
Abstract

We work over �nite �elds and their extensions. We determine the cardinality of the
solution set of Fermat hypersurfaces. We calculate this cardinality in di�erent ways:
using character theory, namely Gauss- and Jacobi sums, and with projective- and
algebraic geometry. We consider several special cases of Fermat hypersurfaces before
giving a procedure for treating the general case. Based on these results, we prove the
law of quadratic reciprocity and the Hasse-davenport relation. Finally we prove the
rationality of Weil's generating function for the cardinality of the solution set of a
general Fermat hypersurface.

Dansk resume

Vi arbejder over endelige legemer og deres udvidelser. Vi bestemmer kardinaliteten af
løsningsmængden til Fermat hyper�ader. Vi beregner denne kardinalitet på �ere måder:
ved brug af multiplikative karakterer, nærmere bestemt Gauss- og Jacobi summer, og
ved brug af projektiv- og algebraisk geometri. Vi betragter �ere specialtilfælde af
Fermat hyper�ader og giver en metode til behandling af den generaliserede Fermat
hyper�ade. På dette grundlag beviser vi loven om kvadratisk reciprocitet og
Hasse-Davenport relationen. Til sidst beviser vi rationaliteten af Weils genererende
funktion for kardinaliteten af løsningsmængden til en generel Fermat hyper�ade.
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Introduction

A familiar problem in maths is the study of integer solutions to the Fermat equation

an + bn = cn.

This thesis aims to generalize this type of equation and study the associated solution
sets. We will treat equations on the form

a1x
m1
1 + a2x

m2
2 + ...+ anx

mn
n = b

mi ∈ N, i = 1, ...n and ai, xi ∈ F, i = 1, ..., n where F is a �nite �eld. We will typically
restrict ourselves to the case where F = Fp for p an odd prime, but later on we will look
at solution sets in general �eld extensions.
The type of equation above is what we call a Fermat hypersurface. Denoting by Nn(b)
the cardinality of the solution set, i.e.

Nn(b) = #{a1xm1
1 + a2x

m2
2 + ...+ anx

mn
n = b|(x1, ..., xn) ∈ Fnp}

our goal here is to �nd di�erent methods to determine this number. It turns out that
this can be done in many di�erent ways, for instance using character theory or
geometry. Depending on which method we use, we can derive other results in the
process, for instance the law of quadratic reciprocity.
In the last part of the thesis we will show a big result of Weil's, namely that we can
associate the cardinality of a solution set corresponding to a �eld extension of any
degree with a generating series which becomes a rational function.

The primary sources used for this thesis are Michael Rosen and Kenneth Ireland's A
Classical Introduction to Modern Number Theory and André Weil's article Numbers of
Solutions of Equations in Finite Fields ; please see the references for details.

The thesis presupposes basic knowledge of algebra, and some algebraic number theory
and -geometry, but most necessary results will be stated within.

3



Gauss and Jacobi sums

In this chapter we will cover some basic theory involving multiplicative characters, a
particular type of map with useful properties. Particularly we will study various kinds
of sums over multiplicative characters, results which we will use extensively later on
when we start working on problems from number theory. These will be what we refer to
as Gauss- and Jacobi sums. When not explicitly stated, any characters we work with
are assumed to be multiplicative.
In the following we work over �nite �elds of the type Fp = Z/pZ where p is an odd
prime.

2.1 Multiplicative characters

A multiplicative character is a map from the multiplicative group F∗p belonging to our
�eld Fp into the non-zero complex numbers. Initially we work only with F∗p, but later on
it will be useful to extend our maps to the whole �eld. More speci�cally we have:

De�nition 2.1.1. Let χ : F∗p → C\{0}. Then χ is a multiplicative character if it
satis�es χ(ab) = χ(a)χ(b) for all a, b ∈ F∗p.

Some examples of multiplicative characters are the Legendre symbol given by

χ(a) =
(
a
p

)
, and the trivial character ε, de�ned by ε(a) = 1 for all a in F∗p. We can also

extend multiplicative characters to all of Fp by putting χ(0) = 0, χ 6= ε, and ε(0) = 1.

It is useful to to get an overview of the many properties of characters. Below we state
and prove some useful results that lead up to larger theorems.

Proposition 2.1.2. Let χ be a multiplicative character on Fp and let a ∈ F∗p. Then χ
has the following properties:
a) χ(1) = 1;
b) χ(a) is a (p− 1)st root of unity;
c) χ(a−1) = χ(a)−1 = χ(a).

Proof. a) First note that by de�nition χ(1) 6= 0. We have that
χ(1) = χ(1 · 1) = χ(1)χ(1), so χ(1) = 1.
b) Since a ∈ F∗p, ap−1 = 1. This implies that 1 = χ(1) = χ(ap−1) = χ(a)p−1, i.e. χ is a
(p− 1)st root of unity.
c) We have that 1 = χ(1) = χ(a−1a) = χ(a−1)χ(a), hence χ(a−1) = χ(a)−1. b) gives
that χ(a) has absolute value one, and since χ(a) is a complex number, this implies that
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χ(a)−1 = χ(a).

Proposition 2.1.3. If χ is a multiplicative character, χ 6= ε, then
∑
t∈Fp

χ(t) = 0. If

χ = ε, then
∑
t∈Fp

ε(t) = p.

Proof. It follows immediately that
∑
t∈Fp

ε(t) = p by de�nition of ε and the fact that Fp

has p elements. Assume χ 6= ε. Then by de�nition, there exists an a ∈ F∗p such that
χ(a) 6= 1. Let T =

∑
t∈Fp

χ(t). Recall that we de�ned χ(0) = 0 so we can disregard this

term and then we have a sum over elements of F∗p, which is a group. Then for a �xed
non-zero a, at will also run through all the elements of Fp as t runs through these. Then
we have

χ(a)T =
∑
t∈Fp

χ(a)χ(t) =
∑
t∈Fp

χ(at) = T.

Since we have χ(a) 6= 1, it follows that T = 0.

The characters on Fp form an abelian group with pointwise multiplication as operation
so that:

a) χλ(a) = χ(a)λ(a) for all a in F∗p;
b) the neutral element is the trivial character ε;

c) the inverse, χ−1, pertaining to a character χ, is the map that for all a in F∗p maps to

χ(a)−1 = χ(a).
By this we have the following result:

Proposition 2.1.4. The group of characters is cyclic of order p− 1. Furthermore, if
a 6= 1 ∈ F∗p, there exists a character χ such that χ(a) 6= 1.

Proof. We use that the characters form a group and the well-known fact that F∗p is
cyclic. Now let g be a generator for F∗p, so that every element a ∈ F∗p can be expressed
as a power of g. If a = gl, then for any character χ it holds that χ(a) = χ(gl) = χ(g)l.
This shows that a character is completely determined by its value on the generator. We
have shown previously that χ(g) is a (p− 1)st root of unity, of which there are precisely
p− 1. Hence the order of the character group can at most be p− 1.

Let λ : F∗p → C\{0} be de�ned by λ(gl) = e
2πil
p−1 . Then λ is well-de�ned and is a

character on F∗p. Let n be the order of λ, i.e. the smallest integer such that λn = ε.
Now we show that n = p− 1. We have that λn(g) = ε(g) = 1, but we also have that

λn(g) = λ(g)n = e
2πin
p−1 , hence p− 1|n (using the fundamental fact that e2πi = 1 and

e2πi
a
b 6= 1 if a

b
/∈ Z).

Since λp−1(a) = λ(a)p−1 = λ(ap−1) = λ(1) = 1, we have λp−1 = ε.
As ε, λ, λ2, ..., λp−1 are all distinct, and since we have shown that the number of
characters can at most be p− 1, this gives that there are precisely p− 1 characters. It
also shows that the character group is cyclic and that λ is a generator for this group.
Lastly, we show that if p− 1 6 |l, then for a ∈ F∗p, a 6= 1, and a = gl, we have that
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λ(a) 6= 1. This follows by calculation: λ(a) = λ(gl) = λ(g)l = e
2πil
p−1 6= 1 by our

assumption on l.

This result also gives the following corollary abut character sums:

Corollary 2.1.4.1. For a 6= 1, a ∈ F∗p, we have that∑
all characters χ

χ(a) = 0.

Proof. Denote by S the sum

S =
∑

all characters χ

χ(a).

By the previous proposition, this sum is �nite and there exists a character λ such that
λ(a) 6= 1. Then we have that

λ(a)S =
∑

all characters χ

λ(a)χ(a) =
∑

all characters χ

λχ(a) = S.

Since the characters form a group, then for a �xed λ, λχ runs over all characters as χ
does. Since λ(a) 6= 1, we must have S = 0.

Now we start applying character theory to the study of equations and enumerating their
solutions. We start by considering the special case xn = a:

Proposition 2.1.5. Let a ∈ F∗p and n|p− 1. If the equation xn = a, n ∈ N, has no
solutions, then there exists a character χ such that

a) χn = ε;

b) χ(a) 6= 1.

Proof. Let g be a generator for F∗p and let λ be the character as de�ned in the proof of

proposition 2.1.4, i.e. λ(a) = λ(gl) = e
2πil
p−1 where g is a generator. Let χ = λ

p−1
n . Then

we have that

χ(g) = λ
p−1
n (g) = λ(g)

p−1
n = e

2πi
p−1
n

p−1 = e
2πi(p−1)
n(p−1) = e

2πi
n .

Since g is a generator, a = gl for some l. The assumption that xn = a has no solutions
implies that n cannot divide l, as we would have x = g

l
n . Then we have that

χ(a) = χ(gl) = χ(g)l = e
2πil
n 6= 1

which gives b).

Let a be an element of Fp. Then we consider the equation xn = a and let N(xn = a)
denote the number of solutions. The following proposition gives a way of determining
this number:
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Proposition 2.1.6. Let n be a divisor of p− 1. Then it holds that

N(xn = a) =
∑
χn=ε

χ(a)

where we sum over all characters χ of order dividing n.

Proof. We proceed by �rst proving the following small lemma:

Lemma 2.1.7. There are precisely n characters of order dividing n.

Proof. First we note the fact that χ(g) must be an nth root of unity. This means there
can at most be n such characters. In proposition 2.1.5 we found a character χ such that
χ(g) = e

2πi
n . Then by taking ε, χ, χ2, ..., χn−1 we get n distinct characters of order

dividing n.

Now we show the proposition. We consider the cases a = 0 and a 6= 0 separately. First
we note that since Fp is a �eld, the case a = 0 has one solution, namely x = 0. We have∑
χn=ε

χ(0) = 1, since ε(0) = 1, and we have de�ned χ(0) = 0 for χ 6= ε.

For a 6= 0, xn = a is either solvable or not. If it is solvable, there is a b ∈ F∗p such that
bn = a. For χn = ε, we have that

χ(a) = χ(bn) = χ(b)n = χn(b) = ε(b) = 1.

This implies

N(xn = a) =
∑
χn=ε

χ(a) = n

as there are exactly n characters χ such that χn = ε by the preceding lemma. If xn = a
is not solvable, we show that

∑
χn=ε

χ(a) = 0. By proposition 2.1.5 there exists a character

ρ such that ρ(a) 6= 1 and ρn = ε. Then we have that

ρ(a)
∑
χn=ε

χ(a) =
∑
χn=ε

ρ(a)χ(a)

=
∑
χn=ε

ρχ(a)

=
∑
χn=ε

χ(a)

where the last equality follows from the fact that the characters of order dividing n
form a group, and for �xed ρ, ρχ runs through all these characters as χ does. Since
ρ(a) 6= 0, we must have

∑
χn=ε

χ(a) = 0 as wanted. This completes the proof.

Lemma 2.1.8. In the special case n = 2, we have N(x2 = a) = 1 +
(
a
p

)
where

(
a
p

)
is

the Legendre symbol.

Proof. This follows by counting solutions; a = 0 gives one solution as mentioned above,
and since n = 2, we only have one multiplicative character of order 2, namely

χ(·) =
(
·
p

)
.
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2.2 Gauss sums

After working with multiplicative characters, we are ready to de�ne Gauss sums and
consider their properties: let χ be a character on Fp as previously, and let a be an
element of Fp.

De�nition 2.2.1. We denote by ga(χ) the Gauss sum corresponding to the character χ,
where ga(χ) is given by

ga(χ) =
∑
t∈Fp

χ(t)eat
2iπ
p

for all a in Fp.

For convenience we write e
2iπ
p = ζ, so that eat

2iπ
p = ζat. Furthermore, in the case a = 1,

which we primarily work with, we use the abbreviation g1(χ) = g(χ). Now we are ready
to formulate some useful results about Gauss sums, however �rst we need a few lemmas:

Lemma 2.2.2. For a ∈ F∗p we have

p−1∑
t=0

ζat = p for a ≡ 0 mod p

p−1∑
t=0

ζat = 0 for a 6≡ 0 mod p

Proof. If a ≡ 0 mod p, then ζa = 1 since e2πi = 1. Then
∑p−1

t=0 ζ
at = p. If a 6≡ 0 mod p

then ζa 6= 1, and by the sum formula of the geometric series we have∑p−1
t=0 ζ

at = ζap−1
ζa−1 = 0, again since e2πi = 1.

This corollary follows immediately from the lemma:

Corollary 2.2.2.1. For x and y in Fp, de�ne the delta function as δ(x, y) = 1 for
x ≡ y mod p and δ(x, y) = 0 otherwise. Then we have

p−1∑
t=0

ζt(x−y) = pδ(x, y).

Proof. Simply substitute a = x− y in the proof of lemma 2.2.2.

Proposition 2.2.3. For a in Fp and a character χ we have the following:

a) For a 6= 0 and χ 6= ε: ga(χ) = χ(a−1)g(χ);

b) For a 6= 0 and χ = ε: ga(ε) = 0;

c) For a = 0 and χ = ε: g0(ε) = p;

d) For a = 0 and χ 6= ε: g0(χ) = 0.
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Proof. a) For a 6= 0 and χ 6= ε, we have

χ(a)ga(χ) = χ(a)
∑
t∈Fp

χ(t)ζat =
∑
t∈Fp

χ(at)ζat = g(χ)

since for �xed a,at runs over the elements of Fp as t does.
b) For a 6= 0,

ga(ε) =
∑
t∈Fp

ε(t)ζat =
∑
t∈Fp

ζat = 0

by use of lemma 2.2.2.
c) We have

g0(ε) =
∑
t∈Fp

ε(t)ζ0t =
∑
t∈Fp

ε(t) = p

by proposition 2.1.3.
d) By de�nition g0(χ) =

∑
t∈Fp

χ(t). By proposition 2.1.3 this sum is equal to zero for

χ 6= ε.

Proposition 2.2.4. For χ 6= ε it holds that |g(χ)| = √p.

Proof. We proceed by considering the sum
∑
a∈Fp

ga(χ)ga(χ). By proposition 2.2.3 a), we

have that ga(χ) = χ(a−1)g(χ) = χ(a)g(χ) for a 6= 0. By using this, we have

ga(χ)ga(χ) = χ(a−1)g(χ)χ(a)g(χ) = |g(χ)|2

since χ(a−1)χ(a) = χ(a−1a) = 1. By proposition 2.2.3 d), g0(χ) = 0 for χ 6= ε, so we
have that

∑
a∈Fp

ga(χ)ga(χ) = (p− 1)|g(χ)|2. By direct calculation we also have

ga(χ)ga(χ) =
∑
x∈Fp

∑
y∈Fp

χ(x)χ(y)ζa(x−y).

Summing over a ∈ Fp on both sides gives:∑
a∈Fp

ga(χ)ga(χ) =
∑
a∈Fp

∑
x∈Fp

∑
y∈Fp

χ(x)χ(y)ζa(x−y)

=
∑
x∈Fp

∑
y∈Fp

χ(x)χ(y)δ(x, y)p

= (p− 1)p

by use of corollary 2.2.2.1 in the second to last equality. By this we have that
(p− 1)|g(χ)|2 = (p− 1)p, hence |g(χ)| = √p.

Lemma 2.2.5. Recalling the de�nition of χ as the character that takes a ∈ Fp to
χ(a) = χ(a)−1, we have g(χ) = χ(−1)g(χ). Furthermore, g(χ)g(χ) = χ(−1)p.
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Proof. We calculate the conjugated Gauss sum as

g(χ) =
∑
t∈Fp

χ(t)ζt =
∑
t∈Fp

χ(t)ζ−t = χ(−1)
∑
t∈Fp

χ(−t)ζ−t = χ(−1)g(χ).

Here we have used that χ(−1) = χ(−1), since we must have χ(−1) = ±1. From this we
can also remark that |g(χ)|2 = p is equivalent to g(χ)g(χ) = χ(−1)p.

After studying the properties of Gauss sums, we are ready to introduce another type of
character sum, namely Jacobi sums, which we will use extensively to analyse solutions
to various types of equations.

2.3 Jacobi sums

Let χ and λ be characters on Fp and denote by J(χ, λ) the sum

J(χ, λ) =
∑
a+b=1

χ(a)λ(b)

for a and b in Fp. We call this type of sum a Jacobi sum. Like in the case of Gauss
sums, we start by introducing some useful properties of Jacobi sums, and then we will
apply these to the study of equations over Fp.

Theorem 2.3.1. Let χ 6= ε and λ 6= ε be characters on Fp. Then the following hold:

a) J(ε, ε) = p;

b) J(ε, χ) = 0;

c) J(χ, χ−1) = −χ(−1);

d) for χλ 6= ε, J(χ, λ) = g(χ)g(λ)
g(λχ)

.

Proof. a) Since

J(ε, ε) =
∑
a+b=1

ε(a)ε(b) =
∑
a+b=1

ε(ab)

this is trivially equal to p by de�nition of ε (recall we have de�ned the extension
ε(0) = 1).
b) This follows by proposition 2.1.3, since by de�nition of ε,∑

a+b=1

ε(a)χ(b) =
∑
b∈Fp

χ(b) = 0.

c) First note that:

J(χ, χ−1) =
∑
a+b=1

χ(a)χ−1(b) =
∑
a+b=1
b 6=0

χ
(a
b

)
=
∑
a6=1

χ

(
a

1− a

)

where we have substituted b = 1− a in the last step. Note that the b = 0 term is zero,
and this is the term where a = 1. If we let c = a

1−a , then for c 6= −1, a = c
1+c

. Hence as
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a runs through the elements of Fp\{1}, c runs through the elements of Fp\{−1}. So we
have

J(χ, χ−1) + χ(−1) =

(∑
c6=−1

χ(c)

)
= 0

by proposition 2.1.3, and hence J(χ, χ−1) = −χ(−1).
d) First we observe that

g(χ)g(λ) =

∑
t∈Fp

χ(t)ζt

∑
s∈Fp

λ(s)ζs


=

∑
t∈Fp

∑
s∈Fp

χ(t)λ(s)ζt+s

=
∑
u∈Fp

(∑
t+s=u

χ(t)λ(s)

)
ζu.

If u = t+ s = 0 then t = −s (or s = −t) and we get

g(χ)g(λ) =
∑
t+s=0

χ(t)λ(s) =
∑
t∈Fp

χ(t)λ(−t)

= λ(−1)
∑
t∈Fp

χλ(t) = 0

by proposition 2.1.3 since by assumption χλ 6= ε. If u = t+ s 6= 0, de�ne t′ and s′ by
t = ut′ and s = us′. These s′ and t′ exist since Fp is a �eld. Then for t+ s = u,
t′ + s′ = 1. From this we get∑

t+s=u

χ(t)λ(s) =
∑

t′+s′=1

χ(ut′)λ(us′) = χ(u)λ(u)
∑

t′+s′=1

χ(t′)λ(s′) = χλ(u)J(χ, λ).

Then by substitution, we have

g(χ)g(λ) =
∑
u∈Fp

(∑
t+s=u

χ(t)λ(s)

)
ζu

=
∑
u∈Fp

χλ(u)J(χ, λ)ζu

= g(χλ)J(χ, λ)

and so J(χ, λ) = g(χ)g(λ)
g(χλ)

. Note that is is well-de�ned since g(χλ) 6= 0 by proposition

2.2.3 a) This completes the theorem.

Corollary 2.3.1.1. If χ 6= ε, λ 6= ε and χλ 6= ε, then |J(χ, λ)| = √p.

Proof. We use theorem 2.3.1 d) and take the absolute value:

|J(χ, λ)| =
∣∣∣g(χ)g(λ)
g(χλ)

∣∣∣.
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We then apply proposition 2.2.4 (since all involved characters are non-trivial):

|J(χ, λ)| =
∣∣∣√p√p√

p

∣∣∣ = |√p| = √p.
Proposition 2.3.2. For p ≡ 1 mod n and χ a character of order n, n > 2, we have
that

g(χ)n = χ(−1)pJ(χ, χ)J(χ, χ2) · ... · J(χ, χn−2).

Proof. using theorem 2.3.1 d), we have that g(χ)2 = J(χ, χ)g(χ2). We multiply both
sides by g(χ):

g(χ)3 = g(χ)2g(χ)

= J(χ, χ)g(χ2)g(χ)

= J(χ, χ)J(χ, χ2)g(χ3)

since J(χ, χ2) = g(χ2)g(χ)
g(χ3)

. Continuing this successively, we have that

g(χ)n−1 = J(χ, χ)J(χ, χ2) · ... · J(χ, χn−2)g(χn−1).

Since χ has order n, we have χn−1 = χ−1 = χ, so that g(χ)g(χn−1) = g(χ)g(χ) = χ(−1)p
by lemma 2.2.5. By multiplying both sides by g(χ), we get

g(χ)n = g(χ)g(χ)n−1

= J(χ, χ)J(χ, χ2) · ... · J(χ, χn−2)g(χn−1)g(χ)
= χ(−1)pJ(χ, χ)J(χ, χ2) · ... · J(χ, χn−2)

by lemma 2.2.5, since g(χn−1)g(χ) = g(χ−1)g(χ) = g(χ)g(χ) = χ(−1)p. This gives the
desired result.

Corollary 2.3.2.1. For χ a character of order 3 (also called a cubic character) and
p ≡ 1 mod 3, we have g(χ)3 = pJ(χ, χ).

Proof. This follows from proposition 2.3.2 and putting n = 3, and observing that
χ(−1) = χ((−1)3) = χ(−1)3 = 1.

Having worked with Jacobi sums and understanding their properties, we will now start
implementing this theory in the study of concrete equations over �nite �elds. We will
�rst consider a small example that can be analysed directly using Jacobi sums, then we
will move on to more complex cases that also require number theoretical methods.

Example 2.3.3.

We now look at an example of the application of Jacobi sums. Let p be an odd prime,

p ≡ 1 mod 4, and let χ be a multiplicative character of order 4 on Fp. Let ρ(·) =
(
·
p

)
and J(χ, ρ) = a+ ib. We wish to �nd the number of solutions over Fp to

y2 + x4 = 1.
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We have that

N(y2 + x4 = 1) =
∑
a+b=1

N(y2 = a)N(x4 = b)

=
∑
a+b=1

(
(1 + ρ(a))

3∑
j=0

λj(b)

)

by lemma 2.1.8 and proposition 2.1.6, where the inner sum is over all characters λ of
order dividing 3. By expanding we get

∑
a+b=1

3∑
j=0

λj(b) +
∑
a+b=1

3∑
j=0

λj(b)ρ(a)

= J(λ0, ε) + J(λ, ε) + J(λ2, ε) + J(λ3, ε) + J(λ0, ρ) + J(λ, ρ) + J(λ2, ρ) + J(λ3, ρ)

= p+ 0 + 0 + 0 + 0 + J(λ, ρ) + J(λ2, ρ) + J(λ3, ρ)

= p+ J(λ, ρ) + J(ρ, ρ) + J(λ−1, ρ)

= p+ J(λ, ρ) + J(ρ, ρ) + J(λ, ρ)

= p+ a+ ib+ a− ib+ J(ρ, ρ)

= p− (−1)
p−1
2 + 2a

= p− 1 + 2a

where we have used theorem 2.3.1 and the following observations: λ2 = ρ (since λ2 has
order 2 so this character is uniquely determined); J(λ, ρ) = J(λ, ρ) = J(λ, ρ) (since ρ is

the Legendre symbol); J(ρ, ρ) = J(ρ, ρ−1) = −ρ(−1) = −(−1) p−1
2 (again as ρ is the

Legendre symbol) and �nally λ3 = λ−1 = λ.
Hence N(y2 + x4 = 1) = p− 1 + 2a.
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The cardinality of the solution sets: some

speci�c cases with 2 variables

We will now consider three slightly more complicated cases. These will illustrate how
useful character theory and Jacobi sums are in the study of di�erent types of equations.

3.1 The equation x21 + x22 = 1 over Fp
We �rst look at the familiar equation x21 + x22 = 1 over Fp. Since we are working over a
�nite �eld, x21 + x22 = 1 can only have �nitely many solutions. Recall that
N(x21 + x22 = 1) denotes the number of solutions over Fp. We will now show how to �nd
this number explicitly. We wish to show

Proposition 3.1.1.

N(x21 + x22 = 1) = p− 1, p ≡ 1 mod 4

N(x21 + x22 = 1) = p+ 1, p ≡ 3 mod 4.

Proof. First observe that

N(x21 + x22 = 1) =
∑
a+b=1

N(x21 = a)N(x22 = b)

where we sum over all pairs a and b in Fp such that a+ b = 1. By lemma 2.1.8, we have
that

N(x21 + x22 = 1) = p+
∑
a∈Fp

(
a

p

)
+
∑
b∈Fp

(
b

p

)
+
∑
a+b=1

(
a

p

)(
b

p

)
.

We know that the �rst two sums are zero by proposition 2.1.3. We apply theorem 2.3.1
c) to the last sum and get

∑
a+b=1

(
a

p

)(
b

p

)
=

∑
a+b=1

(
a

p

)(
b

p

)−1
=
∑
a+b=1

χ(a)χ−1(b)

= J(χ, χ−1) = −χ(−1) = −(−1)
p−1
2

by de�nition of the Legendre symbol. We have used the fact that for any b in Fp,

χ(b) =
(
b
p

)
=
(
b
p

)−1
= χ(b)−1, since the Legendre symbol is always equal to ±1, which
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is una�ected by taking the reciprocal. From this, we get that

N(x21 + x22 = 1) = p− 1, p ≡ 1 mod 4

N(x21 + x22 = 1) = p+ 1, p ≡ 3 mod 4

since we know from number theory that χ(−1) =
(
−1
p

)
= (−1) p−1

2 is 1 for p ≡ 1 mod 4

and −1 for p ≡ 3 mod 4.

3.2 The equation x31 + x32 = 1 over Fp
We now wish to consider the number N(x31 + x32 = 1). This is only a small change in
exponents when we compare the previous case, however already at this stage our
computations become more complicated. Decomposing our equation into Jacobi sums
does not allow us to compute N(x31 + x32 = 1) directly, however it will give us a very
informative bound on the number of solutions. We will show the following result:

Proposition 3.2.1. Over Fp the number of solutions to the equation x31 + x32 = 1 is
given by

N(x31 + x32 = 1) = p− 2 + 2ReJ(χ, χ)

where χ is a cubic character on Fp.

Proof. We can decompose this into the sum

N(x31 + x32 = 1) =
∑
a+b=1

N(x31 = a)N(x32 = b).

First we show the following lemma:

Lemma 3.2.2. If p ≡ 2 mod 3, then N(x3 = a) = 1.

Proof. If p ≡ 2 mod 3 then p− 1 ≡ 1 mod 3, hence 3 6 |p− 1. This means that when
we consider residue classes in Fp, we have that {1, ..., p− 1} = {13, ..., (p− 1)3}. Hence
the map x 7→ x3 is a bijection, which precisely means that N(x3 = a) = 1.

Assume now that p ≡ 1 mod 3. Let χ 6= ε be a character of order 3, then χ2 also has
order 3 so χ2 6= ε. Since there are exactly 3 characters of order 3, these are ε, χ and χ2.
These are the cubic characters over Fp. By proposition 2.1.6, we have that

N(x3 = a) = 1 + χ(a) + χ2(a).

Hence we get

N(x31 + x32 = 1) =
∑
a+b=1

2∑
i=0

2∑
j=0

χi(a)χj(b)

=
2∑
i=0

2∑
j=0

∑
a+b=1

χi(a)χj(b).
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By writing out this sum, we get

2∑
i=0

2∑
j=0

∑
a+b=1

χi(a)χj(b) =
∑
a+b=1

χ0(a)χ0(b) +
∑
a+b=1

χ0(a)χ(b) +
∑
a+b=1

χ0(a)χ2(b)

+
∑
a+b=1

χ(a)χ0(b) +
∑
a+b=1

χ(a)χ(b) +
∑
a+b=1

χ(a)χ2(b)

+
∑
a+b=1

χ2(a)χ0(b) +
∑
a+b=1

χ2(a)χ(b) +
∑
a+b=1

χ2(a)χ2(b).

When we use the results of theorem 2.3.1, we �nd this to be

2∑
i=0

2∑
j=0

∑
a+b=1

χi(a)χj(b) = p+ 0 + 0 + 0 + J(χ, χ) + J(χ, χ2) + 0 + J(χ2, χ) + J(χ2, χ2)

= p+ J(χ, χ) + J(χ, χ−1) + J(χ−1, χ) + J(χ2, χ2)

= p+ J(χ, χ) + J(χ−1, χ−1)− χ(−1)− χ2(−1).

Since χ has order 3, χ2 = χ−1 = χ. By linearity of Jacobi sums, J(χ, χ−1) = J(χ, χ−1)
since we have

J(χ, λ) =
∑
a+b=1

χ(a)λ(b) =
∑
a+b=1

χ(a)λ(b) =
∑
a+b=1

χ(a) λ(b) = J(χ, λ).

This means that J(χ−1, χ) = J(χ, χ−1) = −χ(−1) = −χ2(−1), which gives the last
term and that J(χ−1, χ−1) = J(χ, χ). Finally by observing that −1 = (−1)3 so
χ(−1) = χ(−1)3 = 1 we �nd the result

N(x31 + x32 = 1) = p− 2 + 2ReJ(χ, χ).

By use of corollary 2.3.1.1, we also have the estimate

|N(x31 + x32 = 1)− p+ 2| ≤ |2ReJ(χ, χ)| ≤ 2|ReJ(χ, χ)| ≤ 2|J(χ, χ)| = 2
√
p

since we recall that the modulus of a complex number is always greater than the
absolute value of its real part. In plain terms, this estimate tells us that the number of
solutions N(x21 + x22 = 1) di�ers from p− 2 by at most 2

√
p. In other words, for suitably

large prime p, we know there are many solutions, even if we do not know the precise
number.

3.3 The equation xn1 + xn2 = 1 over Fp
The last case in two variables that we consider here is the equation xn1 + xn2 = 1 over Fp.
As in the previous case, we will use Jacobi sums to �nd a bound on the number of
solutions. More speci�cally, we will show:
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Proposition 3.3.1. Let p ≡ 1 mod n. Then then number of solutions to xn1 + xn2 = 1,
n ∈ N, in Fp is given by

N(xn1 + xn2 = 1) = p+ 1− δn(−1)n+
n−1∑
i,j=1
i+j 6=n

J(χi, χj)

where δn(−1) = 1 for −1 = αn for some α in Fp and δn(−1) = 0 otherwise.

Proof. We use the decomposition

N(xn1 + xn2 = 1) =
∑
a+b=1

N(xn1 = a)N(xn2 = b).

Let χ be a character of order n. From proposition 2.1.6 we know that

N(xn1 = a) =
n−1∑
j=0

χj(a) (similarly for x2), and by this we get

N(xn1 + xn2 = 1) =
∑
a+b=1

n−1∑
j=0

n−1∑
i=0

χj(a)χi(b) =
n−1∑
j=0

n−1∑
i=0

J(χj, χi).

We apply theorem 2.3.1. For i = j = 0, J(χ0, χ0) = p since χ0 = ε. For j + i = n, we
have that

J(χj, χi) = J(χj, χn−j) = J(χj, χnχ−j) = J(χj, (χj)−1) = −χj(−1)

and these terms sum to −
n−1∑
j=1

χj(−1). We note that
n−1∑
j=0

χj(−1) = n for −1 an nth

power (i.e. −1 = αn for some α ∈ Fp) and
n−1∑
j=0

χj(−1) = 0 otherwise. Hence these terms

contribute 1− δn(−1)n, where δn(−1) = 1 for −1 an nth power and δn(−1) = 0
otherwise. The last case to consider is where i = 0 and j 6= 0, or j = 0 and i 6= 0. This
case gives that J(χi, χj) = 0. So in total, we get

N(xn1 + xn2 = 1) = p+ 1− δn(−1)n+
n−1∑
i,j=1
i+j 6=n

J(χi, χj).

This proves the proposition.

Lastly, we note that
n−1∑
i,j=1
i+j 6=n

J(χi, χj) = (n− 1)2 − (n− 1) = (n− 1)(n− 2), all with

absolute value
√
p by corollary 2.3.1.1. From this, we directly get the following result on

the absolute value:

Proposition 3.3.2. We have the following bound on N(x21 + x22 = 1):

|N(xn1 + xn2 = 1) + δn(−1)n− (p+ 1)| ≤ (n− 1)(n− 2)
√
p.

Proof. This follows immediately by the above.
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Generalized Jacobi sums

In the previous chapter we saw how much information about di�erent equations we
could derive using primarily the properties of Jacobi sums. Up to now we have only
been working with Jacobi sums de�ned for two characters, i.e. of the form J(χ, λ). We
will see that when studying more complicated equations with di�erent parameters, it is
useful to expand our previous results for Jacobi sums to cases with more characters.

De�nition 4.0.1. Let χ1, ..., χl be characters on Fp. Then a multi-character Jacobi
sum is given by

J(χ1, ..., χl) =
∑

t1+...+tl=1

χ1(t1)χ2(t2) · ... · χl(tl), ti ∈ Fp.

Note that the case l = 2 is simply the case we studied in chapter 3. It is also useful to
introduce another variant of multi-character Jacobi sums, namely J0, which is simply

the case where
l∑

i=1

ti = 0:

J0(χ1, ..., χl) =
∑

t1+...+tl=0

χ1(t1) · ... · χl(tl).

Let us begin by extending our previous theorem 2.3.1 to the multi-character case:

Theorem 4.0.2. For χi, i = 1, ..., l, characters on Fp and ε the trivial character, the
following hold:

a) J0(ε, ε, ..., ε) = J(ε, ε, ..., ε) = pl−1;

b) If for some, but not all i, χi is trivial, then J0(χ1, χ2, ..., χl) = J(χ1, χ2, ..., χl) = 0;

c) Let χl 6= ε. Then J0(χ1, χ2, ..., χl) = 0 for χ1χ2 · ... · χl 6= ε, and

J0(χ1, ..., χl) = χl(−1)(p− 1)J(χ1, χ2, ..., χl−1)

otherwise.

Proof. a) For t1, t2, ..., tl−1 chosen arbitrarily in Fp, tl is uniquely determined by the
equation t1 + t2 + ...+ tl−1 + tl = 0, hence J0(ε, ε, ..., ε) = pl−1. Similarly for arbitrary
t1, ..., tl−1, tl is uniquely determined by the equation t1 + ...+ tl = 1, hence
J(ε, ..., ε) = pl−1.
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b) Assume that χi, i = 1, ..., s are non-trivial, and that χj = ε for j = s+ 1, ..., l. Then
we have that∑

t1+...+tl=0

χ1(t1) · ... · χl(tl) =
∑

t1,...,tl−1∈Fp

χ1(t1) · ... · χs(ts)

= pl−s−1

∑
t1∈Fp

χ1(t1)

 · ... ·
∑
ts∈Fp

χs(ts)


= 0

where in the last step we apply proposition 2.1.3.
c) First we note that

J0(χ1, χ2, ..., χl) =
∑
s∈Fp

 ∑
t1+...+tl−1=−s

χ1(t1) · ... · χl−1(tl−1)

χl(s).

Since by assumption χl 6= ε, we have χl(0) = 0. This means we can assume s 6= 0 in the
sum above. For s 6= 0 we de�ne t′i by the identity ti = −st′i. This is possible since Fp is
a �eld. Then we have∑
t1+....+tl−1=−s

χ1(t1) · ... · χl−1(tl−1) = χ1χ2 · ... · χl−1(−s)
∑

t′1+...+t
′
l−1=1

χ1(t
′
1) · ... · χl−1(t′l−1)

= χ1χ2 · ... · χl−1(−s)J(χ1, ..., χl−1).

By this we get

J0(χ1, χ2, ..., χl) = χ1χ2 · ... · χl−1(−1)J(χ1, ..., χl−1)
∑

0 6=s∈Fp

χ1χ2 · ... · χl(s)

because χ1 · ... · χl runs over the elements of F∗p same as χl does (by assumption
χ1 · ... · χl 6= ε). Note that

∑
s 6=0 χ1χ2 · ... · χl(s) = 0 if χ1 · ... · χl 6= ε by proposition 2.1.3

and
∑

s6=0 χ1χ2 · ... · χl(s) = p− 1 if χ1 · ... · χl = ε. This gives c).

We also have the following theorem that shows the connection between multi-character
Jacobi sums and Gauss sums:

Theorem 4.0.3. Let χi, i = 1, ..., r, be non-trivial characters, and let χ1 · ... · χl 6= ε.
Then we have the relation

g(χ1)g(χ2) · ... · g(χr) = J(χ1, ..., χr)g(χ1χ2 · ... · χr)

so in particular

J(χ1, ..., χr) =
g(χ1)g(χ2) · ... · g(χr)
g(χ1χ2 · ... · χr)

.
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Proof. First de�ne the map ϕ : Fp → C by ϕ(t) = ζt, where we recall that ζ = e
2iπ
p .

Note that ϕ(t1 + t2) = ϕ(t1)ϕ(t2) and g(χ) =
∑
t∈Fp

χ(t)ϕ(t). Then we have that

g(χ1) · ... · g(χr) =

∑
t1∈Fp

χ(t1)ϕ(t1)

 · ... ·
∑
tr∈Fp

χ(tr)ϕ(tr)


=

∑
s∈Fp

( ∑
t1+...+tr=s

χ1(t1) · ... · χr(tr)

)
ϕ(s).

We consider the case s = 0 and the case s 6= 0: for s = 0, then since χ1 · ... · χr 6= ε,
theorem 4.0.2 gives that

J0(χ1, ..., χr) =
∑

t1+...+tr=0

χ1(t1) · ... · χr(tr) = 0.

For s 6= 0, we again use the substitution ti = st′i, i = 1, .., r, which gives that∑
t1+...tr=s

χ1(t1) · ... · χr(tr) = χ1 · ... · χr(s)
∑

t′1+...t
′
r=1

χ1(t
′
1) · ... · χr(t′r)

= χ1 · ... · χr(s)J(χ1, ..., χr).

Combining these, we have that

g(χ1) · ... · g(χr) =
∑

06=s∈Fp

χ1 · ... · χr(s)J(χ1, ..., χr)ϕ(s)

= J(χ1, ..., χr)g(χ1...χr)

which is what we wanted to show.

This theorem also has the following useful corollaries:

Corollary 4.0.3.1. Let χi 6= ε and χ1 · ... · χr = ε. Then we have that

g(χ1) · ... · g(χr) = χr(−1)pJ(χ1, ..., χr−1).

Furthermore, it holds that

g(χ1 · ... · χr−1)g(χr) = χr(−1)p.

Proof. By theorem 4.0.3 we have

g(χ1) · ... · g(χr−1) = J(χ1, ..., χr−1)g(χ1 · ... · χr−1).

By multiplying both sides by g(χr), we have that

g(χ1) · ... · g(χr−1)g(χr) = J(χ1, ..., χr−1)g(χ1 · ... · χr−1)g(χr)

since χ1 · ... · χr−1χr = ε, χ1 · ... · χr−1 = χ−1r and thus

g(χ1 · ... · χr−1)g(χr) = g(χ−1r )g(χr) = χr(−1)p

by lemma 2.2.5. Inserting in the previous expression gives the result.
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Corollary 4.0.3.2. Let χi 6= ε and χ1 · ... · χr = ε. Then we have that

J(χ1, ..., χr) = −χr(−1)J(χ1, ..., χr−1).

If r = 2 we put J(χ1) = 1.

Proof. For r = 2, this is theorem 2.3.1 c). Now assume r > 2. We follow the proof of
theorem 4.0.3 with the assumption that χ1 · ... · χr = ε. Then we have that

g(χ1) · ... · g(χr) = J0(χ1, ..., χr)χ1 · ... · χr(0) + J(χ1, ..., χr)
∑
s 6=0

χ1 · ... · χr(s)ϕ(s)

= J0(χ1, ..., χr) + J(χ1, ..., χr)
∑
s 6=0

ϕ(s)

since χ1 · ... · χr(0) = ε(0) = 1 and χ1 · ... · χr(s) = ε(s) = 1. Since
∑
s∈Fp

ϕ(s) = 0,

−1 = −e
2iπ
p

0 = −ϕ(0) =
∑
s 6=0

ϕ(s), hence

g(χ1) · ... · g(χr) = J0(χ1, ..., χr)− J(χ1, ..., χr)

= χr(−1)(p− 1)J(χ1, ..., χr−1)− J(χ1, ..., χr)

by theorem 4.0.2 c). By the previous corollary, we also have that

g(χ1) · ... · g(χr) = χr(−1)pJ(χ1, ..., χr−1).

By this we get

χr(−1)pJ(χ1, ..., χr−1) = χr(−1)(p− 1)J(χ1, ..., χr−1)− J(χ1, ..., χr)

so that

J(χ1, ..., χr) = χr(−1)J(χ1, ..., χr−1)(p− 1− p)
= −χr(−1)J(χ1, ..., χr−1)

as wanted.

Finally, before moving on to the study of more complicated equations, we give one last
theorem about multi-character Jacobi sums:

Theorem 4.0.4. Let χi 6= ε, i = 1, ..., r. Then we have that:

a) for χ1 · ... · χr 6= ε, |J(χ1, ..., χr)| = p
r−1
2 ;

b) for χ1 · ... · χr = ε, |J0(χ1, ..., χr)| = (p− 1)p
r−2
2 and |J(χ1, ..., χr)| = p

r−2
2 .

Proof. a) By proposition 2.2.4 we have |g(χ)| = √p. By theorem 4.0.3 we have

|J(χ1, ..., χr)| =
∣∣∣g(χ1) · ... · g(χr)
g(χ1 · ... · χr)

∣∣∣ = ∣∣∣√pr√
p

∣∣∣ = p
r−1
2 .

b) By theorem 4.0.2 c) we have

|J0(χ1, ..., χr)| = |χr(−1)(p− 1)J(χ1, ..., χr−1)| = (p− 1)p
r−2
2

which gives the �rst part. Corollary 4.0.3.2 gives that

|J(χ1, ..., χr)| = | − χr(−1)J(χ1, ..., χr−1)| = p
r−2
2

by part a). This completes the proof.
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Determining N(x21 + ... + x2n = 1) over Fp

Now we analyse the case of x21 + ...+ x2n = 1 over Fp, so here we have an arbitrary
number of variables. By �nding expressions for the numbers of solutions we can later on
derive larger number theoretical results such as the law of quadratic reciprocity.
Below we use two di�erent methods to count the number of solutions: �rst we use the
previous theory of Gauss sums, where we �nd that the number of solutions depends
only on whether n is even or odd. Then we derive the number of solutions using
projective geometry, where we �nd dependence not only on n but also on the quadratic
character of −1 in our �eld.

5.1 Finding the number of solutions with Gauss sums

We want to �nd a formula expressed in terms of characters for the number of solutions
to the equation x21 + ...+ x2n = 1 over the �eld Fp. We recall that when χ is a character

of order 2, χ is then uniquely determined and χ(·) =
(
·
p

)
. We can then use the previous

result (lemma 2.1.8) that the number of solutions to x2 = a is given by

N(x2 = a) = 1 + χ(a) = 1 +
(
a
p

)
. We wish to show the following:

Proposition 5.1.1. Let χ be the character of order 2. For n odd, the number of
solutions is given by

N(x21 + ...+ x2n = 1) = pn−1 + χ(−1)
n−1
2 p

n−1
2 .

For n even, the number of solutions is given by

N(x21 + ...+ x2n = 1) = pn−1 − χ(−1)
n
2 p

n−2
2 .

Proof. To get an impression of the behaviour of this equation, let us �rst consider a
special case of a small value of n. We will show how to calculate the case n = 3:

N(x21 + x22 + x23 = 1) =
∑

a1+a2+a3=1

N(x21 = a1)N(x22 = a2)N(x23 = a3)

=
∑

a1+a2+a3=1

(1 + χ(a1))(1 + χ(a2))(1 + χ(a3))

=
∑

a1+a2+a3=1

(
1 + χ(a1) + χ(a2) + χ(a3) + χ(a1)χ(a2) + χ(a1)χ(a3)

+ χ(a2)χ(a3) + χ(a1)χ(a2)χ(a3)
)
.
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Here we recognise the expressions for the elementary symmetric polynomials. Recall
that the elementary symmetric polynomial in n variables, denoted by ek(y1, ..., yn) for
k = 0, 1, ..., n, is given by the series

ek(y1, ..., yn) =
∑

1≤j1<j2<...<jk≤n

yj1 · ... · yjk

where e0(y1, ..., yn) = 1. We use this to rewrite our Jacobi sums:

N(x21 + x22 + x23 = 1) = p2 +
∑

a1,a2,a3∈Fp

∑
1≤j≤3

χ(aj) +
∑

a1,a2,a3∈Fp

∑
1≤j<k≤3

χ(aj)χ(ak)

+
∑

a1+a2+a3=1

χ(a1)χ(a2)χ(a3)

= p2 + J(χ, χ, χ) + 0 + 0

= p2 + J(χ, χ, χ).

That the double sums are zero follows from the fact that
∑
t

χ(t) = 0 when we sum over

all elements of Fp, so for example
∑
a1∈Fp

χ(a1) = 0. Since

∑
a1∈Fp

∑
a2∈Fp

χ(a1)χ(a2) =
∑

a1,a2∈Fp

χ(a1a2)

this is essentially the same as
∑
t∈Fp

χ(t) = 0, t = a1a2, when the ai's run through all

elements of Fp. We use the same procedure for general n. We have the decomposition

N(x21 + ...+ x2n = 1) =
∑

a1+...+an=1

N(x21 = a1) · ... ·N(x2n = an)

=
∑

a1+...+an=1

(1 + χ(a1)) · ... · (1 + χ(an))

= pn−1 +
∑

a1,...,an∈Fp

∑
1≤j≤n

χ(aj) + ...

+
∑

a1,...,an∈Fp

∑
1≤j1<j2<...<jn−1≤n

χ(aj1) · ... · χ(ajn−1)

+
∑

a1+...+an=1

χ(a1) · ... · χ(an)

= pn−1 + 0 + ...+ 0 + J(χ, ..., χ)

= pn−1 + J(χ, ..., χ)

where all the double sums are zero by the same reasoning as in the case n = 3.

We have to consider the cases of n even and n odd separately. If n is odd, we have
χn = χ, and if n is even, χn = ε (as χ has order 2).

For n odd so χn 6= ε, we can apply theorem 4.0.3, which gives that

J(χ, ..., χ) =
g(χ)n

g(χn)
=
g(χ)n

g(χ)
= g(χ)n−1.
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We also have g(λ)g(λ) = λ(−1)p for a character λ by lemma 2.2.5. Since χ here is the
unique order 2 character, it is una�ected by complex conjugation, and we have that
g(χ) = g(χ−1) = g(χ). Then g(χ)2 = χ(−1)p, and by inserting into the Jacobi sum

above, we get J(χ, ..., χ) = g(χ)n−1 = χ(−1)n−1
2 p

n−1
2 .

So for n odd, the number of solutions is given by:

N(x21 + ...+ x2n = 1) = pn−1 + χ(−1)
n−1
2 p

n−1
2 .

This proves the �rst part of the proposition. In the case of n even, we can use corollary
4.0.3.2 of theorem 4.0.3, which states that

J(χ1, ..., χn) = −χn(−1)J(χ1, ..., χn−1)

when χi 6= ε for all i and χ1 · ... · χn = ε.

So in our case, we have J(χ, ..., χ) = −χ(−1)J(χ, ..., χ) since χ has order 2, so χ 6= ε
and χn = ε (note that in the �rst Jacobi sum we have n entries, and in the last we have
n− 1 entries). Then, by using the result found for n odd, we get that

J(χ, .., χ) = −χ(−1)g(χ)
n−1

g(χ)

= −χ(−1)g(χ)n−2

= −χ(−1)χ(−1)
n−2
2 p

n−2
2

= −χ(−1)
n
2 p

n−2
2 .

So in the case where n is even, the number of solutions is given by:

N(x21 + ...+ x2n = 1) = pn−1 − χ(−1)
n
2 p

n−2
2 .

This completes the proposition.

5.2 Finding the number of solutions using projective

geometry

Denote by Nn(a) the number of solutions to the equation x21 + ...+ x2n = a over Fp, i.e.
Nn(a) = #{x21 + ...+ x2n = a|(x1, ..., xn) ∈ Fnp} and note

∑
a∈Fp

Nn(a) = pn. We know that

elements in Fp are either quadratic residues or non-quadratic residues modulo p (below
shortened to "squares" and "non-squares" for convenience). Denote by X(a) the set
Xn(a) = {x21 + ...+ x2n = a|(x1, ..., xn) ∈ Fnp}. Then it holds that

Lemma 5.2.1. For a a square in F∗p, there is an isomorphism between Xn(a) and
Xn(1).
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Proof. We map Xn(1) to Xn(a) by scaling each xi by
1√
a
, where we choose one of the

two square roots of a (for convenience the positive one). This is then well-de�ned for
a ∈ F∗p a square: (

1√
a
x1

)2

+ ...+

(
1√
a
xn

)2

= 1

⇔ 1

a
x21 + ...+

1

a
x2n = 1

⇔ x21 + ...+ x2n = a

= Xn(a).

This scaling map has inverse given by multiplication by
√
a which, by the same type of

calculation as above, takes Xn(a) to Xn(1) through scaling each xi by
√
a (where again

we have chosen a square root). Thus the map is a bijection, and for any a and b that
are squares in F∗p, Xn(a) ∼= Xn(b) since they are both isomorphic to Xn(1).

Lemma 5.2.2. Analogously, if a and b are both non-squares in F∗p, we have that
Xn(a) ∼= Xn(b).

Proof. If a and b are non-squares, so are their inverses a−1 and b−1, and we use that the
product of any two non-squares is always a square, i.e. ab−1 = c2 for some c in F∗p. Then
by applying the scaling map c to each coordinate xi, we map Xn(a) to Xn(b):(√

a

b
x1

)2

+ ...+

(√
a

b
xn

)2

= a

⇔ a

b
x21 + ...+

a

b
x2n = a

⇔ x21 + ...+ x2n = b

= Xn(b).

The inverse scaling map
√

b
a
takes Xn(b) to Xn(a), so that Xn(a) ∼= Xn(b).

Given an equation of the form x21 + ...+ x2n = a in Fp, it is useful to consider whether a
is a square in Fp or not in order to ascertain the number of solutions. We will show that
the number of solutions Nn(a) only depends on the quadratic character of a in Fp, i.e.
on
(
a
p

)
. Furthermore, we can derive the following relations between the numbers of

solutions:

Lemma 5.2.3. For a ∈ Fp and Nn(a) the number of solutions to x21 + ...+ x2n = a over
Fp, we have the following relations between the cardinalities of the solution sets:∑

a∈Fp

Nn(a) = pn = Nn(0) +
p− 1

2
Nn(square) +

p− 1

2
Nn(non-square) (5.1)

Nn(square) = pn−1 −Nn−1(−1) +Nn−1(0) (5.2)

Nn(0)− 1

p− 1
= Nn−1(−1) +

Nn−1(0)− 1

p− 1
(5.3)
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Proof. Equation 1 holds since we are summing over the solutions for all a ∈ Fp, and we
can split these naturally into the cases a = 0 and a respectively square and non-square
in Fp. It follows that there are precisely p−1

2
squares and p−1

2
non-squares in Fp by

considering the group homomorphism f : F∗p → F∗p given by f(a) = a2. The kernel of

this map has order 2, and since F∗p has p− 1 elements, there are p−1
2

squares and thus
p−1
2

non-squares.

To derive equation 2, we apply stereographic projection. Stereographic projection is
given by a map that projects a sphere onto a plane. This map is smooth, bijective and
de�ned everywhere, save the point from which we project. To understand equation 2,
we �rst look at a concrete small n, n = 3. Let X = {x21 + x22 + x23 = 1|(x1, x2, x3) ∈ F3

p}.
Then Q0 = (−1, 0, 0) ∈ X, and for s and t free variables, points of the form P = (0, s, t)
de�nes the plane where x1 = 0. Call this plane Y . Then we �nd the line L through Q0

and P : for 0 ≤ α ≤ 1, L is given by:

(1− α)(−1, 0, 0) + α(0, s, t) = (α− 1, αs, αt).

We �nd the intersection between X and L:

(α− 1)2 + (αs)2 + (αt)2 = 1

⇔ (1 + s2 + t2)α2 − 2α = 0

⇔ α = 0 or α =
2

1 + s2 + t2
.

Since α = 0 corresponds to Q0, we can discard this solution, so we get the point(
2

1 + s2 + t2
− 1,

2s

1 + s2 + t2
,

2t

1 + s2 + t2

)
∈ X.

This map is well-de�ned if we exclude the pairs (s, t) in Y such that 1 + s2 + t2 = 0. To
go the other way and �nd the point in Y , we construct the inverse of the above map:

(1− α)(−1, 0, 0) + α(x1, x2, x3) = (α− 1 + αx1, αx2, αx3).

This line hits the plane for α−1+αx1 = 0⇔ α = 1
1+x1

. So we get the point in the plane(
0,

x2
1 + x1

,
x3

1 + x1

)
.

Again, this map is well-de�ned when we exclude all points (x1, x2, x3) such that
x1 = −1. By use of the isomorphism Y = {(0, s, t) ∈ F3

p} ∼= Fp × Fp, we have a bijection
between the sets Fp × Fp\{(s, t)|s2 + t2 = −1} and X\{(x1, x2, x3)|x1 = −1}. When we
count the points in each of these sets, we arrive at the identity

p2 −N2(−1) = N3(square)−N2(0).

This gives insight into equation 2 for n = 3. We can use the same procedure for general
n, and we �nd the map

f : H\{(s1, ..., sn−1)|s21 + ...+ s2n−1 = −1} → X\{(x1, ..., xn)|x1 = −1}

f(0, s1, ..., sn−1) =

(
2

1 + s21 + ...+ s2n−1
− 1,

2s1
1 + s21 + ...+ s2n−1

, ...,
2sn−1

1 + s21 + ...+ s2n−1

)
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with inverse

f−1 : X\{(x1, ..., xn)|x1 = −1} → H\{(s1, ..., sn−1)|s21 + ...+ s2n−1 = −1}

(x1, ..., xn) 7→
(
0,

x2
1 + x1

, ...,
xn

1 + x1

)
where X = {x21 + ...+ x2n = 1|(x1, ..., xn) ∈ Fnp} and H is the hyperplane corresponding
to x1 = 0. Again, as H = {(0, s1, ..., sn−1) ∈ Fnp} ∼= Fn−1p , then by the method of
counting points in these sets we �nd the identity

pn−1 −Nn−1(−1) = Nn−1(square)−Nn−1(0)

which in the case n+ 1 directly gives equation 2.

For equation 3, we see that it is equivalent to the expression

Nn(0) = (p− 1)Nn−1(−1) +Nn−1(0).

This expression holds since we can split an equation of the form x21 + ...+ x2n = 0 into
the cases xn = 0 and xn 6= 0. When counting solutions to these cases we get Nn−1(0)
and (p− 1)Nn−1(−1). The latter follows since there are p− 1 choices for xn, and we can
divide the whole equation by xn 6= 0 and rearrange the equation. Combining these two
cases gives equation 3.

We would like to �nd a recursive relationship between the equations of lemma 5.2.3.
First we consider the number of solutions in the case n = 1: N1(square) = 2,
corresponding to the solutions to x21 = 1 where x1 is a square in Fp. Similarly we have
that N1(non− square) = 0, corresponding to the case x21 = 1 for x1 not a square in Fp.
Finally, N1(0) = 1, corresponding to x21 = 0. From these we could, in theory, calculate
all values of Nn(0), Nn(square) and Nn(non− square) successively, however from a
certain step we can derive recursive formulas. For simplicity, we consider the cases −1
square and −1 non-square separately. By use of the previous we �nd the following
results:

Theorem 5.2.4. When −1 is a square in Fp, we have the following relationships
between the number of solutions for n ≥ 4: in the case where n is even:

Case 1) Nn(0) = pn−1 + p
n
2 − p

n−2
2 ;

Nn(1) = Nn(−1) = Nn(square) = p
n−2
2

(
p
n
2 − 1

)
;

Nn(non− square) = pn−1 − p
n−2
2 .

In the case where n is odd:

Case 2) Nn(0) = pn−1;

Nn(1) = Nn(−1) = Nn(square) = pn−1 + p
n−1
2 ;

Nn(non− square) = pn−1 − p
n−1
2 .
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Proof. We prove each case separately. We start by verifying the identities for n = 4. We
do this by applying the stated formulas (we skip the details for calculating N2 and N3

since they are easily found by knowing the values of N1) and �nd:

N4(0) = (p− 1)N3(−1) +N3(0)

= (p− 1)N3(square) +N3(0)

= (p− 1)(p2 + p) + p2

= p3 + p2 − p.
N4(square) = p3 −N3(−1) +N3(0)

= p3 −N3(square) +N3(0)

= p3 − p2 − p+ p2

= p3 − p.
(p− 1)N4(non− square) = 2p4 − 2N4(0)− (p− 1)N4(square)

= 2p4 − 2(p3 + p2 − p)− (p− 1)(p3 − p)
⇔ N4(non− square) = p3 − p

which veri�es the start of the proof. We now assume case 1 holds, so that n is even, and
show that this implies case 2 for n+ 1, which is odd. First:

Nn+1(0) = (p− 1)Nn(−1) +Nn(0)

= (p− 1)p
n−2
2

(
p
n
2 − 1

)
= pn.

Secondly:

Nn+1(square) = pn −Nn(−1) +Nn(0)

= pn − p
n−2
2

(
p
n
2 − 1

)
+ pn−1 + p

n
2 − p

n−2
2

= pn + p
n
2 .

And �nally:

(p− 1)Nn+1(non− square) = 2pn+1 − 2Nn+1(0)− (p− 1)Nn+1(square)

= 2pn+1 − 2pn − (p− 1)
(
pn + p

n
2

)
which is equivalent to:

Nn+1(non− square) =
2pn+1 − 2pn − (p− 1)

(
pn + p

n
2

)
p− 1

= pn − p
n
2 .

These are the correct identities. Now we assume case 2, so that n is odd, and show that
this implies case 1 for n+ 1, which is even. First we �nd:

Nn+1(0) = (p− 1)Nn(−1) +Nn(0)

= (p− 1)
(
pn−1 + p

n−1
2

)
+ pn−1

= pn + p
n+1
2 − p

n−1
2 .
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Secondly:

Nn+1(square) = pn −Nn(−1) +Nn(0)

= pn −
(
pn−1 + p

n−1
2

)
+ pn−1

= pn − p
n−1
2 .

And �nally:

(p− 1)Nn+1(non− square) = 2pn+1 − 2Nn+1(0)− (p− 1)Nn+1(square)

= 2pn+1 − 2
(
pn + p

n+1
2 − p

n−1
2

)
− (p− 1)

(
pn − p

n−1
2

)
which is equivalent to:

Nn+1(non− square) =
2pn+1 − 2

(
pn + p

n+1
2 − pn−1

2

)
− (p− 1)

(
pn − pn−1

2

)
p− 1

= pn − p
n−1
2 .

These are the correct identities, and this completes the proof in the case where −1 is a
square.

Theorem 5.2.5. When −1 is non-square in Fp, we have the following relationships
between the number of solutions for n ≥ 4: in the case where n is even:

Case 3) Nn(0) = pn−1 + (−1)
n
2

(
p
n
2 − p

n−2
2

)
;

Nn(1) = Nn(square) = pn−1 − (−1)
n
2 p

n−2
2 ;

Nn(−1) = Nn(non− square) = p
n−2
2

(
p
n
2 − (−1)

n
2

)
.

In the case when n is odd:

Case 4) Nn(0) = pn−1;

Nn(1) = Nn(square) = pn−1 + (−1)
n−1
2 p

n−1
2 ;

Nn(−1) = Nn(non− square) = p
n−1
2

(
p
n−1
2 − (−1)

n−1
2

)
.

Proof. Again we use induction. First we verify the start for n = 4 (again this is done
directly by calculation of n = 2, 3, but we will not show all steps here):

N4(0) = (p− 1)N3(−1) +N3(0)

= (p− 1)N3(non− square) +N3(0)

= (p− 1)p(p+ 1) + p2

= p(p2 + p− 1).

N4(square) = p3 −N3(−1) +N3(0)

= p3 −N3(non− square) +N3(0)

= p3 − p(p+ 1) + p2

= p3 − p.
(p− 1)N4(non− square) = 2p4 − 2N4(0)− (p− 1)N4(square)

= 2p4 − 2p(p2 + p− 1)− (p− 1)(p3 − p)
⇔ N4(non− square) = p(p2 − 1).
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We see that the expressions hold for the induction start. We now assume that case 3
holds for n, which is even, and show that this implies case 4 for n+ 1, which is odd:

Nn+1(0) = (p− 1)Nn(−1) +Nn(0)

= (p− 1)p
n−2
2

(
p
n
2 − (−1)

n
2

)
+ pn−1 + (−1)

n
2

(
p
n
2 − p

n−2
2

)
= pn.

Secondly:

Nn+1(square) = pn −Nn(−1) +Nn(0)

= pn − p
n−2
2

(
p
n
2 − (−1)

n
2

)
+ pn−1 + (−1)

n
2

(
p
n
2 − p

n−2
2

)
= pn + (−1)

n
2 p

n
2 .

And �nally:

(p− 1)Nn+1(non− square) = 2pn+1 − 2Nn+1(0)− (p− 1)Nn+1(square)

= 2pn+1 − 2pn − (p− 1)
(
pn + (−1)

n
2 p

n
2

)
which is equivalent to:

Nn+1(non− square) =
2pn+1 − 2pn − (p− 1)

(
pn + (−1)n2 pn2

)
p− 1

= pn − (−1)
n
2 p

n
2 .

These have the correct forms. Lastly we assume that case 4 holds for n, which is odd,
and show that this implies case 3 for n+ 1, which is even:

Nn+1(0) = (p− 1)Nn(−1) +Nn(0)

= (p− 1)p
n−1
2

(
p
n−1
2 − (−1)

n−1
2

)
+ pn−1

= pn + (−1)
n−1
2

(
p
n−1
2 − p

n+1
2

)
which holds when noting that we must have:

pn + (−1)
n−1
2

(
p
n−1
2 − p

n+1
2

)
= pn + (−1)

n+1
2

(
p
n+1
2 − p

n−1
2

)
.

Next we have that:

Nn+1(square) = pn −Nn(−1) +Nn(0)

= pn − p
n−1
2

(
p
n−1
2 − (−1)

n−1
2

)
+ pn−1

= pn + (−1)
n−1
2 p

n−1
2

which again holds when we note:

pn + (−1)
n−1
2 p

n−1
2 = pn − (−1)

n+1
2 p

n−1
2 .
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Finally:

(p− 1)Nn+1(non− square) = 2pn+1 − 2Nn+1(0)− (p− 1)Nn+1(square)

= 2pn+1 − 2
(
pn + (−1)

n+1
2

(
p
n+1
2 − p

n−1
2

))
− (p− 1)

(
pn − (−1)

n+1
2 p

n−1
2

)
which is equivalent to:

Nn+1(non− square) =
2pn+1 − 2

(
pn + (−1)n+1

2

(
p
n+1
2 − pn−1

2

))
p− 1

−
(p− 1)

(
pn − (−1)n+1

2 p
n−1
2

)
p− 1

= pn − (−1)
n+1
2 p

n−1
2 .

So we arrive at all the correct forms which completes the proof.

All of these, both in the case of −1 square and non-square in Fp, are consistent with
what we found using Jacobi sums in proposition 5.1.1.
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Deriving the quadratic character of 2 in
Fp

In the following we give a description of the quadratic character of 2 in a �eld Fp. By
using group theory, we wish to show the following theorem:

Theorem 6.0.1. Let χ be the Legendre symbol over our �eld Fp. Then χ(2) = 1 for
p ≡ ±1 mod 8, and χ(2) = −1 for p ≡ 3 mod 8 or p ≡ 5 mod 8.

Proof. In the previous chapter we have shown that the number of solutions to
x2 + y2 = 1 over Fp is equal to p± 1, with p− 1 when −1 is a square and p+ 1 when −1
is non-square.

In the following, let G be a �nite (non-commutative) group of order 8. We recall that if
we let a �nite group act on a set, the orbits of the group action give a partition of this
set. Hence if we let G act on the set S = {x2 + y2 = 1|(x, y) ∈ F2

p}, we then get S as a
disjoint union of the orbits of S under G.

We de�ne the free orbits of G as the ones of order 8 (i.e. of the same order as the group
itself). This also gives us the following identity in the case where −1 is a square in Fp:

#{x2 + y2 = 1|(x, y) ∈ F2
p} = p− 1

=
∑

orbits of G on S

(size of orbit)

≡
∑

non−free orbits of G on S

(size of orbit) mod 8

as we can split the sum over all orbits into two, one over the free orbits and one over the
non-free orbits, and then mod out by 8. Similarly, for −1 non-square in Fp, we have:

p+ 1 =
∑

orbits of G on S

(size of orbit)

≡
∑

non−free orbits of G on S

(size of orbit) mod 8.

For �nite groups, the order of any orbit must be a divisor of the group order, so any
orbit must have size 1, 2, 4 or 8. We recall here the result that |Ox| = |G|/|Gx|, where
Ox denotes the orbit of x and Gx denotes the stabilizer of x.
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Given a pair (x, y) ∈ Fp × Fp satisfying x2 + y2 = 1, the orbit of x, respectively y, is
non-free if there exists a non-trivial stabilizer, i.e. if there is some g 6= 1 ∈ G such that
g(x, y) = (x, y). Given the pair (x, y) ∈ F2

p, the possible group actions are given by:

(x, y), (−x,−y), (−y, x), (y,−x), (−y,−x), (y, x), (x,−y)

of which 6 are seen to be non-trivial. By inspection this reduces to considering the four
cases x = y, x = −x, y = −y and x = −y. We count all elements satisfying one of these,
making sure there is no overlap: the cases

1) x = −y, x = −x
2) x = −y, y = −y
3) x = −y, x = y

4) x = −x, y = −y
5) x = −x, x = y

6) y = −y, x = y

all lead to the contradiction x = y = 0 so that x2 + y2 = 1 fails. Hence no pair
(x, y) ∈ F2

p such that that x2 + y2 = 1 will ful�l more than one of the equalities in the
list.

The cases x = −x and y = −y each correspond to 2 solutions, by the condition
x2 + y2 = 1. The condition x2 + y2 = 1 also implies that the cases x = y and x = −y
have the same number of solutions, and we use the previous fact (lemma 2.1.8) that

N(x2 = a) = 1 + χ(a)

where χ is the multiplicative character of order 2, the Legendre symbol. Since Fp is a
�eld, we have a bijection between the sets {x2 = 1

2
|x ∈ Fp} and {x2 = 2|x ∈ Fp}, which

follows from x = y, so that 2x2 = 1. So for the cases x = y and x = −y, we get 1 + χ(2)
solutions both times. From the above we see that for −1 a square in Fp:

p− 1 ≡ 2 + 2 + 1 + χ(2) + 1 + χ(2) mod 8

≡ 6 + 2χ(2) mod 8.

Hence χ(2) = 1 for p ≡ ±1 mod 8, and χ(2) = −1 if p ≡ 3 mod 8 or p ≡ 5 mod 8.
Analogously, for −1 non-square in Fp:

p+ 1 ≡ 6 + 2χ(2) mod 8.

Hence we have χ(2) = 1 for p ≡ ±1 mod 8, and χ(2) = −1 if p ≡ 3 mod 8 or p ≡ 5
mod 8. This completes the proof.

Example 6.0.2.

Let us see an example of how to determine the quadratic character of 2 in a given �nite
�eld. Let p = 5, then −1 is square in F5. Then the theorem gives directly that
χ(2) = −1, however we can also see this just from the group theory observations:

p− 1 = 5− 1 = 4

≡ 6 + 2χ(2) mod 8
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so we can see directly that χ(2) =
(
2
5

)
= −1. If p = 7 so −1 is non-square in F7, we have

p+ 1 = 7 + 1 = 8

≡ 6 + 2χ(2) mod 8.

Hence χ(2) =
(
2
7

)
= 1 in this case.

6.1 The quadratic character of −1 in Fp
From the above, we can also derive the quadratic character of −1 in Fp:

Proposition 6.1.1.

χ(−1) ≡ p mod 4.

Proof. This is equivalent to

p− χ(−1) ≡ 0 mod 4

which follows as we found that p± 1 ≡ 6 + 2χ(2) mod 8 by considering the size of the
non-free orbits. We found this result by reducing to the cases:

a) x = −x and y = −y, which each has 2 solutions, giving 4 solutions in total;

b) x = y and x = −y, which each has 1 + χ(2) solutions, giving either 0 or 4 solutions in
total. This means that the non-free orbits all have size divisible by 4, hence

χ(−1) ≡ p mod 4.

34



Deriving the law of quadratic reciprocity

Based on our previous analysis of the equation x21 + ...+ x2n = 1 over Fp, we can derive
the quadratic character of odd primes modulo p, giving us results about quadratic
reciprocity. We now consider the case of n = q, where q is an odd prime, q 6= p. We will
prove the following version of the law of quadratic reciprocity:

Theorem 7.0.1. For p and q odd primes, p 6= q, and χ(·) =
(
·
p

)
, we have the relation(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

Proof. In the following, we work with the cyclic group G of order q, acting on the �nite
set S = {x21 + ...+ x2q = 1|(x1, ..., xq) ∈ Fqp}. G acts on S by cyclically permuting the
variables; if g ∈ G is a generator, the action is given by g(x1, ..., xq) = (xq, x1, ..., xq−1),
which has order q. Since the orbits must have size dividing q, all orbits necessarily have
size 1 or q since q is prime. By use of Gauss sums, we showed in proposition 5.1.1 that
for an odd number of variables, the number of solutions is given by the expression

N(x21 + ...+ x2q = 1) = pq−1 + χ(−1)
q−1
2 p

q−1
2

where χ denotes the Legendre symbol. As in the case of 2, we have that

pq−1 + χ(−1)
q−1
2 p

q−1
2 = #{x21 + ...+ x2q = 1|(x1, ..., xq) ∈ Fqp}

=
∑

orbits of G on S

(size of orbit)

≡
∑

non−free orbits of G on S

(size of orbit) mod q.

Since the free orbits are the ones of order q, and q is prime, we are left with the orbits
of order 1, belonging to the case where x1 = x2 = ... = xq = x so that
x21 + ...+ x2q = qx2. Since Fp is a �eld, we can again construct a bijection between the
sets {x2 = 1

q
|x ∈ Fp} and {x2 = q|x ∈ Fp}, so that these equations have the same

numbers of solutions over Fp. By lemma 2.1.8 we have

N(x2 = q) = 1 + χ(q).

By the above, we have that

pq−1 + χ(−1)
q−1
2 p

q−1
2 ≡ 1 + χ(q) mod q

⇔ 1 + χ(−1)
q−1
2 p

q−1
2 ≡ 1 + χ(q) mod q

⇔ χ(−1)
q−1
2 p

q−1
2 ≡ χ(q) mod q
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where the second line follows by Fermat's little theorem, as p 6 |q. Since p q−1
2 =

(
p
q

)
and

by de�nition, χ(q) =
(
q
p

)
, we have

χ(−1)
q−1
2

(
p

q

)
≡

(
q

p

)
mod q

⇔ χ(−1)
q−1
2 ≡

(
p

q

)(
q

p

)
mod q

⇔ (−1)
p−1
2

q−1
2 ≡

(
p

q

)(
q

p

)
mod q

since by de�nition of the Legendre symbol,
(
p
q

)−1
=
(
p
q

)
and χ(−1) = (−1) p−1

2 . We

note that we can disregard having to work mod q, since for ±1 ≡ ±1 mod n and
n > 2 (so that −1 6≡ 1 mod n), the left and right side are also identical over Z. This
precisely gives us the law of quadratic reciprocity.

Example 7.0.2.

Let us see an example of how one can calculate the quadratic character of an odd prime
q in Fp. Let q = 3 and p = 5, so that −1 is a square in Fp. By the group theoretical
results above, we have

1 + χ(3) ≡ 53−1 + χ(−1)
3−1
2 5

3−1
2

= 52 + 5

≡ 0 mod 5

from which we see that χ(3) =
(
3
5

)
= −1. If p = 7, so that −1 is non-square, we �nd

that

1 + χ(3) ≡ 73−1 + χ(−1)
3−1
2 7

3−1
2

= 72 − 7

≡ 2 mod 5

so that χ(3) =
(
3
7

)
= 1.
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The Hasse-Davenport Relation

We now return to the study of Gauss sums. Let F be a �nite �eld with q elements, q
not necessarily prime, and let E be a �eld extension of F of degree s. Let χ 6= ε be a
character on F. Then we wish to de�ne the extended character χ′ on E:

De�nition 8.0.1. For �nite �elds F and E such that F ⊂ E and χ is a character on F,
we de�ne the extension of χ to E, denoted by χ′, as

χ′(α) = (χ ◦NE/F)(α) = χ(NE/F(α))

where NE/F is the relative norm. By this de�nition χ′ is a multiplicative character on E.

For g a Gauss sum as previously de�ned in chapter 2, we wish to �nd the relation
between g(χ) and g(χ′). This will be given by the Hasse-Davenport relation.
To do this, we �rst need to recall certain algebraic results, such as the properties of
norm and trace. We need the following results:

Proposition 8.0.2. Let Fd(x) be the product of the monic irreducible polynomials in
Z/pZ[x] of degree d. Then we have that

xp
n − x =

∏
d|n

Fd(x).

Proof. First note that this product is �nite, since it has pd+1 terms. Then note that for
a non-constant polynomial f , then if f(x)|xpn − x, then f(x)2 6 |xpn − x, since if
xp

n − x = f(x)2g(x) then by di�erentiation

−1 = 2f(x)f ′(x)g(x) + f(x)2g′(x).

This would imply f(x)| − 1, which is a contradiction. What we must show now is that
for f a monic irreducible polynomial of degree d, then f(x)|xpn − x if and only if d|n.
Let K = Z/pZ(α) where f(α) = 0. Then [K : Z/pZ] = d and so K has pd elements, and
xp

d − x = 0 for x ∈ K.
Now assume that xp

n − x = f(x)g(x). Then αp
n
= α. If we take an element in K, we

know it has the form a1α
d−1 + a2α

d−2 + ...+ ad, and then we have

(a1α
d−1 + ...+ ad)

pn = a1(α
pn)d−1 + ...+ ad

= a1α
d−1 + ...+ ad

since K has characteristic p. Hence xp
n − x = 0 for x ∈ K. We know that in �elds, for

a ∈ N, al − 1|am− 1 if and only if l|m. Similarly, xl − 1|xm− 1 in F[x] if and only if l|m.
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This means that since xp
d − x|xpn − x, d must be a divisor of n. On the other hand, if

d|n, then since αp
d
= α and f(x) is the monic irreducible polynomium for α, we have

that f(x)|xpd − x. Since d|n, xpd − x|xpn − x, hence f(x)|xpn − x.

De�nition 8.0.3. Let F be a �nite �eld with q elements, q not necessarily prime, and
let E be a �eld extension of F of degree s, so that E has qs elements. For α in E, we
de�ne, respectively, the trace and norm of α from E to F by

TrE/F = α + αq + ...+ αq
s−1

NE/F = α · αq · ... · αqs−1

.

We also need some basic results involving the properties of the relative norm and -trace:

Proposition 8.0.4. Let F,E,K be �nite �elds such that F ⊂ E ⊂ K. Let
d = [E : F],m = [K : E] and n = [K : F]. Let F have q elements, and let α ∈ K. Then it
holds that

TrK/F(α) = TrE/F(TrK/E(α)).

Proof. We know from the extension theorems that n = dm. Since the number of
elements in E is q1 = qd, we have the traces

TrK/E(α) = α + ...+ αq
m−1
1

TrE/F(TrK/E(α)) =
d−1∑
i=0

TrK/E(α)
qi

=
d−1∑
i=0

m−1∑
j=0

αq1
jqi

=
d−1∑
i=0

m−1∑
j=0

αq
dj+i

=
n−1∑
k=0

αq
k

= TrK/F(α).

This follows from the fact that by letting j run from 0 to m− 1 and i from 0 to d− 1,
the power dj + i runs from 0 to d(m− 1) + (d− 1) = dm− 1 = n− 1.

Proposition 8.0.5. Let K and F be �nite �elds such that F ⊂ K and n = [K : F]. Let F
be the �eld with q elements, and let α be an element of K. Let f(x) be the minimal
polynomial for α over F, and let E = F(α). Then we know that [E : F] = d for
d = deg(f). Write f as

f(x) = xd − a1xd−1 + ...+ (−1)dad.

Then the following hold:

a) f(x) = (x− α)(x− αq) · ... · (x− αqd−1
);
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b) TrK/F(α) =
n
d
a1;

c) NK/F(α) = a
n
d
d .

Proof. a) Since F is of characteristic q, we know the coe�cients of f satisfy aqi = ai, so
we have

f(αq) = f(α)q = 0

so that αq is another root of f . Since it also holds that

f(αq
2

) = f(αq)q = 0,

αq
2
is also a root. In this manner we �nd that the roots of f are α, ..., αq

d−1
. To prove

a), we need to show that all these roots are distinct. Assume that αq
i
= αq

j
for

0 ≤ i ≤ j < d and let k = j − i. Now we show that k = 0. We have

αq
i

= αq
j

= αq
j−i+i

= (αq
k

)q
i

⇔ (α− αqk)qi = 0

⇔ α = αq
k

.

We also know that f divides xq
k − x by the minimality of f . By proposition 8.0.2 we

have that d|k. By assumption we have that 0 ≤ k < d, so we must have k = 0 as was to
be shown.
b) It follows from a) that a1 = TrE/F(α) and ad = NE/F(α). Since by construction α ∈ E,
we have TrK/E(α) = [K : E]α = n

d
α and NK/E(α) = α

n
d . By proposition 8.0.4, we have

TrK/F(α) = TrE/F(TrK/E(α)) =
n

d
TrE/F(α) = TrE/F

(n
d
α
)
=
n

d
a1

as the trace function is additive.
c) Analogously:

NK/F(α) = NE/F(NK/E(α)) = NE/F(α)
n
d = NE/F(α

n
d ) = a

n
d
d

as the norm function is multiplicative. This completes the proof.

From these basic algebraic results, we are ready to introduce some lemmas. First, let us
state the important Hasse-Davenport relation, which we wish to prove:

Theorem 8.0.6. The Hasse-Davenport relation:
Let F be the �eld with q elements and let E be an extension of F of degree s. For g a
Gauss sum, χ a character on F and χ′ a character on E as in de�nition 8.0.1, it holds
that

(−g(χ))s = −g(χ′).

We will give a proof of this at the end of the chapter, but this proof requires several
lemmas which we will introduce �rst. Initially when we introduced Gauss sums, we did
so on the form

ga(χ) =
∑
t∈Fp

χ(t)eat
2iπ
p =

∑
t∈Fp

χ(t)ζat

39



where we denoted g1 simply as g. Let E,F and Fp be �nite �elds such that Fp ⊂ F ⊂ E.
Let Fp,F and E have respectively p, q and qs elements. In the following, we consider

ξ(t) = ζ
Tr(t)
p , where the trace Tr(t) is given as the function TrF/Fp(t) as in de�nition

8.0.3. Then we have that

g(χ′) =
∑
t∈E

χ′(t)ξ′(t)

for ξ′ = ζTrE/F(t). By proposition 8.0.4,

TrE/Fp(t) = TrF/Fp(TrE/F(t))

and so ξ′ = ξ ◦ TrE/F.

Let f(x) ∈ F[x] be a monic polynomial, and write f(x) = xn − a1xn−1 + ...+ (−1)nan.
We now de�ne λ : F[x]→ C by λ(f) = ξ(a1)χ(an). This λ-function will become useful
in proving the Hasse-Davenport relation, so now we will go over some lemmas
concerning the properties of λ:

Lemma 8.0.7. For monic polynomials f and g in F[x], λ as given above is a
multiplicative function, i.e.

λ(fg) = λ(f)λ(g).

Proof. Let

f(x) = xn − a1xn−1 + ...+ (−1)nan
g(x) = xm − b1xm−1 + ...+ (−1)mbm.

Then their product is given by

f(x)g(x) = xm+n − (a1 + b1)x
m+n−1 + ...+ (−1)n+manbm.

By applying λ and noting that by de�nition ξ(a+ b) = ξ(a)ξ(b), we see that

λ(fg) = ξ(a1 + b1)χ(anbm) = ξ(b1)ξ(a1)χ(bm)χ(an) = λ(f)λ(g)

as wanted.

Lemma 8.0.8. Let α be an element of the �nite �eld E, and let f be the minimal
polynomial for α over F. Let d = deg(f) and let E be an extension of degree s over F.
Then we have that

λ(f)
s
d = χ′(α)ξ′(α).

Proof. We can apply proposition 8.0.5 for f(x) = xd − a1xd−1 + ...+ (−1)dad, so we
have that

TrE/F(α) =
s

d
a1

NE/F(α) = a
s
d
d .
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By de�nition, λ(f) = ξ(a1)χ(ad), so by raising both sides to the power s
d
, we get

λ(f)
s
d = ξ(a1)

s
dχ(ad)

s
d

= ξ
(s
d
a1

)
χ
(
a
s
d
d

)
= ξ(TrE/F(α))χ(NE/F(α))

= ξ′(α)χ′(α).

We now prove one �nal lemma involving the λ function de�ned above before moving
onto the proof of Hasse-Davenport.

Lemma 8.0.9. Let F be the �eld with q elements and let E be a �eld extension of F of
degree s. Let g be the Gauss sum over χ′. Then

g(χ′) =
∑
f

deg(f)λ(f)
s

deg(f)

where the sum is over all monic irreducible polynomials in F[x] of degree dividing s.

Proof. If we take F as our base �eld in proposition 8.0.2, then we know xq
s − x can be

written as a product of all the monic irreducible polynomials in F[x] with order dividing
s. Each of these monic irreducible polynomials will have all its roots in E, and similarly
every α ∈ E will be a root of such a monic irreducible polynomial.
Now let f(x) ∈ F[x] be monic and irreducible, with deg(f) = d and d|s. Denote the
roots of f by α1, ..., αd, all of which lie in E. Lemma 8.0.8 gives that

dλ(f)
s
d =

d∑
i=1

χ′(αi)ξ
′(αi).

If we sum over all monic irreducible polynomials of order dividing s, we precisely get
that g(χ′) =

∑
t∈E

χ′(t)ξ′(t) =
∑
f

deg(f)λ(f)
s

deg(f) as wanted.

We are now ready for the main result of the chapter:

Proof. (Of Hasse-Davenport)
We start by looking at the sum

∑
f λ(f)t

deg(f). We wish to show that

∑
f

λ(f)tdeg(f) =
1∏

f (1− λ(f)tdeg(f))

where the sum is over all monic polynomials and the product is over all monic
irreducible polynomials in F[x], where F is the �nite �eld with q elements. This follows
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by calculation: ∏
monic irreducible f

1

1− λ(f)tdeg(f)

=
1

1− λ(f1)tdeg(f1)
· 1

1− λ(f2)tdeg(f2)
· ...

=
∞∑
k=0

(
λ(f1)t

deg(f1)
)k · ∞∑

k=0

(
λ(f2)t

deg(f2)
)k · ...

= (λ(f1)t
deg(f1) + λ2(f1)t

2 deg(f1) + ...) · (λ(f2)tdeg(f2) + λ2(f2)t
2 deg(f2) + ...) · ...

=
∑

monic f

λ(f)tdeg(f)

using the fact that any monic polynomial can be written uniquely as the product of
monic irreducible polynomials. This is also equivalent to:

∑
f

λ(f)tdeg(f) =
∑
s∈N0

 ∑
deg(f)=s

λ(f)

 ts

where we de�ne λ(1) = 1. We see that the term corresponding to s = 0 is equal to 1.
Next, we consider the cases s = 1 and s > 1 separately. For s = 1, we have that:∑

deg(f)=1

λ(f) =
∑
a∈F

λ(x− a)

=
∑
a∈F

χ(a)ξ(a)

= g(χ)

by de�nition of λ. For s > 1, we get that:∑
deg(f)=s, s>1

λ(f) =
∑
ai∈F

λ(xs − a1xs−1 + ...+ (−1)sas)

= qs−2
∑

a1,as∈F

χ(as)ξ(a1)

= qs−2

(∑
as∈F

χ(as)

)(∑
a1∈F

ξ(a1)

)
= 0

by proposition 2.1.3. We then have that∑
f

λ(f)tdeg(f) = 1 · t0 + g(χ)t+ 0 = 1 + g(χ)t.

We now apply logarithmic di�erentiation:

d

dt
log

(∑
f

λ(f)tdeg(f)

)
=

d

dt
log

(
1∏

f (1− λ(f)tdeg(f))

)
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which gives

g(χ)

1 + g(χ)t
=
λ(f) deg(f)tdeg(f)−1

1− λ(f)tdeg(f)

which is equivalent to

g(χ)t

1 + g(χ)t
=
λ(f) deg(f)tdeg(f)

1− λ(f)tdeg(f)

by multiplication with t. We expand the denominators into geometric series:

1

1 + g(χ)
=

∞∑
s=0

(−g(χ)t)s

=
∞∑
s=0

(−1)sg(χ)sts,

so that

g(χ)t

1 + g(χ)
=

∞∑
s=0

(−1)sg(χ)s+1ts+1

=
∞∑
s=1

(−1)s−1g(χ)sts.

Similarly,

1

1− λ(f)tdeg(f)
=

∞∑
r=0

λ(f)rtr deg(f),

so that

λ(f) deg(f)tdeg(f)

1− λ(f)tdeg(f)
=

∞∑
r=0

deg(f)λ(f)r+1t(r+1) deg(f)

which gives the expression∑
f

λ(f) deg(f)tdeg(f)

1− λ(f)tdeg(f)
=

∑
f

∞∑
r=1

deg(f)λ(f)rtr deg(f).

To �nish the proof, we can now equate the coe�cients of ts and get

(−1)s−1g(χ)s =
∑

deg(f)|s

deg(f)λ(f)
s

deg(f) .

By lemma 8.0.9, we have that g(χ′) =
∑

deg(f)|s deg(f)λ(f)
s

deg(f) . Thus

(−1)sg(χ)s = (−g(χ))s = −g(χ′), which gives the Hasse-Davenport identity.
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The general case: a0x
n0
0 + ... + arx

nr
r = b

In this chapter we will study the most general type of equation over a �nite �eld F with
p elements, namely the one given by

a0x
n0
0 + ...+ arx

nr
r = b.

Theorem 9.0.1. Let a0, ..., ar ∈ F∗p, n0, ..., nr ∈ N and b ∈ Fp. Let ni|(p− 1) for
i = 0, ..., r. Over Fp we have the following identities for the number of solutions to
a0x

n0
0 + ...+ arx

nr
r = b for respectively b = 0 and b 6= 0:

a) N(a0x
n0
0 + ...+ arx

nr
r = 0) = pr +

∑
χ0(a

−1
0 ) · ... · χr(a−1r )J0(χ0, ..., χr)

where the sum is taken over tuples (χ0, ..., χr) of characters on Fp such that χnii = ε,
χi 6= ε for i = 0, .., r and χ0 · ... · χr = ε.

b) N(a0x
n0
0 + ...+ arx

nr
r = b) = pr +

∑
χ0 · ... · χr(b)χ0(a

−1
0 ) · ... · χr(a−1r )J(χ0, ..., χr)

where the sum is taken over tuples (χ0, ..., χr) of characters on Fp such that χnii = ε,
χi 6= ε for i = 0, .., r.

Proof. a) We �rst use the decomposition

N(a0x
n0
0 + ...+ arx

nr
r = 0) =

∑
a0u0+...+arur=0

N(xn0
0 = u0) · ... ·N(xnrr = ur).

We can rewrite each factor as N(xnii = ui) =
∑
χi

χi(ui) by letting χi run over all

characters of order dividing ni. We then apply the substitution ti = aiui, so we get∑
a0u0+...+arur=0

N(xn0
0 = u0) · ... ·N(xnrr = ur)

=
∑

χ0,...,χr

∑
a0u0+...+arur=0

χ0(u0) · ... · χr(ur)

=
∑

χ0,...,χr

∑
t0+...+tr=0

χ0(t0) · ... · χr(tr)χ0(a
−1
0 ) · ... · χr(a−1r )

=
∑

χ0,...,χr

χ0(a
−1
0 ) · ... · χr(a−1r )J0(χ0, ..., χr)

by the previous de�nition of J0. If χi = ε for all i, χ0(a
−1
0 ) · ... · χr(a−1r )J0(χ0, ..., χr) is

equal to pr by theorem 4.0.2. If for some, but not all i, χi = ε, the term is equal to zero.
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Hence the only other non-zero contribution is for χ0 · ... · χr = ε. This proves identity a).
b) again we decompose into

N(a0x
n0
0 + ...+ arx

nr
r = b) =

∑
a0u0+...+arur=b

N(xn0
0 = u0) · ... ·N(xnrr = ur).

As in case a), we rewrite each factor as N(xnii = ui) =
∑

χi
χi(ui). We then apply the

substitution ti = b−1aiui and get∑
a0u0+...+arur=b

N(xn0
0 = u0) · ... ·N(xnrr = ur)

=
∑

χ0,...,χr

∑
a0u0+...+arur=b

χ0(u0) · ... · χr(ur)

=
∑

χ0,...,χr

∑
a0bt0a

−1
0 +...+arbtra

−1
r =b

χ0 · ... · χr(b)χ0(a
−1
0 ) · ... · χr(a−1r )χ0(t0) · ... · χr(tr)

=
∑

χ0,...,χr

∑
t0+...+tr=1

χ0 · ... · χr(b)χ0(a
−1
0 ) · ... · χr(a−1r )χ0(t0) · ... · χr(tr)

=
∑

χ0,...,χr

χ0 · ... · χr(b)χ0(a
−1
0 ) · ... · χr(a−1r )J(χ0, ..., χr).

For χi = ε for all i, the term χ0 · ... · χr(b)χ0(a
−1
0 ) · ... · χr(a−1r )J(χ0, ..., χr) is equal to p

r,
again by theorem 4.0.2. If some, but not all, χi = ε, the term is equal to zero. This
proves b).

We will now look at case a) over projective space, for n0 = ... = nr = n where n|(p− 1).
For simplicity, let N = N(a0x

n
0 + ...+ arx

n
r = 0). Let N denote the number of solutions

over projective space. Then we know N = N(p− 1) + 1, i.e. N = N−1
p−1 . As we have

shown

N = pn +
∑

χ0,...,χr

χ0(a0) · ... · χr(ar)J0(χ0, ..., χr)

we then get, by de�nition of N :

N = pr−1 + ...+ p+ 1 +
1

p− 1

∑
χ0,...,χr

χ0(a0) · ... · χr(ar)J0(χ0, ..., χr).

Before we proceed, it is useful to show the following lemma:

Lemma 9.0.2. We have the following relation between Gauss sums and J0:

1

p− 1
J0(χ0, ..., χr) =

1

p
g(χ0) · ... · g(χr).

Proof. By theorem 4.0.2, we have that

1

p− 1
J0(χ0, ..., χr) =

1

p− 1
χr(−1)(p− 1)J(χ0, ..., χr−1)

=
1

p− 1
χr(−1)(p− 1)J(χ0, ..., χr−1)

g(χr)

g(χr)

= χr(−1)
g(χ0) · ... · g(χr)

g(χ0 · ... · χr−1)g(χr)
.
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By corollary 4.0.3.1, g(χ0, ..., χr−1)g(χr) = χr(−1)p, hence

1

p− 1
J0(χ0...χr) =

χr(−1)g(χ0) · ... · g(χr)
χr(−1)p

=
1

p
g(χ0) · ... · g(χr).

9.1 The rationality of the generating function for N

Let F be the �eld with p elements and let K be an extension of F of degree k. Again we
consider the equation

a0x
n
0 + ...+ arx

n
r = 0, n|(p− 1).

Let Nk denote the number of projective solutions over K. Then we have that

Nk = 1 + pk + ...+ pk(r−1) +
∑

χ′0,...,χ
′
r

χ′0(a0) · ... · χr(ar)
1

pk
g(χ′0) · ... · g(χ′r)

= 1 + pk + ...+ pk(r−1) + (−1)r+1
∑

χ0,...,χr

χ0
k(a0) · ... · χrk(ar)

1

pk
(−1)k(r+1)gk(χ0) · ... · gk(χr)

by de�nition of the extended characters χ′i and use of Hasse-Davenport. We wish to
show the following theorem:

Theorem 9.1.1. Let u be our variable, and let
∑∞

k=1Nku
k be the generating function

for the number of solutions to the equation a0x
n
0 + ...+ arx

n
r = 0 over the �nite �eld K.

Then this generating series is a rational function of u.

Proof. First we note that it is enough to consider the generating function for Nk, by the
linear relation N = N(p− 1) + 1. We will proceed by showing that the generating
function

∑∞
k=1Nku

k−1 gives a rational function of u. We calculate the value of∑∞
k=1Nku

k−1:

∞∑
k=1

Nku
k−1

=
∞∑
k=1

r−1∑
j=0

pjkuk−1 + (−1)r+1

∞∑
k=1

∑
χ0,...,χr

χ0
k(a0) · ... · χrk(ar)

1

pk
(−1)k(r+1)gk(χ0) · ... · gk(χr)uk−1.

To simplify this, we look at χ0
k(a0) · ... · χrk(ar) 1

pk
(−1)k(r+1)gk(χ0) · ... · gk(χr). We have
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that

χ0
k(a0) · ... · χrk(ar)

1

pk
(−1)k(r+1)gk(χ0) · ... · gk(χr)

=

(
χ0(a0) · ... · χr(ar)

1

p
(−1)r+1g(χ0) · ... · g(χr)

)k
=

(
(−1)r+1χ0(a0) · ... · χr(ar)

1

p− 1
J0(χ0, ..., χr)

)k
= (C(−1)−2)k

= Ck

where we put

C = (−1)r−1χ0(a0) · ... · χr(ar)
1

p− 1
J0(χ0, ..., χr).

Then

∞∑
k=1

Nku
k−1 =

∞∑
k=1

r−1∑
j=0

pjkuk−1 + (−1)r+1

∞∑
k=1

∑
χ0,...,χr

Ckuk−1

= −
r−1∑
j=0

d

du
log(1− pju) + (−1)r

∑
χ0,...,χr

d

du
log(1− Cu)

since we have

−
r−1∑
j=0

d

du
log(1− pju) = (−1)2

r−1∑
j=0

∞∑
m=1

d

du
(−1)m (−pju)m

m

=
r−1∑
j=0

∞∑
m=1

d

du
(−1)2mp

jmum

m

=
r−1∑
j=0

∞∑
m=1

pjmum−1

and

(−1)r
∑

χ0,...,χr

d

du
log(1− Cu) = (−1)r+1

∑
χ0,...,χr

∞∑
m=1

d

du
(−1)m (−Cu)m

m

= (−1)r+1
∑

χ0,...,χr

∞∑
m=1

d

du
(−1)2mC

mum

m

= (−1)r+1
∑

χ0,...,χr

∞∑
m=1

Cmum−1.
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What remains is to show the rationality in u:

∞∑
k=1

Nku
k−1 = −

r−1∑
j=0

d

du
log(1− pju) + (−1)r

∑
χ0,...,χr

d

du
log(1− Cu)

= − d

du
log

(
r−1∏
j=0

(1− pju)

)
+ (−1)r d

du
log

( ∏
χ0,...,χr

(1− Cu)

)

=
d

du
log

 1
r−1∏
j=0

(1− pju)

+
d

du
log

( ∏
χ0,...,χr

(1− Cu)

)(−1)r


=
d

du
log


( ∏
χ0,...,χr

(1− Cu)
)(−1)r

r−1∏
j=0

(1− pju)

 .

This gives a rational function, since the derivative d
dx

log(x) = 1
x
is rational, and we only

work with �nite products in the above.
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Conclusion

Throughout this thesis we have treated di�erent types of equations over �nite �elds,
and as we have seen, they can be analyzed using several di�erent methods. Some of
these methods have the bene�t of simplicity, others that they lead to additional
theorems and results in the process.
The �nal result of weil's is quite noteworthy; when we look at the number of solutions
to a general Fermat hypersurface, we can associate this to a �nite and rational function
regardless of the degree of the �eld extension we work with. One of the further results
one can show is that the results in chapter 8 also hold without the assumption n|(p− 1).
No doubt it is possible to generalize this theory even further, or consider other
interesting special cases, though even within the limitations we have worked with here,
we have found many broad and useful results.
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