
p(x) = x exists a p-coCartesian edge f ∶ x→ y such that p(y) = y.
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x y

x y

f

p p

f

Example 1.1.15. Let X×S → S be the projection associated to a cartesian product of simplicial
sets. This is a coCartesian fibration.

We begin with a few regularity results concerning coCartesian fibrations. Here both of the
definitions will come in handy.

coCartbase Lemma 1.1.16. Consider the following pullback diagram of simplicial sets,

X ×S Y X

Y S.

p′ p

f

If p is a coCartesian fibration, then so is p′, i.e. the collection of coCartesian fibrations is closed
under base change.

Proof. We begin by fixing some of notation. Consider the following diagram

● X ×S Y X

∆1 Y S.

p

f

The lower extension ∆1 → X exists by the alternative definition of p-coCartesian map, let this
extension be denoted xs → xt. Let the object which ● → X ×S Y picks out be denoted es.
Because the right hand square is a pullback the existence of the lower extension ∆1 →X implies
the existence of the upper extension ∆1 →X ×S Y . Let the extension ∆1 →X ×S Y be denoted
es → et. Lastly let the edge ∆1 → Y be denoted x′ → y′. We must show that the upper extension
∆1 → X ×S Y is a p-coCartesian edge. Consider the following canonical diagram of simplicial
sets

(X ×S Y )et/ (X ×S Y )es/

Xxt/ Xxs/

Sf(x′)/ Sf(y′)

Yx′/ Yy′/

The lower extension ∆1 →X is a p-coCartesian morphism hence per. definition the inner square
is a pullback square, which implies that the left and right squares are pullbacks. From this is
follows that the outer square is a pullback, which implies that ∆1 →X ×S Y is a p-coCartesian
edge.

We have the following slight variant of p-coCartesian edges.

Definition 1.1.17. Let p ∶X → S is an inner fibration. We say that an inner fibration is locally
p-coCartesian if for every edge ∆1 → S the pullback X ×S ∆1 →∆1 is a coCartesian fibration.
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Before we state the straightening/unstraightening equivalence, we introduce the 1-categorical
versions of p-coCartesian maps and coCartesian fibrations, which we shall need later. We define
them explicitly, even though it is a special case of the above definitions via the embedding of
categories into ∞-categories.

Definition 1.1.18. Let p ∶ C → D be a functor. An arrow φ ∶ A→ B ∈ C is called Grothendieck
p-coCartesian if for any arrow ψ ∶ A → C ∈ C and any arrow h ∶ p(B) → p(C) ∈ D with
p(φ) ○ h = p(ψ), there exists a unique arrow u ∶ B → C ∈ C such that p(u) = h and φ ○ u = ψ.
Diagrammatically

A B C

p(A) p(B) p(C)

φ

ψ

p

u

p p

p(ψ)

p(φ) h

Definition 1.1.19. Let p ∶ C → D be a functor. The functor p is called a Grothendieck
opfibration if for all x ∈ C and q ∶ p(x)→ y in D there exists a p-coCartesian map q ∶ x→ y such
that p(q) = q.

For a proof of the following see remark 2.4.2.2 of [22].

opfib Lemma 1.1.20. Let p ∶ C → D be a Grothendieck opfibration, then N(p) ∶ N(C ) → N(D) is a
coCartesian fibration.

We now state the Straightening/Unstraightening equivalence [22] Theorem 3.2.0.1, which we
state in the version we shall need.

Straight Theorem 1.1.21. Let C be an ∞-category. There is an equivalence of ∞-categories

St ∶ (Cat∞)coCart
/C → CatC∞,

Un ∶ CatC∞ → (Cat∞)coCart
/C .

The ∞-category (Cat∞)coCart
/C is the full subcategory of (Cat∞)/C spanned by the coCartesian

fibrations over C . Here Cat/C∞ denotes the ∞-category of functors from C into Cat∞.

This theorem is extremely non-trivial, and equally useful, since it lets us (analogous to the
Grothendieck construction) construct Cat∞ valued functors, by constructing coCartesian fibra-
tions over a ∞-category (in fact more general over simplicial sets).

We end this section with an perhaps equally important result. Analogous to ordinary cate-
gory theory there is a notion of the Yoneda Lemma in the theory of ∞-categories.

introCons Construction 1.1.22. Let K be a simplicial set, and set C = C[K]. By construction C is a
simplicial category, so (X,Y ) ↦ Sing ∣HomC (X,Y )∣ determines a simplicial functor C op × C →
Kan. There exists a natural map C[Kop ×K] → C op × C , composing these two maps we obtain
a simplicial functor

C[Kop ×K]→ Kan

Using the adjunction (C,N), which holds by construction, we get a map of simplicial sets
Kop ×K → N(Kan), which by the adjunction (Fun,×) in sSet, can be identified with

j ∶K → Fun(Kop,S) ∶= P(K).

We shall refer to j as the Yoneda embedding.
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The map Kop ×K → S will be used later in the thesis. We now state the Yoneda lemma.

Yoneda Proposition 1.1.23. Let K be a simplicial set. Then the Yoneda embedding j ∶ K → P(K) is
fully faithful.

1.2 Adjoint functors

We begin this section with the following discussion on “structure vs. property”, which is loosely
based on talks given by Elden Elmanto and Tobias Bartel at ”Topics in algebraic topology”-
seminar at Copenhagen university, November 2018 and November 2017 respectively. As far as
the author knows no written material from these talks exist. A mathematical object is usually
defined by specifying an object in an ∞-category, equipped with structure, satisfying properties.
We will throughout this thesis to use these terms in a more precise way, hence we shall define
them. It will become apparent what this discussion has to do with adjoint functors soon.

Definition 1.2.1. Let C and D be (co)complete ∞-categories. Let F ∶ C → D be a functor.
The functor F is (co)continuous if it preserve (co)limits.

Definition 1.2.2. Let C and D be (co)complete. We shall say that an object of an ∞-category
C ∈ C has a property D if it belongs to a full subcategory C0 ⊆ C spanned by the objects
satisfying the predicate D, i.e. there should exist a full and faithful functor C0 → C such that C
is contained in the essential image. We shall say that an object C ∈ C is a structure on D ∈ D ,
if there exists a continuous functor S ∶ C → D such that there exists S(C) ≃ D, i.e. if D is in
the essential image of C under the right adjoint functor S.

Hence when we write Y has the structure of X, we are implicitely (or explicitly in some
cases) making a choice, hence we are implicitly saying something not only about Y but also
about our choice. Often these choices are of no concern, because they give equivalent objects,
but nonetheless we wish to emphasize that there is choice. Analogously when we say Y has the
property of X, we are saying something substantial about Y and not X.

Example 1.2.3. Let A ∈ Ab. We may define A as the underlying set A0, equipped with a group
structure A × A → A, satisfying the equations ab = ba for all a, b ∈ A. Here A0 has the struc-
ture of A, because F (A) = A0, under the forgetful functor Ab → Set, which is a right adjoint.
Furthermore Ab ⊆ Grp is a full subcategory, and hence being abelian is a property. Intuitively
properties are intrinsic to the object, in some sense they are truth-values: either ab = ba for all
a, b ∈ A is satisfied or not. Structures can be chosen from a set of possible different structures:
there are many different group structures on a given set A0.

Note that structure is given through a continuous functor, and such are, under certain
regularity assumptions, the same as a right adjoint functor. This is the adjoint functor theorem,
which is the result we use (by far) the most in this thesis.

adjoint functor theorem Theorem 1.2.4. Let F ∶ C → D be a functor between presentable ∞-categories.

(1) The functor F has a right adjoint if and only if it preserves colimits

(2) The functor F has a left adjoint if and only if it is accessible and preserve limits. A functor
is called accessible if its domain and codomain has filtered colimits and a set of compact
objects generating them under colimits, and it preserve filtered colimits.

We shall record a few important notions and lemmas relating to adjoint functors. We begin
with a kind of 2-out-of-3-property for adjoint functors.

IncLeftAd Lemma 1.2.5. Suppose we have inclusions C ⊆ D ⊆ E of ∞-categories, and both inclusions
C → E and D → E are right adjoints. Then the inclusion C → D is a right adjoint, and we have
the following commutative diagram, of adjunctions

10



C D

E

Note that if C → E and D → E have a certain property, then the right adjoint which arises
in this fashion, must have the same property. We now turn our attention to the following special
kind of adjoint functor which will be pervasive throughout the thesis.

Definition 1.2.6. Let L ∶ C → D be a functor. Then L is called a localization if it admits a
right adjoint which is fully faithful.

Fully faithful adjoint functors can be described in the following way, which is proposition
5.2.7.4 of [22].

BorelLem Lemma 1.2.7. Let C be an ∞-category. Let L ∶ C → C be a functor with essential image
LC ⊆ C . Then the following are equivalent,

(1) L is a localization.

(2) When regarded as a functor C → LC , L is left adjoint to the inclusion LC → C .

(3) There exists a natural transformation α ∶ C × ∆1 → C from idC → L such that, for every
object C ∈ C , the morphisms L(α(C)), α(LC) ∶ LC → LLC of C are equivalences.

Localizations which are conservative are in fact equivalences.

conservativelem Lemma 1.2.8. Suppose F ∶ C → D is a conservative functor which admits a fully faithful right
adjoint, then F is an equivalence.

Proof. Let FR be the right adjoint. Since FR is fully faithful, the counit ε ∶ FRF → idC is an
equivalence. We show that the unit η ∶ idD → FFR is also an equivalence. We have the following
composite

F (c) FFRF (c) F (c)
F (ηF (c)) εF (c)

is equivalent to idF (c) for all c ∈ C . This implies that F (ηF (c)) is an equivalence for all c ∈ C ,
hence by conservativity of F we have that ηF (c) is an equivalence for all c ∈ C .

Remark 1.2.9. The dual statement, namely that F admits a fully faithful left adjoint, is true
and is proved with a precisely dual proof.

1.3 Stable ∞-Categories and Sp

In this thesis we are interested in algebraic invariants for studying topological problems. The
right framework for doing algebra is the stable ∞-category of spectra Sp, we will try to justify
this, while also stating a few results concerning general stable ∞-categories. All of these results
are contained in the book Higher Algebra by J. Lurie [25]. We shall take the definition of a
stable ∞-category for granted.

Definition 1.3.1. Let a functor F ∶ C → D be a functor between stable ∞-categories. The
functor is exact if it preserves fiber sequences.

Remark 1.3.2. A functor between stable ∞-categories is exact if and only if it preserves finite
limits or colimits. This is proposition 1.1.4.1 of [25].

We now define the most important ∞-category of this thesis, namely the ∞-category of
spectra. To make sense of this ∞-category we need the following preliminary definition.

11



Definition 1.3.3. Let F ∶ C → D be a functor between ∞-categories. If C admits pushouts,
then we say that F is excisive if F carries pushout squares in C to pullback squares D . The full
subcategory of Fun(C ,D) spanned by the collection of excisive functors we denote by Exc(C ,D).
If C admits a final object ●, we will say that F is reduced if F (●) is a final object of D .
The full subcategory of Fun(C ,D) spanned by the collection of reduced functors we denote by
Fun∗(C ,D). We denote Exc∗(C ,D) ∶= Exc(C ,D) ∩ Fun∗(C ,D).

Definition 1.3.4. Let C be an ∞-category which admits finite limits. Then the ∞-category of
spectrum objects, is defined and denoted as Sp(C ) ∶= Exc∗(Sfin∗ ,C ). We define Sp = Sp(S).

Recall that we have a functor Σ∞ ∶ S → Sp, and we obtain the sphere spectrum, denoted S,
as Σ∞(S0). The universal property of Sp says that Sp is the universal stable ∞-category which
is freely generated under colimits by S. This is the following theorem, which is corollary 1.4.4.6

UniSp Theorem 1.3.5. Let D be a presetanble stable ∞-category. Then evaluation on the sphere
spectrum induces an equivalence of ∞-categories,

θ ∶ FunLex(Sp,D)→ D .

Here FunLex(C ,D) is the full subcategory of Fun(C ,D) spanned by the collection of left adjoint
functors.

If this theorem is not enough to convince the reader that this is an important ∞-category,
the following lemma should.

MapSpec Lemma 1.3.6. Let C be a stable ∞-category. The functor mapC (−,−) ∶ C op ×C → S lifts to a
functor MapC (−,−) ∶ C op ×C → Sp. We say that any stable ∞-category is enriched over Sp.

Proof. This follows from the universal property of the ∞-category of spectra, i.e. theorem 1.3.5
and [25] Corollary 1.4.2.23. The latter together with the Yoneda machinery described in the
previous section, gives that for every X ∈ C op, the left exact functor Map(X,−) ∶ C → S lifts
uniquely to an exact functor map(X,−) ∶ C → Sp. Considering X as a variable, and using the
universal property we obtain a functor

C op → FunLex(C ,S) ≃ FunEx(C ,Sp).

This functor corresponds to a functor C op ×C → Sp, through adjunction.

The following is remark 1.4.2.25 of [25].

SpTower Lemma 1.3.7. We may identify Sp(C ) with the limit of the tower computed in the ∞-category
of stable ∞-categories.

... C∗ C∗ C∗.
Ω Ω

Lastly we relate the ∞-category of spectra to the 1-categorical notion of spectra. For a proof
see 7.3.9 of [40].

SpToSp Theorem 1.3.8. Let SpΣ be the category of symmetric spectra, and equip it with the stable
model structure. For a definition of these see [43]. Then we have an equivalence N∆(SpΣ

fc) ≃ Sp.

This result also holds for the category of orthogonal spectra equipped with the stable model
structure.
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2 E∞-Ring Spectra and their K-theory

In this chapter we shall give the ∞-categorical setting in which we shall define the ∞-categorical
analog of algebra objects in a symmetric monoidal category. I.e. we shall introduce among other
things symmetric monoidal ∞-categories, their algebra and module objects. The standard way
to introduce these notions, which is also the most general, is through the theory of ∞-operads,
where symmetric monoidal ∞-categories are a certain instances of O-monoidal ∞-categories for
O an ∞-operad, which is done in e.g. [25] chapter 2 and 3. We will diverge from this path to
emphasize how these constructions are refinements of their classical counterparts. Hence one
might think of the following as a brisk introduction to the theory, through instructive examples.
We follow [20] section 3, [19] section 2, [21] chapter 1 and 4, [5], [24], and [25] chapter 5 and
portions of chapter 7. We try to be as clear as possible about the relations to the classical theory
as possible as we go along. The first two sections are loosely based on notes written for a talk
given by the author at the ”Topics in algebraic topology”-seminar at Copenhagen University,
November 2018.

2.1 Symmetric Monoidal ∞-Categories

If we for a moment zoom-out and try to remember why we are doing all of this, we recall that
we are trying to approximate K-theory. The version of K-theory that we shall be interested in,
namely K-theory of symmetric monoidal ∞-categories is much inspired by G. Segals model for
K-theory for permutative categories via his infinite loop space machinery [46]. This construction
of K-theory relies heavily on the homotopy theory of (special) Γ-spaces, hence it is not surprising
that we shall need Segals Γ-category.

Definition 2.1.1. For each 0 ≤ n, we let ⟨n⟩○ denote the set {1,2, ..., n} and ⟨n⟩ = ⟨n⟩○∗ ∶=
{●,1,2, ..., n}. In particular ⟨0⟩ = {∗}. We define a category Γ as follows:

1. The objects of Γ are the sets ⟨n⟩, where 0 ≤ n, based at ●.

2. Given a pair of objects ⟨m⟩, ⟨n⟩ ∈ Γ, a morphism from ⟨m⟩ to ⟨n⟩ in Γ is a basepoint
preserving map of sets.

The following kind of morphisms of Γ are extremely important.

Definition 2.1.2. We will call a morphism f ∶ ⟨n⟩ → ⟨m⟩ in Γ inert if, for each non-basepoint
i ∈ ⟨n⟩, f−1{i} is a singleton.

rho Example 2.1.3. For every n ≤ 0, the map ρi ∶ ⟨n⟩ → ⟨1⟩ determined by f−1{1} = {i} is by
definition inert. This map will play an important part later.

In the following we shall use the following notation. Let p ∶K → N(Γ) be a map of simplicial
sets and let ρi ∶ ⟨n⟩→ ⟨1⟩ for 0 ≤ i ≤ n be the morphisms described in example 2.1.3. We denote
the fibers p−1{⟨n⟩} ⊆ K by K⟨n⟩. Assume further that ρi for 0 ≤ i ≤ n are coCartesian edges,

then note that the maps ρi induce maps on the fibers:

ρi! ∶K⟨n⟩ →K⟨1⟩.

Definition 2.1.4. A symmetric monoidal ∞-category is a simplicial set C ⊗ equipped with a
coCartesian fibration p ∶ C ⊗ → N(Γ) such that the inert morphisms ρi ∶ ⟨n⟩ → ⟨1⟩ for 0 ≤ i ≤ n,
induce an equivalence of ∞-categories

C ⊗
⟨n⟩ ∏1≤i≤nC ⊗

⟨1⟩.
(ρi! )1≤i≤n
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The last condition is often called the Segal condtion.

Remark 2.1.5. We could replace Γ with ∆op, where ∆ is the simplex category, in the above
definition to obtain the notion of a monoidal ∞-category. Recall that there is a functor ∆op → Γ,
which takes [n] to ⟨n⟩, thus every Γ-space has an underlying simplicial space. Utilizing this we
see that all symmetric monoidal ∞-categories in particular are monoidal ∞-categories. We shall
use these when describing the ∞-category of module objects over an E∞-ring specrum, but in
the following section we will mainly concern ourselves with symmetric monoidal ∞-categories,
but all notions have a noncommutative analog, which will leave out. See [19] Section 1 for a
discussion hereof.

Remark 2.1.6. Note that the fibers of p ∶ C ⊗ → N(Γ) are ∞-categories, because p in particular
is an inner fibration. In light of this we shall refer to the fiber C ∶= C ⊗

⟨1⟩ as the underlying

∞-category of the symmetric monoidal ∞-category. Note that being a symmetric monoidal
∞-category is structure on the ∞-category. We shall often abuse terminology and say that C
is a symmetric monoidal ∞-category.

The definition of a symmetric monoidal ∞-category is in direct analogy to the definition of
Γ-categories(e.g. construction 7.28 of [43]). The coCartesian fibration condition in the definition
of symmetric monoidal ∞-category encapsulates not only the data of the commutative diagrams
in the definition of Γ-categories, but also higher coherence data.

Definition 2.1.7. Per. definition C ⊗
⟨0⟩ ≃ (C ⊗

⟨1⟩)
0 ≃ ●. Consider the unique map ⟨0⟩ → ⟨1⟩, it

induces a functor C ⊗
⟨0⟩ → C ⊗

⟨1⟩ ≃ C which we identify with an object 1 ∈ C , which we call the unit.

Consider the map f ∶ ⟨2⟩→ ⟨1⟩. Since the maps (ρi!)i={1,2} ∶ C ∶ ⟨2⟩⊗ → C ⊗
⟨1⟩×C ⊗

⟨1⟩ are equivalences,

the map f induces a functor

C ⊗
⟨2⟩ C ⊗

⟨1⟩

C ⊗
⟨1⟩ ×C ⊗

⟨1⟩

f!

(ρi! )i={1,2} ⊗

i.e. a functor C ×C → C , which we denote ⊗ and refer to as a tensor product.

Note that there is associated a choice to the definition of the tensor product, since the image
of the induced map of ρ1 can be choosen to be the left hand factor of C ⊗

⟨1⟩ × C ⊗
⟨1⟩ or the right

hand factor. These two choices are homotopic, so the choice is not significant, but nonetheless
from this point onwards we shall assume that this choice has been made.

Definition 2.1.8. Let p ∶ C ⊗ → N(Γ) and q ∶ D⊗ → N(Γ) be symmetric monoidal ∞-categories.
Consider the map of simplicial sets f ∶ C ⊗ → D⊗, and the following conditions.

(1) The diagram

C ⊗ D⊗

N(Γ)

f

p

q

commutes.

(2) The map f carries p-coCartesian maps to q-coCartesian maps.

(3) If t is a p-coCartesian edge in C ⊗ such that p(t) in N(Γ) is inert, then f(t) is a q-coCartesian
edge and q(f(t)) is inert.
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The map of simplicial sets f is a symmetric monoidal functor if it satisfies condition (1) and
(2). The full subcategory of FunN(Γ)(C ⊗,D⊗) spanned by the functors having these properties,
we denote by Fun(C ⊗,D⊗). The map of simplicial sets f is a lax symmetric monoidal functor
if it satisfies condition (1) and (3). The full subcategory of FunN(Γ)(C ⊗,D⊗) spanned by these
is denoted Funlax(C ⊗,D⊗).

Lemma 2.1.9. The collection of (lax) symmetric monoidal functors are closed under composi-
tion.

Proof. Consider the (lax) symmetric monoidal functors f ∶ C ⊗ → D⊗ and g ∶ D⊗ → E ⊗. These
fit into the following diagram

C ⊗ D⊗ E ⊗

N(Γ).

f

p
q

g

r

This diagram obviously commutes per. assumption on the two triangle-diagrams of which it is
composed. Hence the first property is preserved.

Note that g○f takes p-coCartesian edges to r-coCartesian edges, because f takes p-coCartesian
edges to q-coCartesian edges and then g takes q-coCartesian edges to r-coCartesian edges per.
assumption. Hence the second property is preserved if it was assumed to hold for f and g to
begin with.

Let t be a p-coCartesian edge in C ⊗ such that p(t) in N(Γ) is inert, then f(t) is a q-
coCartesian edge and q(f(t)) is inert, furthermore g(f(t)) is a r-coCartesian edge and r(g(f(t)))
is inert. Hence the third property is preserved.

Remark 2.1.10. We shall often abuse terminology and say that a functor f ∶ C → D of ∞-
categories is (lax) symmetric monoidal, when we in fact mean that it is the underlying map of
fibers f⟨1⟩ ∶ C⟨1⟩ → D⟨1⟩ of a (lax) symmetric monoidal functor f ∶ C ⊗ → D⊗.

The following example shows the usefulness of straightening/unstraightening.

Example 2.1.11. Let C ⊗ be a symmetric monoidal ∞-category, and let (C ⊗)op be its opposite
category. (C ⊗)op also carries a canonical structure of a symmetric monoidal ∞-category. This
can be seen by considering the coCartesian fibration p ∶ C ⊗ → N(Γ) giving C ⊗ the structure of
a symmetric monoidal ∞-category. Apply unstraightening to p to obtain Un(p) ∶ N(Γ)→ Cat∞.
Postcomposing (−)op ∶ Cat∞ → Cat∞ with Un(p) and apply straightening to obtain a symmetric
monoidal ∞-category p′ ∶ (C op)⊗ → N(Γ). This construction is in fact functorial, see [15]
Appendix A.3.

YonedaSymMon Example 2.1.12. Let p ∶ C ⊗ → N(Γ) be a symmetric monoidal ∞-category and let K be an
arbitrary simplicial set. The projection p1 ∶ N(Γ) ×K → N(Γ), induces a map (p1)∗ ∶ N(Γ) →
Fun(K,N(Γ)) via adjunction. Consider the following pullback diagram

Fun(K,C ⊗) ×Fun(K,N(Γ)) N(Γ) Fun(K,C ⊗)

N(Γ) Fun(K,N(Γ))

q p○−

(p1)∗

It is elementary to show that the induced map

q ∶ Fun(K,C ⊗) ×Fun(K,N(Γ)) N(Γ)→ N(Γ),

satisfies the Segal condition. Note that q is a coCartesian fibration because Fun(K,−) preserve
coCartesian fibrations, and the collection of coCartesian fibrations are closed under the base-
change. Alternatively it follows directly from corollary 3.2.2.12 of [22]. We will denote the
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pullback by Fun(K,C )⊗, and by the above reasoning the induced map q ∶ Fun(K,C )⊗ → N(Γ)
is a symmetric monoidal ∞-category.

In particular we see that the functor category Fun(C op,S) admits an extension to a symmet-
ric monoidal ∞-category Fun(C op,S)⊗. Using this symmetric monoidal structure it can shown
that the Yoneda embedding j ∶ C op → Fun(C op,S) admits a canonical refinement to a symmetric
monoidal functor (C op)⊗ → Fun(C op,S)⊗. See [7] section 2 and 3 for a proof of this result.

We now consider an example of a (lax) symmetric monoidal functor, and sketch our main
way of realizing if a functor is (lax) symmetric monoidal.

OmegaIsLax Example 2.1.13. Consider the ∞-category of spectra, Sp, this ∞-category has a canonical
symmetric monoidal structure given by the smash product, which can be described in many
ways, we shall describe one of these shortly. Likewise for the ∞-category of spaces S∗, again
given by the smash product. For now take the existence of these for granted. The functor
Ω∞ ∶ Sp → S∗ which is the “0th space functor”, is lax symmetric monoidal, we shall give more
details for the reason behind this later. The functor Σ∞ ∶ S∗ → Sp is symmetric monoidal.

Remark 2.1.14. We put “0th space functor” in quotations, because it is the usual incarnation
of this functor given our definition of Sp. It is nonetheless justified through lemma 1.3.7.

Example 2.1.13 is in fact a general fact, which holds more generally for ∞-operads and
their functors, see corollary 7.3.2.7 of [25], in the case of symmetric monoidal ∞-categories the
statement specializes to the following.

RadjointLax Lemma 2.1.15. Suppose that f ∶ C ⊗ → D⊗ is a lax symmetric monoidal functor, such that for
every ⟨n⟩ ∈ N(Γ) the induced map of fibers f⟨n⟩ ∶ C⟨n⟩ → D⟨n⟩ admits a right adjoint g⟨n⟩. Then
f admits a right adjoint g relative to N(Γ) which is lax symmetric monoidal.

Remark 2.1.16. The dual is also true namely: if g is symmetric monoidal, and each of its fibers
admits a left adjoint, then it admits a left adjoint relative to N(Γ) which is oplax symmetric
monoidal.

As exemplified in the lemma above we have a great deal of appreciation for the information
contained in the fibers of the coCartesian fibrations, hence the following definition should come
as no surprise.

Definition 2.1.17. A symmetric monoidal functor F ∶ C ⊗ → D⊗ is called an equivalence of
symmetric monoidal ∞-categories if and only if it induces an equivalence of the underlying
∞-categories C ⊗

⟨1⟩ ≃ D⊗
⟨1⟩.

Lets relate the ∞-categorical theory to the 1-categorical. In the following when we are
discussing symmetric monoidal categories, we will supress the associator, left/right unit, and
braiding from the notation. Furthermore we shall assume them all to be chosen beforehand.

SymMonCat Theorem 2.1.18. Let C be a category equipped with the structure of a symmetric monoidal
category (C ,⊗,1), then N(C ) has the structure of a symmetric monoidal ∞-category.

Proof of theorem 2.1.18. Our simplicial set N(C )⊗ will turn out to be the nerve of a certain
category, which we will denote D . The construction of D will be needed again later, hence we
promote it to its own construction.

cons Construction 2.1.19. 1. The objects of D are finite sequences of objects X1, ...,Xn ∈ C .

2. Given two objects {Xi}1≤i≤m and {Yj}1≤j≤n, a morphism between them is given by a map
α ∶ ⟨m⟩→ ⟨n⟩ in Γ together with a collection of morphisms

{ ⊗
α(i)=j

Xi → Yj}1≤j≤n

in C , where ⊗ refers to the monoidal product of C .
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3. The composition is determined by the compositions of Γ and C .

Note that there is a forgetful functor f ∶ D → Γ which on objects is given by {Xi}1≤i≤m ↦ ⟨m⟩
and on morphisms as

(α,{ ⊗
α(i)=j

Xi → Yj}1≤j≤n)↦ α.

It is elementary to show that f is a Grothendieck opfibration. By lemma 1.1.20 p ∶= N(f) ∶
N(D) → N(Γ) is a coCartesian fibration. Note that f has the Segal condition, and that N
preserve limits (by virtue of being the right adjoint of the (∣− ∣,N)-adjunction), hence p also has
the Segal condition. It is obvious from the construction of D that N(D)⟨1⟩ ≃ N(C ).

This theorem will be our main source of examples of symmetric monoidal ∞-categories.

2.2 Algebra and Module objects of Symmetric Monoidal
∞-categories

Let R be a commutative ring, then the category of finitely generated projective R-modules
ProjR ⊆ ModR is a permutative category, hence Segals K-theory of permutative categories ap-
plies, and it recovers Quillens K-theory of R see [39]. In the classical theory of symmetric
monoidal categories, R is a commutative algebra object in the symmetric monoidal category
of abelian groups Ab, and ModR is the collection of module objects over R in Ab. We will in
this section define the analog of commutative algebra objects, and ModR for R a commutative
algebra object, and in the following section we will construct the analogous K-theory.

Definition 2.2.1. Let p ∶ C ⊗ → N(Γ) be a symmetric monoidal ∞-category. A commutative
algebra object of C is a section of p, i.e. a map A ∶ N(Γ) → C ⊗ such that p ○ A = idN(Γ),
sending inert maps to p-coCartesian maps. We let CAlg(C ) denote the full subcategory of
MapN(Γ)(N(Γ),C ⊗) spanned by the algebra objects of C ⊗. Given a commutative algebra

object A, we call A⟨1⟩ ∈ C ⊗ the underlying object of the commutative algebra object.

Note that the commutativity is not a condition, it is structure: when we provide the section
of the coCartesian fibration p exhibiting C as a symmetric monoidal ∞-category we are choosing
a homotopy a ⋅ b ≃ b ⋅ a, and all the higher homotopies, i.e. we are providing an infinite amount
of data. This is the ingenious insight of J. Lurie and G. Segal mentioned in the introduction.

The following result is a consequence of [25] Corollary 3.2.3.5 and the Segal condition.

CAlgPresent Theorem 2.2.2. Let C be a presentable symmetric monoidal ∞-category, where the monoidal
product ⊗ ∶ C ×C → C is cocontinuous in each variable, then CAlg(C ) is presentable.

Remark 2.2.3. Consider the trivial symmetric monoidal ∞-category idN(Γ) ∶ N(Γ) → N(Γ),
and another symmetric monoidal ∞-category p ∶ C ⊗ → N(Γ), then note that algebra ob-
jects of C can be identified with lax symmetric monoidal functors N(Γ) → C , i.e. CAlg(C ) =
Funlax(N(Γ),C ⊗).

By this remark together with the fact that the composition of lax symmetric monoidal
functors is again a lax symmetric monoidal functor, we obtain the following lemma.

laxpresalg Lemma 2.2.4. Let p ∶ C ⊗ → N(Γ) and q ∶ D⊗ → N(Γ) be symmetric monoidal ∞-categories,
and let F ∶ C ⊗ → D⊗ be a lax symmetric monoidal functor. Let A ∶ N(Γ)→ C ⊗ be a commutative
algebra object of C . Then F ○A is a commutative algebra object of D .
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1-catToinfty-Cat Example 2.2.5. Let C be a category equipped with the structure of a symmetric monoidal
category (C ,⊗,1), and let C have a simplicial combinatorial model structure compatible with
the monoidal structure. Assume further that C is freely powered, for a definition of this
see [25] 4.5.4.2. Now consider C as a symmetric monoidal ∞-category via example 2.1.18.
Let Cfc denote the collection of fibrant-cofibrant objects of C in the model structure. Then
CAlg(N(Cfc)) can be identified with the nerve of the category of commutative algebra objects
of C , N∆(CAlg(C )fc). We will not prove this, for a proof see [21] theorem 4.3.22.

E_inftySpace Example 2.2.6. We may think of S∗ as the nerve of the category of pointed compactly gener-
ated weak Hausdorff topological spaces, N(Top∗). The smash product ∧ ∶ Top∗ × Top∗ → Top∗
gives Top∗ the structure of a symmetric monoidal category. Hence by theorem 2.1.18 we obtain
a symmetric monoidal structure on S∗. The commutative algebra objects of S∗ are called E∞-
spaces. Recall the definition of special Γ-spaces, namely functors A ∶ Γ → Top∗, satisfying the
Segal condition. Special Γ-spaces are algebra objects of Top in the 1-categorical sense, see [6].
Now S∗ is not freely powered, hence special Γ-spaces they are not models for E∞-spaces. They
are much a kin though, and as we shall se many definitions regarding E∞-spaces will be inspired
from special Γ-spaces.

Remark 2.2.7. Note that in the unpointed case, S = N∆(Top) the cartesian product ∏ ∶ Top ×
Top→ Top on Top induces a symmetric monoidal structure on S in an analogous fashion.

As promised we will now describe one way to obtain a symmetric monoidal structure on Sp.
This is not the easiest way to obtain it, but it emphasises the relation to the classical theory.
We will in the following section indicate the standard way of defining it.

Example 2.2.8. Consider the category of symmetric spectra SpΣ equipped with the structure
of a symmetric monoidal category (SpΣ,⊗,S), where the smash product is constructed through
Day-convolution, see e.g. [29]. Equip SpΣ with the stable model structure, see e.g. [29]. Ap-
plying theorem 2.1.18 to the fibrant-cofibrant objects, SpΣ

fc, we obtain a symmetric monoidal

structure on the ∞-category N(SpΣ
fc). Utilizing the following well known equivalence of the-

orem 1.3.8 we obtain a symmetric monoidal structure on Sp. Furthermore SpΣ satisfies the
assumptions of example 2.2.5. Hence we obtain the following string of equivalences

CAlg(Sp) ≃ CAlg(N(SpΣ
fc)) ≃ N(CAlg(SpΣ)fc).

Hence algebra objects of SpΣ represent algebra objects of Sp. These algebra objects are exactly
the E∞-ring spectra. Here we could just as well have choosen the category of orthogonal spectra
SpO.

As mentioned the problem with this approach to giving the symmetric monoidal structure
on Sp and defining E∞-ring spectra is that it is not model independent; it relied on the choice
of model structure, and even on the choice between orthogonal or symmetric spectra, which are
not the only choices. We will sketch how to avoid this in the a later section, and as such we will
relegate much of our discussion of E∞-ring spectra until then.

We have now discussed algebra objects of symmetric monoidal ∞-categories, let us now
discuss module objects. We will consider the non-commutative case, for a number of reasons.
The first is that when compared with the commutative case or even the more general case of
O-monoidal ∞-categories for O an ∞-operad, the objects are significantly easier to write down
explicitly, which makes the relation to the classical theory more apparent. Furthermore the
definition is significantly easier to comprehend, and relies on only a fraction of auxillary results
and notions compared to the methods mentioned above. Lastly for commutative algebra objects
the commutative and non-commutative construction are, in a suitable sense, in fact equivalent.
We shall follow parts of [21], [19] and [25].

Definition 2.2.9. Let p ∶ C ⊗ → N(∆)op be a monoidal ∞-category. An ∞-category left-tensored
over C ⊗ is a inner fibration q ∶M⊗ → C ⊗ with the following properties.
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1. The composition (p ○ q) ∶M⊗ → N(∆)op is a coCartesian fibration.

2. The map q carries (p ○ q)-coCartesian edges of M⊗ to p-coCartesian edges of C ⊗.

3. For each n ≥ 0, the inclusion in ∶ {n} ⊆ [n] induces an equivalence of ∞-categories (in)! ∶
M⊗

[n] → C ⊗
[n] ×M

⊗
{n}, where (p ○ q)−1{[n]} =∶M⊗

[n].

Proposition 2.2.10. A left-tensored ∞-category p ∶ M⊗ → C ⊗ over a symmetric monoidal
category q ∶ C ⊗ → N(∆)op induces a bifunctor on the underlying ∞-categories, ⊗ ∶ C ×M→M
well-defined up to homotopy. We will call the bifunctor a left action of C on M.

Proof. Condition (3) and the Segal condition, gives an equivalence of M⊗
[n] ≃ C n ×M. In

particular we obtain an equivalence (i1)! ∶ M⊗
[1] → C ×M. Now the coCartesian fibration q

induces from the inclusion {0}→ [1] the desired bifunctor

C ×M ≃→M⊗
[1] →M

⊗
{0} ∶=M.

We denote this functor by ⊗ ∶ C ×M → M and call it the tensor product. Note that again
there is associated a real choice with this tensor product, because it is induced by the inclusion
{0}→ [1].

In fact one can say significantly more: the structure of M⊗
[n] for n > 1 ensures that the

bifunctor ⊗ ∶ C ×M→M is coherently associative. Decending to homotopy categories, one sees
that the homotopy category hM is tensored over hC in the classical sense. See [19] Remark 2.1.2.

Remark 2.2.11. Let C be a monoidal ∞-category, then the tensor product ⊗ ∶ C × C → C
exhibits C as left-tensored over itself, i.e. the functor induced in the above fashion agrees with
the monoidal product on C . This is a rather involved fact, hence we shall take it for granted,
see [20] section 3.1.2 and [19] Example 2.1.3.

We shall need the notion of convex subsets of discrete sets with a total order.

Definition 2.2.12. Let X be a totally ordered discrete set. A subset Y ⊆ X is convex if and
only if for all a, b ∈ Y , where a < b, the subset {x ∈X ∶ a < x < b} is contained in Y .

Definition 2.2.13. A morphism f ∶ [m] → [n] in ∆ is convex if f is injective and the image
{f(0), ..., f(m)} ⊆ [n] is a convex subset of [n].

moduledef Definition 2.2.14. Let p ∶ C ⊗ → N(∆)op be a monoidal ∞-category, and let q ∶ M⊗ → C ⊗

be an ∞-category equipped with a left action of C ⊗. A left module object of M is a functor
M ∶ N(∆)op →M⊗ with the following properties,

1. The composition q ○M is an algebra object of C ⊗. In particular, p ○ q ○M is the identity
on N(∆)op.

2. Let α ∶ [m] → [n] be a convex map in ∆ such that α(m) = n. Then M(α) is a (p ○ q)-
coCartesian morphism of M⊗.

We let LModM denote the full subcategory of MapN(∆)op(N(∆)op,M⊗) spanned by the left
module objects. Because we will be interested in the commutative case, we shall immediately
drop the “L” from the notation LModM and write ModM.

Example 2.2.15. Let p ∶ M⊗ → N(∆)op be an ∞-category equipped with a left action of
a monoidal ∞-category C ⊗, induced from q ∶ M⊗ → C ⊗. The functor q induces a functor
q ○ − ∶ ModM → Alg(C ), via (1) of definition 2.2.14. If R is an algebra object of C , we let
ModR(M) denote the fiber (q ○ −)−1{R}. The functor (q ○ −) is an inner fibration of simplicial
sets, because it is post composition with an (in particular) inner fibration, hence ModR(M) is
an ∞-category, which we will call the ∞-category of left R-modules. In the case M = C , i.e. C
is left-tensored over itself, we shall often omit M from the notation, and simply write ModR.
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Lemma 2.2.16. Consider M ∈ModM be a module object of p ∶M⊗ → N(Γ) which is equipped
with a left action of C ⊗. Furthermore let f ∶M⊗ → N⊗ be a lax symmetric monoidal functor.
Then f(M) ∈ModN .

This of courses specializes to the fact that if A is an R-module then f(A) is a f(R)-module.

As mentioned earlier there is an analogous construction for a symmetric monoidal ∞-category
C and R ∈ CAlg(C ), which is given in [21]. We follow [21] and denote this construction
cModR(C ). The following theorem is proposition 5.6 of [21], and the construction of the functor
θ is described in Notation 5.5.

Proposition 2.2.17. Let C be a symmetric monoidal ∞-category, let R ∈ CAlg(C ). Then there
exists a functor θ ∶ cModR(C )→ModR(C ), which is a trivial Kan fibration.

Hence up to homotopy we may think of these two constructions to be equivalent, so from
now on we shall not concern ourselves too much with specific constructions of ModR.

2.3 K-theory and Symmetric Monoidal ∞-categories

There are many models for the K-theory spectrum for sufficiently nice ∞-categories. We shall
consider a specific model which is heavily inspired by Segals infinite loop space machinery. In
fact this model subsumes Segals K-theory for permutative categories [46]. Because of this it is
also possible to recover the algebraic K-theory of rings.
This is not the most general K-theory, Waldhausens K-theory by way of the S●-construction
works for pointed ∞-categories which admit pushouts, see [25] Remark 1.2.2.5. But this model
is sufficiently general for our purposes. The up-shot is that it is rather easy to understand, is
much reminiscent to the classic construction of K0, and is very formal. This K-theory, which
we shall call Segals K-theory following [5], is going to be a functor from the (yet to be defined)
∞-category of symmetric monoidal ∞-categories SymMonCat∞ to connective spectra Sp≥0, i.e.
spectra with vanishing negative homotopy groups. The main theorem of this section is that
this K-theory has a canonical lax symmetric structure. Recall that in the classical construction
of K0 one formally adds inverses to the monoid of finitely generated projective R-modules, i.e.
we group complete. The ∞-categorical analog of taking isomorphism classes, is to consider the
maximal Kan complex in the ∞-category, i.e. the maximal ∞-groupiod in the ∞-category. In
the following we think of S as N∆(Kan).

Core Definition 2.3.1. Consider the continuous inclusion S → Cat∞. We call the left adjoint functor
(−)∼ ∶ Cat∞ → S, which assigns an ∞-category to the maximal Kan complex inside it C ∼, the
core-functor.

Before we give the definition of the ∞-category of symmetric monoidal ∞-categories we shall
equip Cat∞ with a symmetric monoidal structure.

Cat-infty Example 2.3.2. Recall that the ∞-category of ∞-categories Cat∞ is defined as N(cat∞) where
cat∞ is the category which objects are ∞-categories and the maps are functors of ∞-categories,
where the mapping spaces are taken to be the largest Kan complexes of the functor categories
between ∞-categories. That there is a symmetric monoidal structure on Cat∞ follows immedi-
ately from theorem 2.1.18, because cat∞ has a symmetric monoidal structure, where the tensor
product is the cartesian product.

Core-lax Corollary 2.3.3. The core-functor (−)∼ ∶ Cat∞ → S is lax symmetric monoidal.

Proof. By lemma 2.1.15 it suffices to show that the inclusion S → Cat∞ is symmetric monoidal.
Note that this inclusion preserves limits, in particular it preserves products, and since both
symmetric monoidal structures were given through products, this functor is symmetric monoidal.
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Given the definition of symmetric monoidal ∞-categories, it is perhaps surprising that we
define SymMonCat∞ in the following way.

Definition 2.3.4. The ∞-category of symmetric monoidal ∞-categories, denoted SymMonCat∞
is defined as CAlg(Cat∞). A map in SymMonCat∞ is called a symmetric monoidal functor, we
denote the full subcategory of FunCat∞(C ,D) spanned by these Fun⊗(C ,D).

Before we continue with our discussion of Segals K-theory, we will take a slight detour
discussing the definition of SymMonCat∞. The upshot of this definition is that it is intuitive,
and it mimics Segals original definition of Γ-categories (replace Cat∞ with topologically (or
simplicially) enriched categories). The downside is that this definition can be hard to work
with, because it is hard to construct functors into Cat∞. In the litterature this is remedied by
the use of the straightening/unstraightening equivalence. The alternative point of view which
this equivalence provides is essential for the theory of localization of ∞-categories, but since we
shall take these results for granted we will not see its strength that clearly. We will now argue
that we alternatively could have defined SymMonCat∞ differently.

alt-defi-symmon Proposition 2.3.5. The full subcategory of (Cat∞)coCart
/N(Γ) spanned by the coCartesian fibrations

over N(Γ) with the Segal condition is categorically equivalent to SymMonCat∞. The mapping
spaces between symmetric monoidal ∞-categories C and D , Fun⊗(C ,D) is equivalent to the full
subcategory of Fun(C ⊗,D⊗)∼ spanned by the functors which carry p-coCartesian morphisms to
q-coCartesian morphisms, such that

C ⊗ D⊗

N(Γ)

p

q

commutes, i.e. the symmetric monoidal functors.

Proof. The first statement is essentially a consequence of the straightening/unstraightening
equivalence: Consider a coCartesian fibration over N(Γ), p ∶ C → N(Γ) which satisfies the Segal
condition, i.e. the following map is an equivalence

C⟨n⟩ ∏1≤i≤nC⟨1⟩.
(ρi! )1≤i≤n

Applying straightening to p, we obtain a functor

St(p) ∶ N(Γ)→ Cat∞,

⟨n⟩↦ C⟨n⟩.

Hence St(p) induces a map

C⟨n⟩ ∏1≤i≤nC⟨1⟩.
(St(p)(ρi))1≤i≤n

It is clear that this map is an equivalence if the coCartesian fibration p ∶ C → N(Γ) satisfies
the Segal condition, i.e. if p is send to a symmetric monoidal ∞-category under St. Likewise
if a functor q ∶ N(Γ) → Cat∞ is a symmetric monoidal ∞-category, Un(q) satisfies the Segal
condition. The last statement follows directly from the definitions.

We shall use this theorem to realize that many functors are symmetric monoidal. Contrary
to what we hinted at just before the theorem, we shall often realize functors as algebra mor-
phisms in Cat∞ and hence as symmetric monoidal functors via the above.

Lets now return to the discussion of Segals K-theory. As mentioned in example 2.2.6, special
Γ-spaces model E∞-spaces, this prompts us to define a notion of group-like E∞-spaces, which
should be modeled by group-like Γ-spaces (sometimes called very special Γ-spaces). There are
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many different defintions of what it means for a Γ-space M to be group-like, the one which
relates most directly to the definition below is the following: Let M ∶ Γ → Top be a Γ-space, it
is said to be group-like if π0(M(⟨1⟩)) is an abelian group, see [6]. Recall that the homotopy
category associated to the model structure on special Γ-spaces established in [6], is equivalent
to the homotopy category H. Hence special Γ-spaces represent commutative algebra objects in
H, and thus E∞-spaces have underlying commutative algebra objects of H.

Definition 2.3.6. An E∞-space M is called group-like if the commutative algebra object of H
underlying the E∞-space M is a group object. We write GrpE∞(S) for the full subcategory of
the ∞-category CAlg(S) spanned by the group-like E∞-spaces.

Proposition 2.3.7. There is a functor G ∶ CAlg(S) → GrpE∞(S), which we call the group
completion functor. This functor is characterized as being the left adjoint of the inclusion
GrpE∞(S)→ CAlg(S).

Proof. Consider the forgetful functor GrpE∞(S) → CAlg(S). Note that both GrpE∞(S) and
CAlg(S) are presentable and accessible by 2.2.2. Because of this limits of GrpE∞(S) and CAlg(S)
are computed as the limits of the underlying objects. Therefore the forgetful functor is continu-
ous and fully faithful. Now the adjoint functor theorem gives a left adjoint, which is the desired
functor.

Remark 2.3.8. Note that the existence of the group completion functor is completely formal, as
opposed to the classical group completion map which is involved and certainly not formal, see
[4].

GrpComp Remark 2.3.9. We shall in the next section show that the group completion functor is lax sym-
metric monoidal. For this we shall need to view it in a slightly more general setting than just
spaces. Let C be an ∞-category with finite products. In this case the product defines a sym-
metric monoidal structure on C . Furhtermore let A ∶ N(Γ) → C be a functor. The condition
that A ∈ CAlg(C ) is equivalent to the maps

A(⟨n⟩) A(⟨1⟩)n,∏1≤i≤nA(ρi)

being equivalences and sending inert morphisms to coCartesian edges. If π0(A(⟨1⟩)) is an abelian
group, then A is a commutative group in C , the full subcategory of Fun(N(Γ),C ) spanned by
these we denote by Grp(C ). We shall in the next section realize that there is a localizations
PrL → PrL denoted lGrpE∞(S) and lCAlg(S), given by C ↦ Grp(C ) and C ↦ CAlg(C ) respectively.
This will provide the symmetric monoidal structures for which G is lax symmetric monoidal. We
refer the reader to theorem 2.4.10. Note that this strategy requires that we know that Grp(C )
is presentable when C is presentable, this is true, but we shall take it for granted.

The following identification will supply the codomain of the K-theory functor.

GrpToSp Proposition 2.3.10. There is an equivalence between the ∞-category of group-like E∞-spaces
and the ∞-category of connective spectra, GrpE∞(S) → Sp≥0. This equivalence is lax symmetric
monoidal.

Proof. As mentioned group-like E∞-spaces are modeled by group-like Γ-spaces. One of the main
results of [6] is that there is a Quillen equivalence between the category of group-like Γ-spaces
given the Friedlander-Bousfield model structure and the category of connective spectra given
the stable model structure. Because they are Quillen equivalent combinatorial simplicial model
categories, they give rise to equivalent ∞-categories, via proposition 1.1.10.

Note we have not shown that the equivalence is lax symmetric monoidal, this follows from
a model independent proof, which we will omit, see theorem 5.2.6.10 [25]. Of course this proof
relies on a symmetric monoidal structure on GrpE∞(S). We relegate the definition of this until
the next section, as its construction will be analogous to the smash product symmetric monoidal
structure on Sp.. We are finally ready to define the K-theory spectrum of an symmetric monoidal
∞-category.
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Definition 2.3.11. The K-theory spectrum K(C ) of a symmetric monoidal ∞-category C is
the image of the composite functor:

K ∶ SymMonCat∞ CAlg(S) GrpE∞(S) Sp≥0.
CAlg((−)∼) G ≃

Where the first functor is precomposition with the core-functor of definition 2.3.1 under CAlg(−),
the second is group-completion from proposition 2.3.9 and the last the equivalence from propo-
sition 2.3.10.

This is theorem 1 of the introduction.

Theorem 2.3.12. The K-theory functor is lax symmetric monoidal functor.

Proof. We saw in corollary 2.3.3 that the core-functor was lax symmetric monoidal. Hence by
lemma 2.2.4, we have that the corresponding functor CAlg((−)∼) ∶ SymMonCat→ CAlg(S) is lax
symmetric monoidal. We postponed the proof of the fact that the group completion map G was
lax symmetric monoidal to the next section. Hence we have shown the desired result.

Example 2.3.13. Consider the symmetric monoidal category of finitely generated projective
R-modules (ProjR,⊗R,R), we may view this as a symmetric monoidal ∞-category via 2.2.5.
Then its K-theory, K(ProjR) is equivalent to Quillens algebraic K-theory of R, see [35].

Example 2.3.14. Let (C ,⊗,1) be a permutative category. In particular we may view (C ,⊗,1)
as a symmetric monoidal category, hence we may view it as a symmetric monoidal ∞-categoy
via 2.2.5. Then K(C ) recovers Segal K-theory for permutative categories, see [35].

K-theory of E∞-ring spectra is going to be analogous to this example, as we shall see later.

2.4 Symmetric Monoidal Structure on Sp and E∞-Ring Spectra

As mentioned in the introduction we wish to consider K-theory of E∞-ring spectra. These are
commutative algebra objects of the smash product symmetric monoidal structure on the ∞-
category of spectra Sp. As seen in the previous sections we may readily construct a symmetric
monoidal structure on Sp using the symmetric monoidal structure on SpΣ, which of course was
an unsatisfactory approach since it was not model independent. We will give a sketch of how
to give a model independent description, before describing some properties of E∞-ring spectra
and module objects over them. This construction relies on the notion of a module objects of a
symmetric monoidal ∞-category and propositon 2.3.5, hence it has been postponed until know.
We follow [25] section 4.8.1 and 4.8.2.

Recall that there was a symmetric monoidal structure on the ∞-category of ∞-categories,
see example 2.3.2. Let us now add the condition that the ∞-categories be presentable.

Definition 2.4.1. Let PrL be the subcategory of Cat∞ which objects are presentable ∞-
categories, and which morphisms are cocontinuous functors.

Let P(C ) denote the ∞-category of presheaves on C . Let RFun(C ,D) denote the full
subcategory of Fun(C ,D) spanned by the functors C → D which admit left adjoints. In the
case C and D are presentable, the adjoint functor theorem yields a simpler description, namely
that a functor belongs to RFun(C ,D) if and only if it preserve limits and κ-filtered colimits
for some regular cardinal κ. The following proposition is a summary of proposition 4.8.1.14,
4.8.1.14 and 4.8.1.16 of [25], which proofs rely heavily on the symmetric monoidal structure of
Cat∞ given above.

presentable1 Proposition 2.4.2. The ∞-category PrL of presentable ∞-categories has a symmetric monoidal
structure, where P(∆0) ≃ S is the unit object, and the tensor product of C and D is given by
RFun(C op,D).
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SpIdem Example 2.4.3. Let C ∈ PrL. Recall that we define spectrum objects of an ∞-category C as
Sp(C ) ∶= Exc∗(Sfin∗ ,C ). Consider the tower of lemma 1.3.7, we have that Sp is given as the
limit of this tower with C∗ replaced by S∗. Because of this we have the following equivalences

C ⊗ Sp ≃ RFun(C op,Sp) ≃ holim RFun(C op,S∗) ≃ holimC∗ ≃ Sp(C ).

Where the second to last equivalence follows from lemma 1.3.7. Note that if we take C = Sp we
obtain the existence of the following equivalence Sp⊗ Sp→ Sp, which follows from Sp(Sp) ≃ Sp.
Analogous to Sp we have that Sp(C ) is presentable and stable, therefore the functor Σ∞ ∶ S → Sp
induces a map C ≃ C ⊗S → C ⊗Sp. Note that if we again take C = Sp, we may collect the above
to obtain an equivalence Sp→ Sp⊗ Sp.

Definition 2.4.4. Let C be a symmetric monoidal ∞-category with unit object 1. We will say
that a map e ∶ 1→ E for E ∈ C is an idempotent object of C if the induced map

E ≃ E ⊗ 1 E ⊗Eid⊗e

is an equivalence in C .

Remark 2.4.5. By proposition 2.4.2 the ∞-category PrL has a symmetric monoidal structure in
which S is the unit. This together with example 2.4.3, shows that Σ∞ ∶ S → Sp is an idempotent
object of PrL.

The following is a consequence of proposition 4.8.2.4 [25].

4.8.2.4 Proposition 2.4.6. Let C be a symmetric monoidal ∞-category with unit object 1 and let
lE ∶ C → C be the functor given by C ↦ C ⊗E. The map e ∶ 1→ E is an idempotent object of C
if and only if e induces a natural transformation α ∶ idC → lE which exhibits lE as localization
functor on C .

We shall call the localization lE ∶ C → C associated to an idempotent object the smashing
localization on C . Hence we obtain that the idempotent object Σ∞ ∶ S → Sp gives rise to the
smashing localization lSp ∶ PrL → PrL. Following [25] we define PrLσ as the localization of PrL.

Hence this exhibits C ⊗ Sp as a PrLσ -localization of C along lSp. The following is proposition
4.8.2.7 of [25] specialized to our setting.

4.8.2.7 Proposition 2.4.7. The localization lSp(PrL) = PrLσ inherits a symmetric monoidal structure

from PrL. The unit of this symmetric monoidal structure is given as lSp(S) ≃ Sp. Furthermore

Sp obtains a unique structure of an object of CAlg(PrLσ ), and hence in particular as an object of
CAlg(Cat∞).

Proof. We will use the notation established in proposition 2.4.6. We need to show that lSp
is compatible with the symmetric monoidal structure on PrL. This means first of all that
lSp is an idempotent functor, which means that for all C ∈ PrL there exists an equivalence
αC ≃ lSp(αC ) ∶ lSp(C ) → lSp(lSp(C )), and both αlSp(C ) and lSp(αC ) are localizations. This fol-
lows because Sp is stable an hence is its own stabilization. Furthermore it means that if f ∶ C → D
in PrL is a map such that lSp(f) is an equivalence, then so is f ⊗ idE ∶ C ⊗ E → D ⊗ E for every

E ∈ PrL. Note that if lSp(f) ∶ C⊗Sp→ D⊗Sp is an equivalence, then so is C⊗E ⊗Sp→ D⊗E ⊗Sp,
now the desired result holds by commuting the factors. This proves the first part of the propo-
sition.

The second part follows because lSp is compatible with the symmetric monoidal structure on

PrL, hence the unit of PrLσ , is lSp(S) ≃ Sp. We claim that because Sp is the unit of the symmetric

monoidal structure on PrLσ it canonically has the structure of an object of CAlg(PrLσ ). Indeed the
inclusion (PrLσ )⊗ → (PrL)⊗ is a fully faithful embedding, which induces a fully faithful embedding
of commutative algebra objects CAlg(PrLσ )→ CAlg(PrL), whose essential image is the collection
of commutative algebra objects A ∈ CAlg(PrL) such that A → A ⊗ Sp is an equivalence. Note
that this holds for Sp, hence Sp is a commutative algebra object of PrLσ .
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Hence Sp is a commutative algebra object of PrLσ in particular a symmetric monoidal ∞-
category by proposition 2.3.5.

Corollary 2.4.8. There exists a symmetric monoidal structure on Sp such that S is the unit,
and the tensor product ⊗ ∶ Sp×Sp→ Sp is cocontinuous in each variable. Following [25] we shall
call this symmetric monoidal structure the smash product symmetric monoidal structure.

As an immediate consequence of this we have.

Corollary 2.4.9. Note that any spectrum is an S-module with respect to the smash product
symmetric monoidal structure, because S is the unit. The functor Σ∞ ∶ S → Sp is symmetric
monoidal.

We will use the strategy that we employed to construct a symmetric monoidal structure on
PrLσ from the idempotent object S → Sp, to show the following theorem, which is the missing
component need to see that the K-theory functor is lax symmetric monoidal.

CAlgGrpSmash Theorem 2.4.10. The group completion functor G is symmetric monoidal.

Proof. Note that at this point we have not described the symmetric monoidal structure on
neither GrpE∞(S) nor CAlg(S). We begin by describing the symmetric monoidal structure on

GrpE∞(S). We begin by showing that the functor lGrpE∞(S) ∶ PrL → PrL given by C ↦ Grp(C )
is a smashing localization, see remark 2.3.9 for the definition of Grp(C ). Notice that we have
used suggestive notation, this is because the map e ∶ S → GrpE∞(S) in fact is idempotent, and
hence gives rise to the smashing localization lGrpE∞(S) described above, but it is easier to show
that it is a smashing localization.

Consider

lGrpE∞(S)(C ) ≃ lGrpE∞(S)(C ⊗ S)

≃ lGrpE∞(S)(RFun(C op,S))

≃ RFun(C op, lGrpE∞(S)(S))

≃ C ⊗ lGrpE∞(S)(S).

Note that every equivalence, except the third follows from proposition 2.4.2. We now show the
third seperately, which in fact holds a bit more general. We show that

Grp(RFun(C ,D)) ≃ RFun(C ,Grp(D))

for C ,D ∈ PrL. Note that there is fully faithful inclusion, simply because being a commutative
group in C is a property of the monoid structre,

Grp(RFun(C ,D))→ Fun(N(Γ),Fun(C ,D)) ≃ Fun(N(Γ) ×C ,D).

Note that the essential image of this inclusion are those functors F ∶ N(Γ) × C → D for which
each functor F (−,C) is a commutative group in D , and each F (⟨n⟩,−) is continuous. Note we
also have a fully faithful inclusion,

RFun(C ,Grp(D))→ Fun(C ,Fun(N(Γ),D)) ≃ Fun(N(Γ) ×C ,D).

Note that this inclusion has the same essential image. Now the identification follows because
both functors are the restriction of the functor Fun(N(Γ) × C ,D) → Fun(C ,D) given by fixing
the first coordinate at ⟨1⟩.

Now if we apply proposition 4.8.2.7 of [25] to the localization lGrpE∞(S), we obtain the local-

ization lGrpE∞(S)(PrL) inherits a symmetric monoidal structure from PrL, for which the unit is
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given as lGrpE∞(S)(S) ≃ GrpE∞(S) and that GrpE∞(S) ∈ CAlg(lGrpE∞(S)(PrL)) ⊂ CAlg(Cat∞). In

particular, via proposition 2.3.5, GrpE∞(S) is a symmetric monoidal ∞-category, and the map
e ∶ S → GrpE∞(S) corresponding to the localization lGrpE∞(S) is symmetric monoidal. The entirety

of this proof also goes through for lCAlg(S) ∶ PrL → PrL, and hence the map r ∶ S → CAlg(S)
is symmetric monoidal. Now apply lemma 1.2.5, to obtain that the functor G is symmetric
monoidal.

As mentioned E∞-ring spectra are, analogous to the 1-categorical theory of ring spectra,
just commutative algebra objects in the ∞-category of spectra Sp equipped with the above
symmetric monoidal structure.

Definition 2.4.11. An E∞-ring spectrum is a commutative algebra object of the symmetric
monoidal ∞-category of spectra Sp. We let CAlg denote the ∞-category CAlg(Sp) of E∞-rings.

Remark 2.4.12. The sphere spectrum is the unit of the smash product symmetric monoidal
structure, and hence it aquires the structure of an E∞-ring spectrum canonically. This E∞-ring
spectrum structure arises from the canonical maps of spaces Sn ∧ Sm → Sn+m.

Lets now justify the name E∞-ring spectrum.

Proposition 2.4.13. Any E∞-ring spectrum R gives rise to a commutative ring object in the
homotopy category of spaces H.

Proof. Consider the homotopy groups ofR, {πnR}n∈Z. Consider the direct sum π●R =⊕n∈Z πnR,
this has the structure of a graded ring, through the following the following composite map

πkR × πlR πk+l(R⊗R) πk+l(R)µ∗

Because R is an E∞-ring spectrum, we get a bit more, namely that π●R is graded commutative.
Consider x ∈ πnR and y ∈ πmR, then we have xy = (−1)nmyx, where the sign arises from the
fact that the following composition

Sn+m ≃ Sn ⊗ Sm σ≃ Sm ⊗ Sn ≃ Sn+m,

is given by the sign (−1)nm. In particular π0R has the structure of a commutative ring. Because
R is an E∞-ring, its underlying space X = Ω∞R is an E∞-space by proposition 2.2.4 and example
2.1.13, hence R represents a commutative monoid in H.

Note that the above proposition could have been done without homotopy groups entering
the picture. But then it would not be quite as easy to see that π●R is graded commutative and
that we, at this point, get the following result for free.

SphereCor Corollary 2.4.14. Let R be an E∞-ring spectrum, then πn(R) is a π0(R)-module, for every
n ≥ 0.

The following is a consequence of theorem 3.4.4.2 of [25].

RegResultsModR Proposition 2.4.15. Let R be an E∞-ring spectrum. The ∞-category ModR is a presentable
symmetric monoidal ∞-category.

The following examples relate the classical theory of R-modules to the theory of module
object over an E∞-ring spectrum.

1-catRings Example 2.4.16. Every commutative ring R can be seen as a commutative ring spectrum by
identifying R with its Eilenberg-MacLane spectrum HR. In this case, the ∞-category ModR
has the following concrete algebraic description: its objects are chain complexes of 1-categorical
R-modules, i.e. there is an equivalence ModR ≃ D(R). Here D(R) is the derived ∞-category
of R-modules, which is formed from Ch(R) via formally inverting quasi-isomorphisms. The
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∞-category D(R) inherits a symmetric monoidal structure from the symmetric monoidal struc-
ture on the 1-category of chain complexes of R, Ch(R), see [25] Remark 7.1.1.16. Let ⊗R be
the symmetric monoidal product on D(R). See [25] theorem 7.1.2.13, for the details of the
equivalence.

homol-to-homot Example 2.4.17. Recall that the Dold-Kan equivalence gives an equivalence between group
homology, homology of chain complexes and homotopy groups of simplicial sets,

Hn(A,R) ≃Hn(NA,R) ≃ πn(A)⊗R,HomoToHmptyHomoToHmpty (2.1)

for A an simplicial abelian group, and N ∶ sAb→ Ch(R)≥0. This fact has a version for unbounded
chain complexes, and stably simplicial abelian groups, which are equivalent by an version of the
Dold-Kan equivalence, see [13] Proposition 5.8. Both of these turn out to be Quillen-equivalent
to the category of HR-module spectra for an Eilenberg-MacLane spectrum R, see [45]. Which
through example 2.2.5 lifts (2.1) to a statement regarding ∞-categories. Hence if we wish to
calculate homology groups of chain complexes of R-modules, we may instead calculate homotopy
groups of the associated Eilenberg-MacLane spectrum.

SP-TO-MOD Example 2.4.18. The following example will become important later. Let G be a group and
let G+ = G ∪ {∗}. Consider G+ as a category with a single object, with a map for each g ∈ G+.
Then we define the classifying space of G as BG ∶= N(G+). Consider G+ as a discrete space,
then G+ obviously is a G-space. Through example 2.2.5 the suspension spectrum Σ∞G+ obtains
the structure of an E∞-ring spectrum. It was shown by M. Ando, A. Blumberg, and D. Gepner
in [27] that there is an equivalence between the ∞-category of module spectra over Σ∞G+ and
the ∞-category of spectra with a G-action,

ModΣ∞G+ ≃ SpBG.

The result lifts to a Quillen equivalence which was shown by J. Lind and C. Malkiewich in [12].
The basic object of the following chapter are G-equivariant spectra. In light of this example we
shall often talk about G-equivariant spectra as if they were modules with a G-action.

Definition 2.4.19. Let R be an E∞-ring spectrum. We let Modperf
R denote the smallest stable

subcategory of ModR which contains R, regarded as a module over itself, and is closed under
retracts. We will say that a R-module M is perfect if it belongs to Modperf

R .

Example 2.4.20. Via 2.4.16 it can be shown that the objects of Modperf
R are bounded chain

complexes of finitely generated projective R-modules. The analog of proposition 2.4.15 also
holds for Modperf

R , hence we can apply K-theory to it.

It is important to note that our K-theory will not give the correct K-theory as it would use
the tensor product symmetric monoidal structure on ModR, and thus we must use Waldhausens
K-theory through the S●-construction. In that case the K-theory of an E∞-ring spectrum is as
follows.

Definition 2.4.21. Let R be an E∞-ring spectrum. We set K(R) =K(Modperf
R ).

Example 2.4.22. As mentioned if R is a commutative ring, then the associated Eilenberg
MacLane spectrum HR is an E∞-ring spectrum. Our K-theory and the one above, applied to
HR, coincides with the classical K-theory spectrum of R.

Compared to a general E∞-ring spectrum Eilenberg MacLane spectra are extremely well-
behaved, e.g. they have homotopy concentrated in a single degree. So the above example really
shows that we should expect the K-theory spectrum for a general E∞-ring spectrum to be hard
to compute, and even harder for symmetric monoidal ∞-categories which are not ModR. Hence
it would be nice to have related invariants, which should help us in these calculations. The next
section is dedicated to one of these, namely topological Hochschild homology.
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2.5 Topological Hochschild Homology of E∞-rings.

In this section we will define topological Hochschild homology for E∞-ring spectra. In the
following chapter we will show that it admits the structure of a cyclotomic E∞-ring spectrum.
We will follow [33] and [16]. The construction of topological Hochschild homology in [38] is
equivalent to the classical construction of topological Hochschild homology, (as an orthogonal
cyclotomic spectrum [10]) see Section III.6. The construction which we present now is given in
[33], which is also equivalent to the classical construction, in the case of E∞-ring spectra.

Proposition 2.5.1. Let R be an E∞-ring spectrum. The functor corepresented by R,

MapCAlg(R,−) ∶ CAlg → S,

admits a left adjoint, which we shall denote R⊗(−) ∶ S → CAlg.

Proof. By Theorem 2.2.2, the ∞-category of E∞-rings, CAlg, is presentable. By [22] Proposition
5.5.2.7, functor out of a presentable ∞-category into spaces which is corepresented by an object
preserve limits and is accessible, hence MapCAlg(R,−) is cocontinuous and accesible. Then the
adjoint functor theorem immediately gives the desired result.

THH Definition 2.5.2. LetR be an E∞-ring spectrum. The topological Hochschild homology THH(R)
of R is defined by THH(R) ∶= R⊗T. Where T is the circle group.

One of the philosophical ideas concerning algebra with the base-ring S rather than Z is that
the counting process over S in some sense also remembers how to count, rather than just the
result. We will now see an instance of this, exemplified by the difference between topological
Hochschild homology of the Eilenberg-MacLane spectrum of Fp and the usual Hochschild ho-
mology of Fp as a Z-module, which we write Fp/Z. The following discussion follows [9].

The following is a highly non-trivial and extremely important result due to M. Bökstedt,
and is often called Böksteds periodicity theorem.

Bokstedt Theorem 2.5.3. Fix a prime p. Then

π∗ THH(Fp) ≃ Fp[x],

where deg(x) = 2.

Let us compare it to the usual Hochschild homology. Let R be a ring. Let ⊗R be the left
derived of the symmetric monoidal product on D(R) mentioned in example 2.4.16.

Definition 2.5.4. Let R be a k-module, then we define

HH(R/k) ∶= R⊗kT,

where R⊗k(−) ∶ S → D(k) is defined analogously to definition 2.5.2.

AltDefiHH Remark 2.5.5. Note that we have the following equivalences,

HH(R/k) ∶= R⊗kT

≃ R⊗k(∆1∪∂∆1∆1)

≃ R⊗k∆1

⊗
R⊗k∂∆1 R⊗k∆1

≃ R⊗R⊗kR R.

using the decomposition of T as a pushout, that R⊗k(−) is a left adjoint, hence commutes with
limits, and that ∆1 is contractible, i.e.

R⊗k∂∆1

≃ R⊗k● ⊗k R⊗k● ≃ R⊗k R.
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HHFP Theorem 2.5.6. Fix a prime p. Consider Fp as a Z-module, then

HH(Fp/Z) ≃ ΓFp{x},

i.e. a divided polynomial algebra on a generator x, for which deg(x) = 2.

Recall that the divided polynomial algebra is defined as follows:

ΓFp{x} ∶= Fp[x,
x2

2!
,
x3

3!
,
x4

4!
, ...],

and note xp = p!x
p

p!
= 0.

Proof. For the sake of brevity we will refrain from giving the details of the following equivalences.
Using remark 2.5.5, we see that we want to calculate Fp⊗Fp⊗ZFp Fp. We begin by calculating the
inner most derived tensor-product. We now resolve Fp as a commutative differentially graded
algebra, i.e. utilize the following equivalence Fp ≃ ΛZ{y}, where deg(y) = 1 and δ(y) = p. For a
definition of the exterior algebra in this setting, i.e. over an object in the category Ab equipped
with a symmetric monoidal structure (Ab,⊗,Z), see [37]. Hence

Fp ⊗Z Fp ≃ ΛZ{y}⊗Z Fp ≃ ΛFp{y}.

where the degree of y on the right hand side is 1, and the differential is trivial: δ(y) = 0. Next
we use the following equivalence,

Fp ≃ ΛFp{y}⊗ ΓFp{x}

where deg(x) = 2. The left hand side is free over ΛFp{y}. So finally we have

HH(Fp/Z) ≃ (ΛFp{y}⊗ ΓFp{x})⊗ΛFp{y} Fp
≃ ΓFp{x}.

Remark 2.5.7. The denominators of the generators of ΓFp{x} is not an extraordinary phe-
nomenon. They in fact arise for any commutative k-algebra over a commutative ring k, [9]. The
denominators are encoding the n! ways to count to n. In higher algebra, these denominators
disappear because the process of counting is also remembered rather than just the result. That
these disappear can be seen by comparing theorem 2.5.3 and theorem 2.5.6.

We end this chapter by showing that the map R → THH(R) of E∞-ring spectra, induced
from the map of spaces ∗→ T, is initial in a certian sense.

Definition 2.5.8. Let G be a group, and let C be an ∞-category. A G-equivariant object in C
is a functor BG → C , where BG is a classifying space of G. The ∞-category of G-equivariant
objects in C is thusly the functor ∞-category CBG ∶= Fun(BG,C ).

The notion which we shall use is that of a T-equivariant E∞-ring spectrum. The following
proposition follows from the introduction of [38].

Proposition 2.5.9. Let R be an E∞-ring spectrum. Then THH(R) admits the structure of a
T-equivariant object in CAlg, i.e. it is an object of CAlgBT.

Proof. Consider the continuous action of T on T through left multiplication: T × T → T, which
by adjunction gives the first of the following maps,

T→MapS(T,T)→MapCAlg(THH(R),THH(R))

where the second map is induced from applying R⊗(−). Consequently, the functor THH ∶ CAlg →
CAlg refines to a functor THH ∶ CAlg → CAlgBT.
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Hence if R is an E∞-ring spectrum, then THH(R) is a T-equivariant E∞-ring spectrum
equipped with a non-equivariant map i ∶ R → THH(R) of E∞-ring spectra.

forgetTHH Remark 2.5.10. Note we have that the functor (−)⊗T ∶ CAlg → CAlgBT is left adjoint to the
forgetful functor U ∶ CAlgBT → CAlg.

We end this chapter with the following fact due to J.McClure, R.Schwänzl and R.Vogt [33],
which says that topological Hochschild homology is initial with these properties.

THHuniprop Proposition 2.5.11. Let R ∈ CAlg. If R′ is T-equivariant spectrum equipped with a map f ∶
R → R′ of E∞-rings, then there exists a unique T-equivariant map f ∶ THH(R)→ R′ of E∞-ring
spectra such that the following diagram in CAlg

R THH(R)

R′

i

f
f

commutes.

Proof. A map f ∶ R → R′, is a map R → U(R′), where U is the forgetful functor of 2.5.10. Hence
by the adjunction of 2.5.10 this map corresponds to the desired map f ∶ THH(R) ∶= R⊗T → R′

in CAlgBT.
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3 The Tate construction

The aim of this chapter is to define the Tate-construction for a group and ∞-categories with
(co)limits indexed by the classifying space of G. The Tate-construction will be pervasive
throughout the thesis. We shall later see that the Tate-construction gives rise to a construction
called the Tate-diagonal which has a strong connection to p-completion. We shall also see the
Tate-diagonal admits a lax symmetric monoidal structure if G is finite and the stable ∞-category
is taken to be Sp. Both of which will prove to be immensely powerful theorems.

3.1 The Norm-map

The Tate-construction will be the cofiber of an ∞-categorical analog of the norm-map. Recall
that given a finite group G, and M a G-module, the norm map NmG ∶ MG → MG defined by
NmG(m) = ∑g∈G g ⋅m, lets us “splice” the group homology H∗(G;M) and the group cohomology
H∗(G;M) together, to form Tate-cohomology, given by

Ĥi(G,M) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Hi(G,M) 1 ≤ i
coker(NmG) i = 0

ker(NmG) i = −1

H−i−1(G,M) i ≤ −2

The Tate-construction for a finite group G will recover the Tate-cohomology when the input is
an Eilenberg-MacLane spectrum, as we shall see later in this section.

Let us define the ∞-categorical analog of fixpoints and orbits. Recall we define (co)limits in
diagram categories through [22] corollary 5.1.2.3.

Definition 3.1.1. Let G be a group, and let C be an ∞-category. If C admits colimits indexed
by BG, then we define the homotopy orbits functor by

−hG ∶ CBG → C ∶ (F ∶ BG→ C )↦ colimBG F.

Dually, if C admits limits indexed by BG, then we define the homotopy fixpoint functor by

−hG ∶ CBG → C ∶ (F ∶ BG→ C )↦ limBGF.

Our main example is going to be C = Sp. In this case we shall use the following spectral
sequences for calculations. See [3], for their definition.

SS-homotopy Proposition 3.1.2. Let G be a topological group and let X be a G-equivariant spectrum, then
there are spectral sequences,

E2
s,t =Hs(G,πt(X)) Ô⇒ πt+s(XhG),

Es,t2 =H−s(G,πt(X)) Ô⇒ πt+s(XhG).

with differentials drhG ∶ Ers,t → Ets−r,t+r−1 and dhGr ∶ Es,tr → Es+r,t+r−1
r respectively. I.e. the first is

with homological Serre indexing, and the second is with cohomological Serre indexing.

As is already evident the norm-map NmG ∶ XhG → XhG is going to be a natural transfor-
mation of functors CBG → C . Another property which we know that it should have is that it
should specialize to the classical norm-map for Eilenberg-MacLane spectra.
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ex-norm-cons Example 3.1.3. Let f ∶ X → Y be any map of Kan complexes. Let f∗ ∶ C Y → CX be the
induced pullback functor. If they exist let f!, f∗ ∶ CX → C Y be the left and right adjoints resp.
of f∗. Let f ∶ BG→ ∗ be the projection to a point, then f!, f∗ ∶ CBG → C are given by −hG and
−hG respectively.

We will use the notation of example 3.1.3 for the rest of this section.

Definition 3.1.4. A map f ∶ X → Y of Kan complexes is a relative finite groupoid if the
homotopy fibers of f have finitely many connected components, each of which is equivalent to
the classifying space of a finite group.

Proposition 3.1.5. Let C be a pre-additive ∞-category admitting (co)limits indexed by BG
for any finite group G, and let f ∶ X → Y be a relative finite groupoid. Then there is a natural
transformation Nmf ∶ f! → f∗ of functors CX → C Y .

The following proof relies on an Hopkins-Lurie ambidexterity-type argument, see [28] for
another example, in that we shall consider an ambidextrous adjunction, i.e. an, yet to be
defined, adjunction δ! ⊣ δ∗ ⊣∗ for which δ! ≃ δ∗.

Proof. We begin by fixing some notation. Given a map f ∶ X → Y of Kan complexes, consider
its diagonal map δ ∶ X → X ×Y X. We will later argue that the above assumptions will secure
the existence of an equivalence of functors δ!, δ∗ ∶ CX → CX×YX , denoted Nmδ ∶ δ! → δ∗, for now
assume it to be true. Let p0, p1 ∶X ×Y X →X denote the projections onto the factors. Consider
the following natural transformation given by

p∗0 δ∗δ
∗p∗0 ≅ δ∗ δ! ≅ δ!δ∗p∗1 p∗1,

ε Nm−1
δ η

Where ε and η is the unit and counit of the δ∗ ⊣ δ∗ and δ! ⊣ δ∗ adjunction respectively. From
this map we obtain via adjunction a map idCX → p0∗p

∗
1. Consider the diagram

X ×Y X X

X Y.

p0

p1 f

f

By [22] Lemma 6.1.6.3 this diagram is right adjointable, which means that the natural transfor-
mation f∗f∗ → p0∗p

∗
1 is an equivalence. These two maps gives a map idCX → f∗f∗ of functors

CX → C Y , which is adjoint to a natural transformation f! → f∗ of functors CX → C Y .

Now lets argue that there exists an equivalence of functors CX → CX×YX , Nmδ ∶ δ! → δ∗, i.e.
that the adjunction δ! ⊣ δ∗ ⊣∗ is ambidextrous. We will argue “inductively” on the connectivity
of f and its diagonal δ.

(−1)-truncated
Assume f is (−1)-truncated which is equivalent to δ ∶ X → X ×Y X being an equivalence,
which ensures that Nmδ exists and is an equivalence. Now [22] Proposition 6.1.6.7 applies
and gives the existence of Nmf and that it is an equivalence.

0-truncated
Assume f is 0-truncated with finite fibers, and consider the Mayer-Vitoris sequence on
homotopy groups induced by δ,

... πn(X ×Y X) πn(X)⊕ πn(X) πn(Y ) πn−1(X ×Y X) ...

From which we see that the diagonal is (−1)-truncated, and so the (−1)-truncated case
applies and secures the existence of Nmδ and that it is an equivalence. Now proposition
6.1.6.12 of [22] applies and gives the existence of Nmf and that it is an equivalence.
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1-truncated
Under the assumptions above we may conclude that f ∶ X → Y , in particular, is 1-
truncated. Consider the Mayer-Vietoris sequence on homotopy groups, analogously to the
previous case we see that δ ∶ X → X ×Y X is a 0-truncated map with finite fibers, hence
Nmδ exists and is an equivalence by the 0-truncated case. Because we have assumed C to
have (co)limits indexed by classifying spaces of finite groups, f! and f∗ exists, hence the
above secures the existence of the desired norm map, Nmf ∶ f! → f∗.

NormDefi Definition 3.1.6. Let G be a finite normal subgroup of a topological group H, and let f ∶
BH → B(H/G) be the projection. Let C be a preadditive ∞-category with (co)limits indexed
by BG. Then there is a natural transformation Nmf ∶ f! → f∗, which we shall call the norm
map for G relative to H.

As mentioned the Tate-construction will be the cofiber of the norm map, hence we shall need
cofibers in our ∞-category C . Therefore we require it to be stable.

Definition 3.1.7. Let C be a stable ∞-category with all (co)limits indexed by BG for some
finite group G. If G is a normal subgroup of a topological group H, we write −tG for the functor

−tG ∶ CBH → CB(H/G) ∶X ↦ cofib(Nmf ∶ f!X → f∗X),

where f ∶ BH → B(H/G) is the projection. This functor is called the Tate construction.

Remark 3.1.8. In the case where G = H is a topological group, then we are in the situation of
example 3.1.3, for which the Tate-construction is a functor

−tG ∶ CBG → C ∶X ↦ cofib(Nmf ∶XhG →XhG).

In this case we will often write NmG instead of Nmf .

In the following sections we shall see that the Tate construction has a strong relation to p-
completion, which is a universal functor, hence it feels rather akward that this is not a universal
functor. This problem is remedied by abstracting the problem to a general Kan complex rather
than the classifying space of a finite group. This is Theorem I.4.1 [38], which is originally due
to J. R. Klein [14], applied to S = BG for a finite group G. Using the notation of example 3.1.3,
we have the following universal description of −tG.

UniPropTate Proposition 3.1.9. Let f ∶ BG → ∗ be the projection to the point. There is a unique initial
functor fT∗ ∶ SpBG → Sp with a natural transformation −hG → fT∗ with the property that fT∗
vanishes on compact objects, and the fiber of −hG → fT∗ commutes with colimits.

Note that −tG for f ∶ BG → ∗ has a natural transformation −hG → −tG, since it is a cofiber
of functor into −hG. The compact objects of SpBG are those which are given by finite cones
of certain G-equivariant spectra called induced spectra, we show that −tG vanish on these in
proposition 3.1.12, in the case that G is finite. Following [38] we will denote the subcategory
of these SpBGind . The last property, namely that the fiber fib(−hG → −tG) ≃ −hG commutes with
colimits, holds because it is defined as a colimit. Hence −tG is in fact a universal functor.

We will for the remainder of this section prove a series of regularity results for the Tate
construction. The following is an immediate consequence of the Tate construction being defined
as a cofiber.

Corollary 3.1.10. Let C be a stable ∞-category with all (co)limits indexed by BG for G a
finite group, then the Tate-construction −tG ∶ CBG → C is an exact functor.

We now show that the Tate construction vanish on the generators of SpBGind .
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Definition 3.1.11. A G-equivariant spectrum of the form Y ⊗ Σ∞G+, where the G-action is
given through left multiplication on the right hand factor, are called induced G-spectra.

InducedSpecTriv Proposition 3.1.12. If G is a finite group seen as a discrete space, then XtG ≃ 0 for X an
induced G-spectrum.

Proof. Note that X ⊗ Σ∞G+ ≃ ∏g∈GX ≃ ⊕g∈GX when G is finite, because Sp is preadditive.
Recall that a finite group is a filtered colimit of its cyclic subgroups. Hence we can limit ourselves
to the case where G is a cyclic group. The result now follows by the following observation, which
ultimately is because G is finite,

(X ⊗Σ∞G+)hG ≃X ≃ (X ⊗Σ∞G+)hG.

For homotopy orbits it is clear, since it commutes with colimits and the G-action on X is
trivial since G is cyclic. For homotopy fixpoint we can consider the homotopy fixpoint spectral
sequence,

Ht(G,πq(X ⊗Σ∞G+)) Ô⇒ πq−t(((X ⊗Σ∞G+)hG)

Now note that X ⊗ Σ∞G+ can be seen as a Σ∞G+-module via example 2.4.18. Consider the
following isomorphisms

πq(X ⊗Σ∞G+) ≅ πq(∏
g∈G

X)

≅ ⊕
g∈G

πq(X)

≅ πq(X)⊗Z Z[G],

which show that πq(X⊗Σ∞G+) is an induced G-module. Recall that for G a finite group induced
and coinduced G-modules coincide, and that group cohomology with coefficients in a coinduced
G-module is concentrated in degree 0. Because of this there is only a single contributing factor
to the total degree of the E2-page, hence

πq(((X ⊗Σ∞G+)hG) ≅H0(G,πq(X ⊗Σ∞G+))
≅ (πq(X ⊗Σ∞G+))G

≅ πq(⊕
g∈G

X)G

≅ (⊕
g∈G

πq(X))G

≅ πq(X).

Hence there is an equivalence, X ≃ (X ⊗ Σ∞G+)hG, therefore the norm map is an equivalence
as desired.

Remark 3.1.13. Note that cones are finite limits and are therefore preserved by the Tate con-
struction, hence XtG ≃ 0 for all X ∈ SpBGind , and therefore −tG satisfies all the properties of
proposition 3.1.9.

Definition 3.1.14. Let X ∈ Sp. We say that X is bounded below (above) if there exists some
n ∈ Z such that πi(X) ≃ 0 for i < n (i > n). We denote the full subcategory of Sp spanned by
the bounded below (above) n ∈ Z spectra by Sp≥n (Sp≤n).

Recall that Sp has a t-structure (Sp≥0,Sp0≤) consisting of the connective and coconnective
spectra, for which the heart Sp♡ ∶= Sp≤0 ∩ Sp≥0 is canonically equivalent to N(Ab) via the
Eilenberg-MacLane functor. In particular Sp has truncations τ≤n ∶ Sp → Spn≤ and τ≥n ∶ Sp →
Sp≥n, which arise as left adjoints and right adjoints to the inclusions Spn≤ → Sp and Sp≥n → Sp
respectively. It turns out that the Tate construction, homotopy orbits and fixpoints play nicely
together with the truncations.
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LI2.6 Lemma 3.1.15. Let Y be a spectrum with G-action for some finite group G. The natural maps

Y hG → lim
n

(τ≤nY )hG,

YhG → lim
n

(τ≤nY )hG,

Y tG → lim
n

(τ≤nY )tG,

are equivalences.

Before we prove this result lets recall the following definition.

Definition 3.1.16. Let n ≥ 0. We say that a spectrum is n-connected if πi(X) is trivial for
i < n. We say that a map f ∶X → Y is n-connected if the homotopy fibers of f are n-connected.

Proof of 3.1.15. Note that it is formal for homotopy fixpoints, because limits commute with
each other. Note that for any n, the map Y → (τ≤nY ) is n-connected. By proposition 3.1.2
taking homotopy orbits only increases connectivity, hence the map YhG → (τ≤nY )hG is (atleast)
n-connected. Passing to the limit n→∞ gives the result.

Another important result, concerning bounded spectra is the following, which we shall need
later in this chapter. We will not prove it.

fixabove Lemma 3.1.17. Let G be a finite group, and let Xi ∈ SpBG for each i ∈ I. Then the map

(⊕
i∈I
XhG)→ (⊕

i∈I
X)hG,

is an equivalence if ⊕i∈I Xi is bounded above.

Note the following corollary which follows immediately from the definition of the Tate con-
struction. It is in fact this corollary that we are interested in.

Corollary 3.1.18. Let G be a finite group, and let Xi ∈ SpBG for each i ∈ I. Then the map

(⊕
i∈I
XtG)→ (⊕

i∈I
X)tG,

is an equivalence if ⊕i∈I Xi is bounded above.

We now argue that the Tate-construction recovers Tate-cohomology on Eilenberg-MacLane
spectra. In some sense this result follows because Eilenberg-MacLane spectra are both bounded
below and above.

tate-eilenburg Proposition 3.1.19. Let G be a finite group, and M a G-module. Let HM be the Eilenberg-
MacLane spectrum of M , regarded as an object of SpBG. Then πn(HM tG) ≅ Ĥ−n(G,M) for all
integers n.

Proof. Consider the following fiber sequence

HMhG HMhG HM tG.
NmG

It yields a long-exact sequence in homotopy groups,

... πn(HMhG) πn(HMhG) πn(HM tG) ...

Consider the two spectral sequences of proposition 3.1.2, from these we may conclude that
πn(HMhG) ≅ Hn(G,M) and πn(HMhG) ≅ H−n(G,M). This follows because there is only
a single nonzero term in each total degree. Furthermore the map π0(NmG) ∶ π0(HMhG) →
π0(HMhG) can be identified with the classical norm map. This can be seen by considering
the comparison map between the two. From this we recover πn(HM tG) ≅ Ĥ−n(G,M) for all
integers.
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Analogous to homotopy fixpoints and homotopy orbits there is a spectral sequence converging
to the homotopy groups of the Tate construction. That this spectral sequence relates the Tate
construction to Tate cohomology is in fact a consequence of proposition 3.1.19.

TateSS Proposition 3.1.20. Consider G a topological group and let X ∈ SpBG, then there is a spectral
sequence

Et,q2 = Ĥ−q(G,πt(X)) Ô⇒ πq+t(XtG),

with differentials dtGr ∶ Et,qr → Et+r,q+r−1
r .

Proof. We start by recalling a number of facts concerning Sp. Sp is a stable ∞-category equipped
with a t-structure, with sequential colimits compatible with the t-structure and homotopy groups
preserve these. Because of this filtered objects in Sp make sense. Recall that filtered objects
are triples consisting of a spectrum X ∈ Sp, a sequential diagram X̂ ∶ N(Z,<) → Sp, and an
equivalence X ≃ colimn∈Z X̂. Now consider the filtered object XtG of Sp, where G is finite and
X ∈ SpBG, the sequential diagram is the following:

... (τn≤X)tG (τn−1≤X)tG ...

Note that X ≃ colimn∈Z(τn≤X)tG and that πi((τn≤X)tG) ≃ 0 for i < n. In this case we have
from proposition 1.2.2.14 [25] a spectral sequence, called the spectral sequence associated to the
filtered object X, which first page is:

Et,q1 ≃ πp+q(cofib((τp+1≤X)tG → (τp≤X)tG)) Ô⇒ πq+t(colimn∈Z(τn−1≤X)tG) ≃ πq+t(XtG),

That this is the first page follows from proposition 1.2.2.7 [25]. Now we have

πp+q(cofib((τp+1≤X)tG → (τp≤X)tG)) ≃ πp+q((Σp(Hπp(X))tG))
≃ πq((Hπp(X))tG)
≃ Ĥ−q(G,πp(X)).

Where the first equivalence is the usual model for the cofiber: ΣnHπnX, and the second is
suspending, and the last is proposition 3.1.19. Now collecting our results we obtain

Et,q1 ≃ Ĥ−q(G,πp(X)) Ô⇒ πp+q(XtG).

Up to reindexing this is the desired result.

The idea to employ proposition 1.2.2.14 of [25] to obtain this spectral sequence was brought
to the attention of the author by Jonas McCandless. The author has not been able to find a
similiar proof in the litterature.

The following lemma is going to be a key ingredient in the proof of the Tate Lemmas, which
are the key technical lemmas of this thesis.

LI2.8 Lemma 3.1.21. Let Y be a spectrum with Cp-action such that multiplication by p is an iso-
morphism on πiY for all i ∈ Z. Then Y tCp ≃ 0.

Proof. Because multiplication by p is an isomorphism on πiY , both sides of the norm map be-
come purely algebraic, and the norm map becomes the usual algebraic norm map, i.e. πiY

hCp ≅
(πiY )Cp and πiYhCp ≅ (πiY )Cp . This is a consequence of the homotopy fixed point spectral se-

quence. Now because multiplication by p is an isomorphism, the norm map (πiY )Cp → (πiY )Cp
is an isomorphism, which implies that the cofiber is 0, which shows the claim.

From proposition 3.1.19 we see that there naturally is a ring structure on Tate cohomology.
This is a consequence of the fact that the Tate-construction admits a canonical symmetric
monoidal structure. The following is theorem I.3.1 of [38].
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tatedialax Theorem 3.1.22. The functor −tG ∶ SpBG → Sp admits a unique lax symmetric monoidal
structure which makes the natural transformation −hG → −tG lax symmetric monoidal. More
precisely the space consisting of all pairs of a lax symmetric monoidal structure on the functor
−tG together with a lax symmetric monoidal refinement of the natural transformation −hG → −tG
is contractible.

3.2 p-Completion and the Tate-Construction

In the next section we will prove two very important lemmas, namely the “Tate-lemmas”, also
called the Tate orbit lemma and the Tate fixpoint lemma. A nice side effect of the lemmas
needed for the Tate-lemmas is that there is a relation between p-completion of a spectrum and
the Tate construction of Cp under some mild conditions. This section is dedicated to giving
this relation. We begin with giving a brief reminder on p-completion of spectra. We introduce
p-completion in a slightly different fashion to avoid being dependent on a model for Sp. We
note that this process is equivalent to p-completion through Bousfield-localizations of any of
the model categories category of spectra presenting Sp, for which the canonical reference is A.K
Bousfields orginal article on the subject [2].

Recall that the “usual” notion of p-completion of a spectrum X is given as the colimit,

X∧
p ∶= colimn(X ⊗ S(Cpn)),pcomppcomp (3.1)

where S(−) ∶ Ab → Sp is the Moore spectrum. The Moore spectrum of an abelian group G is
characterized by the following,

πk(SG) = 0 for k < 0,

Hk(SG,Z) = 0 for k > 0,

π0(SG) = G.

MooreModel Example 3.2.1. Let R be a E∞-ring spectrum, and then consider x ∈ π0(R). The element x
corresponds to a map S0 → R, which we may smash with R, to obtain a map R → R⊗R, then
using the multiplication on R we obtain

R R⊗R R.

.x

m

The composite map is called the multiplication by x map of R, and is denoted x. ∶ R → R. Note
that if we consider R =HM for M a commutative ring, we obtain a multiplication by p map of
HM .

MooreModel Definition 3.2.2. Fix a prime p. Consider S ∈ CAlg, then we define the p’th Moore spectrum
as,

S/p ∶= cofib(p. ∶ S→ S).

There is the following equivalence S(Cp) ≃ S/p, for detail see [47] Chapter IV. §2. Analogous
we obtain a model for the Moore spectrum of HM , for M a p-torsion free commutative ring,

HM/p ∶= cofib(p. ∶HM →HM).

Remark 3.2.3. The spectrum S/p is analogous to Cp in abelian groups, but contrary to Cp which
inherits the commutative and associative structure from Z, S/p does not inherit the E∞-ring
spectrum structure form S, a proof of this can be found in [32] remark 4.3.

Now that we have familiarized ourselves a the Moore spectrum, lets see what it has to do
with p-completion. For this we need the notion of a E-local object in a symmetric monoidal
∞-category. This is much analogous to E-local objects in the sense of [2].
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Definition 3.2.4. Let C be a symmetric monoidal ∞-category. Let E ∈ C be an object. An
object Y ∈ C is called E-local if Y is equivalent to some object X ∈ C such that X ⊗E ≃ 0. Let
CE denote the full subcategory of C spanned by collection of E-local objects.

Definition 3.2.5. We define the ∞-category of p-complete spectra, denoted Sp∧p , as the full
subcategory SpS/p.

Now that we have a notion of p-complete spectra, we need a way to p-complete. Note that
the inclusion Sp∧p → Sp is continuous.

Definition 3.2.6. We define p-completion as the left adjoint LS/p ∶ Sp → Sp∧p of the inclusion

Sp∧p → Sp, afforded by the adjoint functor theorem.

It can be shown that this agrees with the usual p-completion, by showing it agrees with the
p-completion of A.K. Bousfield [2] which can be calculated by formula (3.1).

As mentioned there is a strong relation between the Tate-construction of Cp and p-completion.
We shall use this result crucially in the coming sections. This result relies on the assumption
that the spectrum be bounded below.

LI2.9 Proposition 3.2.7. Let X be a spectrum with a Cp-action which is bounded below. Then XtCp

is p-complete and equivalent to (X∧
p )tCp .

Proof. Since (−)tCp is an exact functor it commutes with smashing with the Moore spectrum
S/p, which by definition makes the canonical map XtCp → (X∧

p )tCp a p-adic equivalence. If X

is bounded below so is the p-completion. Therefore it suffices to prove that XtCp is p-complete.
By 3.1.15 and the fact the limits of p-complete spectra are p-complete (this is lemma 1.8 of

[2]), we can assume that X is bounded above. We now argue that we may further restrict to
Eilenberg-MacLane spectra. We shall use this strategy many times throughout this thesis.

Assume that X is concentrated in the range 0 to n. We proceed by induction on n. For
n = 0, X is equivalent to an Eilenberg-MacLane spectrum. Assume that we’ve shown the desired
result for n−1. Consider the fiber sequence associated to the map induced from the n-truncation
cn−1 ∶X → τ≤n−1X,

fib(cn−1)→X → τ≤n−1X,

A model for the fiber is ΣnHπnX. The claim follows from contemplating the long exact sequence
in homotopy groups induced from the fiber sequence, together with the induction hypothesis.
In this case we may use 3.1.19, to see that πt(HM tCp) ≃ Ĥt(Cp,M). Note that the right hand
side is p-torsion, hence XtCp is itself p-power-torsion, and in particular p-complete.

3.3 The Tate Lemmas

In this section we show the Tate lemmas. The Tate fixpoint lemma is going to be crucial
later when we show an equivalence between the new and the old formula for topological cyclic
homology. One could argue that these lemmas are perhaps the most crucial result of [38]. The
proof of the Tate lemmas is going to be a reduction to first Eilenberg-MacLane spectra, and
then to the “base case” of HFp. We follow section I.2 in [38].We begin by showing the base
case. We shall need the following vanishing result for the Tate construction, it is Lemma I.2.5
of [38].

LI2.5 Lemma 3.3.1. Let D(Fp)BCp be the derived category of chain complexes with a Cp-action of
Fp-vector spaces. Consider A ∈ D(Fp)BCp , for which the only nonzero cohomology groups are
H0(A,Fp) =H1(A,Fp) = Fp. Assume that A corresponds to a nonzero class in

π0(MapD(Fp)BCp (Fp[−1],Fp[1])) =H2(Cp,Fp) = Fp.

In this case AtCp ≃ 0.
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This result is going to be the technical input into the proof of the following lemma, which is
the base case mentioned above. Recall that Hi(Cp,Fp) =Hi(Cp,Fp) = Fp.

LI2.4 Lemma 3.3.2. Let X =HFp with trivial Cp2 action. For any integer i ≥ 0, we have

(τ[2i,2i+1]XhCp)
t(Cp2 /Cp) ≃ 0,tau1tau1 (3.2)

(τ[−2i−1,−2i]X
hCp)t(Cp2 /Cp) ≃ 0.tau2tau2 (3.3)

Moreover

(XhCp)t(Cp2 /Cp) ≃ 0,

(XhCp)
t(Cp2 /Cp) ≃ 0.

Proof. Consider (HFp)hCp , and (HFp)hCp . In the proof of proposition 3.1.19 we calculated
the homotopy groups of these as the group homology H∗(Cp,Fp) and the group cohomology
H∗(Cp,Fp) respectively. Now consider

A = (τ[2i,2i+1]((HFp)hCp))[−2i − 1],
B = (τ[−2i−1,−2i]((HFp)hCp))[2i].

Here A (B) is the [2i,2i+ 1] ([−2i− 1,−2i]) truncation of the homotopy orbits (fixed points) of
the Eilenberg-MacLane spectrum of Fp translated by −2i − 1 (2i), so the homotopy groups are
concentrated in degree 0 and 1. We have π0(A) = π0(B) = π1(A) = π1(B) = Fp. Let

A● = (τ[2i,2i+1]((Fp)hCp)●)[−2i − 1],
B● = (τ[−2i−,−2i]((Fp)hCp)●)[2i],

denote the chain complex which correspond to A and B respectively under the correspondence
given in example 2.4.16. By remark 2.4.17 we have H0(A●,Fp) = H0(B●,Fp) = H1(A●,Fp) =
H1(B●,Fp) = Fp. The universal coefficient theorem givesH0(A●,Fp) =H0(B●,Fp) =H1(A●,Fp) =
H1(B●,Fp) = Fp.
We wish to apply lemma 3.3.1, and hence we wish to show that A and B correspond to a nonzero
class in

π0(MapD(Fp)BCp (Fp[−1],Fp[1])) =H2(Cp,Fp) = Fp.

To see this we simply have to see that A and B are not Cp2/Cp-equivariantly split.

Note that both A and B are Cp ≅ Cp2/Cp-equivariant. Furthermore recall that

πn(H(Fp)hCp) ≅H−n(Cp,Fp),

hence if we truncate we obtain an equivalence A ≃ τ[−1,0]H(Fp)hCp ≃ B, hence we may in-

stead show that τ[−1,0]H(Fp)hCp is not Cp2/Cp-equivariantly split. Assume for contradic-

tion that τ[−1,0]H(Fp)hCp is Cp2/Cp-equivariantly split, and consider total degree 1 of the
Hochschild–Serre spectral sequence,

Hi(Cp2/Cp,Hj(Cp,Fp)) Ô⇒ Hi+j(Cp2 ,Fp).

In this case the differential

H0(Cp2/Cp,H1(Cp,Fp))→H2(Cp2/Cp,H0(Cp,Fp)),

is zero, which implies that

H0(Cp2/Cp,H1(Cp,Fp)) ≅H0(Cp,Fp) ≅ Fp,
H1(Cp2/Cp,H0(Cp,Fp)) ≅H0(Cp,Fp) ≅ Fp,
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survive to the E∞-page, and hence contribute two Fp-factors to the total degree 1. From this we
may conclude that H1(Cp2 ,Fp) ≅ F2

p, which is a contraction because H1(Cp2 ,Fp) ≅ Fp. Hence
we may conclude that (3.2) and (3.3) hold via lemma 3.3.1. Now we may splice together the
chain complexes afforded for each i, use the correspondence of example 2.4.16 again, to obtain

(τ≤2i+1XhCp)
t(Cp2 /Cp) ≃ 0, (τ≥−2i−1XhCp)

t(Cp2 /Cp) ≃ 0,

from which lemma 3.1.15 gives the remainder of the statement.

Now that we have the base case we just have to reduce to the base case, from the Eilenberg-
MacLane case.

LI2.7 Lemma 3.3.3. Let M be an abelian group with a Cp2-action, and let X = HM be the corre-
sponding Eilenberg-MacLane spectrum with Cp2-action. Then

(XhCp)t(Cp2 /Cp) ≃ 0,eq1eq1 (3.4)

(XhCp)
t(Cp2 /Cp) ≃ 0.eq2eq2 (3.5)

Proof. We start with (3.4). We begin by showing the following claim: the functor Ab → Sp
defined as

M ↦ (HMhCp)t(Cp2 /Cp) = cofib((HMhCp)h(Cp2 /Cp) →HMhCp2 ),

commutes with filtered colimits.

Homotopy orbits and cofibers are colimits, hence commute with all colimits. Therefore
it is enough to show that −hCp and −hCp2 commutes with filtered colimits. Since M is an
abelian group we may realize it as a filtered colimit of finitely generated abelian groups, so let
M ≅ colimiMi. By the homotopy fixpoints spectral sequence we obtain the following comparison
map,

Ht(Cp, πq(HM)) πt+qHM
hCp

colimiH
t(Cp, πq(HMi)) colimi πt+qHM

hCp
i

Recall that Ht(Cp,−) commutes with filtered colimits, which shows that the left hand compar-
ison map,

Ht(Cp,M) ≅Ht(Cp, lim
i
Mi) ≅ lim

i
Ht(Cp,Mi),

is an isomorphism, therefore (−)hCp commutes with filtered colimits. Likewise for (−)hCp2 . Thus
we may assume that M is a finitely generated abelian group.

We now reduce further to torsion-free finitely generated abelian groups, by considering a
two-term torsion-free resolution of M , and using exactness of (−)t(Cp2 /Cp). Hence by the fun-
damental theorem of finitely generated abelian groups, M/pM is a finite-dimensional Fp-vector
space with Cp2 -action. It follows that the action of Cp2 on M/pM is trivial, and that M/pM is
a finite direct sum of copies of Fp.

Now apply Lemma 3.3.2 to conclude that for M/pM (3.4) is satisfied. We pass back to M
a finitely generated abelian group, by noting that

(HMhCp)t(Cp2 /Cp) (HMhCp)t(Cp2 /Cp) (H(M/pM)hCp)t(Cp2 /Cp) ≃ 0.
p.
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So the cofiber of multiplication by p on (HMhCp)t(Cp2 /Cp) is 0, therefore multiplication by p
is an automorphism. Thus, we can pass to the filtered colimit M[ 1

p
] ∶= colimiM/piM along

multiplication by p, and therefore assume that multiplication by p is an isomorphism on M ,
which implies that the algebraic norm is an isomorphism. Therefore multiplication by p is an
isomorphism on M , which again means multiplication by p is an isomorphism on HMhCp . Be-
cause of this lemma 3.1.21 applies and we obtain that (3.4) holds.

Next we deal with (3.5). Note that that (HMhCp)
t(Cp2 /Cp) is p-complete by lemma 3.2.7.

We claim that,

(HMhCp)
t(Cp2 /Cp) ⊗ S/p ≃ 0

I.e. that (HMhCp)
t(Cp2 /Cp) is p-adically equivalent to 0. Because (HMhCp)

t(Cp2 /Cp) is p-
complete this will suffice to prove (3.5).

Again we may assume M is p-torsion free. In this case we claim that:

(HMhCp)
t(Cp2 /Cp) ⊗ S/p ≃ (H(M/pM)hCp)

t(Cp2 /Cp).

This follows from the fact that

S/p ≃ cofib(HFp HFp).
p

from which it is clear that − ⊗ S/p commutes with both the Tate construction and homotopy
orbits, because of exactness and homotopy orbits being a colimit respectively. Hence

HM ⊗ S/p ≃HM ⊗ cofib(HFp
p→HFp)

≃ cofib(HM ⊗HFp
id⊗p→ HM ⊗HFp)

≃ cofib(HM p→HM) ≃H(M/pM).

Which shows the claim.

Consider a generator γ ∈ Cp2 , then (γ − 1)p
2

= γp
2

− 1 = 0 in M . Hence M can be written as
a filtered colimit of a system

M M ...
γ γ

of length at most p2, where each term has a trivial Cp2-action. From this we can conclude that
the Cp2-action on M is trivial. Thus M is an Fp-vector space with trivial Cp2-action. Hence by
lemma 3.3.2, we see that for all i ≥ 0

(τ[2i,2i+1]HMhCp)
t(Cp2 /Cp) ≃ 0,

as this functor commutes with infinite direct sums, because H(−), (−)hCp , τ[−,−](−), and

(−)tG does by lemma 3.1.17, because (τ[2i,2i+1]HMhCp) is bounded above. Now this implies

(HMhCp)
t(Cp2 /Cp) ≃ 0, because we can splice together the chain complexes afforded for each i

by the above, to obtain

(τ≤2i+1HMhCp)
t(Cp2 /Cp) ≃ 0.

We now obtain the result by applying lemma 3.1.15 to the above.

At this point we are finally ready to state the Tate lemmas and give their (at this point)
easy proofs.
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TateOrbit Theorem 3.3.4. [Tate Orbit Lemma] Let X be a spectrum with a Cp2-action. Assume that X
is bounded below. Then

(XhCp)
t(Cp2 /Cp) ≃ 0.

Proof. We prove that the norm map XhCp2 → (XhCp)hCp is an equivalence. Consider the
following diagram afforded by lemma 3.1.15

XhCp2 (XhCp)hCp

limn(τ≤nX)hCp2 limn(τ≤n(limm(τ≤mX)hCp))hCp ,

≃ ≃

which lets us further restrict to bounded X. Recall the strategy from the proof of lemma 3.2.7
to further reduce to Eilenberg-MacLane spectra. Lemma 3.3.3 gives the result for Eilenberg-
MacLane spectra.

An entirely analogous proof gives the Tate fixpoint lemma.

TateFixed Theorem 3.3.5. [Tate Fixpoint Lemma] Let X be a spectrum which is bounded above. Then

(XhCp)t(Cp2 /Cp) ≃ 0.

Before we move on we will show the necesity of X being a bounded above spectrum in the
Tate fixpoint lemma.

SegalConj Example 3.3.6. Consider S with the trivial Cp2-action. Recall that S is not bounded above.
We claim that

(ShCp)t(Cp2 /Cp) ≃ S∧p

In particular (ShCp)t(Cp2 /Cp) is not trivial, hence does not satisfy the Tate fixpoint lemma.

Consider the fiber sequence associated to the Tate construction

ShCp ShCp StCp .

Recall that the Segal conjecture for Cp, proved by W. Lin [18] and J. Gunawardena [8] for p = 2
and p > 2 respectively, states that StCp ≃ S∧p , from this we see that the Tate construction for the

sphere spectrum is p-complete. We claim that the map S→ StCp which gives rise to the desired
equivalence is Cp2/Cp-equivariant when we give S the trivial Cp2-action. This follows from the

fact that the map S→ StCp can be lifted to a map S→ (StCp)h(Cp2 /Cp), via the natural map

S→ ShCp ≃ (ShCp)h(Cp2 /Cp) → (StCp)h(Cp2 /Cp).

From this it follows that the Cp2/Cp-action on StCp is trivial. Apply −t(Cp2 /Cp) to the above
fiber sequence from which we obtain a fiber sequence (because the Tate construction is exact),

(ShCp)
t(Cp2 /Cp) (ShCp)t(Cp2 /Cp) (StCp)t(Cp2 /Cp).

Note that the first term is equivalent to 0 by theorem 3.3.4, because S is bounded below. Hence
(ShCp)t(Cp2 /Cp) is equivalent to (StCp)t(Cp2 /Cp) which is given by

(StCp)t(Cp2 /Cp) = (StCp)tCp ≅ StCp ≅ S∧p ,

where we have used the Segal conjecture, and lemma 3.2.7.
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In the next section we shall see a rather strong generalization of the Segal conjecture.

Remark 3.3.7. The argument showing that the Cp2/Cp-action on StCp is trivial will reappear
later, when we define the cyclotomic sphere spectrum, where we have T in place of Cp2 .

As we shall see in the following example, we really need the bounded below assumption in
the Tate orbit lemma.

BoundedBelowNeeded Example 3.3.8. Consider the functor hSp→ Ab given by X ↦ Hom(π−∗X,Q/Z). Because Q/Z
is an injective abelian group, it is easy to see that this functor satisfies the Eilenberg-Steenrod
axioms, and hence gives rise to a cohomology theory. Now using Brown representability we
obtain a spectrum IQ/Z representing this cohomology theory. Now if we replace Q/Z with Q we
obtain rational singular cohomology, which is represented by the Eilenberg-MacLane spectrum
HQ. Note that the there is a map Q→ Q/Z, and hence by the Yoneda lemma and functoriality of
Brown representability we obtain a map HQ→ IQ/Z. Now consider the following fiber sequence

IZ ∶= fib(HQ IQ/Z) HQ IQ/Z.

The fiber IZ is called the Anderson dual of the sphere spectrum. This spectrum in fact deserves
this name because it is a dualizing spectrum of S, see example 4.3.9 [23]. An important property
of the dualizing spectra K of a spectrum S, is that πk(K) are finitely generated π0(S)-modules.
Hence we have that πk(IZ) are finitely generated Z-modules. Given the definition of IQ/Z as
a spectrum represented by the cohomology theory described above, we see that the homotopy
groups of IQ/Z are given as,

πn(IQ/Z) ≃

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if n > 0,

Q/Z if n = 0

Hom(π−n(S),Q/Z) if n < 0.

From these and the long exact sequence in homotopy the above fiber sequence induces we obtain
the homotopy groups of IZ,

πn(IZ) ≃

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if n > 0,

Z if n = 0

0 if n = −1

Hom(πk(S),Q/Z) if n = −k − 1 and k > 0.

.

I.e. it is bounded above, but not below. We show that this spectrum does not satisfy the Tate

orbit lemma, when given the trivial Cp2 -action. Analogously the canonical map IZ → I
tCp
Z is

Cp2/Cp-equivariant. Consider the fiber sequence associated to the Tate construction, and apply

(−)t(Cp2 /Cp)

((IZ)hCp)
t(Cp2 /Cp) ((IZ)hCp)t(Cp2 /Cp) ((IZ)tCp)t(Cp2 /Cp).

Now note that the middle term vanishes by the Tate fixpoint lemma, i.e. theorem 3.3.5. Hence
contemplating the long exact sequence in homotopy which this fiber sequence induced we see
that

πk+1(((IZ)hCp)
t(Cp2 /Cp)) ≅ πk(((IZ)tCp)t(Cp2 /Cp)).

Hence

Σ(((IZ)hCp)
t(Cp2 /Cp)) ≃ ((IZ)tCp)t(Cp2 /Cp) ≃ ItCpZ .

Here the last equivalence is the residual action. Hence we are reduced to showing that I
tCp
Z

is non-trivial. Note that its homotopy groups are finitely generated. Contemplating the Tate
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spectral sequence, E0,0-position is Z, we argue that this survives to the E∞-page. Note that
there are no non-trivial groups when t > 0, because πt(IZ) ≃ 0 in this range, hence we should
only be worried about the Z in E0,0 being killed by morphisms into it, and not out of it. The
only group which has a map into E0,0 on the Er-page is E−r,−r+1, for r > 2. These are given as

Ĥr−1(Cp, π−r(IZ)) ≃Hr−1(Cp,Hom(πr+1(S),Q/Z)).

Note that these are finitely generated. In the case r even, these cohomology groups are given
as the p-torsion module T ⊆ Hom(πr+1(S),Q/Z), and in particular there can not be an isomor-

phism d
tCp
r ∶ T → Z. In the case r odd, these cohomology groups are given by the quotient

of Hom(πr+1(S),Q/Z) with T . Because r > 2, πr+1(S) are all finite, say πr+1(S) ≅ ⊕n
i=1(Cpki ),

which follows from the structure theorem. Now

Hom(
n

⊕
i=1

(Cpki ),Q/Z)) ≅
n

⊕
i=1

Hom(Cpki ,Q/Z)) ≅
n

⊕
i=1

(Cpki ).

Where the last isomorphism holds for all cyclic groups. Hence E−r,−r+1 is

Hr−1(Cp,Hom(πr+1(S),Q/Z)) ≃
n

⊕
i=1

(Cpki )/T,

which can not be isomorphic to Z. In total we have shown that π0(I
tCp
Z ) ≃ Z, in particular

I
tCp
Z /≃ 0, which shows the desired result.

So as it can be seen the bounded below assumption is essential, and can not be avoided.

3.4 The Tate Diagonal

In this section we shall define a natural transformation which is called the Tate diagonal. The
existence of the Tate-diagonal is a rather deep fact which relies on a number of non-trivial
results. The Tate diagonal has a strong relation to p-completion, this relation is going to gener-
alize the Segal conjecture for Cp. Beside showing this relation, we shall also see that it admits
an essentially unique lax symmetric monoidal structure, which is going to be crucial when we
endow topological Hochschild homology with a cyclotomic structure. Throughout fix a prime p.

The Tate diagonal is going to be a natural transformation from idSp to an exact functor Tp.

Proposition 3.4.1. The functor Tp ∶ Sp→ Sp is given by

X ↦ (X ⊗ ...⊗X)tCp .

Where X ⊗ ...⊗X is a p-fold smash product, with the Cp-action given by cyclic permutation of
the factors. Tp is an exact functor.

Proof. In general it suffices to check that Tp commutes with extensions, but to show this we will
need that Tp preserves finite sums. Thus we calculate

Tp(X0 ⊕X1) ≃ ( ⊕
(i1,...,ip)∈{0,1}p

Xi1 ⊗ ...⊗Xip)
tCp

≃ Tp(X0)⊕ Tp(X1)⊕ ⊕
[i1,...,ip]

( ⊕
(i1,...,ip)∈[i1,...,ip]

Xi1 ⊗ ...⊗Xip)
tCp

Where [i1, ..., ip] is a set of representatives of orbits of the cyclic Cp-action on the set

S = {0,1}p ∖ {(0, ...,0), (1, ...,1)}.
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Since p is a prime, these orbits have to contain all of Cp without repetition, hence they are
isomorphic to Cp. We conclude that each summand

⊕
(i1,...,ip)∈[i1,...,ip]

Xi1 ⊗ ...⊗Xip

is a Cp-equivariant spectrum which is induced from the trivial subgroup ∗ ⊂ Cp. Note that
we may conclude via proposition 3.1.12 that each of these summands vanish when the Tate
construction is applied. Hence Tp(X0⊕X1) ≃ Tp(X0)⊕Tp(X1). We now show that Tp preserves
extensions. Consider a fiber sequence X0 → X → X1 in Sp. Then we obtain the following
fibration sequence

X0 ⊗ ...⊗X0 ⊕(i1,...,ip)∈I1 Xi1 ⊗ ...⊗Xip ... X ⊗ ...⊗X X1 ⊗ ...⊗X1

Where for 1 ≤ n ≤ p − 1, we define

In = {[i1, ..., ip] ∈ S/Cp∣
p

∑
k

ik = n}

The Tate-construction −tCp is exact, hence each of the intermediate steps ⊕(i1,...,ip)∈InXi1 ⊗ ...⊗
Xip for 1 ≤ n < p are trivial, hence we obtain a fiber sequence

(X0 ⊗ ...⊗X0)tCp (X ⊗ ...⊗X)tCp (X1 ⊗ ...⊗X1)tCp .

We denote the collection of exact functors from C → D by FunEx(C ,D). By the above
Tp ∈ FunEx(Sp,Sp), which is what will give rise to the Tate-diagonal.

Proposition 3.4.2. For any F ∈ FunEx(Sp,Sp) evaluation at the sphere spectrum S ∈ Sp induces
an equivalence,

MapFunEx(Sp,Sp)(idSp, F )→MapSp(S, F (S)) = Ω∞(F (S)).

Here Ω∞ ∶ Sp→ S is the usual infinite delooping functor.

Proof. We have an equivalence

FunEx(Sp,Sp)→ FunLex(Sp,S)
F ↦ Ω∞ ○ F.

Hence we have

MapFunEx(Sp,Sp)(idSp, F ) ≃ MapFunLex(Sp,S)(Ω
∞(−),Ω∞(F (−)))

= MapFunLex(Sp,S)(mapSp(S,−),MapSp(S, F (−)))
≃ MapSp(S, F (S)) = Ω∞(F (S)).

Where the first equivalence is given by the equivalence above, and the second is given by the
Yoneda lemma.

Applying the above to Tp ∶ Sp→ Sp, we obtain the following corollary.

Nat-Omega Corollary 3.4.3. There is an equivalence,

MapFunEx(Sp,Sp)(idSp, Tp) ≃ Ω∞(Tp(S)).
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tate-dia Definition 3.4.4. The Tate diagonal is the natural transformation

∆p ∶ idSp → Tp ∶X → (X ⊗ ...⊗X)tCp ,

of functors Sp→ Sp which under the equivalence 3.4.3 corresponds to the map

S→ Tp(S) ≃ StCp ,

which is the composition S→ ShCp → StCp . Note we have used that S is ⊗-unit in the above.

We will now show the relation between the Tate-diagonal and p-completion, which is the
first main theorem of the thesis. This is theorem 1 of the introduction.

Tate-dia p-com Theorem 3.4.5. Let X ∈ Sp be a bounded below spectrum. Then the map

∆p ∶X → (X ⊗ ...X)tCpDeltapDeltap (3.6)

exhibits (X ⊗ ...⊗X)tCp as the p-completion of X.

Note that this is a generalization of the Segal conjecture on Cp:

∆p(S) ∶ S→ Tp(S) ≃ StCp ≃ S∧p .

We shall limit ourselves to the case when X has finitely generated homotopy groups, and sketch
how to give the complete proof from here. We shall furthermore assume the following theorem
due to S. Lunøe-Nielsen and J. Rognes, see [42].

LNR12 Theorem 3.4.6. There is an equivalence

∆p ∶HFp → Tp(HFp).

The proof of 3.4.5 is largely going to revolve around reducing the statement to the above
case.

Proof. Because Sp is stable Σ ∶ Sp → Sp is an equivalence, and hence via finitely many applica-
tions of Σ we may assume that X is connective. We claim both sides of (3.6) are the limit of the
values at the n-truncation of X, τ≤nX. It is clear that limn τ≤nX ≃ X, since πi(τ≤nX) ≅ πi(X)
for all i ≤ n. For the right hand side we show that

(X ⊗ ...⊗X)hCp → lim
n

(τ≤nX ⊗ ...⊗ τ≤nX)hCp

and

(X ⊗ ...⊗X)hCp → lim
n

(τ≤nX ⊗ ...⊗ τ≤nX)hCp

are equivalences, because then we will obtain an equivalence of cofibers induced from the norm
map:

(X ⊗ ...⊗X)hCp (X ⊗ ...⊗X)hCp (X ⊗ ...⊗X)tCp

limn(τ≤nX ⊗ ...⊗ τ≤nX)hCp limn(τ≤nX ⊗ ...⊗ τ≤nX)hCp limn(τ≤nX ⊗ ...⊗ τ≤nX)tCp .

≃

NmCp

≃ ≃

NmCp

We claim we have an equivalence

X ⊗ ...⊗X ≃ lim
n

(τ≤nX ⊗ ...⊗ τ≤nX).LimEqLimEq (3.7)

To see this consider the to limn(τ≤nX ⊗ ...⊗ τ≤nX) associated Postnikov tower,
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... τ≤1X ⊗ ...⊗ τ≤1X τ≤0X ⊗ ...⊗ τ≤0X

Now there is a comparison map for each n ≥ 0:

X ⊗ ...⊗X → τ≤nX ⊗ ...⊗ τ≤nX,1.11.1 (3.8)

We now argue that this is n-connected. Note that cn ∶ X → τ≤nX is n-connected, hence the
cofiber cofib(cn) is n-connected. We wish to show that the composite

X ⊗X τ≤nX ⊗X τ≤nX ⊗ τ≤nX,
cn⊗idX idτ≤nX ⊗cn

is n-connected. By contemplating the following distinguished triangle

τ>nX X τ≤n

and using that smashing preserves colimits, we see that the following is also a distinguished
triangle

X ⊗ τ>nX X ⊗X X ⊗ τ≤nX.
idX ⊗cn

The cofiber of idX ⊗cn is Σ(X⊗τ>nX), which is (n−1)-connected, hence idX ⊗cn is n-connected.
Analogously cn ⊗ idτ≤nX is n-connected, hence the composite is n-connected. Repeated use of
this fact gives that the map (3.8) is n-connected. From this we have the following isomorphism
for i ≤ n,

πi(X ⊗ ...⊗X)→ πi(τ≤nX ⊗ ...⊗ τ≤nX),

i.e. (3.8) is n-connected. This implies that we obtain the following isomorphism for all i,

πi(X ⊗ ...⊗X)→ πi(lim
n

(τ≤nX ⊗ ...⊗ τ≤nX)).

Which shows (3.7). We now argue in much the same way that we also get an equivalence when
we consider homotopy orbits. Like before we may argue that

(X ⊗ ...⊗X)hCp → (τ≤nX ⊗ ...⊗ τ≤nX)hCp ,(3.9)

is n-connected, which give isomorphisms on homotopy groups up to n, which as before gives
an isomorphism for all i when passing to the limit. Hence we have shown the first equivalence.
To see the second equivalence, we simply note that limits commute with each other, hence the
homotopy fixpoints functor commutes with limits, therefore by (3.7) we are done.

We can now with out loss of generality assume X to be bounded. We now argue that
we may further restrict to p-torsion free Eilenberg-MacLane spectra. We start by restricting
to Eilenberg-MacLane spectra using the strategy of proposition 3.2.7. Lets show that we can
further restrict to p-torsion free Eilenberg-MacLane spectra. Consider an p-torsion free abelian
group A, where multiplication by p is an isomorphism, we argue that

(HA⊗ ...⊗HA)tCp ≃ 0.

To show this we see that the norm map NCp ∶ (HA)hCp → (HA)hCp is an equivalence. Consider
the homotopy orbit and homotopy fixpoint spectral sequences of proposition 3.1.2. Now because
Cp is a cyclic group of finite order, and πqHA is a Cp-module, the group (co)homology is well
known, and we see that the spectral sequence degenerates at the second page, which means that
we obtain

π∗(HA)hCp ≅ π∗(HA)Cp ,
π∗(HA)hCp ≅ π∗(HA)Cp .
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So this becomes a completely algebraic problem. Because A was p-torsion free multiplication by p
is an isomorphism, the algebraic norm map π∗(HA)/Cp → π∗(HA)Cp , given by [x]↦ ∑g∈Cp g.x
is an isomorphism, which then shows that the norm map is an equivalence. Consider the
following short exact sequence, where A is the p-torsion in M ,

0 A M M/A 0

Applying Eilenberg-MacLane spectra, we obtain a fiber sequence, and further applying ∆p, we
obtain the following fiber sequence

(HA⊗ ...⊗HA)tCp (HM ⊗ ...⊗HM)tCp (H(M/A)⊗ ...⊗H(M/A))tCp

We obtain an equivalence

(HM ⊗ ...⊗HM)tCp ≃ (H(M/A)⊗ ...⊗H(M/A))tCp .HashHash (3.10)

By Lemma 3.2.7 the right hand side of (3.8), with X =HM for M p-torsion free, is p-complete,
i.e. of the form on the right hand side of (3.10). Hence to finish the proof we need to show
that ∆p is a p-adic equivalence, which is equivalent to showing that it is an equivalence after
smashing with the Moore-spectrum of Fp. Using exactness, and the assertions of definition 3.2.2
we have

HM ⊗ S/p ≃HM ⊗ cofib(S p→ S)

≃ cofib(HM ⊗ S
id⊗p→ HM ⊗ S)

≃ cofib(HM p→HM) ≃H(M/pM).

Note that the above calculation crucially uses thatM is p-torsion free, because if not cofib(HM p→
HM) could have been 0. Again by exactness, and the above we also have

(HM ⊗ ...⊗HM)tCp ⊗ S/p ≃ ((HM ⊗ S/p)⊗ ...⊗ (HM ⊗ S/p))tCp

≃ (H(M/pM)⊗ ...⊗H(M/pM))tCp

Hence we may equivalently show the following map is an equivalence,

H(M/pM) (H(M/pM)⊗ ...⊗H(M/pM))tCp .

Now because we’ve assumed that X has finitely generated homotopy groups, we may deduce
that M/pM is a finite direct sum of copies of Fp, hence we are done by exactness of Tp and
theorem 3.4.6.

If we had not assumed that the homotopy groups of X was finitely generated, M/pM could
have been an infinite direct sum of copies of Fp. It is not clear that Tp commutes with infinite
direct sums, and it is (atleast to the author) suprising that a functor build from both a limit
and a colimit should have such a property. We now sketch the proof of this claim.

Sketch of proof. We first restrict ourselves to the following truncation: for 0 ≤ n, consider the
functor

T (n)
p ∶X ↦ (τ≤n(X ⊗ ...⊗X))tCp .

Using lemma 3.1.15, the natural map Tp → limn T
(n)
p is an equivalence. Furthermore, for 0 ≤ n,

it can be shown that T
(n)
p commutes with infinite direct sums. Note that for each n, and each i,

πiT
(n)
p (HFp) is finite, because τ≤n(X⊗...⊗X) only has finitely many non-zero homotopy groups,

furthermore they are each finite. Because of this finiteness property we see that there are only
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finitely many non-zero terms of the E2-page of the Tate spectral sequence, from proposition
3.1.20,

Et,q2 = Ĥ−q(Cp, πtτ≤n(HFp ⊗ ...⊗HFp)) Ô⇒ πq+t(τ≤n(HFp ⊗ ...⊗HFp))tCp .

Because of this there are only finitely many contributions to each degree of πiT
(n)
p (HFp), which

means that the directed system for the limit limn πiT
(n)
p (HFp) becomes stationary, and thus we

obtain an isomorphism

πiTp(HFp)→ lim
n
πiT

(n)
p (HFp).

Which together with theorem 3.4.6 gives the following isomorphisms, also for each i ∈ Z,

πiHFp → πiTp(HFp)→ lim
n
πiT

(n)
p (HFp).

To finish the proof one invokes lemma III.1.8 of [38] concerning pro-isomorphisms which we will
refrain from introducing, to see that the map

πiHFp → (πiT (n)
p (HFp))n,

is a pro-isomorphism, which is a statement that passes to infinite direct sums, hence one obtains
a pro-isomorphism for any Fp-vector space V ,

πiHV → (πiT (n)
p (HV ))n.

The right hand side is pro-constant, which implies that

πiT
(n)
p (HV ) ≃ lim

n
πiT

(n)
p (HV ) ≃ πiHV.

Which finishes the sketch of proof.

We now prove the Tate diagonal admits the structure of a lax symmetric monoidal transfor-
mation. The following is proposition III.3.1 of [38], for the proof we follow section 6 and 3 of
[36].

LaxSymLem Lemma 3.4.7. Let C be a symmetric monoidal ∞-category with unit 1 ∈ C . The functor
Map(−,1) ∶ C op → S admits a canonical lax symmetric monoidal refinement. With this refine-
ment the functor Map(−,1) ∶ C op → S is initial in Funlax(C op,S).

Proof. Recall that the Yoneda embedding C → Fun(C op,S) admits a symmetric monoidal struc-
ture by example 2.1.12. Because of this it sends the tensor unit of C , 1 to the tensor unit
map(−,1) in Fun(C op,S). By [25] Corollary 3.2.1.9 we have that map(−,1) canonically is an
object of CAlg(Fun(C op,S)), furthermore map(−,1) is initial in CAlg(Fun(C op,S)). The fol-
lowing equivalence finishes the proof,

CAlg(Fun(C op,S)) ≃ Funlax(C op,S)

which is [7] proposition 2.12.

Note that Tp inherits the structure of a lax symmetric monoidal functor from theorem 3.1.22.

LaxSymMon Proposition 3.4.8. There is a unique lax symmetric monoidal transformation

∆p ∶ idSp → Tp.

The underlying transformation of functors is given by the transformation from definition 3.4.4.
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Proof. Note first that Tp is lax monoidal because it is a composite of the lax symmetric monoidal
functors X ↦ X ⊗ ... ⊗ X and X ↦ XtCp . The identity functor idSp ∶ Sp → Sp is initial in

FunLex
lax (Sp,Sp). This follows from lemma 3.4.7, applied to Spop, since idSp ≃ mapSp(S,−). Hence

there is a unique lax symmetric monoidal transformation idSp → Tp.

Recall from lemma 2.2.4 that application of lax symmetric monoidal endofunctors preserve
the E∞-ring spectrum structure. Hence we obtain the following corollary.

E-infty-lax Corollary 3.4.9. Let R be an E∞-ring spectrum with a Cp-action, then RtCp admits the struc-
ture of an E∞-ring spectrum. Furthermore the Tate diagonal ∆p refines to a map of E∞-ring
spectra.

Note that the fact that RtCp admits the structure of an E∞-ring spectrum actually follows
from the Tate construction being lax symmetric monoidal, it is only the latter part that uses
the above proposition.
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4 Naive and Genuine Cyclotomic Spectra

In the chapter we will give the definitions of naive cyclotomic spectra and genuine cyclotomic
spectra. Note in [38] naive cyclotomic spectra are simply called cyclotomic spectra. Naive
cyclotomic spectra are going to be T-equivariant objects X ∈ Sp, together with T ≃ T/Cp-
equivariant maps ϕp ∶ X → XtCp , for each prime p. The latter are going to be a certain
incarnation of orthogonal spectra equipped with a certain fixpoint functor, roughly speaking
they are objects X ∈ TSpF together with homotopy coherent equivalences Φn ∶ ΦCnX → X for
n ∈ N. The main result of this chapter is that the ∞-category of genuine cyclotomic spectra
is equivalent to the ∞-category of naive cyclotomic spectra, when restricted to bounded below
spectra. Furthermore the equivalence is rather explicit. We shall furthermore in this chapter
define a yet another homotopy invariant called topological cyclic homology for both types of
cyclotomic spectra. This invariant is closely related to topological Hochschild homology. The
other result of this chapter is that the two notions of topological cyclic homology agrees when
restricted to bounded below spectra. We begin by defining the ∞-category which shall contain
the naive cyclotomic spectra and the first steps towards the equivalence mentioned above.

4.1 Lax equalizers and Coalgebras

This section will contain a general discussion of two ∞-categorical constructions, the first is
the notion of a lax equalizer and the second, which relies on the first, is the notion of an F -
coalgebra in an ∞-category. In the following sections we will specialize these constructions to
the cases of interest. Lax equalizers will provide the setting in which we shall define the notion
of naive cyclotomic spectra, and F -coalgebras will provide the setting in which we shall realize
the equivalence between the naive and genuine cyclotomic spectra. We follow II.1 and II.5 of
[38].

LaxEq Definition 4.1.1. Let C and D be ∞-categories, and let F,G ∶ C → D be functors. The lax
equalizer of F and G is the simplicial set LEq(F,G) defined as the pullback in sSet,

LEq(F,G) D∆1

C D ×D .

(ev0,ev1)

(F,G)

In particular, the objects of LEq(F,G) are given by pairs (c, f), consisting of an object c ∈ C
and a map f ∶ F (c)→ G(c) in D . We shall define the mapping spaces shortly.

Remark 4.1.2. Note that LEq(F,G) is in fact an ∞-category, because the (ev0, ev1) ∶ D∆1

→
D ×D is an inner fibration via [22] Proposition 2.3.2.5, hence a fibration from [22] Proposition
2.4.6.5.

It turns out that LEq(F,G) inherits many properties that C , D enjoy, much like how
Fun(C ,D) inherits properties from C and D . The properties are proved in [38] Chapter II
Proposition 1.5. We will refrain from proving these, mainly because they to a large extend are
corollaries of propositions contained in [22]. We collect them here for future reference.

Reg prop of LEq Lemma 4.1.3. Consider the pullback diagram of 4.1.1.

1. If C and D are stable, and F and G are exact, then LEq(F,G) is stable, and the forgetful
functor LEq(F,G)→ C is exact.

51



2. If C is presentable, D is accessible, F is cocontinuous, and G is accessible, then LEq(F,G)
is presentable, and the forgetful functor LEq(F,G)→ C is cocontinuous.

3. If p is a K-shaped diagram in LEq(F,G), which admits a limit in C along the forgetful
functor, which is preserved by G, then p admits a limit, and the forgetful functor preserves
this limit.

We shall in the following lemma give the mapping spaces of LEq(F,G) and show that the
definition in fact makes sense.

mappingspacelax Lemma 4.1.4. Consider the defining diagram for LEq(F,G) in 4.1.1.

1. This diagram is in fact a pullback diagram of ∞-categories.

2. Let X,Y ∈ LEq(F,G) be two objects, given by pairs (cX , fX) and (cY , fY ). Then the
mapping space is given by

MapLEq(F,G)(X,Y ) ≃ Eq (MapC (cX , cY ) MapD(F (cX),G(cY ))).
(fX)∗G

(fY )∗F

Moreover, a map f ∶X → Y in LEq(F,G) is an equivalence if and only if its image under
the inclusion into C is an equivalence.

Proof. The first part is in fact a result concerning the Joyal model structure, and classical results

from model category theory. By proposition 1.1.8 D∆1

, C and D ×D are fibrant objects of the
Joyal model structure on sSet. Then a sufficient condition for LEq(F,G) to be the pullback of

the maps (F,G) ∶ C → D and (ev0, ev1) ∶ D∆1

→ D × D , is that either of the morphisms are
fibrations (This is [22] Proposition A.2.4.4). The latter is a fibration as we have already argued.

For the second part we make sense of the functor MapLEq(F,G) ∶ LEq(F,G)op×LEq(F,G)→ S,
where S through construction 1.1.22. At this point it is worth recalling the point of §2.2 of [22],
namely that the simplicial category HomR

C (X,Y ) ∈ Cat∆ represents the space MapC (X,Y ) ∈ S,
whenever C is an ∞-category, this is summarized in [22] section 1.2.2. Using this idea, we may
pass from a “HomR”-version of the relevant diagram to a “Map”-version. Consider the following
pullback diagram of simplicial sets

HomR
LEq(F,G)(X,Y ) HomR

D∆1 (fX , fY )

HomR
C (cX , cY ) HomR

D(F (cX), F (cY )) ×HomR
D(G(cX),G(cY ))

t

(F,G)

From part 1 we know the map D∆1

→ D×D is an inner fibration, which means by [22] Proposition
2.4.4.1 that the right hand vertical map is a Kan fibration, hence the square is a homotopy
pullback square. Hence the following diagram is a pullback in S,

MapLEq(F,G)(X,Y ) MapD∆1 (fX , fY )

MapC (cX , cY ) MapD(F (cX), F (cY )) ×MapD(G(cX),G(cY ))

t

(F,G)

Denote by E the equalizer given in the statement. We now build the desired equivalence, by
using the universal property of the pullback. Using the usual method of writing an equalizer in
terms of products and pullbacks, E can be written as the pullback of the following diagram

52



E MapC (cX , cY ) ×MapD(F (cX),G(cY )) MapC (cX , cY )

MapC (cX , cY ) MapC (cX , cY ) ×MapC (cX , cY )

Where the top right object is the pullback of the following diagram

MapLEq(F,G)(X,Y )

MapC (cX , cY ) ×MapD(F (cX),G(cY )) MapC (cX , cY ) MapC (cX , cY )

MapC (cX , cY ) MapD(F (cx),G(cY ))

t′

t

t (fY )∗F

(fX)∗G

Using the map t twice we get a map t′ ∶ MapLEq(F,G)(X,Y )→MapC (cX , cY )×MapD(F (cX),G(cY ))
MapC (cX , cY ). Using t and t′, we get a map MapLEq(F,G)(X,Y ) → E, making E’s pullback
diagram commute, i.e. the following diagram commutes,

MapLEq(F,G)(X,Y )

E MapC (cX , cY ) ×MapD(F (cX),G(cY )) MapC (cX , cY )

MapC (cX , cY ) MapC (cX , cY ) ×MapC (cX , cY )

t

t′

Using the inclusion E →MapC (cX , cY ) and the following map E →MapD∆1 (fX , fY ) given by,

(t ∈ E)
F (cX) G(cX)

F (cY ) G(cY ),

fX

F (t) G(t)

fY

we obtain a map E → MapLEq(F,G)(X,Y ), making the MapLEq(F,G)(X,Y )’s pullback diagram
commute. By the universal property we get the desired mapping space.
For the last part of the statement, we note that if f ∶ X → Y is a map in LEq(F,G) which
becomes an equivalence in C , then using the first part of the statement, we see that

f∗ ∶ MapLEq(F,G)(Y,Z)→MapLEq(F,G)(X,Z),

is an equivalence for all Z ∈ LEq(F,G). The Yoneda lemma gives the desired result.

We shall now turn our attention to coalgebras and fixed points for endofunctors. This is
going to be the technical input in the p-local discussion of the equivalence between bounded
below naive and genuine cyclotomic spectra.

Definition 4.1.5. Let C be an ∞-category and let F ∶ C → C be an endofunctor. Then an
F -coalgebra is given by an object X ∈ C together with a morphism X → FX. A fixpoint of
F is an object X ∈ C together with an equivalence X → FX. We define the ∞-category of
F -coalgebra objects of C , CoAlgF (C ) as the lax equalizer LEq(id, F ) of ∞-categories. The
∞-category FixF (C ) is the full subcategory FixF (C ) ⊆ CoAlgF (C ) spanned by the fixpoints.
When C is clear from the context we will only write CoAlgF and FixF .

CoAlgCor Corollary 4.1.6. Let C be a presentable ∞-category.
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1. Let F ∶ C → C be an accessible functor. Then the ∞-category CoAlgF is presentable and
the forgetful functor CoAlgF → C is cocontinuous.

2. Let F ∶ C → C be a cocontinuous functor. Then the ∞-category FixF is presentable
and the forgetful functor FixF → C is cocontinuous. The inclusion ι ∶ FixF ⊆ CoAlgF is
cocontinuous.

Proof. The first statement follows directly from lemma 4.1.3 (2). For the second recall that
morphisms in the ∞-category PrL are cocontinuous functors, hence F is a morphism of PrL. It
is clear that we may realize FixF as the following equalizer of PrL,

FixF C C .
id

F

Hence FixF is presentable, and the forgetful functor FixF → C is equivalent to the induced map
above, hence is cocontinuous. That the inclusion ι ∶ FixF ⊆ CoAlgF is cocontinuous follows from
the above.

Throughout the remainder of this section we shall assume that the ∞-category C is pre-
sentable and that the endofunctor F ∶ C → C is cocontinuous. I.e. we wish the statement of
corollary 4.1.6 (2) to be true. Note that the inclusion ι ∶ FixF ⊆ CoAlgF is cocontinuous and
hence admits a right adjoint Rι ∶ CoAlgF → FixF . This right adjoint induces an endofunctor
ιRι ∶ CoAlgF → CoAlgF . We shall need an explicit formula for ιRι. To this end we shall the
following construction.

RbarCons Construction 4.1.7. Consider the following endofunctor F ∶ CoAlgF → CoAlgF given on ob-
jects by

(ϕ ∶X → FX)↦ (Fϕ ∶ FX → F 2X).

Note that there is a natural transformation µ ∶ id→ F . For further details of the construction of
F see construction II.5.2 of [38]. The endofunctor F is cocontinuous because F is cocontinuous,
hence F admits a right adjoint RF ∶ CoAlgF → CoAlgF . The adjoint of the natural transforma-

tion µ ∶ id→ F is the transformation ν ∶ RF → id.

Given the map above we are able to describe the left adjoint of the inclusion ι ∶ FixF →
CoAlgF . The left adjoint exists because being a fixed point of an endofunctor is a property of
the endofunctor.

LeftAdFormula Lemma 4.1.8. The inclusion ι ∶ FixF → CoAlgF , admits a left adjoint, Lι ∶ CoAlgF → FixF , for
which we have the following colimit formula

ιLι ≃ colim(id F F
2

F
3

...).µ Fµ F
2
µ

Proof. By proposition 5.2.7.4 of [22] a left adjoint as described in the lemma would fit into the
following commutative diagram

CoAlgF FixF ⊆ CoAlgF

FixF

Lι

L

ι

where L ∶ CoAlgF → CoAlgF is a localization which essential image is FixF . Proposition 5.2.7.4
of [22] gives equivalent conditions for recognising localizations, we use the third condition, and
show that there exists a functor L ∶ CoAlgF → CoAlgF such that there is a natural transformation
id→ L such that L(X)→ L(L(X)) is an equivalence. We claim that the colimit of functors,
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L ∶= colim(id F F
2

F
3

...)µ Fµ F
2
µ

satisfies these properties. Note first that by definition of F the full subcategory FixF ⊆ CoAlgF
can be described as those coalgebras X for which the transformation µX ∶ X → F (X) is an
equivalence. Because F is cocontinuous it follows directly that L(X) ∈ FixF for X ∈ CoAlgF .
Furthermore it follows that X → L(X) is an equivalence for X ∈ FixF . Combining these two
facts we have that L(L(X)) ≃ L(X), which exhibits L as a localization with FixF being the
local objects.

Now the following explicit description of ιRι follows easily.

RightAdLim Proposition 4.1.9. The endofunctor ιRι ∶ CoAlgF → CoAlgF is given by the limit of the fol-
lowing directed diagram of endofunctors,

... R3
F

R2
F

RF id .
R2

Fν
R
Fν ν

Proof. The functor ιLι ∶ CoAlgF → CoAlgF is left adjoint to the functor ιRι ∶ CoAlgF → CoAlgF .
Recall that a right adjoint to a colimit is the limit of the respective right adjoints. Using the
notation of lemma 4.1.8, we ιLι ≃ L which was given by a colimit, so by construction 4.1.7 the
claim now follows.

We will also need a more explicit description of the right adjoint of F ∶ C → C , denoted
RF ∶ C → C . In the case of interest to us the functors RF and F has a few extra properties,
which we shall assume, to simplify the description of RF .

InducStart Lemma 4.1.10. Assume that the counit ε ∶ FRF → idC of the F ⊣ RF adjunction is fully
faithful. Assume that F ∶ C → C preserves pullbacks. Consider the coalgebra ϕ ∶ X → FX, and
consider the following pullback

X ×RFFX RFX RFX

X RFFX.

f

s

RF (ϕ)

ηX

The natural transformation in the above diagram η ∶ idC → RFF is the unit of the F ⊣ RF
adjunction. Then

RF (ϕ ∶X → FX) = (ϕ ∶X ×RFFX RFX → F (X ×RFFX RFX)).

Whihc has a coalgebra structure induced from

X ×RFFX RFX X FRFX F (X ×RFFX RFX).f ε−1
X ≃

Where the last equivalence is induced from F (s) ∶ F (X ×RFFX RFX) → FRFX and the fact
that F preserves pullbacks. Moreover FRF → id is an equivalence.

Proof. We shall use the description of the mapping spaces of objects in a lax equalizer given
in lemma 4.1.4. Let α ∶ Z → FZ be an arbitrary F -coalgebra, and let ϕ ∶ X ×RFFX RFX →
F (X ×RFFX RFX) ≃X be the F -coalgbra described in the statement of the lemma, then maps
between them are given by

MapCoAlgF
(Z,X ×RFFX RFX) ≃ Eq (MapC (Z,X ×RFFX RFX) MapC (Z,X)).
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Because MapC (Z,−) is continuous we have that the first term of the equalizer can be identified
with

MapC (Z,X) ×MapC (Z,RFFX) MapC (Z,RFX).

The first of the maps into MapC (Z,X) in the equalizer under this identification is given by
projection onto the second factor, while the other map is projection on the first fact and then
postcomposing with the following map

MapC (Z,RFX) MapC (FZ,FRFX) MapC (FZ,X) MapC (Z,X).F (εX)∗ α∗

The structure of MapC (Z,X ×RFFX RFX) as the above pullback, gives us the following equiv-
alences,

Eq (MapC (Z,X ×RFFX RFX) MapC (Z,X))

≃ Eq (MapC (Z,RFX) MapC (Z,RFFX))

Next we apply F and the counit ε to obtain

Eq (MapC (Z,RFX) MapC (Z,RFFX))

≃ Eq (MapC (FZ,FRFX) MapC (FZ,FRFFX))

≃ Eq (MapC (FZ,X) MapC (FZ,FX))

≃ MapCoAlgF
(F (Z),X).

Collecting the above equivalences we obtain

MapCoAlgF
(Z,X ×RFFX RFX) ≃ MapCoAlgF

(F (Z),X) ≃ MapCoAlgF
(Z,RF (X)),

which shows the desired result using Yoneda. We show that last equivalence by using the
equivalence of the underlying objects

F (X ×RFFX RFX) FRFX X.≃ εX

Which shows that the counit FRF → id is an equivalence on objects, i.e.

FRF (X → FX) = (F (ϕ) ∶ F (X ×RFFX RFX)→ F (F (X ×RFFX RFX)))
≃ (ϕ ∶X → FX).

Using this description of RF , we may describe the individual steps of the limit in proposition
4.1.9.

ItePullbackRbar Corollary 4.1.11. Assume that the counit ε ∶ FRF → idC of the F ⊣ RF adjunction is fully
faithful. Assume that F ∶ C → C preserves pullbacks. Consider the coalgebra ϕ ∶ X → FX, then
the underlying object of the k-fold iteration Rk

F
X is equivalent to

RkFX ×Rk
F
FX Rk−1

F X ×Rk−1
F

FX ... ×RFFX X.

The maps to the right are induced by the map of coalgebras X → FX and the maps to the left
are induced by the unit η ∶ idC → RFF . The maps (Rk

F
ν)X ∶ Rk

F
X → Rk−1

F
X can be described as

forgetting the first factor.
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Proof. This follows by induction, where lemma 4.1.10 is the induction start. Furthermore the
inductive step is analogous to the procedure in lemma 4.1.10 with more book keeping. Ultimately
it works because both RF and F preseve pullbacks.

We are now done with the part of the discussion of endofunctors and coalgebras we shall
need for the p-local part of the equivalence of bounded below naive and genuine cyclotomic
spectra. We begin discussing the part needed for the global equivalence.

GlobalCoAlg Definition 4.1.12. Let {Fi ∶ C → C }i∈N be countable collection of commuting endofunctors
defining an action of the monoid (∏∞

i=1 N,+) on the ∞-category C . I.e. the collection comes
with chosen equivalences Fi ○ Fj ≃ Fj ○ Fi for each i, j ∈ N. Let n ∈ N, then Fn+1 induces an
endofunctor cn+1 ∶ CoAlgFn(C )→ CoAlgFn(C ) given by

(X → FnX)↦ (Fn+1X → Fn+1FnX ≃ FnFn+1X)CoAlgEqCoAlgEq (4.1)

Where (4.1) is how the functor cn+1 is defined on objects, on morphisms it is defined analo-
gously to F in construction 4.1.7. This endofunctor restricts to an endofunctor of FixFn(C ) ⊆
CoAlgFn(C ). This means we consider Fn+1-coalgebras in Fn-coalgebras. The collection of such
objects we denote as

CoAlgFn,Fn+1
(C ) ∶= CoAlgFn+1

(CoAlgFn(C )).

We define inductively

CoAlgF1,...,Fn(C ) ∶= CoAlgFn(CoAlgF1,...,Fn−1
(C )),

CoAlg{Fi}i∈N(C ) ∶= lim
n

CoAlgF1,...,Fn(C ).

We define

Fix{Fi}i∈N(C ) ⊆ CoAlg{Fi}i∈N

to be the full subcategory consisting of the objects for which the morphisms X → Fi(X) are
equivalences for all i ∈ N.

Remark 4.1.13. Using proposition 4.2.4.4 of [22] we may strictify the action of the monoid

∏∞
i=1 N, i.e. we may assume that the equivalence in (4.1) is an equality. We shall make this

assumption in the following.

The remainder of the section will be dedicated to showing the analogs for CoAlg{Fi}i∈N(C )
of the results we showed for CoAlgF (C ), F and the maps related to F previously in the section.
Many of the results will follow by induction on n and the fact that each intermediate step in
the defining limit of CoAlg{Fi}i∈N(C ) satisfies the assumptions put on C to begin with. The first
example is the first part of the following result which is analogous to corollary 4.1.6.

GlobalCoAlgCor Corollary 4.1.14. Let C be a presentable ∞-category.

1. Let Fi ∶ C → C for each i ∈ N be an accessible functor. Then the ∞-category CoAlg{Fi}i∈N
is presentable and the forgetful functor CoAlg{Fi}i∈N → C is cocontinuous.

2. Let Fi ∶ C → C for each i ∈ N be an cocontinuous functor. Then the ∞-category Fix{Fi}i∈N
is presentable and the forgetful functor Fix{Fi}i∈N → C is cocontinuous. The inclusion
ι ∶ Fix{Fi}i∈N ⊆ CoAlg{Fi}i∈N is cocontinuous.

Proof. The first part follows by the argument sketched above. We show the second part now.
The action described in definition 4.1.12 for a single endomorphism F , is determined by appli-
cation of F corresponds to the action of 1 on (N,+). As in proof of corollary 4.1.6 we can realize
FixF , for a single endofunctor, as the following equalizer
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FixF (C ) C C .
id

F

Because 1 is the generator of (N,+), the action of 1 determines the entire action on N, therefore
the above equalizer is equivalent to C hN, from which we have FixF (C ) ≃ C hN. Analogously
the action described in definition 4.1.12 for a F1, ..., Fn, is determined by application of Fk
corresponding to the action of (0, ...,1, ...,0), where 1 is on the k’th factor, on (Nn,+). Therefore
we have the equalizer

FixF1,...,Fn(C ) C C .
id

{Fk}1≤k≤n

which gives an equivalence FixF1,...,Fn(C ) ≃ C h(∏∞
i=1 N. Passing to the limit we obtain

Fix{Fi}i∈N(C ) ≃ C h(∏∞
i=1 N).

The desired result now follows because PrL is complete, since we have realized Fix{Fi}i∈N as
a limit of presentable ∞-categories along left adjoint functors (Fi admits right adjoints per.
assumption).

We now show the analog of lemma 4.1.10 and lemma 4.1.4 for CoAlg{Fi}i∈N .

L.II.5.8 Lemma 4.1.15. Assume that each functor from the collection {Fi}i∈N is accessible, and pre-
serves the terminal object of C . Assume that the objects Fi(Fj(X)) for X ∈ C are terminal for
all distinct i, j ∈ N.

1. Then there is a bijection,

{ Isomorphism classes of }
{Fi}i∈N-coalgebra structures on X.

↔ { Isomorphism classes of }
families of maps {ϕi ∶X → Fi(X)}i∈N.

2. Assume that X has a coalgebra structure giving rise to morphisms {ϕi ∶ X → Fi(X)}i∈N
through part 1. Then for any Y ∈ CoAlg{Fi}i∈N(C ) the mapping space MapCoAlg{Fi}i∈N

(C )(Y,X)
is equivalent to the equalizer

Eq (MapC (Y,X) ∏∞
i=1 MapC (Y,Fi(X))).

3. The ∞-category CoAlg{Fi}i∈N(C ) is equivalent to the lax equalizer

LEq (C ∏∞
i=1 C ).

{id}i∈N

{Fi}i∈N

Proof. Note that part 3 follows from part 1 and 2 and lemma 4.1.4. We first show analogue of
part 1 and 2 for finitely many endofunctors by induction on their number. The induction start,
i.e. when there is a single endofunctor, follows from lemma 4.1.4.

Therefore assume that part 1 and 2 have been shown for F1, ..., Fn, and assume we are
given another endofunctor Fn+1 such that the finite analog of the assumptions hold for the
collection {Fi}0<i≤n+1. By induction we have that promoting an object X ∈ C to an object of
CoAlgF1,...,Fn(C ) is done by choosing maps X → Fi(X) for 1 ≤ i ≤ n. Promoting an object X of
CoAlgF1,...,Fn(C ) to an object of CoAlgF1,...,Fn+1

(C ) is done per. definition by choosing a map
X → Fn+1(X). By virtue of being an object of CoAlgF1,...,Fn(C ), the choosen map X → Fn+1(X)
satisfies the hypothesis of the lemma, i.e. Fi(Fn+1(X)) is terminal for 1 ≤ i ≤ n. Now by the
inductive hypothesis of part 2, we deduce that a map X → Fn+1(X) in CoAlgF1,...,Fn(C ) is
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equivalent to a map X → Fn+1(X) in C , which shows part 1 of the induction.

Consider the mapping space between any two coalgebras X,Y ∈ CoAlgF1,...,Fn+1
(C ), which

by lemma 4.1.4 is given by

Eq (MapCoAlgF1,...,Fn
(C )(Y,X) MapCoAlgF1,...,Fn

(C )(Y,Fn+1(X))).

By the inductive hypothesis we have

MapCoAlgF1,...,Fn
(C )(Y,X) ≃ Eq (MapC (Y,X) ∏n

i=1 MapC (Y,Fi(X))),

and similiarly

MapCoAlgF1,...,Fn
(C )(Y,Fn+1(X)) ≃

Eq (MapC (Y,Fn+1(X)) ∏n
i=1 MapC (Y,Fi(Fn+1(X)))).

Now because Fi(Fn+1(X)) is terminal for all 1 ≤ i ≤ n, we have from the above that

Eq (MapC (Y,Fn+1(X)) ∏n
i=1 MapC (Y,Fi(Fn+1(X)))) ≃ MapC (Y,Fn+1(X)).

Collecting these equivalences we see that the mapping space MapCoAlgF1,...,Fn+1
(C )(Y,X) is given

by

Eq (Eq (MapC (Y,X) ∏n
i=1 MapC (Y,Fi(X))) MapC (Y,Fn+1(X))).

It is elementary to show that this iterated equalizer is equivalent to

Eq (MapC (Y,X) ∏n+1
i=1 MapC (Y,Fi(X))).

Which shows the inductive step of part 2. The induction shows parts 1 and 2 for a finite
number of endofunctors. Now the claim for countably many endofunctors follows by passing to
the limit.

By corollary 4.1.14 the inclusion ι ∶ Fix{Fi}i∈N ⊆ CoAlg{Fi}i∈N is cocontinuous, and hence admits
a right adjoint Rι. Our goal is to study Rι by factoring the inclusion ι into stepwise inclusions

ιn ∶ FixF1,...,Fn(CoAlgFn+1,Fn+2,...) ⊆ FixF1,...,Fn−1(CoAlgFn,Fn+1,...),

and understanding their right adjoints Rιn for n ∈ N, by using the result for a single endofunctor.
For the treatment of these right adjoints, we shall need an analog of Fn for each intermediate
step. We shall need the following isomorphism, which follows from simple unwinding of defini-
tions.

FixIsoCoAlg Corollary 4.1.16. There is an isomorphism of simplicial sets

FixF1,...,Fn−1(CoAlgFn,Fn+1,...) ≅ CoAlgFn(FixF1,...,Fn−1(CoAlgFn+1,Fn+2,...)).

We now construct the global analog of the functor F .
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GlobalRbarCons Construction 4.1.17. Using construction 4.1.7, with C replaced by FixF1,...,Fn−1(CoAlgFn+1,Fn+2,...),
we may construct an endofunctor

Fn ∶ CoAlgFn(FixF1,...,Fn−1(CoAlgFn+1,Fn+2,...))→ CoAlgFn(FixF1,...,Fn−1(CoAlgFn+1,Fn+2,...)).

Paired with the isomorphism from corollary 4.1.16 we obtain an endofunctor

Fn ∶ FixF1,...,Fn−1(CoAlgFn+1,Fn+2,...)→ FixF1,...,Fn−1(CoAlgFn+1,Fn+2,...).

By the arguments of construction 4.1.7 the endofunctor Fn is cocontinuous, hence it admits
a right adjoint RFn ∶ FixF1,...,Fn−1(CoAlgFn+1,Fn+2,...) → FixF1,...,Fn−1(CoAlgFn+1,Fn+2,...), which
comes with a natural transformation νn ∶ RFn → id.

By lemma 4.1.8 and lemma 4.1.9, we have the following result, forFn for each n ≥ 1.

GlobalRightAdLim Proposition 4.1.18. The endofunctor ιRιn is given by the limit of the following directed dia-
gram of endofunctors,

... R3
Fn

R2
Fn

RF id .
R2

F
νn
n

R
F
νn
n νn

For the last remaining result, i.e. the analog of corollary 4.1.11, we shall make a few new
assumptions on each Fn ∶ C → C .

GlobalItePullbackRbar Corollary 4.1.19. Assume for all n ∈ N that Fn ∶ C → C admits a fully faithful right adjoint
RFn such that for all i ≠ n, the canonical morphism

FiRFn → RFnFi,

which is adjoint to the morphism FnFiRFn = FiFnRFn ≃ Fi, is an equivalence. Assume further
that each endofunctor of {Fi}i∈N preserves pullbacks. Consider X ∈ FixF1,...,Fn−1(CoAlgFn+1,Fn+2,...),

then the underlying object of the k-fold iteration Rk
Fn
X is equivalent to

RkFnX ×Rk
Fn
FX Rk−1

Fn X ×Rk−1
Fn

FX ... ×RFnFX X.

The maps to the right are induced by the map of coalgebras X → FnX and the maps to the
left are induced by the unit ηn ∶ idC → RFnFn. The maps (Rk

Fn
νn)X ∶ Rk

Fn
X → Rk−1

Fn
X can be

described as forgetting the first factor.

Proof. Consider the ∞-category FixF1,...,Fn−1(CoAlgFn+1,Fn+2,...). This is by corollary 4.1.16 iso-
morphic to CoAlgFn(FixF1,...,Fn−1(CoAlgFn+1,Fn+2,...)). The endofunctor on this ∞-category Fn,
is the canonical extension of endofunctor Fn ∶ C → C to
CoAlgFn(FixF1,...,Fn−1(CoAlgFn+1,Fn+2,...)) through the procedure described in definition 4.1.12,
more specifically in (4.1). By assumption RFn commutes with all Fi for i ≠ n, this allow us to ex-
tend RFn to CoAlgFn(FixF1,...,Fn−1(CoAlgFn+1,Fn+2,...)). We denote this extension by RFn . Using
the same argument we may extend the counit and unit, η

n
∶ id → RFnFn and εn ∶ FnRFn → id.

From which we deduce that RFn is right adjoint to Fn. Note because FnFiRFn = FiFnRFn ≃ Fi
per. assumption, the non-extended counit is an equivalence, therefore the extended counit is an
equivalence. By lemma 1.2.7 this is equivalent to RFn being fully faithful. Hence we may apply
corollary 4.1.11 to compute the structure of the right adjoint RFn

to

Fn ∶ CoAlgFn(FixF1,...,Fn−1(CoAlgFn+1,Fn+2,...))→ CoAlgFn(FixF1,...,Fn−1(CoAlgFn+1,Fn+2,...))

This gives the desired formula for the underlying functor as well, because the forgetful functor

FixF1,...,Fn−1(CoAlgFn+1,Fn+2,...)→ C ,

preserve pullbacks. This is because this forgetful functor preserves the limits which are preserved
by all Fi ∶ C → C for each i ∈ N, which per. assumption was pullbacks. This follows from the
intermediate inductive steps required for the proof of part 2 of corollary 4.1.14.
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Now we have described all of the results concerning coalgebra of endofunctors and their fixed
points needed to give the equivalences advertised many times. We now proceed to define the
first ∞-category of cyclotomic spectra.

4.2 Naive Cyclotomic Spectra and Topological Cyclic Homology

The ∞-category of naive cyclotomic spectra is going to be given as a lax equalizer of the certain
functors. Besides defining this ∞-category we will also define topological cyclic homology of
naive cyclotomic spectra, and see that THH(R) of a E∞-ring spectrum has the structure of a
cyclotomic spectrum. We shall see that topological cyclic homology of a cyclotomic spectrum
X is in fact is computable through an equalizer, and finally we will introduce an analog of the
Frobenius map for E∞-ring spectra. We follow [38] Section II.1, IV.1 and IV.2.

Consider the subgroup Cp∞ ⊆ T consisting of p-power torsion, a model for this group is
limnCpn . Analogous to the sphere group there is an equivalence Cp∞/Cp ≅ Cp∞ given by c↦ cp.

Note that −tCp ∶ SpBCp∞ → SpB(Cp∞ /Cp) ≃ SpBCp∞ .

CycSp Definition 4.2.1. � The ∞-category of naive cyclotomic spectra is the lax equalizer of the
functors SpBT →∏p∈P Sp

BT, which takes the Tate-construction with respect to each prime
p ∈ P in each component, and the functor taking the identity in each component,

CycSp ∶= LEq((id)p∈P, ((−)tCp)p∈P).

� The ∞-category of naive p-cyclotomic spectra is the lax equalizer of the functors −tCp ∶
SpBCp∞ → SpBCp

∞
, and the functor taking identity functor,

CycSpp ∶= LEq(id,−tCp).

Hence the cyclotomic spectra are roughly X ∈ SpBT together with T ≃ T/Cp-equivariant
maps ϕp ∶X →XtCp for all p ∈ P.
The ∞-category of naive (p-)cyclotomic spectra has many desirable properties, again these are
inherited from (SpBCp∞ ) SpBT and its structure as a lax equalizer.

AltDefiCycSp Remark 4.2.2. An easy consequence of the definition of CycSp is that it can be identified with
the following pullback

CycSp ≅ SpBT ×∏p∈P SpBCp∞ ∏
p∈P

CycSpp.

CII1.7 Proposition 4.2.3. The ∞-categories CycSp and CycSpp are presentable and stable. Further-
more the forgetful functors CycSp→ Sp, and CycSpp → Sp are conservative, exact and cocontin-
uous.

Proof. We give the proof for CycSp, the one for CycSpp is analogous. It follows directly from
lemma 4.1.3 using that

� SpBT and ∏p∈P Sp
BT, are stable, accessible and presentable.

� (id)p∈P is cocontinuous and ((−)tCp)p∈P is accessible. In particular they are exact.

� The forgetful functor SpBT → Sp is cocontinuous and conservative. In particular it is exact.

The ∞-category of naive (p-)cyclotomic spectra is also enriched over spectra. This follows
directly from lemma 1.3.6.

Corollary 4.2.4. The mapping objects of CycSp, MapCycSp(X,Y ), are mapping spectra, i.e.
MapCycSp(X,Y ) ∈ Sp.
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Note that the proof also gives the result for CycSpp.

As usual when one defines a category of certain spectra one wants a canonical version of the
sphere spectrum.

Example 4.2.5. Consider the sphere spectrum S equipped with the trivial T-action. Denote ϕp
by the canonical map given by the composite S→ ShCp → StCp . Recall that we have equivalences
ShT ≃ (ShCp)h(T/Cp). Hence we have a natural map

S→ ShT ≃ (ShCp)h(T/Cp) → (StCp)h(T/Cp)

Hence we have lifted the map S→ StCp to a T-equivariant map S→ (StCp)h(T/Cp). This defines
a cyclotomic spectrum because the T-action on S is trivial. We will refer to this cyclotomic
spectrum as the cyclotomic sphere and denote it by S, or Sc when confusion may arise.

Remark 4.2.6. For every cyclotomic spectrum we get a p-cyclotomic spectrum by restriction. In
particular we can consider S as a p-cyclotomic spectrum. We will denote this sphere spectrum
as Scp if confusion may arise.

Finally we have the tools to define topological cyclic homology, and the related invariants.

Definition 4.2.7. 1. Let (X, (ϕp)p∈P) be a cyclotomic spectrum. The topological cyclic ho-
mology TC(X) is the mapping spectrum mapCycSp(S,X) ∈ Sp. The topological negative

cyclic homology TC−(X) is defined as THH(X)hT. The topological periodic cyclic homol-
ogy TP(X) is defined as THH(X)tT.

2. Let (X,ϕp) be a p-cyclotomic spectrum. The p-typical topological cyclic homology TC(X,p)
is the mapping spectrum mapCycSpp

(S,X) ∈ Sp.

Remark 4.2.8. Note that we are considering the Tate construction of the non-finite group T.
This is the Tate construction given in proposition 3.1.9, which is Theorem I.4.1 of [38].

We also wish to define topological cyclic homology for E∞-ring spectra, R. This will turn
out to be the TC(THH(R)). This assumes that THH(R) has the structure of a cyclotomic
spectrum, which we show now using the Tate-diagonal.

FrobeniusTHH Proposition 4.2.9. Let R be an E∞-ring spectrum, then THH(R) admits the structure of a
cyclotomic spectrum, and we call the map ϕp ∶ THH(R)→ THH(R)tCp the Frobenius map.

Proof. R is an E∞-ring spectrum, hence the p-fold smash product R⊗ ...⊗R equipped with Cp-

action given by permutation is an induced object in CAlgBCp . The functor CAlg → CAlgBCp given
by R ↦ R⊗ ...⊗R is left adjoint to the forgetful functor CAlgBCp → CAlg. Let ε ∶ R → R⊗ ...⊗R
be the unit of this adjunction. Because R is an E∞-ring spectrum it has a multiplication map
m ∶ R ⊗ ... ⊗ R → R determined by m ○ ε = idR. Using the map i ∶ R → THH(R) we get an
induced map

θ ∶= i ○m ∶ R⊗ ...⊗R → THH(R).

Hence we get a map

R (R⊗ ...⊗R)tCp THH(R)tCp ,
∆p θtCp

of E∞-ring spectra. By proposition 2.5.11, there exists a unique T-equivariant map

ϕp ∶ THH(R)→ THH(R)tCp ,

of E∞-ring spectra where THH(R)tCp has the residual action T/Cp ≅ T-action. This map makes
the following diagram of E∞-ring spectra commute,
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R THH(R)

(R⊗ ...⊗R)tCp THH(R)tCp .

i

∆p ϕp

θtCp

Definition 4.2.10. Let R be a E∞-ring spectrum then topological cyclic homology is defined
as TC(R) ∶= TC(THH(R)).

The amazing thing about topological cyclic homology is that it in fact is computable, and
furthermore the proof is entirely formal

TC-formula0 Proposition 4.2.11. 1. Let (X, (ϕp)p∈P) be a cyclotomic spectrum. Then there is the fol-
lowing equalizer diagram,

TC(X) XhT ∏p∈P(XtCp)hT,
(ϕhTp )p∈P

can

where the maps are given by

ϕhTp ∶XhT → (XtCp)hT,

and,

can ∶XhT ≃ (XhCp)h(T/Cp) ≃ (XhCp)hT → (XtCp)hT.

2. Let (X,ϕp) be a p-cyclotomic spectrum. Then there is the following equalizer diagram,

TC(X,p) XhT (XtCp)hCp∞ ,
ϕ
hCp∞
p

can

with the notation from the first part.

Proof. By the universal property of Sp, there is an equivalence FunEx(CycSp,Sp) ≃ FunLex(CycSp,S)
by composition with Ω∞, it suffices to check the formulas for the mapping space. This follows
directly from lemma 4.1.4(2).

We can improve slightly on the formula from part 1, when X is a bounded below spectrum.
We shall need the following technical lemma, which is a consequence of theorem 3.3.4. This is
the first time we see the strength of the Tate orbit lemma. Here and in the following we identify
Cpn/Cpm ≅ Cpn−m .

technicalresult0 Lemma 4.2.12. Let X ∈ SpBCpn be a spectrum with Cpn-action that is bounded below. Then

the canonical morphism XtCpn → (XtCp)hCpn−1 is an equivalence.

Proof. Consider XhCpn−2 as a spectrum with Cp2-action. Furthermore note that the norm map

(XhCpn−2 )hCp2 ≃XhCpn → (XhCpn−2 )h(Cp2 /Cp),

is an equivalence by theorem 3.3.4. By induction, we deduce that the norm map XhCpn →
(XhCp)

hCpn−1 is an equivalence. The norm map fits into a diagram

XhCpn XhCpn XtCpn

(XhCp)
hCpn−1 (XhCp)hCpn−1 (XtCp)hCpn−1

NmCpn

(NmCp)
hC
pn−1
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which commutes, because all the maps, besides the middle vertical map, in the left square are
norm maps, and the right square are given through cofibers. Note that the two left most vertical
maps are equivalences, hence induce an equivalence on cofibers.

LI4.4 Remark 4.2.13. The natural map (HZ)tT → (HZ)tCn , lifts to a map (HM)tT → (HM)tCn for
M torsion free.

The improved formula for TC(X) for a bounded below spectrum X is a corollary of the
following result.

TC-formula-lem Proposition 4.2.14. If X is a bounded below spectrum with a T-action then (XtCp)hT is p-
complete and the canonical morphism XtT → (XtCp)hT exhibits (XtCp)hT as the p-completion
of XtT.

Proof. Consider (XtCp)hT and (XtCp)hCp∞ , these are both p-complete by proposition 3.2.7,
hence the canonical morphism (XtCp)hT → (XtCp)hCp∞ is an equivalence, because Cp∞ and
T are p-adically equivalent. Note that because Cp∞ can be seen as a limit, we also have the
following equivalence (XtCp)hCp∞ ≃ limn(XtCp)hCpn .

Combining these equivalences we get that the following diagram

XtT (XtCp)hT

limn(XtCpn ) limn(XtCp)hCpn

commutes and by lemma 4.2.12 every object is equivalent, except for XtT. The left vertical map
is defined via the maps from 4.2.13. We show that the left vertical map is a p-completion. Using
lemma 3.1.15 we may assume X to be bounded. Using the strategy from the proof of lemma
3.3.3 we may assume that X = HM is an Eilenberg-MacLane spectrum, and that M is torsion
free. Note that the T-action on M is trivial. By inspection of the Tate spectral sequence we see
that π∗(HM tT) agrees with the cohomology ring H−∗(T,M), i.e.

π∗(HM tT) ≃M[u]/(u2).

Again inspecting the Tate spectral sequence and using standard results about the group coho-
mology of G a finite cyclic group with coefficients in a trivial G-module, we have

π∗(HM tCpn ) ≃ (M/pnM)[u]/(u2).

The maps in the limit diagram granting limn(XtCpn ) are given by the projections M →M/pnM
coming from remark 4.2.13.

Hence we obtain the following simplification of the formula for TC(X) for X bounded below.

TC-formula Corollary 4.2.15. Let (X, (ϕp)p∈P) be a cyclotomic spectrum where X is bounded below. Then
there is the following equalizer diagram,

TC(X) XhT (XtT)∧p ,
ϕ

can

where can is as in proposition 4.2.11, and ϕ is induced from (ϕhTp)p∈P and the equivalence of
proposition 4.2.14. Note that if R is a bounded below E∞-ring spectrum, then this formula is
especially aesthetically pleasing,

TC(R) TC−(R) (TP(R))∧p , .
ϕ

can
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4.3 Genuine Cyclotomic Spectra and Borel Completion

In the following section we will compare the notion of topological cyclic homology which we
have introduced above with the classical version. The classical version is for genuine cyclotomic
spectra, which we will define in this section. The main theorem concerning these, is that if X
is a genuine cyclotomic spectrum whose underlying spectrum is bounded below, then the new
and classical notions of topological cyclic homology agree. Our treatment of genuine cyclotomic
spectra will be superficial. We follow [38] Section II.2 and II.3, and large portions of [44].

Recall that an orthogonal spectrum is a sequence of pointed topological spaces Xn for n ≥ 0,
with pointed continuous actions of the orthogonal group in each level, and continuous structure
maps σm ∶Xn∧Sm →Xn+m. These structure maps are required to be O(n)×O(m)-equivariant.
We denote the associated category SpO. The category SpO has a symmetric monoidal structure.
We denote the monoidal product by ∧, following [44]. Just like symmetric spectra, they are
a model for the ∞-category of spectra Sp, when equipped with the projective stable model
structure. We will indicate what the cofibrations and stable equivalences are in the following.

OG-spec Definition 4.3.1. Let G be a group. An orthogonal G-spectrum is an object in the functor
category GSpO ∶= Fun(BG,SpO).

The category GSpO inherits a symmetric monoidal structure from SpO, where the smash
product is the underlying one for SpO equipped with diagonal G-action, this we will also denote
by ∧.

To give the definition of genuine cyclotomic spectra we will need a certain functor ΦG ∶
GSpO → SpO. We will need a few auxillary constructions to give its definition. We follow [44]
closely.

Definition 4.3.2. Let X be an orthogonal G-spectrum. Let V be an n-dimensional real vector
space equipped with a scalar product. Let L(Rn, V ) be the space of linear isometries from Rn
to V . The orthogonal group O(n) acts on L(Rn, V ) by precomposition. We define the value of
X on V ,

X(V ) ∶= L(Rn, V )+ ∧O(n) Xn

i.e. as the coequalizer of the O(n)-action above,the diagonal action on L(Rn, V )+ ∧Xn and G
act diagonally.

Definition 4.3.3. Let X be an orthogonal G-spectrum. Let ΦGX, called the geometric fixed
points of X, be the orthogonal spectrum whose n-th level is given by

(ΦGX)n =X(Rn ⊗R[G])G.

PhiSymMon Remark 4.3.4. The functor ΦG ∶ GSpO → SpO has a natural lax symmetric monoidal structure,
and when X and Y are cofibrant orthogonal G-spectra the map ΦG(X)∧ΦG(Y )→ ΦG(X ∧Y )
is an equivalence. The cofibrations are those of the projective stable model structure due to
M.A. Mandell and J.P. May [26], see theorem 4.2. The above equivalence is proposition 7.14 of
[44].

Definition 4.3.5. Let f ∶X → Y be a map of orthogonal G-spectra. Then f is an equivalence if
for all subgroups H ⊆ G, the map ΦH(X)→ ΦH(Y ) is a stable equivalence of orthogonal spectra.
We denote the collection of equivalences of orthogonal G-spectra by W . Here stable equivalences
refers to π∗-isomorphisms, i.e. morphisms which on homotopy groups induce isomorphisms.

It is straightforward to obtain the corresponding ∞-category.
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GSpDefi Definition 4.3.6. Let G be a finite group. The ∞-category of genuine G-equivariant spectra
is the ∞-category GSp ∶= N(GSpO)[W −1], i.e. the nerve of GSpO with the equivalences of
orthogonal G-spectra inverted. For a more detailed describtion see construction 3.20 of [44].
Let H ⊆ G be a subgroup, then the geometric fixpoint functor ΦH ∶ GSp → Sp is obtained from
ΦH ∶ GSpO → SpO by restricting to cofibrant orthogonal G-spectra and inverting equivalences
of orthogonal G-spectra.

It can be shown that ΦH ∶ GSp→ Sp has the same properties as its 1-categorical counterpart.

GSpPresent Remark 4.3.7. Equipping SpO with the stable model structure it becomes a combinatorial sim-
plicial model category. The category GSpO inherits a simplicial model structure, this follows
from proposition A.3.3.2 of [22]. Therefore the ∞-category N(GSpO) is presentable by propo-
sition 1.1.9. From this and Duggers theorem, e.g. proposition 5.5.4.15 of [22], the localization
GSp is presentable.

Corollary 4.3.8. The ∞-category GSp has a symmetric monoidal structure inherited from the
symmetric monoidal structure on GSpO.

Proof. Let p ∶ N(GSpO)⊗ → N(Γ) be the symmetric monoidal ∞-category induced from the
symmetric monoidal structure on GSpO via theorem 2.1.18. Let L ∶ N(GSpO) → N(GSpO)
be the localization associated to GSp described above. Let {Xi → Yi}i∈I be morphisms in
N(GSpO) such that the induced morphisms {L(Xi) → L(Yi)}i∈I are equivalences, then the
map L(⋀i∈I Xi) → L(⋀i∈I Yi) is an equivalence too. Let L(N(GSpO))⊗ be as described in
construction 2.1.19.Then it follows from proposition 2.2.1.9 of [25] that the restriction p ∶
L(N(GSpO))⊗ → N(Γ) exhibits L(N(GSpO))⊗ as a symmetric monoidal ∞-category with
underlying ∞-category L(N(GSpO)) which exactly is N(GSpO)[W −1].

ApproxOmega Remark 4.3.9. The localization described in definition 4.3.6 lets us assert that every orthogonal
G-spectrum may be approximated, up to stable equivalence, by a G-Ω-spectrum (for a definition
see 3.18 of [44]). Because of this it will suffice to restrict a functor G ∶ GSpO → GSpO to G-Ω-
spectra and then inverting stable equivalence to obtain a functor of ∞-categories L ∶ GSp→ GSp.

We shall need another notion of fixed points.

Definition 4.3.10. Consider the fixed point functor of orthogonal G-spectra given by the G-
fixed points of the n-th level, with restricted O(n)-action,

Xn ↦XG
n .

Because the structure maps of X are G-equivariant for the trivial G-action on S1, they restrict
to structure maps

σGn ∶XG
n ∧ S1 = (Xn ∧ S1) XG

n+1.

The fixed point functor does not preserve stable equivalences in general, but it does on G-Ω-
spectra. Hence taking the derived version of this functor we obtain a functor for all subgroups
H ⊆ G

−H ∶ GSp→ Sp.

We will call this functor the genuine fixed point functor.

We will now define the residual G/H-action for XH .

ResAction Definition 4.3.11. Restricted to G-Ω-spectra, the functor GSpO → SpO is given levelwise by

Xn ↦XH
n ,

i.e. through levelwise pointset H-fixpoints, which has an obvious G/H-action. Therefore the
functor GSpO → SpO maps orthogonal G-Ω-spectra to orthogonal G/H-Ω-spectra. Furthermore
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it is compatible with composition (XH)G/H =XG, because this is true for pointset fixpoints. In
particular it preserve equivalences, and therefore we obtain a lax symmetric monoidal functor
GSp→ (G/H)Sp.

FixNatTrans Remark 4.3.12. Because the trivial representation embeds into R[G], there is a natural trans-
formation −H → ΦH of functors GSp → Sp for all subgroups H ⊆ G. Furthermore both of these
functors and the transformation are lax symmetric monoidal, see [44] proposition 7.13 and 7.14.

Note that there is an immediate problem with the definition of GSp, namely that G is a finite
group. This is a problem because we want to consider T-equivariant objects and Cp∞-equivariant
objects. This is remedied differently for each of the groups.

Definition 4.3.13. 1. The ∞-category of genuine Cp∞-equivariant spectra is the limit of the
∞-categories CpnSp for varying n, along the forgetful functors CpnSp→ Cpn−1Sp.

2. Consider the category TSpO. Let F be the set of finite subgroups Cn ⊆ T. A map f ∶X → Y
in TSpO is an F-equivalence if the underlying map in CnSp

O, induced from the projection
to the n’th roots of unit T → Cn, is an equivalence for all finite subgroups Cn ⊆ T.
The ∞-category TSpF of F-genuine T-equivariant spectra is obtained from inverting F-
equivalences in N(TSpO).

Before we proceed with defining genuine (p-)cyclotomic spectra, we shall need a few technical
results, which we shall take for granted.

N-action Remark 4.3.14. By inverting F-equivalences, we obtain an action of the monoid ∏∞
i=1 N on the

∞-category TSpF . As a consequence hereof ΦCp and ΦCp′ for distinct p, p′ ∈ P commute up to
coherent equivalence See [38] section II.3 for a the details hereof.

PhiEndo Remark 4.3.15. We shall take the definition of a residual G/H-action, for H normal in G, on
ΦH(X) for granted, and refer the reader to section II.2 of [38]. The geometric fixpoint functor
make sense for all finite subgroups of Cp∞ and T, hence lifts to a functor Cp∞Sp→ (Cp∞/Cp)Sp ≃
Cp∞Sp and TSpF → (T/Cp)SpF ≃ TSpF , via the p-th power map.

We shall take the following result for granted, it is proposition II.2.14 of [38]. It relates the
geometric fixed points functor and the genuine fixed point functor.

PhiRight Lemma 4.3.16. Let G be a finite group, and H ⊆ G be a normal subgroup. The functor
ΦH ∶ GSp → (G/H)Sp has a fully faithful right adjoint RH ∶ (G/H)Sp → GSp. If H ⊆ G and
H /⊆ N , then RH(X)N ≃ 0 for all X ∈ (G/H)Sp. The natural transformation −H → ΦH of
remark 4.3.12 is an equivalence on the image of RH .

Remark 4.3.17. By passing to the limit and using remark 4.3.15 we obtain a variant of lemma
4.3.16 for finite subgroups of Cp∞ . There is also a variant for finite subgroups of T, this case
requires more work, i.e. tweaking the proof of the lemma 4.3.16. We shall take it for granted.

There is in fact a third (fourth counting the one introduced for G-equivariant spectra in
chaper 3) type of fixed point functor.

InducesBorel Definition 4.3.18. Note that any equivalence of orthogonal G-spectra is an equivalence of the
underlying orthogonal spectra, because Φ{e}(X) → Φ{e}(Y ) in particular is an equivalence of
the underlying spectra. Hence we obtain a functor GSp → SpBG, it can be shown that it is
lax symmetric monoidal. Because of this there is yet another fixed point functor for genuine
G-equivariant spectra, namely homotopy fixed points

−hH ∶ GSp→ SpBG → Sp,

which is post-composition with the forgetful functor.

Definition 4.3.19. 1. A genuine p-cyclotomic spectrum is an object X ∈ Cp∞Sp together
with an equivalence ΦCpX → X in Cp∞Sp. The ∞-category of genuine p-cyclotomic
spectra is the equalizer
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CycSpgenp Cp∞Sp Cp∞Sp.
ΦCp

id

2. The ∞-category of genuine cyclotomic spectra is given as

CycSpgen = (TSpF)h(∏
∞
i=1 N).

Here we take homotopy fixed points with respect to the action given in remark 4.3.14.

Hence genuine cyclotomic spectra are roughly speaking X ∈ TSpF together with homotopy
coherently commutative equivalences Φn ∶ ΦCnX →X for n ∈ N.

We will need the following result, for a proof see proposition 2.1 of [17], which we will take
for granted.

technicalresult2 Proposition 4.3.20. Let G be a cyclic group of p-power order. For X ∈ GSp there is a natural
fiber sequence

XhG →XG → (ΦCpX)G/Cp ,

of spectra where the second map is induced from the natural transformation −Cp → ΦCp of lax
symmetric monoidal functors GSp→ (G/Cp)Sp.

Let X be a genuine p-cyclotomic spectrum, then X has Cpn -fixpoints XCpn for all n ≥ 0, and

there are inclusions F ∶XCpn →XCpn−1 for all n ≥ 0. Furthermore there is the following map

R ∶XCpn → (ΦCpX)Cpn−1 ≃XCpn−1 .

which is the composite of the second map of the fiber sequence of proposition 4.3.20, and the
structure equivalence ΦCpX → X. Both of these maps are part of the definition of p-typical
topological cyclic homology for genuine p-cyclotomic spectra.

GenTC Definition 4.3.21. 1. Let X be a genuine p-cyclotomic spectrum. We define p-typical topo-
logical cyclic homology for genuine p-cyclotomic spectra as

TCgen(X,p) ∶= limREq(XCpn XCpn−1).
R

F

2. Let X be a genuine cyclotomic spectrum, then we define topological cyclic homology for
genuine cyclotomic spectra as

TCgen(X) XhT

∏p∈P TCgen(X,p)∧p ∏p∈P(X∧
p )hT.

Analogous to the naive case we have the following lemma, this is shown section 2 of [10].

Lemma 4.3.22. Let R be an E∞-ring spectrum. Then THH(R) has the structure of a genuine
cyclotomic spectrum, i.e. we have an equivalence ΦCp THH(R) ≃ THH(R).

Again analogously we have the following definition.

Definition 4.3.23. LetR be an E∞-ring spectrum. Then we define TCgen(R) ∶= TCgen(THH(R)).

Before we begin to compare TCgen with TC we shall need a certain functor called Borel
completion and certain properties of it. The most important property is that on its image the
fixed point functor and the homotopy fixed functor agrees. This is in some sense one of the most
crucial lemmas in the comparison of TCgen and TC. The Borel completion functor is induced
from the functor introduced in definition 4.3.18. Both proposition 5.2.7.4 of [22] and lemma
1.2.7 will be central in the proof.
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Borel Proposition 4.3.24. The functor GSp → SpBG admits a fully faithful right adjoint BG ∶
SpBG → GSp, which we call Borel completion. It induces a homotopy fixed point functor
−hH ∶ GSp→ SpBG → Sp, for H ⊆ G a subgroup. There is a natural transformation −H → −hH of
lax symmetric monoidal functors. The full subcategory of spectra for which this is an equivalence
is the essential image of BG. We call these spectra Borel complete.

Proof. Consider the orthogonal G-spectrum Map(X,Y ) for Y ∈ GSpO and X ∈ Fun(G,Top),
defined levelwise as

Map(X,Y )n = Map(X,Yn).

The O(n)-action is given through the action of Xn. The structure map is given by the composite

Map(X,Y )n ∧ S1 Map(X,Y ∧ S1)n Map(X,Y )n+1,
Map(X,σn)

where the first map is given by sending φ ∧ t ∈ Map(X,Y )n ∧ S1 to the map x ↦ φ(x) ∧ t for
x ∈ X. The G-action on Map(X,Y )n = Map(X,Yn) is given by φg(x) = g ⋅ φ(g−1x). The space
Map(X,Y )n is pointed at the map sending X to the basepoint of Yn. The functors Map(X,−)
and the functor X ∧ −, given in an analogous fashion to the above, are an adjoint pair on the
level of orthogonal G-spectra

Map(Z,Map(X,Y )) ≃ Map(X ∧Z,Y ).

Fix a contractible space EG ∈ Top with a free G-action. Consider the functor of 1-categories
L ∶ GSpO → GSpO given by

Xn ↦ RMap(EG,X)n.

Here RMap(−,−) denotes the right derived mapping space. It can be shown that the func-
tor L preserves G-Ω-spectra, see example 5.2 of [44]. Furthermore by proposition 5.4 of [44]
RMap(EG,−) sends equivalences to G-equivariant equivalences.

Now recall the usual definition of the homotopy fixed points of orthogonal G-spectra,

XhH = RMap(EG,X)H ≃ L(X)H

Where EG ∈ Top+ is a contractible space equipped with a free G-action. Furthermore we have

L(X)hH ≃XhH
BorelEqBorelEq (4.2)

because indeed,

L(X)hH = RMap(EG,X)hH

= RMap(EH,RMap(EG,X))H

≃ RMap(EH ∧EG,X)H

≃ RMap(EG,X)H

=XhH .

By theorem 7.12 [44], f ∶ X → Y is a stable equivalence of orthogonal G-spectra, if and only
if for every subgroup H ⊆ G the map fhH ∶ XhH → Y hH is a stable equivalence of orthogonal

spectra. Hence f ∶ X ≃→ Y if and only if fhH ∶ XhH ≃→ Y hH for all subgroups H ⊆ G if and only

if L(f)hH ∶ L(X)hH ≃→ L(Y )hH for all subgroups H ⊆ G if and only if L(f) ∶ L(X) ≃→ L(Y ). It
also follows that L(X)H ≃ L(X)hH for all subgroups H ⊆ G, i.e. L(X) is Borel complete. There
is a natural transformation L ∶ id → T of functors GSpO → GSpO, because there are natural
maps compatible with the structure maps,

Xn → RMap(EG,X)n,
x↦ (cx ∶ e↦ x).
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Now via remark 4.3.9 we obtain a functor L ∶ GSp → GSp of ∞-categories, by restricting L
to orthogonal G-Ω-spectra, and inverting the stable equivalences. Therefore we get a natural
transformation id→ L which satisfies (3) of proposition 5.2.7.4 of [22], this gives that the image of
L can be characterized as the full subcategory GSpB ⊆ GSp spanned by Borel-complete spectra.
Because of this, it only remains to prove that the functor GSpB → SpBG is an equivalence of
∞-categories. Note that the functor L ∶ GSpO → GSpO induces a functor N(GSpO) → GSpB .
The functor L inverts all morphisms which are equivalences of the underlying spectra, by the
argument given in definition 4.3.18. It follows from proposition 1.3.4.25 of [25] and theorem 9.2 of
[30], that by inverting these in N(GSpO) we obtain SpBG. Therefore we obtain a natural functor
BG ∶ SpBG → GSpB . By construction of L and proposition 5.2.7.4 of [22] the functor described
in 4.3.18 has a fully faithful right adjoint, which is BG ∶ SpBG → GSp, such that GSp → SpBG

factors over L. By lemma 1.2.7, the ∞-categories GSpB and SpBG are equivalent.

BorelLax Corollary 4.3.25. There is a lax symmetric monoidal structure on Borel completion BG ∶
SpBG → GSp, and a natural refinement of the adjunction map id→ BG of endofunctors on GSp
to a lax symmetric monoidal transformation.

Proof. This follows from example 2.1.13 because its left adjoint GSp → SpBG is symmetric
monoidal, which we stated in definition 4.3.18.

4.4 Equivalence of TC

In this section we will show that if X is a genuine cyclotomic spectrum whose underlying spec-
trum is bounded below, then the new and classical notions of topological cyclic homology agree.
We follow II.4 of [38]. We begin by showing that the formula for the p-typical topological cyclic
homology given in definition 4.3.21 agrees with the one given in proposition 4.2.11.

We shall need a version of homotopy orbits for genuine G-equivariant spectra. Let R ∶ Sp→
SpBG be the functor which equips a spectrum with the trivial G-action. This functor preserves
limits and colimits.

Definition 4.4.1. We define the genuine homotopy orbits functor for genuine G-equivariant
spectra −hG ∶ GSp→ Sp as the composite functor

GSp→ SpBG → Sp,

where the first functor is the one described in definition 4.3.18, and the second is the left adjoint
of R ∶ Sp→ SpBG afforded by the adjoint functor theorem.

The following is lemma 13 of [34], we will refrain from proving it.

Lemma 4.4.2. Let f ∶X → Y be a morphism in GSp such that the underlying map in Sp is an
equivalence. Then fhG ∶XhG → YhG is an equivalence.

The following example will use the notation established in proposition 4.3.24.

BGEx Example 4.4.3. Consider X ∈ GSp, then there is a natural map b ∶ X → BG(X). We denote
the (co)fibrant object of GSpO which represents X by X ′. Then by construction of BG we have
BG(X) ≃ L(X) = Map(EG,X) as described in the proof of proposition 4.3.24. Therefore the
map b ∶ X ′ → Map(EG,X ′) represents b on the level of orthogonal G-spectra. The map b is
an equivalence of underlying orthogonal spectra, because non-equivariantly we have EG ≃ ●,
hence Map(EG,X ′) ≃ Map(●,X ′) ≃X ′. Hence the underlying map of b in Sp is an equivalence.
Therefore bhG ∶XhG → BG(X)hG is an equivalence by the above lemma.

The following lemma is central, because it lets us relate the different kinds of fixed points,
and through its proof also Borel completion. It is a consequence of proposition 4.3.20 and lemma
4.3.24.
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bigdialem Lemma 4.4.4. Let X be a genuine Cpn-equivariant spectrum. Assume that the underlying
spectrum is bounded below. Then there is a natural pullback diagram of spectra for n ≥ 1,

XCpn (ΦCpX)Cpn−1

XhCpn (XtCp)hCpn−1 .

R

Proof. Consider the map X → BCpn (X) defined in proposition 4.3.24. From this map and
proposition 4.3.20 we obtain a commutative diagram,

XhCpn XCpn (ΦCpX)Cpn /Cp

BCpn (X)hCpn BCpn (X)Cpn (ΦCpBCpn (X))Cpn /Cp

N

By definition 4.3.11 we have

(ΦCpX)Cpn /Cp ≃ (ΦCpX)Cpn−1

from which it is evident that the map XCpn → (ΦCpX)Cpn /Cp is R. By proposition 4.3.24 we
have

(BCpn (X))Cpn ≃ (BCpn (X))hCpn ≃ (L(X))hCpn ≃XhCpn .

The first equivalence is because the objects in the image of BCpn are Borel complete, the second
equivalence is because the image of the localization L is equivalent to the full subcategory of
CpnSp spanned by the Borel complete genuine Cpn -spectra, and the last is (4.2).
By example 4.4.3 we have BCpn (X)hCpn ≃ XhCpn . Now it follows from proposition 3.1.9 that
the norm map N descends to the norm map NmCpn described in definition 3.1.6 under BCpn ,
therefore we have the following equivalence

(ΦCpBCpnX)Cpn−1 ≃XtCpn .

By lemma 4.2.12, we have

XtCpn ≃ (XtCp)hCpn−1 .

Combining all of the assertions above we obtain the following commutative diagram

XhCpn XCpn (ΦCpX)Cpn−1

XhCpn XhCpn (XtCp)hCpn−1 .

N

≃

R

NmCpn

That the right hand square is a pullback diagram follows from both of the horizontal rows being
fiber sequences.

Remark 4.4.5. Note that we asserted that −tCpn could be written as the composite

SpBCpn CpnSp Sp,
BCpn (ΦCp)Cpn /Cp

of symmetric monoidal functor, i.e. the underlying spectrum of (ΦCpBCpn (X))Cpn /Cp is XtCpn .
As consequence of theorem 3.1.22 this lax symmetric monoidal structure for a cyclic group of
p-power order agrees with the usual lax symmetric monoidal structure afforded by theorem
3.1.22.
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We record here the following corollary to show the strength of this lemma. This corollary
will also play an important part in the equivalence between bounded below naive and genuine
cyclotomic spectra.

BorelCor Corollary 4.4.6. Let X be a Borel complete object in Cp∞Sp whose underlying spectrum is
bounded below. Then the object ΦCpX ∈ Cp∞Sp is also Borel complete. In particular the canonical
map

ΦCpBCp∞Y
≃→ BCp∞ (Y tCp),

is an equivalence for every bounded below spectrum Y ∈ SpBCp∞ .

Proof. By lemma 4.4.4 we obtain the following pullback square for n ≥ 1, because X is bounded
below,

XCpn (ΦCpX)Cpn−1

XhCpn (XtCp)hCpn−1 .

R

t

By the proof of lemma 4.4.4, and the assumption that X was Borel complete, we have that

(XtCp)hCpn−1 ≃ (ΦCpBCp∞ (X))hCpn−1 ≃ (ΦCpX)hCpn−1 .

Hence to show that ΦCpX is Borel complete, it suffices to show that the map t is an equivalence,
but it is because the left hand map is per. assumption on X. Note that if Y ∈ SpBCp∞ is bounded
below, then so is BCp∞Y ∈ Cp∞Sp, hence it gives rise to the above pullback square for n ≥ 1,

and therefore ΦCpBCp∞Y is Borel complete. Furthermore ΦCpBCp∞Y ≃ Y tCp , collecting these
pieces we have the desired equivalence.

The following technical corollary is going to be important for the proof of the equivalence
between the two formulas for topological cyclic homology. The following follows directly from
lemma 4.4.4 and induction on n.

TCcor Corollary 4.4.7. Let X be a genuine Cpn-equivariant spectrum. Assume that the spectra

X,ΦCpX,ΦCp2X, ...,ΦCpn−1X

are bounded below. Then we have a diagram

XCpn ΦCpnX

(ΦCpn−1X)hCp (ΦCpn−1X)tCp

(ΦCp2X)hCp−2 ...

(ΦCpX)hCpn−1 ((ΦCpX)tCp)hCpn−2

XhCpn (XtCp)hCpn−1

Which exhibits XCpn as an iterated pullback.

Finally we are ready to give the p-local version main result of this section.
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TCeqP Theorem 4.4.8. Let X be a genuine p-cyclotomic spectrum such that the underlying spectrum
is bounded. There is is a canonical equalizer diagram

TCgen(X,p) XhCp∞ (XtCp)hCp∞ .
ϕ
hCp∞
p

can

Hence we obtain an equivalence TCgen(X,p) ≃ TC(X,p).

Proof. Note that since ΦCpX ≃X, all of the geometric fixpoints

X,ΦCpX,ΦCp2X, ...,ΦCpn−1X

are bounded below, hence from corollary 4.4.7 we get an equivalence.

XCpn XhCpn ×(XtCp)hCpn−1 X
hCpn−1 × ... ×XtCp X.

≃

We will refer to this equivalence as (◻). We claim that application of the mapR ∶XCpn →XCpn−1

under the equivalence (◻) corresponds to ”forgetting”, i.e. projecting onto the point, the first
factor of the iterated pullback. I.e.

XCpn XhCpn ×(XtCp)hCpn−1 X
hCpn−1 ×(XtCp)hCpn−2 ... ×XtCp X

XCpn−1 XhCpn−1 ×(XtCp)hCpn−2 ... ×XtCp X

≃

R

≃

This may be realized by considering the following diagram induced from the defining diagram
for the equivalence (◻), with the structure equivalences ΦCpX ≃X applied and the map R,

XCpn−1 X

XCpn X ⋮

(X)hCp (X)tCp

(X)hCp−2 ...

(X)hCpn−1 (X)tCp)hCpn−2

XhCpn (XtCp)hCpn−1

R

From which we see that the exponent of p in XCp− determines the shape diagram, and hence
also when stop forming the iterated pullbacks. Thusly we have showed the claim concerning R
under the equivalence (◻).

We claim that under the equivalence (◻) application of the map F ∶ XCpn → XCpn−1 corre-
sponds to ”forgetting” the last factor of the iterated pullback followed by application of projec-
tions maps Tk ∶ XhC

pk → XhC
pk−1 for 0 ≤ k < n factorwise. I.e. the effect of F on the iterated

pullback is,
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XhCpn ×(XtCp)hCpn−1 X
hCpn−1 ×(XtCp)hCpn−2 ... ×XtCp X

Tn(XhCpn ) ×
Tn−1((XtCp)

hC
pn−1 ) Tn−1(XhCpn−1 ) ×

Tn−2((XtCp)
hC
pn−2 ) ... ×T1((XtCp)hCp) T1(XhCp).

Note that the “right” hand side is equal to

XhCpn−1 ×(XtCp)hCpn−2 ... ×XtCp X

Because of the iterated pullback structure, the claim amounts to showing that each of the
following squares commute,

XCpn XCpn−1

XhCpn XhCpn−1 ,

F

XCpn XCpn−1

(ΦCpn−1X)Cpn /Cpn−1

(ΦCpn−1X)hCp (ΦCpn−1X)h{e}.

F

which they do because the lower vertical maps are maps induced from restriction of homotopy
fixed points from a group to one of its subgroups.

According to the definition of TCgen(X,p) we have to calculate the equalizer of R and F ,
or equivalently the fiber of R − F ∶XCpn →XCpn−1 .

Consider the following square of products

XhCpn × ... ×X XhCpn−1 × ... ×X

(XtCp)hCpn−1 × ... ×XtCp (XtCp)hCpn−2 × ... ×XtCp .

R′−F ′

Ωp−can Ωp−can

R′′−F ′′

In this diagram R′ forgets the first factor, F ′ forgets the last and then projects XhC
pk →

XhC
pk−1 . The map R′′ forgets the first factor, and F ′′ forgets the last factor and then projects

(XtCp)hCpk → (XtCp)hCpk−1 . The map Ωp is the composite

XhCpn × ... ×X XhCpn−1 × ... ×X (XtCp)hCpn−1 × ... ×XtCpp ∏0≤k≤n ϕ
hC
pk

p

where p projects to the n last factors, and the maps ϕ
hC

pk

p ∶ XhC
pk → (XtCp)hCpk are induced

by homotopy fixed points from the cyclotomic structure map X →XtCp for 0 ≤ k ≤ n. The map
can is the product of the canonical maps cank ∶XhC

pk → (XtCp)hCpk−1 for each 0 ≤ k ≤ n.

Commutativity can be checked factorwise because the lower right edge of the diagram is a
product. Thus it boils down to checking wether the effect of the application of R′ − F ′ and
R′′ − F ′′ is commutative for certains squares for 0 ≤ k ≤ n. Note that for 0 < k < n, the maps R′

and R′′ has no effect and F ′ and F ′′ reduce to the projections described above. Using that the

canonical maps cank and ϕ
hC

pk

p for 0 ≤ k ≤ n commute with these projections it is elementary
to show that Ωp−can commutes with these projections. We split the rest into two seperate cases.

When we write F ′, F ′′, R′ and R′′ in the following diagrams we won’t mean the actual maps,
but rather their effect on the particular factor in question. Let k = 0. Then application of the
maps F ′ and F ′′ are the projections onto the point, application of R′ and R′′ are identities,
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application of the map can and Ωp reduces to the canonical map can0 ∶ X → XtCp and the
cyclotomic structure map ϕp ∶X →XtCp . Hence the diagram reduces to

X ●

XtCp ●.

F ′

F ′′

which obviously commutes. Let k = n. Then application of the maps F ′ and F ′′ are the
projections described above, application of R′ and R′′ are projections onto the point, application
of can and Ωp reduces to the canonical maps cani ∶ XhCpi → (XtCp)hCpi−1 and the composite

maps p○ϕhCpip ∶XhCpi → (XtCp)hCpi−1 for i ∈ {n,n−1} respectively. Hence the diagram reduces
to

XhCpn XhCpn−1

(XtCp)hCpn−1 (XtCp)hCpn−2 .

R′−F ′

(p○ϕ
hCpn
p )−cann (p○ϕ

hC
pn−1

p )−cann−1

R′′−F ′′

Now because p projects away from the first factor, the map p ○ ϕhCpip ∶ XhCpi → (XtCp)hCpi−1

for i ∈ {n,n − 1} factor throught projections to the point, just like R′ −F ′ and R′′ −F ′′ because
R′ and R′′ were projections to the point. The canonical maps cani for i ∈ {n,n − 1} commute
with the projections described above. Because of this the square commutes.

Hence the square of products commutes. From left to right the fibers of the vertical maps
are by construction XCpn and XCpn−1 , with the induced map given by R − F . The fiber of the
upper horizontal map is XhCpn via the diagonal embedding, and likewise the fiber of the lower
horizontal map is (XtCp)hCpn−1 . Hence we obtain the following commutative diagram

XCpn XCpn−1

XhCpn XhCpn × ... ×X XhCpn−1 × ... ×X

(XtCp)hCpn−1 (XtCp)hCpn−1 × ... ×XtCp (XtCp)hCpn−2 × ... ×XtCp .

R−F

ϕp−can

R′−F ′

ϕp−can ϕp−can

R′′−F ′′

From commutativity we see that the fiber of R − F ∶ XCpn → XCpn−1 is equivalent to the fiber
of ϕp − can ∶XhCpn → (XtCp)hCpn−1 . Finally if we take the limit over n, we obtain the result for
Cp∞ , and hence we get the desired result.

Now using the p-typical result we may obtain the global result for genuine cyclotomic spectra.
This is theorem 2 of the introduction.

TCMain Theorem 4.4.9. Let X be a genuine cyclotomic spectrum such that the underlying spectrum is
bounded. There is is a canonical equalizer diagram

TCgen(X) XhT ∏p∈P(XtCp)hT.
∏p∈P(ϕ

hT
p )

can

Hence we obtain an equivalence TCgen(X) ≃ TC(X).

Proof. Consider the following commutative diagram, induced from the defining diagram of
TCgen(X) and the product over all primes p of the p-completions of the fiber sequence cor-
responding to the equalizer diagram of theorem 4.4.8,
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TCgen(X) XhT

∏p∈P TCgen(X,p)∧p ∏p∈P(X∧
p )hT ∏p∈P((X∧

p )tCp)hCp∞ .

By applying lemma 3.2.7 and using that Cp∞ → T is a p-adic equivalence, the natural maps

(XtCp)hT → ((X∧
p )tCp)hCp

∞ ,

are equivalences for all primes p. Because of this we get an equivalence on the product of these
over all primes. This equivalence fits into the above diagram in the following way

TCgen(X) XhT ∏p∈P(XtCp)hT

∏p∈P TCgen(X,p)∧p ∏p∈P(X∧
p )hT ∏p∈P((X∧

p )tCp)hCp∞

∏p∈T ϕ
hT
p −can

≃

This equivalence, the lower line being a fiber sequence, and the left square being a pullback gives
that the upper line is a fiber sequence and hence we obtain the desired equalizer diagram.

4.5 The p-Local Equivalence of ∞-Categories of Cyclotomic Spectra

In this section we shall employ the result concerning coalgebras, endofunctors and their fixed
points to show that there is an equivalence between naive cyclotomic spectra and genuine cy-
clotomic spectra when restricting to objects which underlying spectrum is bounded below. All
of the assumptions we made in the section on lax equalizers and coalgebras was with the ∞-
categories Cp∞Sp and TSpF , and their associated endofunctors ΦCp for p ∈ P, in mind. We begin
by recasting these ∞-categories as fixed points of associated endofunctors. For this and the next
section we will follow parts of section II.3, II.5 and II.6. As the title of the section indicates we
will in this section work p-locally.

The cocontinuity of ΦCp on Cp∞Sp and TSpF affords us with right adjoints, these play well
together with the genuine fixed point functor. This is so is summarized in the following result
which will be rather important in the proof of the equivalence in both the p-local and global
setting.

FixFormula Corollary 4.5.1. Let RCp ∶ Cp∞Sp → Cp∞Sp and RCp ∶ TSpF → TSpF be the right adjoint

functors of ΦCp on Cp∞Sp and TSpF respectively. We have the following formula

(RCpX)H ≃
⎧⎪⎪⎨⎪⎪⎩

XH/Cp if Cp ⊆H
0 otherwise.

For H be a finite subgroup of Cp∞ or T respectively.

Proof. Because we are only considering genuine fixed points with a finite group, we immediately
have that (RCpX)H ≃ 0 for Cp /⊆ H by lemma 4.3.16. If Cp ⊆ H, we have the following
equivalences

RCp(X)H ≃ (RCp(X)Cp)H/Cp ≃ (ΦCpRCp(X))H/Cp ≃XH/Cp ,

where the first is a property of the residual action of genuine fixed points, see definition 4.3.11,
the second is the second part of lemma 4.3.16, and the last is the fact that the right adjoint is
fully faithful and hence by lemma ?? the counit is an equivalence.

We now realize genuine p-cyclotomic spectra as fixed points of the endofunctor ΦCp on
Cp∞Sp.
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CoAlgIncP Lemma 4.5.2. There is an equivalence of ∞-categories,

CycSpgenp ≃ FixΦCp (Cp∞Sp),

and the inclusion ι ∶ CycSpgenp ⊆ CoAlgΦCp (Cp∞Sp) is cocontinuous.

Proof. Recall that we had a model for the fixed points of an endofunctor F on an ∞-category,
as the equalizer of the identity and F , see the proof of 4.1.6. We stated in remark 4.3.15 that
ΦCp was an endofunctor on Cp∞Sp. From this it follows that CycSpgenp ≃ FixΦCp (Cp∞Sp). The
∞-categories CpnSp is presentable for all n, as argued in remark 4.3.7, therefore Cp∞Sp is to, by

virtue of being a limit of presentable along continuous functors (PrL is complete). By lemma
4.3.16 that ΦCp was cocontinuous. Now as a consequence of this, and corollary 4.1.6 we obtain
a cocontinuous inclusion ι ∶ CycSpgenp ⊆ CoAlgΦCp (Cp∞Sp).

The following will be a key input into the p-local equivalence mentioned before.

T.II.5.6 Theorem 4.5.3. The inclusion ι ∶ CycSpgenp ⊆ CoAlgΦCp (Cp∞Sp) admits a right adjoint Rι such
that the counit ιRι → id of the adjunction induces an isomorphism of underlying non-equivariant
spectra.

Proof. By lemma 4.3.16 and remark 4.3.15 the endofunctor ΦCp admits a fully faithful right
adjoint RCp ∶ (Cp∞/Cp)Sp ≃ Cp∞Sp → Cp∞Sp. Using the notation of construction 4.1.7, ΦCp

induces an endofunctor Φ
Cp

which also admits a right adjoint R
Φ
Cp ∶ CoAlgΦCp (Cp∞Sp) →

CoAlgΦCp (Cp∞Sp). By corollary 4.5.1 we have that (RCp(X))Cpm ≃ XCpm−1 for 1 ≤ m and

(RCp(X)){e} ≃ 0. If we combine this with the formula of corollary 4.1.11 then we obtain that

for (X,ϕ ∶ X → ΦCpX) ∈ CoAlgΦCp (Cp∞Sp), the underlying object of Rk
Φ
Cp (X) has genuine

fixed points given by

(Rk
Φ
Cp (X))Cpm ≃XC

pm−k ×
(ΦCp(X))

C
pm−k X

C
pm−k+1 × ... ×(ΦCp(X))Cpm−1 X

Cpm .

Note that we in the equivalence have used that (−)Cpm is continuous. Note that when k > m
this formula only depends on m. Therefore the limit

... (R3

Φ
Cp (X))Cpm (R2

Φ
Cp )Cpm (R

Φ
Cp (X))Cpm XCpm ,

R2

Φ
Cpν

R
Φ
Cpν ν

which is afforded by proposition 4.1.9 stabilizes. We will refer to this directed system as (⋆).
We have by lemma 4.1.10 that Φ

Cp
R

Φ
Cp ≃ id as endofunctors of CoAlgΦCp (Cp∞Sp). From this

we have that by applying Φ
Cp

to the directed system

... R2

Φ
Cp (X) R

Φ
Cp (X) X,

we obtain the directed system,

... R2

Φ
Cp (X) R

Φ
Cp (X) X Φ

Cp(X).

This directed system, analogous to the tower above, also stabilizes when genuine fixed points

are applied. As a consequence Φ
Cp

commutes with the limit of the tower. Now lemma 4.1.3 (3)
the limit of coalgebras is computed as the limit of underlying objects. Hence from proposition
4.1.9 we get that the limit of the tower (⋆) is given as the spectrum Rι(X)Cpm . Setting m = 0,
we obtain that the canonical map of underlying non-equivariant spectra (ιRι(X)){e} →X{e} is
an equivalence.
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Theorem 4.5.3 is an important input into the equivalence between bounded below naive and
genuine p-cyclotomic spectra. We will now construct the p-local functor which will descend to an
equivalence when restricted to bounded below spectra. Theorem 4.5.3 will in some sense provide
half of the argumentation needed to see that the following functor restricts to an equivalence.

Definition 4.5.4. Let (X,ΦCp) be a genuine p-cyclotomic spectrum. Consider the following
composite

X ΦCpX ΦCpBCp∞X XtCp .≃ (BCp∞ )∗ ≃

Where the first map is the inverse of the structure map, the second is precomposition with Borel
completion, and the last equivalence was shown in the proof of lemma 4.4.4. Per. construction
of Cp∞Sp there is a natural functor

η ∶ Cp∞Sp→ SpBCp∞ .NatFunNatFun (4.3)

The map induced from the above composite under this functor is a Cp∞ -equivariant map X →
XtCp , where the Cp∞-action on the right hand side is the residual Cp∞/Cp-action via the pth
power map, see remark 4.3.15.

p-localFunctorProp Proposition 4.5.5. The assignment described above defines a functor

CycSpgenp → CycSpp.p-localFunctorp-localFunctor (4.4)

Proof. We will in fact construct a functor between ∞-categories which has the desired ∞-
categories as subcategories, i.e. we will construct functors between the following lax equalizers
instead of the corresponding equalizers,

LEq(id,ΦCp)→ LEq(id,−tCp).LEqLEq (4.5)

Where the first lax equalizer is of functors Cp∞Sp → Cp∞Sp and the second is of functors

SpBCp∞ → SpBCp∞ . The natural functor (4.3) commutes with the first functor id in the first
lax equalizer. There is a natural transformation between η ○ ΦCp and −tCp ○ η, which is given
by passing to the underlying spectrum of the natural transformation ΦCp → ΦCpBCp∞ and then

invoking the identification of −tCp and the underlying spectrum of ΦCpBCp∞ (established in the
proof of lemma 4.4.4). Per. definition of lax equalizers we get the desired map.

Per. construction of the functor (4.4) and the results of the section concerning lax equalizers
and coalgebras, the functor is cocontinuous and therefore admits a right adjoint functor. We
will try to understand this right adjoint well enough to see that (4.4) induces an equivalence of
subcategories of bounded below spectra. To this end we will factor (4.4) and examine the right
adjoints of the factors.

p-localFactor Corollary 4.5.6. The functor (4.4) can be factored as the following composite

CycSpgenp CoAlgΦCp (Cp∞Sp) CycSpp.
ι U

In the above ι is the inclusion, and U takes the underlying naive p-cyclotomic spectrum.

Proof. First recall that CycSpgenp ≃ FixΦCp (Cp∞Sp), hence there is an inclusion as claimed. Note
that

CycSpgenp ≃ CoAlgΦCp (Cp∞Sp)
(4.5)
→ CoAlg(−)tCp (Sp

BCp∞ ) ≃ LEq(id,−tCp) ≃ CycSpp.

The claim now again follows from the fact that we constructed the functor (4.4) more generally
on lax equalizers, i.e. as a the functor (4.5), together with the identification of −tCp and the
underlying spectrum of ΦCpBCp∞ .
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Both ι and U admit right adjoints, because they both are cocontinuous. We have in the
section on lax equalizers and coalgebras studied the right adjoint of ι extensively. We will now
describe the right adjoint of U which we denote B. The functor B is in fact familiar to us when
restricted to bounded below spectra. We fix some notation before showing this.

Definition 4.5.7. Let CycSpgenp,+ ⊆ CycSpgenp , and CycSpp,+ ⊆ CycSpp, denote the respective ∞-
subcategories of objects whose underlying spectra are bounded below. Then the functor (4.4)
restricts to a functor

CycSpgenp,+ → CycSpp,+.

It turns out that the right adjoint B ∶ CycSpp → CoAlgΦCp (Cp∞Sp) is given by Borel comple-
tion when restricted to CycSpp,+.

L.II.6.2. Lemma 4.5.8. Let (X,Φp ∶ ΦCpX → X) ∈ CycSpp,+. Then the right adjoint B ∶ CycSpp →
CoAlgΦCp (Cp∞Sp) of the forgetful functor U is fully faithful and when applied to (X,Φp) is
given by BCp∞X ∈ Cp∞Sp with the coalgebra structure given by postcomposition of the Tate
construction,

BCp∞Φp ∶ BCp∞X → BCp∞ (XtCp) ≃ ΦCp(BCp∞X).

Proof. We have the equivalence from the coalgebra structure afforded by lemma 4.4.6. We will
see that under the assumptions above BCp∞X will satisfy the universal property of the mapping

space in a lax equalizer for B. We established in lemma 4.1.4 (2) that for (Y,ΦYp ) an arbitrary

ΦCp -coalgebra the mapping space between (Y,ΦYp ) and (BCp∞X,BCp∞Φp) was given by the
equalizer

Eq (MapCp∞Sp(Y,BCp∞X) MapCp∞Sp(Y,BCp∞ (XtCp))).
(ΦYp )∗ΦCp

(BCp∞ Φp)∗

We show that this mapping space can be identified with the mapping space between the to
(Y,ΦYp ) corresponding naive p-cyclotomic spectrum (Y,ϕYp ) and (X,Φp). But since the Borel

completion functor BCp∞ is right adjoint to the functor Cp∞Sp→ SpBCp∞ by proposition 4.3.24,
the above mapping space can be identified with

Eq (Map
Sp
BCp∞ (Y,X) Map

Sp
BCp∞ (Y,XtCp)).

(ϕYp )∗((−)tCp)

(Φp)∗

Again from lemma 4.1.4 (2) this equalizer is the desired mapping space, granting the desired
result.

We are now ready to give the main result of the section, namely the p-local equivalence
mentioned before.

T.II.6.3 Theorem 4.5.9. The functor (4.4) CycSpgenp → CycSpp induces an equivalence of ∞-categories
of bounded below naive and genuine cyclotomic spectra, CycSpgenp,+ → CycSpp,+.

Proof. We show that the composite U ○ ι ∶ CycSpgenp → CycSpp afforded by corollary 4.5.6, is an
equivalence of ∞-categories, when restricted to the subcategories of bounded below spectra.

As discussed above both U and ι have right adjoints, denoted B and Rι respectively, hence
so does U ○ ι. By lemma 1.2.8 we may instead show that U ○ ι is conservative and that it has
a fully faithful right adjoint. Let f ∶ (X,ΦXp ) → (Y,ΦYp ) be a map of genuine p-cyclotomic
spectra such that (U ○ ι)(f) is an equivalence in CycSpp. Now (U ○ ι)(f) is an equivalence if

and only if (U ○ ι)(ΦCp(f)) is an equivalence if and only if U(ΦCp(f)) is an equivalence. Note
that U(ΦCp(f)) ≃ Φe(f) ≃ f . Hence U ○ ι is conservative.
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Now it remains to show that the right adjoint is fully faithful, we do this by showing that
the counit is an equivalence, i.e. that UιRB((X,Φp))→ (X,Φp) is an equivalence for (X,Φp) ∈
CycSpp,+. By theorem 4.5.3 we have that ιR(B((X,Φp))) ≅ B((X,Φp)), and by lemma 4.5.8
we have that UB((X,Φp)) ≃ (X,Φp), collecting these gives the desired result.

4.6 The Global Equivalence of ∞-Categories of Cyclotomic Spectra

Almost every result in this section has a p-local analog which we proved in the previous section,
but there are a few differences. The results of this section are far more cluttered, because we
need the iterated coalgebra ∞-category rather than the just coalgebra ∞-category for a single
endofunctor. We begin with a result for which the global version follows in much the same way
as the p-local one (lemma 4.5.2).

CoAlgIncGlobal Lemma 4.6.1. There is an equivalence of ∞-categories,

CycSpgen ≃ Fix(ΦCp)p∈P(TSpF),

and the inclusion ι ∶ CycSpgen ⊆ CoAlg(ΦCp)p∈P(TSpF) is cocontinuous.

Proof. Recall that we had a model for the fixed points of countably many coherently commuting
endofunctors {Fi}i∈N as the homotopy fixed points of the monoid ∏∞

i=1 N, see the proof of
corollary 4.1.14. We argued in remark 4.3.14 that the collection {ΦCp}p∈P commuted coherently,
and we argued in remark 4.3.15 that they were endofunctors on TSpF . Hence we have an
equivalence CycSpgen ≃ Fix(ΦCp)p∈P(TSpF). By arguments analogous to those applied to Cp∞Sp,

the ∞-category TSpF is presentable. Hence by corollary 4.1.14 we have that Fix(ΦCp)p∈P(TSpF)
is presentable and we obtain a cocontinuous inclusion ι ∶ CycSpgen ⊆ CoAlg(ΦCp)p∈P(TSpF).

Remark 4.6.2. Note that we do not need the above equivalence to see that CycSpgen is pre-
sentable. It follows easily from TSpF being presentable, as then CycSpgen is a limit along the
continuous functor (−)h∏

∞
i=1 N of presentable ∞-categories.

We now proceed to show the analog of theorem 4.5.3 in the global case. Here we run into
the first difference between the local and global settings, namely that it requires an argument to
see that the assumptions of corollary 4.1.19 are satisfied, i.e. that the following lemma is true.

Lemma 4.6.3. The canonical morphism ΦCpRCq → RCqΦ
Cp of endofunctors TSpF → TSpF is

an equivalence for all primes p ≠ q.

Proof. Per. definition of equivalences in TSpF it suffices to check that the morphism

ΦH(ΦCpRCq)→ ΦH(RCqΦCp)

is an equivalence for all objects X ∈ TSpF and all finite subgroups H ⊆ T. By lemma 4.3.16 we
may instead check that the morphism

(ΦCpRCq(X))H → (RCqΦCp(X))Hcomcom (4.6)

is an equivalence for all objects X ∈ TSpF and all finite subgroups H ⊆ T. Assume first that
Cq /⊆ H. Then by lemma 4.3.16 we immediately get that (RCqΦCp)H ≃ 0. We now argue that

(ΦCpRCqX)H ≃ 0. First X is S-module per. assumption. Recall that there is a lax symmetric

monoidal transformation of lax symmetric monoidal functors −Cp → ΦH by remark 4.3.12. In
particular ΦCq is lax symmetric monoidal, hence from example 2.1.13 we have that RCq is

symmetric monoidal. Hence RCqX is a RCqS-module, and ΦCpRCqX is a ΦCpRCqS-module.

Now consider the p-power map T → T, and denote the preimage of H by H̃, and denote the
restriction by p ∶ H̃ → H. Then we obtain a commutative square induced from p and the
structure map induced from ΦCpRCqX being a ΦCpRCqS-module,
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ΦH̃ΦCpRCqS ΦHΦCpRCqS

ΦH̃ΦCpRCqX ΦHΦCpRCqX (ΦCpRCqX)H .≃

We have the following equivalences

ΦH̃ΦCpRCqS ≃ ΦCpΦH̃RCqS ≃ ΦH̃RCqS ≃ (RCqS)H̃ .

The first is the fact that geometric fixed points commute, the second is because Cp ⊆ H̃ per.

construction, and the third is by lemma 4.3.16. Therefore (ΦCpRCqX)H is a (RCqS)H̃ -module.

But note that Cq /⊆ H̃, from which we have (RCqS)H̃ ≃ 0, and therefore (ΦCpRCqX)H ≃ 0.
Hence if Cp ⊂ H then (4.6) is an equivalence, and both sides are 0, hence we have reduced to
the case H = Cp. Therefore, again by 4.3.16 we are reduced to showing that the natural map
ΦCpRCqX → RCqΦ

CqX is an equivalence after applying ΦCq . This is easy:

ΦCqRCqΦ
Cp ≃ ΦCp ≃ ΦCpΦCqRCq ≃ ΦCqΦCpRCq .

Which follows from the fact that the counit of the ΦCp ⊣ RCp adjunction is an equivalence.

In the situation Cq ⊆ H, the proof is slightly more straightforward. We have the following
equivalences

(RCqΦCpX)H ≃ (ΦCpX)H/Cq ≃X(H/Cq)/Cp ≃X(H/Cp)/Cq ≃ (RCqX)H/Cp ≃ (ΦCpRCqX)H .

In the above string of equivalences, the first is by corollary 4.5.1, the second is lemma 4.3.16,
the third is because p ≠ q, the fourth is corollary 4.5.1, and the last is lemma 4.3.16. We leave
out the checking that these equivalences are the canonical map.

Just as in the local setting, this theorem will be a key input into the global equivalence.

T.II.5.13 Theorem 4.6.4. The inclusion ι ∶ CycSpgen ⊆ CoAlg(ΦCp)p∈P(TSpF) admits a right adjoint Rι
such that the counit ιRι → id of the adjunction induces an isomorphism of underlying non-
equivariant spectra.

Proof. For convenience we start by fixing some notation. Let C denote the ∞-category TSpF ,
and let Fn ∶= ΦCpn where p1, p2, ... is the list of primes. We will use the notation established in
the first section of this chapter. We wish to prove that that the inclusion

ιn ∶ Cn+1 ∶= FixF1,...,Fn(CoAlgFn+1,Fn+2,...) ⊆ FixF1,...,Fn−1(CoAlgFn,Fn+1,...) =∶ Cn,

admits a right adjoint Rιn such that the counit of the adjunction induces an equivalence on
underlying spectra. Now using corollary 4.1.19, and corollary 4.5.1 (and the notation established
in theorem 4.5.3) we have

(Rk
Φ
Cp )Cpm×CrX ≃XC

pm−k×Cr ×
(ΦCpX)

C
pm−k×Cr ×... ×(ΦCpX)Cpm−1×Cr X

Cpm×Cr

where r is coprime to p. Analogous to the proof of theorem 4.5.3, if m and r are fixed, then for
k >m this formula only depends on m and r. Therefore the limit of the following diagram

... (R3

Φ
Cp (X))Cpm×Cr (R2

Φ
Cp )Cpm×Cr (R

Φ
Cp (X))Cpm×Cr XCpm×Cr ,

R2

Φ
Cpν

R
Φ
Cpν ν

which is afforded by proposition 4.1.18 stabilizes. Using a totally analogous argument to the ar-
gument in the proof of theorem 4.5.3, we get that the limit of the above diagram commutes with
ΦCp . Therefore it is the underlying object of the limit in the ∞-category Cn. Hence proposition
4.1.18 implies that this underlying object is the underlying object of the right adjoint RιnX.
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Now lets specialize to r = 0 and m = 0, to obtain that the counit of the adjunction Fn ⊣ RFn
induces an equivalence (ιnRιnX){e} ≃X{e}, for all n ∈ N.

The right adjoint to the “total” inclusion

ι ∶ lim
n

(Cn) = CycSpgen ⊆ CoAlg(ΦCp)p∈P(TSpF) =∶ C1,

is the limit of the right adjoints

Rι = lim (C1 C2 C3 ...)
Rι1 Rι2 Rι3

Note that for each Cm ⊆ T, the geometric Cm-fixed points in this limit stabilize. Indeed if the
prime factoring of m is pi11 p

i2
2 ...p

ik
k , where p ∶= max1≤i≤k{pk}, and p is the t’th prime in the list

of primes, then the Cm-fixed points are stabilized in the t’th step in the above limit. Because of
this the limit of the above, i.e. Rι, is preserved by ΦCp , and hence we may calculate the limit
on the underlying objects, analogously to the proof of theorem 4.5.3.

We will now construct the global functor which will descend to an equivalence when restricted
to bounded below spectra. This construction follows from the local case, and the identitfication
of CycSp given in remark 4.2.2.

Proposition 4.6.5. There is a natural functor

CycSpgen → CycSp.GlobalFunctorGlobalFunctor (4.7)

Proof. For any p ∈ P we claim that we have the following commutative diagram,

CycSpgen CycSpgenp CycSpp

CycSp ∏p∈P CycSpp

SpBT ∏p∈P Sp
BCp∞

I

F (4.4)

Indeed for any p, we have a natural functor F ∶ CycSpgen → CycSpgenp induced from the functor

TSpF → Cp∞Sp given by (Φp)p∈P ↦ Φp where Φp ∶ ΦCpX →X is one of the structure equivalence
associated to any genuine cyclotomic spectrum X. The map (4.4) is the functor given in the
proposition above. The functor I is induced from the map CycSpgen →∏p∈P Sp

BCp∞ by consid-
ering the underlying spectrum with T-action of X ∈ TSpF . These two maps give by universal
property the dashed map.

Analogously to the previous section we have per. construction of the functor (4.7) and the
results of the section concerning lax equalizers and coalgebras, that the functor is cocontinuous
and therefore admits a right adjoint. Again we will try to understand the right adjoint to see
that (4.7) is an equivalence through factoring and examining the right adjoints of the factors.

Corollary 4.6.6. The functor (4.7) can be factored as the following composite

CycSpgen CoAlg(ΦCp)p∈P(TSpF) CycSp.ι U

In the above ι is the inclusion, and U takes the underlying naive cyclotomic spectrum.
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The proof is entirely analogous to the p-local case and hence we skip it.

Again we wish to understand the right adjoint of U on bounded below naive cyclotomic
spectra, which we denote B. Analogous to lemma 4.5.8 it is fully faithful and the underlying
object of TSpF is given by a Borel complete spectrum. This is however far more involved to
show, and is the main difference between the p-local and the global setting. The problem arises
because a genuine cyclotomic spectrum X is equipped with equivalences Φn ∶ X ≃ ΦCnX, for
all n ≥ 1, not just primes. We shall need the following lemma, which will help us deal with
non-prime torsion groups, we will skip its proof, it can be found in [38] lemma II.6.7.

nonprimelem Lemma 4.6.7. Let G be a finite group which is not a p-group for some prime p. Let X ∈ GSp
be Borel complete, then ΦGX ≃ 0.

L.II.6.6 Lemma 4.6.8. Let X be a Borel complete object in TSpF whose underlying spectrum is bounded
below. Then for every p the spectrum ΦCp is Borel complete.

Proof. Again by the proof of lemma 4.4.4 we have that the underlying spectrum with T-action
of ΦCpX is given by the Tate construction XtCp ∈ SpBT. Now the unit of the adjunction
afforded by proposition 4.3.24 gives a morphism ΦCpX → B(XtCp). We show that this map is
an equivalence undr application of geometric fixed points for finite subgroups H ⊆ T. We have
in lemma 4.5.8 dealt with the cyclic p-groups. Therefore let H be a subgroup of T which has

q-torsion for q ≠ p. In this case it follows from lemma 4.6.7 that ΦHΦCpX ≃ ΦH̃X ≃ 0, where
H̃ = {h ∈ T∣hp ∈H}.

The transformation id → B gives that the map ΦCpX → B(XtCp) is a map of algebras.
Recall that there is a lax symmetric monoidal transformation of lax symmetric monoidal functors
−Cp → ΦH by remark 4.3.12. In particular ΦCq is lax symmetric monoidal. Hence the map

ΦHΦCpX → ΦH(B(XtCp)),

is a map of algebras. The domain is zero by the above arguments, hence the codomain is also
zero, for all Borel complete spectra. We have now shown the claim.

As in the previous section we will use the following notation.

Definition 4.6.9. Let CycSpgen+ ⊆ CycSpgen and CycSp+ ⊆ CycSp denote the respective ∞-
subcategories of objects whose underlying spectra are bounded below. Then the functor (4.7)
restrict to a functor

CycSpgen+ → CycSp+.

We now prove the analog of lemma 4.5.8.

L.II.6.8 Lemma 4.6.10. Let X ∈ CycSp+. Then the right adjoint of U , B ∶ CycSp→ CoAlg(ΦCp)p∈P(TSpF),
is fully faithful and when applied to X has underlying spectrum given by the Borel complete spec-
trum BTX ∈ TSpF.

Proof. By lemma 4.6.8 we have maps

BTX → BT(XtCp) ≃ ΦCpBTX,

for each p ∈ P, which are induced from the structure maps. Note that ΦCpΦCqBTX ≃ 0 for p ≠ q
primes, by lemma 4.6.7, i.e. ΦCpΦCqBTX is terminal for p ≠ q and hence BTX satisfies the
assumptions of lemma 4.1.15. Thus by part one of the corollary BTX has the structure of an
object in CoAlg(ΦCp)p∈P(TSpF). Moreover by corollary 4.1.15 part 2, for any other object Y in

CoAlg(ΦCp)p∈P(TSpF) the mapping space MapCoAlg
(ΦCp )p∈P

(TSpF)(Y,BTX), is equivalent to

Eq (MapTSpF (Y,BTX) ∏p∈P MapTSpF (Y,BT(XtCp)).
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Which per. adjunction is equivalent to

Eq (MapTSpF (UY,X) ∏p∈P MapTSpF (UY,X
tCp).

Which per. definition (or rather lemma 4.1.4) is equivalent to MapCycSp(UY,X).

Finally we have the main theorem of this section, this is theorem 3 of the introduction.

T.II.6.3 Theorem 4.6.11. The functor (4.7) CycSpgen → CycSp induces an equivalence of ∞-categories
of bounded below naive and genuine cyclotomic spectra, CycSpgen+ → CycSp+.

Proof. We show that the composite U ○ ι ∶ CycSpgen → CycSp (4.7), is an equivalence of ∞-
categories, when restricted to the subcategories of bounded below spectra.

As discussed above both U and ι have right adjoints, denoted B and Rι respectively, hence
so does U ○ ι. We show that the composite U ○ ι is an equivalences. By the same argument as
in the p-local setting we have that U ○ ι is conservative. Hence by lemma 1.2.8 it remains to
show that the right adjoint is fully faithful. We do this analogously to the p-local case, i.e. by
showing that the counit is an equivalence, i.e. that UιRB((X,Φp))→ (X,Φp) is an equivalence
for (X,Φp) ∈ CycSpp,+. By theorem 4.6.4 we have that ιR(B((X,Φp))) ≅ B((X,Φp)), and by
lemma 4.6.10 we have that UB((X,Φp)) ≃ (X,Φp), collecting these gives the desired result.

(M1 ∶ Coffee Theorems)

(M2 ∶ Coffee Theorems)
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