Abstract

We work over finite fields and their extensions. We determine the cardinality of the
solution set of Fermat hypersurfaces. We calculate this cardinality in different ways:
using character theory, namely Gauss- and Jacobi sums, and with projective- and
algebraic geometry. We consider several special cases of Fermat hypersurfaces before
giving a procedure for treating the general case. Based on these results, we prove the
law of quadratic reciprocity and the Hasse-davenport relation. Finally we prove the
rationality of Weil’s generating function for the cardinality of the solution set of a
general Fermat hypersurface.

Dansk resume

Vi arbejder over endelige legemer og deres udvidelser. Vi bestemmer kardinaliteten af
lgsningsmaengden til Fermat hyperflader. Vi beregner denne kardinalitet pa flere mader:
ved brug af multiplikative karakterer, nsermere bestemt Gauss- og Jacobi summer, og
ved brug af projektiv- og algebraisk geometri. Vi betragter flere specialtilfaelde af
Fermat hyperflader og giver en metode til behandling af den generaliserede Fermat
hyperflade. Pa dette grundlag beviser vi loven om kvadratisk reciprocitet og
Hasse-Davenport relationen. Til sidst beviser vi rationaliteten af Weils genererende
funktion for kardinaliteten af lgsningsmaengden til en generel Fermat hyperflade.
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Introduction

A familiar problem in maths is the study of integer solutions to the Fermat equation
a" +b" =c".

This thesis aims to generalize this type of equation and study the associated solution
sets. We will treat equations on the form

a ]t + agxy? + 4 apx, "t =
m; €N, i=1,..nand a;,z; € F, i =1,...,n where I is a finite field. We will typically
restrict ourselves to the case where F = IF,, for p an odd prime, but later on we will look
at solution sets in general field extensions.
The type of equation above is what we call a Fermat hypersurface. Denoting by N,,(b)
the cardinality of the solution set, i.e.

No(b) = #{ar1z]™ + ap2y” + ... + apz™ = bl (v1, ..., v,) € F}

our goal here is to find different methods to determine this number. It turns out that
this can be done in many different ways, for instance using character theory or
geometry. Depending on which method we use, we can derive other results in the
process, for instance the law of quadratic reciprocity.

In the last part of the thesis we will show a big result of Weil’s, namely that we can
associate the cardinality of a solution set corresponding to a field extension of any
degree with a generating series which becomes a rational function.

The primary sources used for this thesis are Michael Rosen and Kenneth Ireland’s A
Classical Introduction to Modern Number Theory and André Weil’s article Numbers of
Solutions of Equations in Finite Fields; please see the references for details.

The thesis presupposes basic knowledge of algebra, and some algebraic number theory
and -geometry, but most necessary results will be stated within.



(Gauss and Jacobi sums

In this chapter we will cover some basic theory involving multiplicative characters, a
particular type of map with useful properties. Particularly we will study various kinds
of sums over multiplicative characters, results which we will use extensively later on
when we start working on problems from number theory. These will be what we refer to
as Gauss- and Jacobi sums. When not explicitly stated, any characters we work with
are assumed to be multiplicative.

In the following we work over finite fields of the type F, = Z/pZ where p is an odd
prime.

2.1 Multiplicative characters

A multiplicative character is a map from the multiplicative group F, belonging to our
field F,, into the non-zero complex numbers. Initially we work only with F}; but later on
it will be useful to extend our maps to the whole field. More specifically we have:

Definition 2.1.1. Let x : Fy — C\{0}. Then x is a multiplicative character if it
satisfies x(ab) = x(a)x(b) for all a,b € F,.

Some examples of multiplicative characters are the Legendre symbol given by
x(a) = (%), and the trivial character ¢, defined by e(a) = 1 for all a in F,. We can also
extend multiplicative characters to all of I, by putting x(0) =0, x # ¢, and ¢(0) = 1.

It is useful to to get an overview of the many properties of characters. Below we state
and prove some useful results that lead up to larger theorems.

Proposition 2.1.2. Let x be a multiplicative character on F, and let a € F,. Then x
has the following properties:

a) X(l) =1

b) x(a) is a (p —1)st root of unity;

¢) x(a™!) = x(a)™! = x(a).

Proof. a) First note that by definition x(1) # 0. We have that

x(1) = x(1-1) = x(1)x(1), so x(1) = 1.

b) Since a € 5, aP~" = 1. This implies that 1 = x(1) = x(a?~') = x(a)’', ie. x is a
(p — 1)st root of unity.

¢) We have that 1 = x(1) = x(a"'a) = x(a')x(a), hence x(a™t) = x(a)™'. b) gives
that x(a) has absolute value one, and since x(a) is a complex number, this implies that
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Proposition 2.1.3. If x is a multiplicative character, x # ¢, then Y. x(t) = 0. If

teF,
X = ¢, then > &(t) =p.
teF,

Proof. 1t follows immediately that ) e(¢) = p by definition of € and the fact that I,
tEF,,

has p elements. Assume yx # €. Then by definition, there exists an a € [} such that
x(a) #1. Let T'= > x(t). Recall that we defined x(0) = 0 so we can disregard this

teF,
term and then we have a sum over elements of F), which is a group. Then for a fixed

non-zero a, at will also run through all the elements of [F, as ¢ runs through these. Then
we have

X(@)T => x(a)x(t)=>_ x(at) =T.

teF, teF,
Since we have x(a) # 1, it follows that 7" = 0. ]

The characters on [F,, form an abelian group with pointwise multiplication as operation
so that:

a) xA(a) = x(a)A(a) for all a in F;
b) the neutral element is the trivial character ;

c) the inverse, x !, pertaining to a character y, is the map that for all a in [} maps to

x(a)™ = x(a).
By this we have the following result:

Proposition 2.1.4. The group of characters is cyclic of order p — 1. Furthermore, if
a # 1 €Ty, there exists a character x such that x(a) # 1.

Proof. We use that the characters form a group and the well-known fact that F, is
cyclic. Now let g be a generator for F), so that every element a € F) can be expressed
as a power of g. If a = ¢!, then for any character y it holds that x(a) = x(¢') = x(g)".
This shows that a character is completely determined by its value on the generator. We
have shown previously that x(g) is a (p — 1)st root of unity, of which there are precisely
p — 1. Hence the order of the character group can at most be p — 1.

Let X : F; — C\{0} be defined by A(¢') = e»"1. Then \ is well-defined and is a
character on ;. Let n be the order of A, i.e. the smallest integer such that \" = e.
Now we show that n = p — 1. We have that \"(g) = £(g) = 1, but we also have that
A'(g) = Ag)" = e%, hence p — 1|n (using the fundamental fact that ¢*™ = 1 and
b £ 1if ¢ ¢ 7).

Since \’?7!(a) = AMa)P™! = AMaP™') = A(1) = 1, we have \WP7! =¢.

As e, \, A2, ..., \P71 are all distinct, and since we have shown that the number of
characters can at most be p — 1, this gives that there are precisely p — 1 characters. It
also shows that the character group is cyclic and that A is a generator for this group.
Lastly, we show that if p — 1 /I, then for a € F}, a # 1, and a = g', we have that
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2mil

A(a) # 1. This follows by calculation: A(a) = A\(¢') = A\(g)! = er—1 # 1 by our
assumption on /. O

This result also gives the following corollary abut character sums:

Corollary 2.1.4.1. For a # 1, a € F,, we have that

Z x(a) = 0.

all characters x

Proof. Denote by S the sum

S = Z x(a).

all characters x

By the previous proposition, this sum is finite and there exists a character A such that
A(a) # 1. Then we have that

AMa)S = Z Aa)x(a) = Z Ax(a) = S.

all characters x all characters x

Since the characters form a group, then for a fixed A, Ay runs over all characters as y
does. Since A(a) # 1, we must have S = 0. O

Now we start applying character theory to the study of equations and enumerating their
solutions. We start by considering the special case x™ = a:

Proposition 2.1.5. Let a € F), and n|lp — 1. If the equation =™ = a, n € N, has no
solutions, then there exists a character x such that

a) X" =g

b)  x(a) # 1.

Proof. Let g be a generator for 7 and let A be the character as defined in the proof of
proposition 2.1.4, i.e. Aa) = \(¢!) = er-1 where g is a generator. Let y = A"+ . Then
we have that

.p—1
27i n

p—1 2mi(p—1) 27

X(g) = AT(g) = /\<g)T —e -1 —=genl-1) =¢en

Since g is a generator, a = ¢' for some [. The assumption that 2" = a has no solutions
. . .. l
implies that n cannot divide [, as we would have x = g=». Then we have that

2mil

xX(a) =x(g') = x(9)' = e #1
which gives b). O

Let a be an element of F,. Then we consider the equation 2" = a and let N(2™ = a)
denote the number of solutions. The following proposition gives a way of determining
this number:



Proposition 2.1.6. Let n be a divisor of p — 1. Then it holds that

N =a)= 3 x(a)

x"=e
where we sum over all characters x of order dividing n.
Proof. We proceed by first proving the following small lemma:

Lemma 2.1.7. There are precisely n characters of order dividing n.

Proof. First we note the fact that x(g) must be an nth root of unity. This means there

can at most be n such characters. In proposition 2.1.5 we found a character x such that
_ i : 2 n—1 o

x(g) = e . Then by taking ¢, x, x?, ..., X"~ ' we get n distinct characters of order

dividing n. O]

Now we show the proposition. We consider the cases a = 0 and a # 0 separately. First
we note that since F, is a field, the case a = 0 has one solution, namely x = 0. We have
> x(0) =1, since £(0) = 1, and we have defined x(0) = 0 for x # «.

X"=¢
For a # 0, 2" = a is either solvable or not. If it is solvable, there is a b € F;, such that

b" = a. For x" = ¢, we have that

x(a) = x(b") = x(0)" = x"(b) = e(b) = 1.

This implies

N@"=a)= 3 x(a) =n

X"=e

as there are exactly n characters x such that y" = ¢ by the preceding lemma. If 2" = a
is not solvable, we show that »_ y(a) = 0. By proposition 2.1.5 there exists a character

X"=e

p such that p(a) # 1 and p™ = . Then we have that

p(a) > x(a) = D pla)x(a)

n—g

= Y pxl(a)

n—g

= ) xla)

X"=e

where the last equality follows from the fact that the characters of order dividing n
form a group, and for fixed p, px runs through all these characters as y does. Since
p(a) # 0, we must have > x(a) =0 as wanted. This completes the proof. O

X"=€e

Lemma 2.1.8. In the special case n = 2, we have N(2* =a) =1+ (%) where (%) is
the Legendre symbol.
Proof. 'This follows by counting solutions; a = 0 gives one solution as mentioned above,

and since n = 2, we only have one multiplicative character of order 2, namely

x() = (3)- =



2.2 Gauss sums

After working with multiplicative characters, we are ready to define Gauss sums and
consider their properties: let x be a character on [F, as previously, and let a be an
element of F,,.

Definition 2.2.1. We denote by g.(x) the Gauss sum corresponding to the character y,
where gq(x) is given by

= > (et

teF,

for all a in F,.

24 247
For convenience we write e » = (, so that e”» = (*. Furthermore, in the case a = 1,
which we primarily work with, we use the abbreviation g;(x) = g(x). Now we are ready
to formulate some useful results about Gauss sums, however first we need a few lemmas:

Lemma 2.2.2. Fora € IF; we have

p—1

ZC“t:pforaEO mod p
=0
p—1
ZC‘“zOfora;—éO mod p

t=0

Proof. If a=0 mod p, then (* = 1 since €™ = 1. Then 37"} (* =p. If a #0 mod p
then C“ # 1, and by the sum formula of the geometric series we have
"~ ¢ = = =0, again since 2™ = 1. O

This Corollary follows immediately from the lemma:

Corollary 2.2.2.1. For z and y in IF,, define the delta function as §(x,y) =1 for
x =y mod p and 6(x,y) = 0 otherwise. Then we have

—_

p—

¢ = pé(,y).
t

Il
o

Proof. Simply substitute a = x — y in the proof of lemma 2.2.2. m

Proposition 2.2.3. For a in F, and a character x we have the following:
a) For a#0 and x # ¢: ga(x) = x(a™")g(x);

b) For a # 0 and x = e: g,(e) = 0;
c) Fora=0 and x =¢: go(e) = p;
d) Fora=0 and x # ¢: go(x) = 0.



Proof. a) For a # 0 and y # ¢, we have

X(@)ga(x) = x(@) Y x(B)¢" =D x(at)¢ = g(x)

teF, teF,

since for fixed a,at runs over the elements of IF, as ¢ does.
b) For a # 0,

Gale) =Y e(t)¢ = (=0

teF, teF,,

by use of lemma 2.2.2.
c) We have

go(e) =D ()¢ =D (t)

teF, teF,

by proposition 2.1.3.

d) By definition go(x) = > x(t). By proposition 2.1.3 this sum is equal to zero for
teF,

X # €. -
Proposition 2.2.4. For x # ¢ it holds that |g(x)| =

p-

Proof. We proceed by considering the sum > g,(x)ga(X). By proposition 2.2.3 a), we

a€lFp

have that g,(x) = x(a 1) g(x) = x(a)g(x) for a # 0. By using this, we have

X) = x(a™)g(x)x(a)g(x) = lg(x)|?

~—~

9a(X)9a

since x(a™')x(a) = x(a"'a) = 1. By proposition 2.2.3 d), go(x) = 0 for x # €, so we
have that > g.(x)9.(x) = (p — 1)|g(x)|?. By direct calculatlon we also have

aclF,
PR

z€lFp yelp

Summing over a € F, on both sides gives:

S am) = 30303 x@xmiee

a€lfFp a€lFp z€Fp yelFp

= D> > x@x)éy)p

zelF, yel,

= (p—1p

by use of corollary 2.2.2.1 in the second to last equality. By this we have that
(p— 1)’9(X)|2 = (p — 1)p, hence |g(x)| = /D 0

Lemma 2.2.5. Recalling the definition of X as the character that takes a € F,, to
x(a) = x(a)™!, we have g(x) = x(—=1)g(X). Furthermore, g(x)g(X) = x(—1)p.
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Proof. We calculate the conjugated Gauss sum as

g00) =D _x(B)¢ =D x(O¢C" =x(=1) > x(=)¢" = x(=1)g(x).

teF, teF,, teF,,

Here we have used that y(—1) = x(—1), since we must have x(—1) = £1. From this we
can also remark that |g()[> = p is equivalent to g(x)g(X) = x(—1)p. O

After studying the properties of Gauss sums, we are ready to introduce another type of
character sum, namely Jacobi sums, which we will use extensively to analyse solutions
to various types of equations.

2.3 Jacobi sums

Let x and A be characters on [, and denote by J(x, A) the sum
JOuA) = Y x(@)A®)
a+b=1

for a and b in F,. We call this type of sum a Jacobi sum. Like in the case of Gauss
sums, we start by introducing some useful properties of Jacobi sums, and then we will
apply these to the study of equations over F,,.

Theorem 2.3.1. Let x # € and X # € be characters on IF,,. Then the following hold:
a) J(e,€) = p;

b) J(e,x) = 0;

¢) JOx,x7") = —x(=1);

_ 9g(N)
d) fO’/’ X)‘ % &, ‘](X7 )‘) ETON Y I

Proof. a) Since
J(e,e) =Y e(a)e(b) = > e(ab)

a+b=1 a+b=1

this is trivially equal to p by definition of € (recall we have defined the extension
e(0) =1).
b) This follows by proposition 2.1.3, since by definition of ¢,

> ela)x(b) =) _ x(b) =0.

a+b=1 beF,

¢) First note that:

KIS SRUISIUNS SRV C I oY iy

a+b=1 a+b=1 a#1
b£0

where we have substituted b = 1 — a in the last step. Note that the b = 0 term is zero,
and this is the term where a = 1. If we let ¢ = %, then for ¢ # —1, a = ;7. Hence as

10



a runs through the elements of F,\{1}, ¢ runs through the elements of F,\{—1}. So we
have

JO6x ) +x(=1) = <Z x(0)> =0

c£—1

by proposition 2.1.3, and hence J(X,X‘l) = —x(—1).
d) First we observe that

g(x)gN) = | Do x| [ D] Als)¢

telFy, s€lfp
_ Z Z X 8 Ct-i—s
teF, selfy
- x(x x<m<s>> :
u€lf, \t+s=u

[fu=t+s=0thent=—s (or s = —t) and we get

g0)g(N) = D x(OA(s) =D x(BM—t

t+s=0 teFy

— ALY =

teF,,

by proposition 2.1.3 since by assumption YA #¢e. If u =t + s # 0, define ¢’ and s’ by
t =wut’ and s = us’. These s’ and ¢’ exist since I, is a field. Then for ¢t + s = u,
t' 4+ s = 1. From this we get

> x®As) = > x(ut) u) Y x(t = XA(u)J (x, A).
t+s=u t'+s'=1 t'+s'=1

Then by substitution, we have

gx)gn) = Y (Z x(t)A(S)>C

u€l, \t+s=u

= > XAMu)J(x, A

u€lf,

= g(xN)J(x, A)

and so J(x,\) = S?g())‘) Note that is is well-defined since g(xA) # 0 by proposition

2.2.3 a) This completes the theorem. O
Corollary 2.3.1.1. If x # ¢, A # € and x\ # ¢, then |J(x, \)| = /D
Proof. We use theorem 2.3.1 d) and take the absolute value:

_ ’g<><>g(k) ‘

70N =[£I
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We then apply proposition 2.2.4 (since all involved characters are non-trivial):

)= |22 = vt = v

[
Proposition 2.3.2. For p =1 mod n and x a character of order n, n > 2, we have
that
g0)" = x(=DpI(x, X) T X7) - TG X" 7).
Proof. using theorem 2.3.1 d), we have that g(x)? = J(x, x)g(x*). We multiply both
sides by g(x):
g(x)* = 9(x)*9(x)
= JO, )90 g(v)
= JO6 )06 x)9(¢C)
since J(x, x?) = %)g()x). Continuing this successively, we have that
g0)" ™ = TG0 06X e TG X g .
Since  has order n, we have Y"1 = y™! =, so that g(x)g(x" ') = g(x)9(X) = x(—1)p
by lemma 2.2.5. By multiplying both sides by g(x), we get
g(x)" = 909"
= J06)T0GX) - T06 X" g g (x)
= x(=1)pJ(x. x)J ( X e TG X"
by lemma 2.2.5, since g(x"~')g(x) = g(x ")g(x) = 9(X)9(x) = x(—1)p. This gives the
desired result. O]

Corollary 2.3.2.1. For x a character of order 3 (also called a cubic character) and
p=1 mod 3, we have g(x)* = pJ(x, x)-

Proof. This follows from proposition 2.3.2 and putting n = 3, and observing that
X(=1) =x((=1)%) =x(-1)* = 1. O

Having worked with Jacobi sums and understanding their properties, we will now start
implementing this theory in the study of concrete equations over finite fields. We will
first consider a small example that can be analysed directly using Jacobi sums, then we
will move on to more complex cases that also require number theoretical methods.

Example 2.3.3.
We now look at an example of the application of Jacobi sums. Let p be an odd prime,

p =1 mod 4, and let x be a multiplicative character of order 4 on F,. Let p(-) = (;})

and J(x, p) = a +ib. We wish to find the number of solutions over F, to
v+t =1

12



We have that

Ny’ +a2*=1) = Y N@*=a)N('=b)
- > ((1 +p(a))ZV(b>>

by lemma 2.1.8 and proposition 2.1.6, where the inner sum is over all characters A of
order dividing 3. By expanding we get

DD SPUCESD S SPUCII)

a+b=1 j=0 a+b=1 j=0

JA%e) + J(\ e) + J(N%e) + TN e) + J(A%, p) + J(\, p) + J(A%, p) + J(N%, p)
P+O0+0+04+0+J(\p)+ (N p)+ J(N2 p)

p+ I\ p) + J(p, p) + TN, p)

p+J\p) + J(p, p) + J(A, p)

pt+a+ib+a—ib+ J(p,p)

D — (—1)%1 + 2a

p—142a

where we have used theorem 2.3.1 and the following observations: A\* = p (since A\* has
order 2 so this character is uniquely determined); J(A, p) = J(A\, p) = J(\, p) (since p is

the Legendre symbol); J(p, p) = J(p, p~") =
Legendre symbol) and finally A> = A\7! = \.

—p(—=1) = —(=1)"z" (again as p is the

Hence N(y* +2*=1)=p—1+ 2a.

13



The cardinality of the solution sets: some
specific cases with 2 variables

We will now consider three slightly more complicated cases. These will illustrate how
useful character theory and Jacobi sums are in the study of different types of equations.

3.1 The equation z% + 23 =1 over F,

We first look at the familiar equation z? + 23 = 1 over F,. Since we are working over a
finite field, 22 + 23 = 1 can only have finitely many solutions. Recall that

N (2% + 23 = 1) denotes the number of solutions over F,. We will now show how to find
this number explicitly. We wish to show

Proposition 3.1.1.
N(zi+25=1) = p—1, p=1 mod 4
Ni+22=1) = p+1, p=3 mod 4.
Proof. First observe that

N(zi+a3=1)= > N(z} =a)N(x} =b)

a+b=1

where we sum over all pairs a and b in [F, such that a +b = 1. By lemma 2.1.8, we have

that
weasnen s ()20 £ 0)C)

a€lp belF,

We know that the first two sums are zero by proposition 2.1.3. We apply theorem 2.3.1
¢) to the last sum and get

SO0 - SO0 e

= Jox ) =—x(-1)=~(-1)7
by definition of the Legendre symbol. We have used the fact that for any b in [F),

-1
x(b) = <§> = (%) = x(b)~1, since the Legendre symbol is always equal to +1, which

14



is unaffected by taking the reciprocal. From this, we get that
N(zi+23=1) = p—1,p=1 mod 4
Ni+22=1) = p+1, p=3 mod4

p

and —1 for p =3 mod 4. O

since we know from number theory that y(—1) = (i) = (=" islforp=1 mod 4

3.2 The equation z7 + z3 =1 over F,

We now wish to consider the number N(z3 + 23 = 1). This is only a small change in
exponents when we compare the previous case, however already at this stage our
computations become more complicated. Decomposing our equation into Jacobi sums
does not allow us to compute N (z3 + x3 = 1) directly, however it will give us a very
informative bound on the number of solutions. We will show the following result:

Proposition 3.2.1. Ouver F, the number of solutions to the equation x5 + x3 =1 is
given by

N} +a5=1) = p—2+2ReJ(x,X)
where x is a cubic character on F,.

Proof. We can decompose this into the sum
Nz} + a3 =1) = Z N(z} = a)N(z3 = ).
a+b=1
First we show the following lemma:

Lemma 3.2.2. If p =2 mod 3, then N(23 =a) = 1.

Proof. If p=2 mod 3 then p—1=1 mod 3, hence 3 fp — 1. This means that when
we consider residue classes in F,, we have that {1,...,p — 1} = {13, ..., (p — 1)*}. Hence
the map x — 22 is a bijection, which precisely means that N (23 = a) = 1. O

Assume now that p =1 mod 3. Let y # € be a character of order 3, then y? also has
order 3 so x? # . Since there are exactly 3 characters of order 3, these are ¢, y and x>
These are the cubic characters over IF,. By proposition 2.1.6, we have that

N(2® =a) =1+ x(a) + x*(a).

Hence we get



By writing out this sum, we get

DD K@) = D X@x’0)+ > xa)x®) + D xX’(a)x*(b)

1=0 7=0 a+b=1 a+b=1 a+b=1 a+b=1

+ > x(@xX’0) + > x(@)x®) + > x(a)x*(b)

a+b=1 a+b=1 a+b=1

+ Y @)+ D ax®) + Y X (a)xP(0).

a+b=1 a+b=1 a+b=1

When we use the results of theorem 2.3.1, we find this to be

ZZ (@)X () = p+0+0+0+J0x,x)+ 0. xD) + 0+ (% X) + I, x°)

= p+JOGX)+J06x ) I )+ 03X
= p+JOLX) I LT = x(=1) = xP(=1).

Since y has order 3, y%2 = y !

since we have

TJoeN) = > x(@A®) = Y x(@Ab) = > x(a) A(b) = J(X, N).

a+b=1 a+b=1 a+b=1

=X. By linearity of Jacobi sums, J(x,x™ 1) = J(x, x 1)

This means that J(x™,x) = J(x,x ') = —x(—1) = —x?*(—1), which gives the last

term and that J(x~!, x™') = J(x, x). Finally by observing that —1 = (—1)3 so
x(=1) = x(=1)3 = 1 we find the result

Nzt +a5=1) = p—2+2ReJ(x,X).

By use of corollary 2.3.1.1, we also have the estimate
[N (2 + a5 = 1) —p+2| < [2Re] (x, X)| < 2[ReJ (x, )| < 2[J(x, X)| = 2\/p

since we recall that the modulus of a complex number is always greater than the
absolute value of its real part. In plain terms, this estimate tells us that the number of
solutions N (2} + 23 = 1) differs from p — 2 by at most 2,/p. In other words, for suitably
large prime p, we know there are many solutions, even if we do not know the precise
number.

3.3 The equation z7 + x5 =1 over [,
The last case in two variables that we consider here is the equation z7 + 23 = 1 over [F,,.

As in the previous case, we will use Jacobi sums to find a bound on the number of
solutions. More specifically, we will show:

16



Proposition 3.3.1. Let p=1 mod n. Then then number of solutions to x7 + z§ =1,
n €N, inF, is given by

n—1
N} +ay =1)=p+1—0d(-n+ > JOx',x)
i
where 6,(—1) =1 for —1 = a” for some a in IF, and 6,,(—1) = 0 otherwise.
Proof. We use the decomposition
Nzl 4+z5=1)= Z N(z! =a)N(z§ =b).
a+b=1

Let x be a character of order n. From proposition 2.1.6 we know that

n—1
N(z} =a) = x’(a) (similarly for z5), and by this we get
=0

n—1 n—1 n—1 n—1
N@i+as=1)= Y>> > (ax'(b) = J(x5 x")
a+b=1 j=0 =0 7=0 =0

We apply theorem 2.3.1. Fori=j5=0, J(x
have that

JOA, ) = JOA ") = T X" ) = T ()T = = (1)

and these terms sum to — > x/(—1). We note that > x/(—1) =n for —1 an nth
j=1 Jj=0

n—1
power (i.e. —1 = a” for some o € F,) and > x?(—1) = 0 otherwise. Hence these terms
=0

contribute 1 — §,,(—1)n, where 6,(—1) = 1 for —1 an nth power and §,(—1) =0
otherwise. The last case to consider is where ¢ = 0 and j # 0, or 7 = 0 and ¢ # 0. This
case gives that J(x% x’) = 0. So in total, we get

n—1
N +ay=1)=p+1—6d.(-n+ Y JO'.x).

ij=1
i+j#n
This proves the proposition. O
n—1
Lastly, we note that Y. J(x,x)=(n—1)2—(n—1) = (n—1)(n — 2), all with
ij=1
i+i#n

absolute value |/p by corollary 2.3.1.1. From this, we directly get the following result on
the absolute value:

Proposition 3.3.2. We have the following bound on N(x3 + x3 = 1):
IN(@T + 25 = 1) +0u(=1)n—(p+ 1) < (n —1)(n - 2)/p.

Proof. This follows immediately by the above. O
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(Generalized Jacobi sums

In the previous chapter we saw how much information about different equations we
could derive using primarily the properties of Jacobi sums. Up to now we have only
been working with Jacobi sums defined for two characters, i.e. of the form J(x, A). We
will see that when studying more complicated equations with different parameters, it is
useful to expand our previous results for Jacobi sums to cases with more characters.

Definition 4.0.1. Let x1, ..., x; be characters on F,. Then a multi-character Jacobi
sum 1s given by

J(Xh "'7Xl) = Z Xl(tl)X2(t2> L. Xl(tl), tz € Fp.
t1+...+t=1

Note that the case [ = 2 is simply the case we studied in chapter 3. It is also useful to
introduce another variant of multi-character Jacobi sums, namely Jy, which is simply

l
the case where ) t; = 0:
i=1

Jooxsox) = Y, xalt) - xalh).

t1+...+t;=0
Let us begin by extending our previous theorem 2.3.1 to the multi-character case:

Theorem 4.0.2. For x;, 1 =1, ..., characters on F, and ¢ the trivial character, the
following hold:
-1

a) Jo(e,e,....e) = J(g,e,...,e) =pt;
b) If for some, but not all i, x; is trivial, then Jo(x1, X2, - X1) = J (X1, X2, -, x1) = 0;
c¢) Let x; # €. Then Jo(x1, X2, x1) = 0 for x1x2 ... - x1 # €, and

JO(le ---le) = Xz(—l)(p - 1)J(X17X27 ‘--7Xl—1)
otherwise.

Proof. a) For ty,t,...,t;_1 chosen arbitrarily in [F,, ¢; is uniquely determined by the
equation t; +to + ... + 1,1 +t; = 0, hence Jy(e, ¢, ...,e) = p'~1. Similarly for arbitrary
ty,...,t1_1, t; is uniquely determined by the equation ¢; + ... +¢; = 1, hence

J(g,...,e) =p" L

18



b) Assume that y;,7 =1, ..., s are non-trivial, and that x; = ¢ for j = s+ 1,...,1. Then
we have that

Yoot -ecxat) = Y xalt) e xa(t)

t1+...+t;=0 t1,...,t;—1€Fp
= P DY xalt) | e | DD xs(t)
t1€F, tselFy
= 0

where in the last step we apply proposition 2.1.3.
¢) First we note that

Jo(xs X2, - x1) = Y > alt) e xealtion) | xals).

SGFP t1+...+tj_1=—s

Since by assumption x; # ¢, we have x;(0) = 0. This means we can assume s # 0 in the
sum above. For s # 0 we define ¢ by the identity ¢; = —st. This is possible since F), is
a field. Then we have

Z xi1(t1) - ooxie1(tic) = xaxe - xi—1(—s) Z xa(th) - xiea(t_y)

t1+....+tj—_1=—s t/1+...+t;71:1

= XiX2:' - lel(—S)J(le -~-7le1)-

By this we get

Jo(X1; X255 X1) = xaxz * - Xi—1(=1)J (X1, -5 Xi-1) Z XiXz e Xa(S)

0#s€elFy,
because xi - ... - x; runs over the elements of Iy same as x; does (by assumption
X1 xi #€). Note that >° o x1xe - Xi(s) = 01if x1-...- xi # € by proposition 2.1.3
and > oxixz - xi(s) =p—1if x1 - ... x; = &. This gives c). O

We also have the following theorem that shows the connection between multi-character
Jacobi sums and Gauss sums:

Theorem 4.0.3. Let x;, 1 = 1,...,r, be non-trivial characters, and let x1 - ... - x; # €.
Then we have the relation

9(x1)9(x2) + - 9(xr) = J(X1, - Xr)g (XA X2 * o - Xr)

so in particular

J(Xb "'aXr) =
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Proof. First define the map ¢ : F, — C by ¢(t) = (', where we recall that ( = e
Note that p(t; +t2) = p(t1)e(t2) and g(x) = > x(¢)p(t). Then we have that

g(x1) - g0a) = | D xt)e(t) |- | DD x(t)e(t)
= Z ( Z xi(th) o Xr(tr)) p(s)-
s€Fp \t14..ttr=s

We consider the case s = 0 and the case s # 0: for s = 0, then since xy - ... - X, # &,
theorem 4.0.2 gives that

Jo(X1s s X)) = Z Xi1(t1) - X (tr) = 0.

t1+...+t-=0

For s # 0, we again use the substitution t; = st;, i = 1, ..,r, which gives that

Z Xl(tl) BT Xr(tr) = X1 Xr(s) Z Xl(tll) BT Xr(t:")

tit..tr=s th+..t=1
= X1 Xe(8) I (X, o Xr)-

Combining these, we have that

gix1) o g06) = D Xa e Xe(9) (X1, X ) (8)

0#s€lFy,
= J(Xh (RS XT)g(X1Xr)

which is what we wanted to show.
This theorem also has the following useful corollaries:
Corollary 4.0.3.1. Let x; # ¢ and x1 - ... - X» = €. Then we have that
90a) - g0x) = X (=PI (X1, o Xr—1)-
Furthermore, it holds that
gx1 - Xr-1)9(Xr) = X (=1)p.
Proof. By theorem 4.0.3 we have
g(xa) - g(xr-1) = J(X1s - Xr—1) (X1 o X))
By multiplying both sides by g(x.), we have that
g(x1) - - g0r-1)90¢) = J(x1s - Xe—1)g (X1 - - xr-1)9(xr)
SINCe X1 * oo " Xr_1Xr =&, X1° - Xr—1 = X, and thus
g(x1 - xe-1)906) = 9069 06) = X (= 1)p

by lemma 2.2.5. Inserting in the previous expression gives the result.
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Corollary 4.0.3.2. Let x; # ¢ and x1 - ... - X» = €. Then we have that
J(Xb ey XT’) = _XT(_]'>J(X1a ) Xr—l)'
If r =2 we put J(x1) = 1.

Proof. For r = 2, this is theorem 2.3.1 ¢). Now assume r > 2. We follow the proof of
theorem 4.0.3 with the assumption that y; - ... - x,, = €. Then we have that

g0x1) - g0) = JoXas o Xe)X1 e Xe(0) F T (X Xe) D X1+ e X (8) ()

s#0
= ‘]O(Xh X X'f) + J(Xb X XT) Z SO(S>
s#0
since X1 - ... - X#(0) =€(0) =1 and x1 - ... - x»(s) = e(s) = 1. Since » ¢(s) =0,
s€lFy
1= —er= —p(0) = >_ ©(s), hence

s#£0
g(Xl)g(XT) = ‘]O(Xla-"aXT)_J(Xla"'7X7“)
= x+(=D)(p—=1DJ(x1, - Xr-1) — J(X1, -, Xr)
by theorem 4.0.2 ¢). By the previous corollary, we also have that
g(x1) < 9(xr) = X (=1)PI (X1 s Xr—1)-

By this we get

Xr(=D)pJ (X155 Xr—1) = X (1) (0 = 1) T (X1, s Xr—1) — T (X1, -, X)
so that

J(Xla"'?X’/‘) = XT(_1>J(X1a7XT—1)(p_1_p)
= _XT(_1>J<X17 -~-7X7'71)

as wanted. O

Finally, before moving on to the study of more complicated equations, we give one last
theorem about multi-character Jacobi sums:

Theorem 4.0.4. Let x; #¢,i =1,....,r. Then we have that:
r—1

a) for xi- o X # & [0, o Xa) [ =0T
b) for xi - Xe =& |Jo(x1s s xe)| = (0= Dp = and |J(x1, . xo)| =p'2 .
Proof. a) By proposition 2.2.4 we have [g(x)| = y/p. By theorem 4.0.3 we have

g(x1) - 900 | _ ‘\/17‘ _
g(x1- - xr) VP '

‘J(Xb "'7XT‘)’ =

b) By theorem 4.0.2 ¢) we have

r—2

[JoOxas - X))l = e (=1 (p = 1)J (X1, s xo1)| = (p = D)p >
which gives the first part. Corollary 4.0.3.2 gives that

r—2

SO x| == xo (=D (X1, - xe1) =07
by part a). This completes the proof. O
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Determining N(l‘% +...+x5=1) over F,

Now we analyse the case of 27 + ... + 22 = 1 over F,, so here we have an arbitrary
number of variables. By finding expressions for the numbers of solutions we can later on
derive larger number theoretical results such as the law of quadratic reciprocity.

Below we use two different methods to count the number of solutions: first we use the
previous theory of Gauss sums, where we find that the number of solutions depends
only on whether n is even or odd. Then we derive the number of solutions using
projective geometry, where we find dependence not only on n but also on the quadratic
character of —1 in our field.

5.1 Finding the number of solutions with Gauss sums

We want to find a formula expressed in terms of characters for the number of solutions
to the equation z? + ... + 22 = 1 over the field F,. We recall that when x is a character

of order 2, y is then uniquely determined and y(-) = <5> We can then use the previous

result (lemma 2.1.8) that the number of solutions to z? = a is given by
N(z*=a)=1+x(a) =1+ (%) We wish to show the following:

Proposition 5.1.1. Let x be the character of order 2. For n odd, the number of
solutions is given by

n—1 n-—1

N(a:% + ..+ a:fl =1)= p"_1 + X(—l)Tp%.

For n even, the number of solutions is given by

n n—2

N(zi+..+ap=1)=p"" —x(-1):p = .

Proof. To get an impression of the behaviour of this equation, let us first consider a
special case of a small value of n. We will show how to calculate the case n = 3:

N@i+as+a3=1) = Z N(z} = a1)N(z5 = az) N(23 = a3)
— Y (e a) (0 )1+ x(a)
= Z <1 + x(a1) + x(a2) + x(as) + x(a1)x(az) + x(a1)x(as)
a1+az+az=1

+ xla)x(as) + x(@)x(as)x(as)).
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Here we recognise the expressions for the elementary symmetric polynomials. Recall
that the elementary symmetric polynomial in n variables, denoted by ex(y1, ..., y,) for
k=0,1,...,n, is given by the series

ek(Y1y ooy Yn) = Z Yjr * - Y
1<j1<g2<...<jr<n
where eo(y1, ..., yn) = 1. We use this to rewrite our Jacobi sums:

N@i+ad+a3=1) = p*+ > > xla)+ Y. > xla)x(a)

a1,a27a3€]Fp 1<5<3 a1,a27a3€]Fp 1<j<k<3

+ Z x(a1)x(az)x(as)

a1+az+az=1
= P+ Jx.x)+0+0
- p2 + J(X7X7X>

That the double sums are zero follows from the fact that > x(¢) = 0 when we sum over
t

all elements of F,, so for example > x(a;) = 0. Since
a1€F,

Z Zx(al)x(az)z Z x(araz)

a1€Fp az€lfp a1,a2€F)y

this is essentially the same as Y x(t) =0, t = ajaq, when the a;’s run through all

teF,
elements of FF,,. We use the same procedure for general n. We have the decomposition
N@i+..+22=1) = Z N2 =aj)-...- N(22 = ay)
a1~+...+an=1

= ) (+x(@) - (14 x(an)

a1+...+anp=1

D S DR Ch R

a1,...,an€Fp 1<j<n

+ Y > x(ag,) - - x(ay, )

at,...,an€Fp 1<j1 <ja<...<jn—-1<n

+ Z x(ay) - ...  x(an)

a1+ +an=1
= P 0+ 0+ T X)
= p" '+ J(X 0 X)

where all the double sums are zero by the same reasoning as in the case n = 3.

We have to consider the cases of n even and n odd separately. If n is odd, we have
X" = X, and if n is even, x" = ¢ (as x has order 2).

For n odd so x" # ¢, we can apply theorem 4.0.3, which gives that

) = g0)" gl

06 ) = g(x®)  9(x) "

= g(x
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We also have g(A)g(A) = A(—1)p for a character A by lemma 2.2.5. Since y here is the
unique order 2 character, it is unaffected by complex conjugation, and we have that
g(x) = g9(x™) = g(x). Then g(x)?> = x(—1)p, and by inserting into the Jacobi sum

n—1 n-—1

above, we get J(x,..,x) =g(x)" t=x(-1)2 p=2.

So for n odd, the number of solutions is given by:

n—1 n-—1

N(x% + ... +xi =1) :p”_1 +x(-1)zpz.

This proves the first part of the proposition. In the case of n even, we can use corollary
4.0.3.2 of theorem 4.0.3, which states that

J(X1, - Xn) = =Xn(=1)J (X1 s Xn—1)
when x; # ¢ for all i and x1 - ... x, = €.
So in our case, we have J(x,...,x) = —x(—=1)J(x, ..., x) since x has order 2, so x # ¢

and x" = ¢ (note that in the first Jacobi sum we have n entries, and in the last we have
n — 1 entries). Then, by using the result found for n odd, we get that

Sove) = x2S
= —x(—=Dg(x)"?
= —X(-Dx(-1)*TpT
= —x(-1EpT .

This completes the proposition. O

5.2 Finding the number of solutions using projective
geometry

Denote by N, (a) the number of solutions to the equation z% + ... + 22 = a over F,, i.e.

Nnp(a) = #{a3 + ... + 22 = a|(21, ..., x,) € F}'} and note ;1; N,(a) = p™. We know that
acly

elements in F, are either quadratic residues or non-quadratic residues modulo p (below

shortened to "squares" and "non-squares" for convenience). Denote by X (a) the set

Xo(a) = {21+ ... + 2} = a|[(21,...,7,) € Fj}. Then it holds that

Lemma 5.2.1. For a a square in I}, there is an isomorphism between X,(a) and

X, (1).
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Proof. We map X,,(1) to X,,(a) by scaling each z; by \/La, where we choose one of the
two square roots of a (for convenience the positive one). This is then well-defined for

a € F), a square:
1 2 L 1 2 1
—x —, =
va Va

L, L,
ﬁ_xl_*_..'—l__xn — 1

a a

<:>xf—i—...+xi = a

= Xu(a).

This scaling map has inverse given by multiplication by 1/a which, by the same type of
calculation as above, takes X, (a) to X, (1) through scaling each x; by \/a (where again
we have chosen a square root). Thus the map is a bijection, and for any a and b that

are squares in Iy, X,,(a) = X,,(b) since they are both isomorphic to X,,(1). O

Lemma 5.2.2. Analogously, if a and b are both non-squares in IF;, we have that
Xn(a) = X, (D).

Proof. If a and b are non-squares, so are their inverses a~! and b~!, and we use that the
product of any two non-squares is always a square, i.e. ab~" = ¢* for some ¢ in F}. Then
by applying the scaling map ¢ to each coordinate x;, we map X, (a) to X, (b):

{:)gxf—i-...—kgﬁ = a
b b "
Sai+..+12 = b
= X,(b).

The inverse scaling map \/g takes X,,(b) to X, (a), so that X, (a) = X,,(b).
[

Given an equation of the form 2% + ... + 22 = a in F,, it is useful to consider whether a
is a square in I, or not in order to ascertain the number of solutions. We will show that

the number of solutions N, (a) only depends on the quadratic character of a in IF,, i.e.
on (%) Furthermore, we can derive the following relations between the numbers of

solutions:

Lemma 5.2.3. For a € F, and N,(a) the number of solutions to x3 + ... + 22 = a over
F,, we have the following relations between the cardinalities of the solution sets:

-1 —1
Z Ny(a) = p" = N,(0)+ pTNn(square) + pTNn(non—square) (5.1)

Nnéquam) = p" ' = N,_1(~1) + N,_1(0) (5.2)
BOZL Ny 2222 (53)
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Proof. Equation 1 holds since we are summing over the solutions for all a € F,,, and we
can split these naturally into the cases a = 0 and a respectively square and non-square
in IF,. It follows that there are precisely pgl squares and ’%1 non-squares in [, by

considering the group homomorphism f : Fy — > given by f(a) = a®. The kernel of

this map has order 2, and since F; has p — 1 elements, there are p%l squares and thus
;%1 non-squares.

To derive equation 2, we apply stereographic projection. Stereographic projection is
given by a map that projects a sphere onto a plane. This map is smooth, bijective and
defined everywhere, save the point from which we project. To understand equation 2,
we first look at a concrete small n, n = 3. Let X = {7 + 23 + 23 = 1|(21, 72, x3) € F}.
Then Qo = (—1,0,0) € X, and for s and ¢ free variables, points of the form P = (0, s, t)
defines the plane where x; = 0. Call this plane Y. Then we find the line L through Q)
and P: for 0 < a <1, L is given by:

(1 —a)(—1,0,0) + a(0,s,t) = (v — 1, a8, at).
We find the intersection between X and L:

(@ =12+ (as)* + (at)? =
s (1+s2+t)a*—-2a = 0

—_

2
o0=—-.
14 5% +t2

Since a = 0 corresponds to )y, we can discard this solution, so we get the point

S a=0 or

2 2s 2t
—1, , € X.
1+ 52 42 1+ 82+¢27 1+ 82+ ¢2

This map is well-defined if we exclude the pairs (s,¢) in Y such that 1+ s* +¢2 = 0. To
go the other way and find the point in Y, we construct the inverse of the above map:

(1 —a)(—=1,0,0) + a(xy, x2, 23) = (a — 1 + axq, awy, ax3).

This line hits the plane fora—1+axr; =0 & a = ﬁ So we get the point in the plane

0 i) T3
71+$1’1+ZE1 '

Again, this map is well-defined when we exclude all points (x1, 29, x3) such that

21 = —1. By use of the isomorphism Y = {(0, s,t) € F}} = F,, x F,,, we have a bijection
between the sets F, x F,\{(s,t)|s* + t* = —1} and X\{(x1, 22, x3)|z; = —1}. When we
count the points in each of these sets, we arrive at the identity

p® — Na(—1) = N3(square) — Ny(0).

This gives insight into equation 2 for n = 3. We can use the same procedure for general
n, and we find the map

fH\{(51,....,8n-1)|57+ ... + 52 = =1} = X\{(21, .., zp) |21 = —1}

f(O ) 2 1 281 25n—1
S1yeeey Sp_1) = -1, -
POl ol 1+s2+ .. 4+ 1+2+ .. +82 7 1+824 ... +82
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with inverse
XN\ {(zy, o0z = =13 = H\{(s1,...,5,1)|s] + ... + 52, = —1}
(T4, ) (O 2 n )

M+ax 1+ m

where X = {27+ ... + 22 = 1|(21, ..., z,) € F}} and H is the hyperplane corresponding
to 21 = 0. Again, as H = {(0,51, ..., 5p—1) € Fp} 2 Fp~!, then by the method of
counting points in these sets we find the identity

p" ' — N,_1(=1) = N,_1(square) — N,_1(0)
which in the case n + 1 directly gives equation 2.

For equation 3, we see that it is equivalent to the expression
N,(0)=(p—1)N,_1(—1) + N,,_1(0).

This expression holds since we can split an equation of the form z? + ... + 22 = 0 into
the cases x, = 0 and x,, # 0. When counting solutions to these cases we get N,,_1(0)
and (p — 1)V,,_1(—1). The latter follows since there are p — 1 choices for z,,, and we can
divide the whole equation by z,, # 0 and rearrange the equation. Combining these two
cases gives equation 3. O

We would like to find a recursive relationship between the equations of lemma 5.2.3.
First we consider the number of solutions in the case n = 1: N;(square) = 2,
corresponding to the solutions to 27 = 1 where z; is a square in F,. Similarly we have
that Ny(non — square) = 0, corresponding to the case 23 = 1 for z; not a square in F,,.
Finally, N;(0) = 1, corresponding to #? = 0. From these we could, in theory, calculate
all values of N,,(0), N, (square) and N, (non — square) successively, however from a
certain step we can derive recursive formulas. For simplicity, we consider the cases —1
square and —1 non-square separately. By use of the previous we find the following
results:

Theorem 5.2.4. When —1 is a square in F,, we have the following relationships
between the number of solutions for n > 4: in the case where n is even:

Case 1) Nn<0) — pn—l_{_p% _p%;
No(1) = Ny(=1) = Nu(square) = p"= (p? —1);

N,(non — square) = p" " —p 2 .
In the case where n is odd:

Case 2) N,(0) = p" %
N,(1) = N,(-1) = N,(square) =p"* LTy

N, (non — square) = p" " —p



Proof. We prove each case separately. We start by verifying the identities for n = 4. We
do this by applying the stated formulas (we skip the details for calculating Ny and Nj
since they are easily found by knowing the values of N;) and find:

Ny(0) = (p—1)N3(—1) + N3(0)
(p — 1)N3(square) + N3(0)
= (- +p) +p°
= P +p’—p
Ny(square) = p* — N3(—1)+ N3(0)
= p* — Ns(square) + N3(0)
= P —p' —p+p’
= p’—p.
(p — 1)Ny(non — square) = 2p* —2N,(0) — (p — 1)Ny(square)
= ' 200" +p* —p) — (0~ )" —p)
& Ny(non — square) = p*—p

which verifies the start of the proof. We now assume case 1 holds, so that n is even, and
show that this implies case 2 for n + 1, which is odd. First:

Nog1(0) = (p = DNo(=1) + Nu(0)
= (p—Dp7 (p5 1)

n

= "
Secondly:
Npii1(square) = p" — Np(—1) 4+ N,(0)
= p"—pT (PP -1)+p" T HpE—pT
= p+pi,
And finally:

(p — 1)Npy1(non — square) = 2p"™ — 2N, ,1(0) — (p — 1) N, 11 (square)
2p" —2p" — (p—1) (" +p?)
which is equivalent to:

2p" —2p" — (p—1) (p" + p2)
p—1

Ny11(non — square) =

These are the correct identities. Now we assume case 2, so that n is odd, and show that
this implies case 1 for n + 1, which is even. First we find:

Nut1(0) = (p—1)Np(=1) + N, (0)
= (p—1) (p”‘l +pnT_1) +p

n+1 n—1
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Secondly:
Npii(square) = p" — N,(—1) + N,(0)
_ pn i <pn—1 +p%> _I_pn—l

n n=1
= p —p2.
And finally:
(1= Do (ron = square) = 27 =2Ns(0) (= >Nn+l<square>

which is equivalent to:
n n ntl n—1 n n=1
2p “—2(19 +pz o —p> )—(p—l)(p —p > )
p—1

Nyi1(non — square) =

_ pn . pn;l
These are the correct identities, and this completes the proof in the case where —1 is a
square. [

Theorem 5.2.5. When —1 is non-square in F),, we have the following relationships
between the number of solutions for n > 4: in the case where n is even:

Case 3) N,(0) = p" '+ (-1)2 (p% —pnT_2> ;
N,(1) = N,(square) = ( )% R
N,(—1) = N,(non — square) Pz (p% —(=1)2).
In the case when n is odd:
Case 4) N, (0) = p" %
Na(1) = Nu(square) ="'+ (=1)"7 p’7
N,(=1) = N,(non — square) = T (pnT_1 - (—1)717_1> :
Proof. Again we use induction. First we verify the start for n = 4 (again this is done
directly by calculation of n = 2,3, but we will not show all steps here):
Ny(0) = (p—1)N3(=1) + N3(0)
= (p — 1)N3(non — square) + N3(0)
= (p—Dplp+1)+p’
= pp*+p—1).
Ny(square) = p*— N3(—1) + N3(0)
= p* — N3(non — square) + N3(0)
= p —plp+1)+p°
= p’-p
(p — 1)Ny(non — square) = 2p* —2N4(0) — (p — 1)Ny(square)
= 2" =2p(p" +p—1) - (p - (P’ - p)
& Ny(non — square) = p(p* —1).
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We see that the expressions hold for the induction start. We now assume that case 3
holds for n, which is even, and show that this implies case 4 for n + 1, which is odd:

Nnt1(0) = (p— 1)Nu(=1) + N (0)

= (- Up'T (pF - (-1F) 7+ (-1)E (98 ")
= P
Secondly:
Npii(square) = p" — N,(—1)+ N,(0)
— =T (pF = (<)) 4 (<)) (p - ™)
= p"+(=1)%p?
And finally:

(p = 1) Nuy1 (non — square) = 2p™ — 2N,.41(0) — (p — 1) Ny 42 (square)

n n

which is equivalent to:

Nyi1(non — square) =
= p'—(=1)%p?.

These have the correct forms. Lastly we assume that case 4 holds for n, which is odd,
and show that this implies case 3 for n 4+ 1, which is even:

Noy1(0) = (p— No(=1) + Nu(0)

which holds when noting that we must have:

Next we have that:

Nyti(square) = p" — N,(—1) + N,(0)




Finally:

(0= 1)Nasa(non — square) = 2™ — 2N, 11(0) — (p — 1) Noy (square)
— 2pn+1 -9 <pn + (_1)

- (-1 (p” - (—1)TpT>

which is equivalent to:

N1 (non — square) =

nt+l n-—1

So we arrive at all the correct forms which completes the proof.

All of these, both in the case of —1 square and non-square in [, are consistent with
what we found using Jacobi sums in proposition 5.1.1.
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Deriving the quadratic character of 2 in
IF
p

In the following we give a description of the quadratic character of 2 in a field F,. By
using group theory, we wish to show the following theorem:

Theorem 6.0.1. Let x be the Legendre symbol over our field F,. Then x(2) =1 for
p==+1 mod8, and x(2) = —1 forp=3 mod 8 or p=5 mod 8.

Proof. In the previous chapter we have shown that the number of solutions to
z? +y* =1 over F, is equal to p £ 1, with p — 1 when —1 is a square and p + 1 when —1
is non-square.

In the following, let G be a finite (non-commutative) group of order 8. We recall that if
we let a finite group act on a set, the orbits of the group action give a partition of this
set. Hence if we let G act on the set S = {2 + 3> = 1|(z,y) € F.}, we then get S as a
disjoint union of the orbits of S under G.

We define the free orbits of G as the ones of order 8 (i.e. of the same order as the group
itself). This also gives us the following identity in the case where —1 is a square in F,:

#2’+ " =1(z,y) €F} = p—1
= Z (size of orbit)

orbits of G on S
Z (size of orbit) mod 8

non— free orbits of G on S

as we can split the sum over all orbits into two, one over the free orbits and one over the
non-free orbits, and then mod out by 8. Similarly, for —1 non-square in F,, we have:

p+1 = Z (size of orbit)

orbits of G on S
Z (size of orbit) mod 8.

non— free orbits of G on S

For finite groups, the order of any orbit must be a divisor of the group order, so any
orbit must have size 1,2,4 or 8. We recall here the result that |O,| = |G|/|G.|, where
O, denotes the orbit of x and GG, denotes the stabilizer of z.
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Given a pair (z,y) € F, x F, satisfying 2? + y* = 1, the orbit of x, respectively y, is
non-free if there exists a non-trivial stabilizer, i.e. if there is some g # 1 € GG such that
g(x,y) = (x,y). Given the pair (x,y) € FIQ), the possible group actions are given by:

(Z‘, y)? (—SL’, _y)7 <_y7 I)? (y7 —ZL‘), (_y7 —I), (ya I)? (Z‘, _y>

of which 6 are seen to be non-trivial. By inspection this reduces to considering the four
cases x =y, r = —x,y = —y and x = —y. We count all elements satisfying one of these,
making sure there is no overlap: the cases

)z = —yx=—-x
2z = —yy=-—y
Jar = —yr=y
)yr = —x,y=-—y
S)x = —x,x=y
6)y = —yar=y

all lead to the contradiction x = y = 0 so that x> 4+ y? = 1 fails. Hence no pair
(z,y) € F2 such that that 2* + y* = 1 will fulfil more than one of the equalities in the
list.

The cases © = —x and y = —y each correspond to 2 solutions, by the condition
2% 4+ y? = 1. The condition z? + y? = 1 also implies that the cases = y and x = —y
have the same number of solutions, and we use the previous fact (lemma 2.1.8) that

N(z® =a) =1+ x(a)

where x is the multiplicative character of order 2, the Legendre symbol. Since F, is a
field, we have a bijection between the sets {2? = 1|z € F,} and {2? = 2|z € F,}, which
follows from x = y, so that 222 = 1. So for the cases * = y and x = —y, we get 1 + x(2)
solutions both times. From the above we see that for —1 a square in F;:

p—1 = 242+1+x(2)+1+x(2) mod38
= 6+2x(2) mod 8.

Hence x(2) =1 for p =41 mod 8, and x(2) = —-1if p=3 mod 8 or p=5 mod 8.
Analogously, for —1 non-square in IF):

p+1=6+2x(2) mod 8.

Hence we have x(2) =1 for p= 41 mod 8, and x(2) = —1if p=3 mod8orp=5
mod 8. This completes the proof. O

Example 6.0.2.

Let us see an example of how to determine the quadratic character of 2 in a given finite
field. Let p =5, then —1 is square in F5. Then the theorem gives directly that
X(2) = —1, however we can also see this just from the group theory observations:
p—1 = 5—-1=4
= 6+ 2x(2) mod 8
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so we can see directly that x(2) = (%) = —1. If p =7 so —1 is non-square in F7, we have

p+1 = 7T4+1=8
= 6+2x(2) modS8.

Hence x(2) = (2) = 1 in this case.

6.1 The quadratic character of —1 in F,
From the above, we can also derive the quadratic character of —1 in IF,:
Proposition 6.1.1.
x(—=1) =p mod 4.
Proof. This is equivalent to
p—x(—1)=0 mod4

which follows as we found that p+1 =6+ 2x(2) mod 8 by considering the size of the
non-free orbits. We found this result by reducing to the cases:
a) x = —z and y = —y, which each has 2 solutions, giving 4 solutions in total;

b) 2 = y and x = —y, which each has 1+ x(2) solutions, giving either 0 or 4 solutions in
total. This means that the non-free orbits all have size divisible by 4, hence

x(—1) =p mod 4.
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Deriving the law of quadratic reciprocity

Based on our previous analysis of the equation z7 + ... + 22 = 1 over F,, we can derive
the quadratic character of odd primes modulo p, giving us results about quadratic
reciprocity. We now consider the case of n = ¢, where ¢ is an odd prime, ¢ # p. We will
prove the following version of the law of quadratic reciprocity:

Theorem 7.0.1. For p and q odd primes, p # q, and x(-) = (;), we have the relation

() (9

Proof. In the following, we work with the cyclic group G of order ¢, acting on the finite
set S = {2} + ... + 22 = 1|(21,...,24) € F}. G acts on S by cyclically permuting the
variables; if g € G is a generator, the action is given by g(x1,...,z4) = (24, 1, ..., Tg—1),
which has order ¢. Since the orbits must have size dividing ¢, all orbits necessarily have
size 1 or ¢ since ¢ is prime. By use of Gauss sums, we showed in proposition 5.1.1 that
for an odd number of variables, the number of solutions is given by the expression
_ a=1 g-1

N(at+ . +ap=1)=p" +x(-1)= p>

where y denotes the Legendre symbol. As in the case of 2, we have that

g—1 g—1

P x0T p e = #ai+ 42l =1(ay, . z,) € FY)
— Z (size of orbit)

orbits of G on S

Z (size of orbit) mod q.

non— free orbits of G on S

Since the free orbits are the ones of order ¢, and ¢ is prime, we are left with the orbits
of order 1, belonging to the case where x; = 29 = ... = 1, =  so that

zi + ...+ 22 = gz*. Since F, is a field, we can again construct a bijection between the
sets {22 = .|z € F,} and {2? = g|z € F,}, so that these equations have the same
numbers of solutions over IF,,. By lemma 2.1.8 we have

N(z* = q) = 1+ x(q)-
By the above, we have that

P (D) T p T = 1+ x(g) mod g
<z>1+x(—1)%p% = 1+ x(¢9) modgq
a-1 g¢-1
S x(-1)zpz = x(g0 modgq



where the second line follows by Fermat’s little theorem, as p fg. Since p%l = <§> and
by definition, x(q) = (%), we have

=
|
=
Xe]
M‘L
N
3
~~_
Il

8
i = ()(5)
e = (1)) ma

since by definition of the Legendre symbol, <§> = <§> and x(—1) = (—1)L§1. We
note that we can disregard having to work mod ¢, since for £1 = £1 mod n and

n > 2 (so that —1 Z 1 mod n), the left and right side are also identical over Z. This
precisely gives us the law of quadratic reciprocity. O

Example 7.0.2.

Let us see an example of how one can calculate the quadratic character of an odd prime
qin [F,. Let ¢ = 3 and p = 5, so that —1 is a square in [F,. By the group theoretical
results above, we have

—1_3-1

1+x(3) = 55 +y(-1)2 57
= 545
= 0 mod>b

from which we see that x(3) = (%) = —1. If p=7, so that —1 is non-square, we find
that

L+x(3) = T 4x(-)7 T
= 7T
= 2 mod?)

so that x(3) = (2) = 1.
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The Hasse-Davenport Relation

We now return to the study of Gauss sums. Let [F be a finite field with ¢ elements, ¢
not necessarily prime, and let E be a field extension of F of degree s. Let y # € be a
character on F. Then we wish to define the extended character x’ on E:

Definition 8.0.1. For finite fields F and E such that F C E and x is a character on F,
we define the extension of x to E, denoted by x', as

X' (@) = (x o Ngyr) (@) = x(Ng/r(ev))
where Ngr is the relative norm. By this definition X' is a multiplicative character on E.

For g a Gauss sum as previously defined in chapter 2, we wish to find the relation
between g(x) and g(x’). This will be given by the Hasse-Davenport relation.

To do this, we first need to recall certain algebraic results, such as the properties of
norm and trace. We need the following results:

Proposition 8.0.2. Let Fy(x) be the product of the monic irreducible polynomials in
Z.)pZ|z] of degree d. Then we have that

" — = HFd(x).

d|n

Proof. First note that this product is finite, since it has p?*! terms. Then note that for

a non-constant polynomial f, then if f(z)|z?" — x, then f(z)* fa?" — z, since if
2?" —z = f(x)?g(x) then by differentiation

—1=2f(x)f (2)g(z) + f(2)*d (x).

This would imply f(x)| — 1, which is a contradiction. What we must show now is that
for f a monic irreducible polynomial of degree d, then f(z)|z" — x if and only if d|n.
Let K = Z/pZ(«) where f(a) = 0. Then [K : Z/pZ] = d and so K has p? elements, and
' —x=0forz e K.

Now assume that 2" —x = f(z)g(x). Then o*" = a. If we take an element in K, we
know it has the form a;a% ! + asa® 2 + ... + a4, and then we have

(o™ 4+ ag)” = a0+ 4 ay

d—1
= aqo + ...+ ay

since K has characteristic p. Hence 27" — x = 0 for x € K. We know that in fields, for
a € N, a' —1ja™ — 1 if and only if I|m. Similarly, ' — 1|z™ — 1 in F[z] if and only if |m.
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This means that since 27" — x|2P" — z, d must be a divisor of n. On the other hand, if
d|n, then since " = a and f(x) is the monic irreducible polynomium for a, we have
that f(x)|z?" — z. Since d|n, 27" — z|2?" — x, hence f(z)|z?" — 2. O

Definition 8.0.3. Let F be a finite field with q elements, q not necessarily prime, and
let E be a field extension of F of degree s, so that E has ¢° elements. For o in E, we
define, respectively, the trace and norm of a from E to F by

Trgp=a+al+ .. +af

s—1
Negp=a-a?-...-af

We also need some basic results involving the properties of the relative norm and -trace:

Proposition 8.0.4. Let F,E, K be finite fields such that F C E C K. Let
d=[E:F|,m=[K:E| and n=[K:TF|. Let F have q elements, and let o € K. Then it
holds that

TTK/F(&) = T’I“E/]F(TTK/E(O())
Proof. We know from the extension theorems that n = dm. Since the number of
elements in E is ¢; = ¢¢, we have the traces

1

Trgm(a) = a+ ..+ ot
d—1

TTE/F(TTK/E(O!)) = Z TT’K/]E<C\{)qi

= TTK/F<OA).

This follows from the fact that by letting j run from 0 to m — 1 and ¢ from 0 to d — 1,
the power dj + i runs from O tod(m — 1)+ (d—1)=dm —1=n— 1. O

Proposition 8.0.5. Let K and F be finite fields such that F C K and n = [K : F]. Let F
be the field with q elements, and let « be an element of K. Let f(x) be the minimal
polynomial for o over F, and let E = F(«). Then we know that [E : F| = d for

d = deg(f). Write f as

fx) = o — a4+ 4+ (—1)dad.
Then the following hold:
CL) f(x) = ($ — Oz)(x — oﬂ) .. (:L‘ _ Oéqdfl);
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b) Trir(c) = Lay;
¢) Nxsr(a) =aj.

Proof. a) Since F is of characteristic ¢, we know the coefficients of f satisfy af = a;, so
we have

fla?) = f(a)!=0
so that af is another root of f. Since it also holds that
f(%) = f(a®)? =0,

o’ is also a root. In this manner we find that the roots of [ area, ..., aqdflv. To prove
a), we need to show that all these roots are distinct. Assume that a? = a4 for
0<1<j<dandlet k=7 —1 Now we show that £ = 0. We have

ol =af =" = (aqk)qi
Sa—a™) =0
sa = of.

We also know that f divides 27° — 2 by the minimality of f. By proposition 8.0.2 we
have that d|k. By assumption we have that 0 < k < d, so we must have k = 0 as was to
be shown.

b) It follows from a) that a; = Trg/p(a) and ag = Ngsr(c). Since by construction a € E,

we have Trg/p(e) = [K : Ela = Za and Nig/g() = ad. By proposition 8.0.4, we have

n

n
Trgsw(a) = Trgp <304> = o

n
TTK/]F(Oé) = TT’]E/F<T7“K/E(OC)) :E

as the trace function is additive.
¢) Analogously:
Ngsp(a) = Ngje(Nije(a)) = Ngp(a)d = Ngjp(ad) = af
as the norm function is multiplicative. This completes the proof. O]

From these basic algebraic results, we are ready to introduce some lemmas. First, let us
state the important Hasse-Davenport relation, which we wish to prove:

Theorem 8.0.6. The Hasse-Davenport relation:

Let F be the field with q elements and let E be an extension of F of degree s. For g a
Gauss sum, x a character on F and x' a character on E as in definition 8.0.1, it holds
that

(—9(x))" = —g9(x).

We will give a proof of this at the end of the chapter, but this proof requires several
lemmas which we will introduce first. Initially when we introduced Gauss sums, we did
so on the form

500 =Y x0T =3 x(t)¢

teF, teF,
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where we denoted ¢, simply as g. Let E,F and [F, be finite fields such that I, C F C E.
Let F,,F and E have respectively p,q and ¢° elements. In the following, we consider

() = ¢I"® where the trace Tr(t) is given as the function Trg/r, (1) as in definition
8.0.3. Then we have that

g(xX) =Y _X'()¢ )

teE
for & = ¢"=*®) By proposition 8.0.4,
TTE/]FP (t) = TT]F/]FP (TTIE/IE‘ (t))

and so ¢ = & o Tryp.

Let f(z) € Flz] be a monic polynomial, and write f(z) = 2" — a;2" ' + ... + (—1)"a,.
We now define A : Flz] — C by A(f) = &(a1)x(an). This Afunction will become useful
in proving the Hasse-Davenport relation, so now we will go over some lemmas
concerning the properties of A:

Lemma 8.0.7. For monic polynomials f and g in F[z], A as given above is a
multiplicative function, i.e.

A(fg) = AA(9)-
Proof. Let

fx) = 2" —a2" '+ ..+ (—=1)"a,
g(x) = 2™ =™+ L+ (=1) ",

Then their product is given by
f@)g(z) = 2™ = (ay + b)a™ ™ 4 L+ (1) a, by
By applying A and noting that by definition £(a 4 b) = £(a)&(b), we see that

A(fg) = €(ar + br)x(anbm) = £(b1)€(a1)x (bm)x(an) = A(f)A(g)

as wanted. O

Lemma 8.0.8. Let a be an element of the finite field E, and let f be the minimal
polynomial for o over F. Let d = deg(f) and let E be an extension of degree s over F.
Then we have that

M)t =X ()¢ (a).

Proof. We can apply proposition 8.0.5 for f(z) = 2% — a1297 ! + ... + (=1)%ay, so we
have that

T’I“E/F(Oé) = —=a
NE/F<05) = Q4.

40



S

By definition, A(f) = £(a1)x(aq), so by raising both sides to the power %, we get

S

A(f)d = §(a;)d><(ad)35
= f(a%)X(ULg)
= {(Trep(a))x(Ngr(a))
= (@)X ().

We now prove one final lemma involving the A function defined above before moving
onto the proof of Hasse-Davenport.

Lemma 8.0.9. Let F be the field with q elements and let E be a field extension of F of
degree s. Let g be the Gauss sum over X'. Then

g(') =Y deg(fIA(f)TD
f

where the sum is over all monic irreducible polynomials in Flx| of degree dividing s.

Proof. If we take F as our base field in proposition 8.0.2, then we know 29" — x can be
written as a product of all the monic irreducible polynomials in F[z] with order dividing
s. Each of these monic irreducible polynomials will have all its roots in E, and similarly
every o € [E will be a root of such a monic irreducible polynomial.

Now let f(z) € Flz] be monic and irreducible, with deg(f) = d and d|s. Denote the
roots of f by aq, ..., ag, all of which lie in E. Lemma 8.0.8 gives that

d

=Y X ()€ ().

i=1

alw

dA(f)

If we sum over all monic irreducible polynomials of order dividing s, we precisely get
that g(x') = Y2 X'(D€(t) = X deg(f)A(F) 77 as wanted. =
f

tek

We are now ready for the main result of the chapter:

Proof. (Of Hasse-Davenport)
We start by looking at the sum } A(f)tdeel) We wish to show that

des(f) _ 1
2N = )

where the sum is over all monic polynomials and the product is over all monic
irreducible polynomials in F[z], where F is the finite field with ¢ elements. This follows
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by calculation:

1
H 1 — A(f)tdes(d)

monic irreducible f

1 1
— A(f)tdes() 1 — A(fo)tdealf2)

— i ()\(fl)tdeg(fl))k . i (/\<f2)tdeg(f2))k
k=0 k=0

= (A )tdeg(fl) + )\2(f1)t2deg(f1) +..)- ()\(fQ)tdeg(fQ) + )\2(f2)t2deg(f2) I

= > A

monic f

using the fact that any monic polynomial can be written uniquely as the product of
monic irreducible polynomials. This is also equivalent to:

ZA PEED =31 3" A |
s€Ng \deg(f)=s

where we define A\(1) = 1. We see that the term corresponding to s = 0 is equal to 1.
Next, we consider the cases s =1 and s > 1 separately. For s = 1, we have that:

D M = D Me—a)

deg(f)=1 a€lF

by definition of A\. For s > 1, we get that:

Z A(f) = Z Mz® — a7t .+ (—1)%ay)

deg(f)=s, s>1 a;€F

= 2 Y x(al)

a1,as eF

= ¢ (Z X(%)) (Z 6(@1))

= 0
by proposition 2.1.3. We then have that

SOAHEED =10+ g(x)t+0 = 1+ g(x)t.

We now apply logarithmic differentiation:

deg(f d 1
— log (Z)\ t > 10g (Hf (1 _ ( )tdeg(f)))
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which gives

g(x)  A(f)deg(f)tdestN-1
L+g()t 1= A(f)tdes)

which is equivalent to

gt A(f)deg(f)tiel)
L+g(x)t  1— A(f)tdesd)

by multiplication with ¢. We expand the denominators into geometric series:

1
TN = —g(x)t)°
5900 ;( (x)?)
= > (=100t
s=0
so that
g(x)t - s s+14s4+1
- = —1)7g(x)™"t
T+ 900 ;( )*9(x)
= > Dl
s=1
Similarly,
ryrdeg(f
1—)\( 1)) ZA A
so that
A(f) deg(f tdeg(f) 7“+1 (r+1) deg(f)
1 — A(f)tdesl) Z deg(/ !

which gives the expression

3 A(f) deg(f)teesD) szeg Fyrerdestn)
!

L= ()t 2

To finish the proof, we can now equate the coefficients of t* and get

(1) g0 = > deg(HAS) ™.

deg(f)ls

By lemma 8.0.9, we have that g(x') = Zdeg Pls deg(f)M(f)@@ . Thus
(=1)%g(x)* = (—g9(x))* = —g(x), which gives the Hasse-Davenport identity.

43



The general case: a()a:go + . F+apx =Db

In this chapter we will study the most general type of equation over a finite field F with
p elements, namely the one given by

apry® + ... +apxm =b.

Theorem 9.0.1. Let ag,...,a, € F}, ng,...,n, € N and b € F,. Let ng|(p — 1) for
t=0,...,7. Over F, we have the followmg wdentities for the number of solutions to
apxy® —I— .+ a,x) = b for respectively b =0 and b # 0:

a) N(apxy® + ... + a,27" = 0) =p" + ZXo(agl) e (@) Jo(xos - X

where the sum is taken over tuples (Xo, ..., xr) of characters on F,, such that x}" = ¢,
Xi#e fori=0,..,rand xo-...- Xr = €.

b) N(aoxi® + ... + a,z)™ =b) =p" + Y xo- - xr(B)x0(ag") - oo - xola; ) (X0, - Xr)
where the sum is taken over tuples (Xo, ..., xr) of characters on F, such that x| = ¢,
Xi #¢e fori=0,..,r
Proof. a) We first use the decomposition
N(apzd® + ... 4+ a,z" = 0) = > N@p =) .- N =u).
a0u0+---+a7‘ur:0
We can rewrite each factor as N(z" = w;) = > x;(u;) by letting x; run over all
Xi
characters of order dividing n;. We then apply the substitution t; = a;u;, so we get

Z N(zg° =ug) - ... - N(x)" = uy,)

aguo+t...+arur =0

— Z Z XO(UO) Tt Xr(ur)

X0, Xr a0Uo+...+arur=0

= Y o) e lt)xo(ag) - vl

X0 s+ Xr toFoettr=0

= 32 ol ) oo x0)

X055 X7

by the previous definition of Jy. If x; = ¢ for all 7, xo(ag') - ... - x» (a7 ) Jo (X0, -y Xr) i8
equal to p" by theorem 4.0.2. If for some, but not all 7, x; = ¢, the term is equal to zero.
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Hence the only other non-zero contribution is for xq - ... - x, = €. This proves identity a).
b) again we decompose into

N(apzy® + ... + a,z)" = b) = Z N(z(® =up) - . - N2} = u,).
aguo+...+arur=b

As in case a), we rewrite each factor as N(zj" =u;) = > . xi(u;). We then apply the
substitution ¢; = b~ 'a;u; and get

Z N(zi® =ug) - ... - N(x)" = uy)

aoug+t-. +arur—b

= Z Z Xo(uo) - ... - xr(uy)

X0+ Xr AQUQ .. +arur=>b

= Z Z X0 et Xr(b>X0(a51> BEEEE XT(GZI)XO(tO) BEET Xr(tr>

X055 X1 aobtoagl-l— +abt, a,_lzb

= > > xo e xe®xolag) o xe(a xolto) - X ()

X0yeeesXr b0t ttr=1

= Z Xo - Xe(B)xo(ag ) o xr(ar )T (X0s s X )-

For y; = ¢ for all 4, the term xo - ... - x»(b)xo0(ag?) - ... - x»(a; ) J (X0, --., X») is equal to p",
again by theorem 4.0.2. If some, but not all, y; = ¢, the term is equal to zero. This

proves b). O
We will now look at case a) over projective space, for ng = ... = n, = n where n|(p — 1).
For simplicity, let N = N(apz{ + ... + ayx; = 0). Let N denote the number of solutions
over projective space. Then we know N = N(p—1)+1,ie. N = . As we have
shown

N=p"+ > Xolao) ...  xrlar) Jo(xo, - xr)

1
N=p 7+ dptls = > Xolao) - - Xelar) Jo(Xos s Xo)-

Before we proceed, it is useful to show the following lemma:

Lemma 9.0.2. We have the following relation between Gauss sums and Jy:

L Jo(xos e vs) = }ng) g0,

-1
Proof. By theorem 4.0.2, we have that
1 1
1<]0(X07"'7X7") = —XT(_l)(p_ 1)J(X07"'aXr—1)
p—1
1 9(xr)
= ——x.(=Dp—-1)J(xo0, - Xr—
p— (=D —1J(xo 1>g(x7~)
g\Xo) - g\Xr
_ XT'(_1> ( 0) ( )

g(x0 - Xr—1)9(Xr)



By corollary 4.0.3.1, g(xo, .-, Xo—1)9(x+) = X»(—1)p, hence

1 _ xe(=Dglxo) - - 9(xr)
p_lJo(Xo---Xr) = R

- }ng) o g().

9.1 The rationality of the generating function for N

Let F be the field with p elements and let K be an extension of F of degree k. Again we

consider the equation
apxy + ... +a;xr =0, n|(p—1).

Let N}, denote the number of projective solutions over K. Then we have that

1

Np = 14ph 4+ 4p0 04 > Xo(a0) - X (ar) g (o) - - 9(x)
X0+ X
1
= L+pf+ . +p 0 (- %k(ao)....-W(a,)ﬁ(—1)k<m>gk(><0)....

by definition of the extended characters x} and use of Hasse-Davenport. We wish to
show the following theorem:

Theorem 9.1.1. Let u be our variable, and let > - | Nyu® be the generating function

for the number of solutions to the equation apxf + ... + a,x] = 0 over the finite field K.

Then this generating series is a rational function of w.

Proof. First we note that it is enough to consider the generating function for Ny, by the

linear relation N = N(p — 1) + 1. We will proceed by showing that the generating
function Y ;- Nyu*~! gives a rational function of u. We calculate the value of

>y Nt

r—1 e )

" (xr)

_ Z . pjkukfl + (_1)r+1 Z Z %k(ao) . _Ek<ar)]%(_1>k(r+l)gk<xo) - gk(Xﬁukil.

To simplify this, we look at Xg*(ao) - .- - X7 (ar) 5 (=1) Vg (x0) - ... - ¢*(x). We have
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that

) e T 0) 2 (DM g () e ()
eV 1 r+1
= (Xo(ao) Xr(ar)]_)< 1) 9 )
k
- (( 1K) - X lar) - ox - ,xr)
(C(=1)~)*
= CF
where we put
C= (_1)r_ XD(GO) X?"(ar‘) 1J0(X0a ~-~>X7")-
Then

$

=1 k=

since we have

-1

Z

=0

and

1 j=0
r—1

Zd

7=0

og(1 — p'u)

Z Z pjkzukz—l

r—&-lz Z C«kkl

d
(1P + (1 3 Jlos1 )
Sh KA G Gl
Y Ay
7=0 m=1
r—1 oo d mp]mum
Jomz:l@( 1)° —
r—1 oo
Zp]mum—l
7=0 m=
r - d m<_Cu)
A
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What remains is to show the rationality in w:

00 r—1
— d d
k-1 __ r
d Nt = =) - log(1 = plu) + (=1) > - log(1 — Cu)
k=1 7=0 X055 Xr
r—1 d
= ——log (Ha —p7u)> + (1) log ( I] a- Cu)>
J=0 X050 X7
1 (="
= d—log — +d—log ( H (1—Cu)>
101~ piu) -
j=0
(="
( T (1- C’u))
_d X0 1o X
= o log T
u = .
[1(1=piu)
§=0
This gives a rational function, since the derivative % log(z) = % is rational, and we only
work with finite products in the above. O
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Conclusion

Throughout this thesis we have treated different types of equations over finite fields,
and as we have seen, they can be analyzed using several different methods. Some of
these methods have the benefit of simplicity, others that they lead to additional
theorems and results in the process.

The final result of weil’s is quite noteworthy; when we look at the number of solutions
to a general Fermat hypersurface, we can associate this to a finite and rational function
regardless of the degree of the field extension we work with. One of the further results
one can show is that the results in chapter 8 also hold without the assumption n|(p —1).
No doubt it is possible to generalize this theory even further, or consider other
interesting special cases, though even within the limitations we have worked with here,
we have found many broad and useful results.
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