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ABSTRACT

The goal of this thesis is to demonstrate that the geometric realization of the
central linking system associated to a saturated fusion system can be seen as the
classifying space of the fusion system. This is done by showing several theorems
that generalize the case of the classifying space of a finite group. Most notably is
a generalized Martino-Priddy conjecture. Furthermore we show the existence of a
central linking for saturated fusion systems over finite p-groups with small p-rank.

RESUME

Malet med dette speciale er at vise at den geometriske realisation af det centrale
linking system for et maettet fusionsystem kan betragtes som det klassificerende rum
for fusion sytemet. Dette bliver gjort ved at vise flere seetninger, som generaliserer
tilfeeldet af det klassificerende rum af en endelig gruppe. Her bemaerkes iser en
generaliseret udgave of Martino—Priddy formodningen. Desuden vises eksistensen
af et centralt linking system for meettede fusionssystemer over endelige p-grupper
med lav p-rang.
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1. INTRODUCTION

For a finite group G, a prime p and Sylow-p-subgroup S the study of the G-
conjugation action on the subgroups of S has been of interest to group theorists for
over a century. We call this fusion, which is a term attributed to Brauer.

Two groups G and G’ have homotopy equivalent classifying spaces BG and
BG' if and only if they are isomorphic. The question is then whether there is a
topological space which is the analog to the classifying space in connection with
fusion of a group. The Martino—Priddy conjecture indicated that the Bousfield—
Kan p-completion of BG has the wanted properties, as it states that two groups
have the same fusion structure if and only if their p-completed classifying spaces
are homotopic. It was later proved in [9]. The proof was based on the study of
a category L%(G) called the central linking system, which was shown to describe
many of the properties of BGZ/,\.

Lluis Puig showed how to generalize the idea of the fusion of a Sylow-p-subgroup
in G by not only considering conjugation maps between subgroups but also allowing
injective group homomorphisms. He called this a Frobenius category, but we will use
the more common notion of a fusion system. The generalization of the classifying
space for an abstract fusion system will be in the form a category L called the
central linking system, which is a generalization of L& (G). The main theorem of
this thesis is a generalized version of the Martino—Priddy conjecture. It states that
the isomorphism class of (S,F, L) depends only of the homotopy type of the p-
completion of |£], hence |£| can be considered to be the classifying space of the
fusion system. The central part of the proof is similar to [9], a description of
[BQ, |£|]/D\] for a finite p-group @, which corresponds to the result Rep(Q,S) =
[BQ, BS] for finite groups.

We also study the cohomology ring of a fusion system, which is defined abstractly
in terms of the cohomology ring of the objects. Our other main theorem is that
when the saturated fusion system has a central linking system, the cohomology
rings of the fusion system and of the p-completed classifying space are isomorphic
and Noetherian.

Note that it is not clear from the definition that a central linking system for
a fusion system exists. This was proved by Chermak in [12]| for saturated fusion
systems over a finite p-group using the classification of finite simple groups. We will
take a different approach by forming an obstruction theory for the existence of a
central linking system in terms of higher limits of a functor over an orbit category.
We then use methods developed in [18] for computing these limits to prove the
existence and uniqueness of the central linking system of saturated fusion systems
over finite p-groups with p-rank strictly less that p> respectively p2.

The thesis will depend heavily on Bousfield-Kan’s p-completion [7] in connection
with Lannes’ T-functor [26]. The knowledge of basic module theory, homological
algebra and algebraic topology will be assumed. We use the convention that p is
always a prime number, unless stated otherwise.

Note that thesis is mainly based on [10] but also parts of [18].
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2. FUSION SYSTEM AND ASSOCIATED LINKING SYSTEMS

In this chapter contains the basic definitions of fusions system and their associ-
ated central linking systems.

Note that for any group G and subgroups H, H' C G, we let Homg(H, H') be
the elements of Hom(H, H') of the form c,(z) = gzg™' for some g € G.

Definition 2.1. A fusion system F over a finite p-group S is a category with
objects the subgroups of S, such that the morphism-set satisfies

e For every P,@Q C S we have that Homg(P,Q) C Homz(P, Q) C Inj(P, Q).
e If o € Homx(P,Q), then the restriction of ¢ to the image is an element of
Hom g (P, o(P)).

The standard example of a fusion system is Fs(G), where S € Syl (G) for a
finite group G and the objects are the subgroups of S and morphisms are given by
conjugation with elements from G.

Definition 2.2. For a fusion system F over a p-group S, we say that two subgroups
P,Q C S are F-conjugate, if there exists an isomorphism in Homz (P, Q).

We call @ C S fully normalized in F if |[Ns(Q)| > |Ns(P)| for any P C S
which is F-conjugate to Q. Similarly we call Q C S fully centralized in F if
|Cs(Q)] > |Cs(P)| for any P C S which is F-conjugate to Q.

Definition 2.3. A fusion system F over a p-group S is saturated, if
o Any fully normalized Q C S is also fully centralized and

Auts(Q) € Syl (Aut#(Q)).

e I[f P C S and ¢ € Homzg(P,Q) such that ¢(P) is fully centralized, then
there exists ¢ € Homx(N,, S), where

Ny = {z € Ns(P) | pocop™ € Auts(p(P))},
such that ¢|p = .

Definition 2.4. For a F fusion system over a p-group S, we say that P C S is
F-centric if Cg(P') = Z(P") for any P’, which is F-conjugate to P. We let F¢ be
the full subcategory of F on the F-centric elements.

Definition 2.5. Let F be a fusion system over a p-group S. A central linking
system associated to F is a category L, where the objects are the F-centric sub-
groups of F together with a functor w: L — F and for any F-centric subgroup P a
monomorphism dp: P — Aut,(P) satisfying the following azioms:

(A) The functor m is the identity on objects and for any pair of F-centric sub-
groups P and @ the map w: Mor (P, Q) — Homz(P, Q) is the orbit map
for the free Z(P)-action on Morz(P,Q) defined for ¢ € Mor,(P,Q) and
g € Z(P) by setting g - p = podp(g).

(B) For any g € P where P is an F-centric subgroup, we have that 7(dp(g)) =
Cq.
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(C) For any ¢ € Morz(P,Q) and g € P the following diagram commutes:

p—% 0

dp(9) do(m())

P—% L0

If L is a central linking system associated to F, we call (S,F,L) a p-local finite
group. Furthermore we call |L| the classifying space of the fusion system F.

Definition 2.6. An isomorphism of p-local finite groups (S, F, L) and (S, F', L")
is a triple (€s,&7,&c), where Eg: S — S’ is a group isomorphism and Ex: F — F'
and g2 L — L' are isomorphisms of categories, such that for any subgroup P C S
we have that £g(P) = Ex(P) = ££(P) when defined. Furthermore 1’ oy =&rom
and b¢,(py 0 {s|p = &g 0 6p for any F-centric subgroup P of S.
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3. THE CLASSIFYING SPACE IS p-GOOD.

For any finite p-group S, we have that BS is p-good by [3, III 1.4 Proposition
1.10]. In this chapter we show the corresonding result for p-local finite groups.

Lemma 3.1. Let (S, F,L) be a p-local finite group, and assume P,Q and R are
F-centric subgroups of S. Then the following holds:

(a) For any ¢ € Homz(P,Q) and ¢ € Homz(Q,R) let ¢ € ﬂé}R(w) and
% € W;’IR(’WD). Then there exists a unique ¢ € Morg(P,Q), such that

Yop= 121\;0 and furthermore we have wp g (P) = ¢.
(b) If ¢, @' € Mor. (P, Q) satisfies that cyomp.g(p) = mp,o(@') for some z € Q,
then there is a unique element g € Q, such that ég(g) o p = ¢'.

Proof. For part (a) let o € W;,IQ(QO). Then WP,R(@) = 7p (1 o a), so axiom

(A) implies that there exists g € Z(P), such that o = 1) o a0 dp(g). By (B) we
have that 7p(dp(g)) = ¢4 = idp, hence ¢ = a o §p(g) satisfies the requirements.
Assume that ¢’ € Morz (P, Q) is another morphism such that 9 o ¢/ = 1;:0 As @
is injective, this implies that 7po(¢') = ¢ = mp (a0 dp(g)). Then by (A) there
exists h € Z(P) such that @' = oo dp(gh). Now 6p(h) acts trivially on ¢, and as
the action is free, we conclude that h = 1, and thus ¢’ = a0 §p(g).

Set ¢ = mpq(p). For (b) the assumptions and axiom (B) imply that

mpQ(0q(r) 0 @) = mp (&),
hence by (A) there exists a g € Z(P) such that dg(z) o podp(g) = ¢'. Thus
by (C) we conclude that dg(zp(g)) o ¢ = ¢’ and this proves the existence part.
Assume that g, ¢’ € Q are elements such that dg(g) o @ = @’ = dg(¢’) o ¢. Then by
applying 7 we conclude that ¢, = ¢y on p(P), so ¢'"1g € Cs(p(P)) C p(P), as P
is F-centric. Then ¢'~1g = o(h) for some p € P, and ¢ = dg(g'~'g)op = @odp(h)
by (C). By part (a) we conclude that dp(h) = 1p. As dp is injective, we get that
h =1 and thus g = ¢'. d

Definition 3.2. Let (S, F, L) be a p-local finite group and P a F-centric subgroup.
We define 0p: B(P) — L to be the functor given by *p — P and g — 0p(g) for all
ge P.

Proposition 3.3. Let (S, F,L) be a p-local finite group. Then |L] is p-good and
the composite

g m(|£]) ™) m(|L[))

s surjective. Here ¢ is the natural transformation from p-completion.

m(10s])

Proof. For each F-centric subgroup P of S, we choose an tp € Mor(P, S) lifting the
inclusion of P into S such that tg = 1g. Then for any inclusion P C @ of F-centric
subgroups there exists by Lemma 3.1 (a) a unique morphism Lg € Mor, (P, @) such
that vg o Lg = tp. Note that £ is connected. For any ¢ € Morg(P,Q) let v,
be the path in |£| from P to Q. Let the vertex S be the base-point for |£| and
define w: Mor(L) — m1(]£]) as sending any ¢ € Mor (P, Q) to the class of the loop
’yLQ'wayb_(}J) in |£|. Then for ¢ € Homp(P,Q) and 1 € Homz(Q, R) we have that
w(th o) = w(h)w(p). Furthermore for an inclusion P C Q of F-centric subgroups
we have that w(Lg) = 1. As 7, is the constant path, we see that w(tp) = 1
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for any F-centric subgroup P. By cellular approximation [19, Theorem 4.8] we
have that any loop at S in |£] is homotopic to a finite composition of loops of the
form w(¢p) for ¢ € Mor(£). In particular im(w) generates m(|£]). Alperin’s fusion
theorem for saturated fusion systems [10, A.10] implies that every morphism in
F is a composition of automorphism of fully normalized F-centric subgroups and
inclusions. Hence every morphism of £ can be expressed as automorphisms of fully
normalized F-centric subgroups together with ¢p and Lng. As w is trivial on the
¢’s and respects composition, we conclude that 71 (|£]) is generated by w(Aut,(Q))
where @ is a fully normalized F-centric subgroup of S.

Let P be a fully normalized F-centric subgroup of S. By Lemma 3.1 part (a)
there exists for any 2 € Ng(P) a unique ¢, € Aut,(P) such that tpog, = dg(z)orp
and 7(p,) = ¢z For z,y € Ng(P) we have that tpop, o, = dg(zy)otp hence the
uniqueness part gives that g, = @, 0 @,. If ¢, = ¢, for some z,y € Ng(P), we
have by construction that tp = ds(z " y)orp. Astp = §5(1)oLp the uniqueness part
of Lemma 3.1 (b) implies that 1 = z=1y. Thus the map ¢_: Ng(P) — Aut.(P) is
an injective group homomorphism. Let N (P) denote the image. We observe that
w(Nz(P)) Cw(ds(S)) and wo dg(—) corresponds to 71 (|0s]).

As P is fully normalized we have that Auts(P) € Syl,(Autz(P)). Further-
more Autg(P) = Ng(P)/Cs(P) = Ng(P)/Z(P) as P is F-centric. By Axiom
(A) for £ we have that Aut,(P)/Z(P) = Autz(P), hence a Sylow-p-subgroup of
Aut . (P) has the same order as Ng(P), so Nz (P) is a Sylow-p-subgroup of Aut.(P).
Thus N (P) generates Autg(P) together with elements of order prime to p. Since
w(N£(P)) Cw(ds(S)), we conclude that w1 (|£]) is generated by 71 (|0]|)(S) and the
subgroup K generated by all elements prime to p. As conjugation preserves order of
the elements, we have that K is normal in 71 (|£]), and so 71 (|f|) maps surjectively
onto w1 (|£|)/K. In particular 7 = 71 (|]£])/K is a finite p-group.

By the universal coefficient theorem [19, Theorem 3A.3] in connection with the
fact that Ho(K, Z) = Z, we conclude that H; (K;F,) = H; (K)®F, = K/[K, K|QF,.
The abelianization K/[K, K] of K is also generated by elements of order prime to
p. Let k be such a generator. Then there exists n,m € Z such that 1 = m|k| + np,
and hence for a x € F, we have

k®x = (m|k|+np)k®xz = (mlklk) ® x + k ® (npz) = 0.

As K/[K, K| ®T, are generated by such elements we conclude that H; (K;F,) =0,
i.e. K is p-perfect.

Let X be the cover of |£| with fundamental group K. Since the object and
morphism sets of £ are finite, we have that |£| has a finite skeleton. Thus the
same holds for X, so by cellular homology we have that H;(X;F,) is a finite p-
group for every i. As m(X) is p-perfect, |7, Proposition VII 3.2| implies that X
is p-good and X' is simply connected. As K is normal in 7 (|£]) we have that
X — |L£] is a normal covering space by [19, Proposition 1.39] and thus a principal
m-bundle. As 7 is finite we can consider the homotopy fibration X — |£| — B(w).
It has connected fiber and furthermore both 7 and H;(X;F,) are a finite p-groups
for every i. So by the mod-R-fiber lemma and the following example [7, II 5.1
and 5.2], we conclude that X' — |L|} — B(w); is a homotopy fibration. By |3,
III 1.4 Proposition 1.10] we have that B(r) is p-complete, so ¢ () is a homotopy
equivalence. Hence B (77)1/)\ has fundamental group 7. Since Xz/>\ is simple connected,
we have that 7r1(XpA) = 0. The long exact sequence in homotopy for the fibration
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>~

now implies that 71(|L])) = 7. As ¢ is a natural transformation between the
identity and p-completion, we have that the following diagram commutes:

X - |£] - B(m)
dx Pz ®B(m)
X, (I£ly) —— B(x),

As the long exact sequence in homotopy for a fibration is natural, we get the
following commutative diagram.

i (IL) .
m1(P1z)) T1(¢B(x)) = idx
m(L)) — w

The upper horizontal map is the quotient map of 1 (|£|) onto 71 (|£])/K, so the
same is true for m(¢|z|). Thus by the above the map 71 (¢)z|) o1 (]0]) is surjective.

As X is p-good, we have that H.(dx): Hi(X;F,) — H.(X);F,) is an iso-
morphism. Hence X* — [L|/* — B(); satisfy the conditions on the mod-IF,-fiber
lemma so we have that (X)) — (|£]})); — (B(w);); is fibration, and the diagram

A A A
X5 - |1 - B(7),,

(ox); (D12)p (6B(m))p

(Xp)p — (L) — (B(m)p),

commutes as p-completion is a functor. They induce maps between the two long ex-
act sequences in homotopy corresponding to the fibrations. As X is p-good we have
that ¢x is a mod-p-equivalence. Similarly B(r) is p-complete, so ¢p(r) is a homo-
topy equivalence and in particular a mod p-equivalence. Thus (¢x ), and (¢p(x));
are homotopy equivalences by [7, Lemma 1.5.5.]. In particular both (¢ XI/)\) and
T«(¢B(r)y) are isomorphisms. The 5-lemma now implies that m.((¢c|);) is an
isomorphism. As both |£] are |£]} are connected CW-complexes, we conclude by
Whiteheads Theorem [19, Theorem 4.5] that (¢ £|)]/D\ is a homotopy equivalence, so
by [7, Lemma 1.5.5] ¢z is a mod-p-equivalence and thus |£] is p-good. O
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4. A HOMOTOPY DECOMPOSITION OF THE CLASSIFYING SPACE

Definition 4.1. The orbit category of a fusion system F on a p-group S is the
category with objects the subgroups of S and

Moro (P, Q) = Rep£(P. Q) = Inn(Q) \ Hom=(P, Q).

For any subcategory Fo of F let O(Fy) be the full subcategory of O(F) on the objects
of Fo, and set O°(F) = O(F°).

Observe that for ¢ € Homxz(P,Q), ¥ € Homz(Q, R) and elements ¢ € @ and
r € R we have that (c, 0 1)) o (¢cq 0 ) = Cry(q) © (¥ 0 ). Thus the composition is
well-defined on O(F), and hence it is a category.

For any g € P we have that g € Mor(BP) gives a natural transformation between
idgp and the conjugation map ¢4, hence by [33, Proposition 2.1] we have that
B(cgy) is homotopic to the identity on BP. Thus P — BP induces a well-defined
functor from O¢(F) to hoTop. The following proposition provides a homotopy
decomposition of the classifying space in terms of this functor.

Proposition 4.2. Let (F,L,S) be a p-local finite group and let 7: L — O°(F)
be the functor defined by 7#(P) = P and mapping 7(p) to the class of n(p) €
Repr(P,Q). Let B: O¢(F) — Top be the left homotopy Kan extension to the
constant functor x: £ — Top. Then B is a homotopy lifting of the homotopy
functor P +— BP and |L| ~ hocolimpecoe(r) B(P).

Let Ly be a full subcategory of L and let Fy be the full subcategory of F¢ with
Ob(Fo) = Ob(Ly). Then |Lo| =~ hocolimpeo(z,) B(P).

Proof. By [23, Chapter 5 and (4.3)] we have that the left homotopy Kan extension
for a constant functor is given in the form of an over-category'. Hence for any
P € F¢ we have that B(P) = |7 | P|, where 7 | P is the category with Ob(#& |
P)={(Q,a) | Q € F¢,a € Repz(Q, P)} and

Morz p((Q,a), (R, B)) = {¢) € Mor(Q, R) | Bo7(v) = a}.

For any morphism ¢ € Rep (P, P') we have that B(p) = |7 | ¢|, where 7 | ¢: 7 |

P — 7| P isgiven by (Q,a) — (Q,po ) and 9 — 1.
By [23, Theorem 5.5] we have that

hocolim B ~ hocolim (),

O°(F) C
and as |£| ~ hocolim/ (%) we obtain the desired isomorphism. Similar arguments
apply for any full subcategory Ly of £ and the restriction of 7 to Ly, which is a
functor 7: Lo — O(Fp). If By is the left homotopy Kan extension of x: Ly — Top
over 7, then hocolimpe(r) By ~ |Lo| and By = |70 4 (—)|.

Let P € F°. Then for any ¢ € P we have that 7(dp(g9)) = ¢4 € Inn(P),
so 7(dp(g)) = idp in O%F). Thus ép(P) C Autz p(P,id). Let B'(P) be the
subcategory of 7 | P with one object (P,idp) and morphisms dp(P). As dp is
injective, we conclude that |B'(P)| ~ BP. We will now prove that |B’(P)] is in fact a
deformation retract of |7 | P|. For this we pick a section ¢: Mor(O¢(F)) — Mor(L)

Un the terminology of [23] we have that Fj«(x) = B((F¢)°P,L,+) = B(r | (F°)°P), so
Fyp«(*)(E) = |7 | E|. The theorem 5.5 states, that hocolim ; () = hocolim zeyop F= ().
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of 7, such that (idp) = 1p for any P € F°. Consider ¥ € Morz p((Q, ), (R, B)).
Then

7(0(e) = a = pow(y) =7r(5(8) o)
in Rep(Q, P). By Lemma 3.1 (b) this implies that there exists a unique g, € P
such that dp(gy) o T(6(a)) = 7(6(B)) o . Then clearly g1, = 1 and for ¢ €
Morz;p((Q, @), (R, 8)) and ¢ € Morz p((R, 8),(S,v)) we have the following com-
mutative diagram:

op(gy) op(gy)

P ~ P ~ P
The uniqueness of gy, implies that it is equal to g4 g,. Thus we have a well-defined
functor ¥: 7 | P — B'(P) by setting ¥(Q,a) = (P,idp) and ¥(p) = dp(g,). As
(idp) = 1p we have that the restriction of ¥ to B'(P) is the identity. For any
(Q,) € T | P we have that 6(«) is a morphism in 7 | P from (Q, @) to (P,idp),
and the defining property of ¥(p) for a ¢ € Morz p((Q, ), (R, 3)) implies that
&(—) is a natural transformation from idz; p to incloW¥, where incl is the inclusion
of B'(P) into 7 | P. By [33, Proposition 2.1] we have that the geometric realizations
idjzy p| = |idz p| and |inclo®| = inclz/(py|— |7, p| ©|P| are homotopic. Since @ is
the identity on B’(P), we conclude that |7 | P| is a deformation retract of |B'(P)].
In particular we have that B(P) = |7 | P| ~ |B(P)| ~ BP.

For any P € Fy we have that B’(P) is a subcategory of 7y | P, and by the
above argument the inclusion |B'(P)| < By(P) is a homotopy equivalence. As
the inclusion |B'(P)| < B(P) is the composition |B'(P)| < By(P) — B(P), we
conclude that By(P) < B(P) is a homotopy equivalence for any P € Fy. Thus we
get that

|£o| ~ hocolim By ~ hocolim B.
O¢(Fo) O¢(Fo)

Let ¢ € Homz(P, Q) and let ¢ be the class in Rep (P, Q). Consider the func-
tors B/(P) — 7 | Q given by Fy = (7 | @) oincl and F» = incloB’(yp), where
B'(¢): B'(P) — B'(Q) is the functor B(y) under the natural identification of B'(P)
with BP and B'(Q) with BQ. Thus they are exactly the functors given by

Fl(Pvid):(P»SE)a Fl((SP(g)):(SP(g),

F2(P71d) = (Qaid)v F2(6P(g)) :6Q(90(g))
As 7 is surjective on morphisms, we may pick a ¢ € Mor (P, Q) such that (@) = .
Then ¢ is a morphism in 7 | @ from (P, ) to (Q,id), and by (C) for £ we have
that the following diagram commutes for any g € P:

P P

op(9) dq(v(9))

P
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By comparing definitions we see, that this implies that ¢: Fy(P,id) — Fy(P,id)
gives a natural transformation from F; to Fy. Thus by [33, Proposition 2.1] we
have that |Fy| and |F3| are homotopic, so we conclude that

e U Bp)
15(0)) B(%)
5@ U 5

commutes up to homotopy. We remark that |incl | is a homotopy equivalence, hence
we conclude that B is a homotopy lifting of the homotopy functor P — BP. ]

This Proposition implies, that if there exists a central linking system associated
to a saturated fusion system JF on a p-group S, then there exists a lifting of the
homotopy functor P — BP on O¢(F). In fact the converse is also true, as seen in
the following proposition.

Proposition 4.3. Let F be a saturated fusion system on a p-group S. If there
exists a lifting of the homotopy functor P +— BP on O¢(F) to Top, then there
exists a central linking system associated to F.

Proof. Let B: O°(F) — Top be a lifting of P — BP. Then B is a functor together
with a homotopy class np € [BP, BP] representing a homotopy equivalence for
any P € O¢(F) such that the following diagram (D) commutes in hoTop for any

¢ € Repr(P,Q):

BQ —- B(Q)

For each P € F¢ we now choose a map #jp: BP — B(P), such that [fip] = np.
Let #p € B(P) be the image of the base-point in BP. Then 7jp induces a map from
71 (BP,%) = P to m (B(P),*p) which we will denote yp. As #jp is a homotopy
equivalence, we conclude that «p is an isomorphism of groups. We now define a
category £ with objects F¢ and

Mor (P, Q) = {(¢,u) | ¢ € Rep£(P,Q),u € m(B(Q); B(¢)(xp), %)},

where 71 (B(Q); B(¢)(*p), *g) is the set of homotopy classes of paths from B(¢)(*p)
to *g in B(Q). The composition is defined for (p,u) € Mor.(P,Q) and (¢,v) €
Mor,(Q, R) by the following equation

(1/% U) o ((,D,U) = (,(/J °p,v- BW)*(“))
We let m: £ — F° be the identity on objects and for (¢,u) € Morz(P, Q) we set
(e, u) to be

-1
~ U Y

T (B(P), %) 22 m(B(Q), () (xp)) — m1(B(Q), %q) —— Q

P
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For any P € F¢ we set 6p: P — Autz(P) to be p — (idp,vp(p)).

It is straightforward to check that the given construction is in fact a central
linking system associated to F, the definition of 7 being the main difficulty. We
will show only some of the properties here.

Note that for a specific choice of representative ¢ € Homz(P, Q) of ¢ € Rep (P, Q)
we have that the homotopy from the diagram (D) provides a path ug from B(¢)(%,)
to xg. Furthermore the homotopy implies that (ug)s o E(w)* ovp =g o @, and
thus 7(p,u) = Cogt(wust) op. Note that 7 is clearly surjective. If w(p, u) = w(1,v)
for (¢, u), (¥,v) € Morg(P,Q), we see that ¢ = 9 € Repx(P,Q) and for a repre-
sentative ¢ € Homz (P, Q) we have that

Vg (ug vt u-ug) € No(¢(P)) = Z(G(P)) = ¢(Z(P)).
If 'yél(u¢ vl u-ug) = @(g) for g € Z(P), then the above remarks imply that
B(p)(vp(#(9)) = v - u, 50 (,v) 06, (9) = (¢, ).
For any g € P we have that m(dp(g)) is the map:
h= v (vp(9) - vp(h) - vp(9) ™) = cq(h).

For (¢,u) € Morg(P,Q) and g € P the diagram corresponding to property (C) is
the following:

P (¢, u) . 0

(idp,vp(9)) (idg,u- B(@)«(vp(g)) - u™t)

P (SD? u) . Q
The first components of the compositions are both ¢, while the second are
w-B(@)e(vp(9));  u- B(p)e(vp(9)) - u™" - B(idg).(u).

As B(idg) = id(q) we have that B(idg)«(u) = u, so the diagram commutes. [J
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5. THE CENTRALIZER p-LOCAL FINITE GROUP

We will now define and study the centralizer p-local finite group and use this to
provide another homotopy decomposition of the classifying space of a fusion system,
which later on will have an important role in the study of the cohomology ring of
fusion systems.

Lemma 5.1. Let F be a saturated fusion system over S. Let P,Q € F and
¢ € Homz(P,Q). If P is fully centralized, then there exists a morphism Cs(p) €
Homz(Cs(Q), Cs(P)).

Proof. Set ¢ := ¢~ € Homz(p(P), P). Then ¢(p(P)) = P, which is fully cen-
tralized in F. As F is saturated, there exists a ¢ € Homz(Ny,S) which is an
extension of . Directly from the definition we get that Cg(¢(P)) € Ny and

P(Cs(p(P))) C Cs(P). As Cs(Q) € Cs(p(P)), we have that the restriction

Yleg(q) is in Homz(Cs(Q), Cs(P)). U

Definition 5.2. Let F be a fusion system over a finite p-group S. For any Q C S,
which is fully centralized in F, let Cx(Q) be the category with objects the subgroups
of Cs(Q) and for P, P" € Cs(Q) setting Morc () (P, P') to be
{90 S HOIH]:(P, P/) | El@ € HOH’I]:(PQ,PIQ),@hD = 90395|Q = ldQ}

Note that as P C Cs(Q) we have that PQ is in fact a subgroup of S.

It follows easily from the above definition that if F is a fusion system over S
and @ C S is fully centralized in F, then Cx(Q) is a fusion system over Cs(Q). A
special case of [10, Proposition A.6] is that C»(Q) is saturated when the original

fusion system is saturated. The analog of the central linking system is described in
the following.

Definition 5.3. Let (S, F,L) be a p-local finite group. For any Q C S, which
is fully centralized in F, let Cr(Q) be the category with objects the subgroups of

Cs(Q) which are Cx(Q)-centric and for any two such subgroups P and P’ setting
More,. (o) (P, P’) to

{ € Mor(PQ, P'Q) | m(¢)(P) < P m(p)lq = idg}
Proposition 5.4. Let (S, F,L) be a p-local finite group and a Q a subgroup of S
which is fully centralized in F. Then the following holds:

(a) A subgroup P C Cs(Q) is Cx(Q)-centric if and only if Z(Q) < P and PQ

is F-centric, and in this case Z(P) = Z(PQ).

(b) The category Cr(Q) is a central linking system associated to Cr(Q).
Proof. Let P C Cs(Q). Assume that PQ is F-centric and Z(Q) < P. As PQ is
F-centric we conclude that

Cos(@)(P) = Cs(P)NCs(Q) = Cs(PQ) = Z(PQ).
Since P C Cs(Q) we have that for all p,p € P and ¢, 7 € @ the following holds:
(pa)~pa(pa) = ¢~ 'p~ " Papg = (p~'pp)(a~ ' 79)-
This implies that Z(PQ) = Z(P) Z(Q). Since Z(Q) C P, we see that Z(P) Z(Q) C P
and the above relation with § = 1 implies that Z(P)Z(Q) C Cg(P) and hence
Z(P)Z(Q) C Z(P). As the other inclusion is trivial, we conclude that

Z(P) = Z(P) Z(Q) = Z(PQ) = Ccy(@)(P)-
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Let P' = ¢(P) for a ¢ € Home,.(@)(P, P'). According to the definition of C'r(Q)
there exists a ¢ € Homz(PQ, P'Q) such that ¢|p = ¢ and @|g =idg. AsZ(Q) < Q
we see that
P'=¢(P)=¢(P) 2 ¢(Z(Q)) = Z(Q).

As ¢(PQ) = P'Q, we conclude that P’Q is also F-centric. Thus the properties
of P used in the above calculations also hold for P’, hence for any P’ which is
Cr(Q)-conjugate to P we have Ccg(q)(P') = Z(P’), i.e. P is Cx(Q)-centric.

Now assume that P C Cs(Q) is Cr(Q)-centric. Let ¢ € Z(Q) = QN Cs(Q). As
P C Cs(Q) we have that ¢ commutes with all elements in P. Since P C Cg(Q) is
Cr(Q)-centric we see that

q € Cog(q)(P) =7%(P) C P,

hence Z(Q) € P. To show that PQ is F-centric choose ¢ € Homr(PQ,S).
Observe that this is not always a homomorphism in Cx(Q), since it is not re-
quired to be the identity on ). The first step is then to modify ¢ into such a
map. For this set Q' = ¢(Q) and ¥ := ¢~! € Homzr(Q',Q). Since the im-
age of ¢ is @, which is fully centralized in the saturated fusion system F, there
exists a ¢ € Homz(Ny,S) such that 9| = ¢ 1. According to the definitions
Cs(Q)Q" € Ny and ¥(Cs(Q")Q") € ¥(Cs(Q))¥(Q') € Cs(Q)Q. Hence we can
consider ¢ as a map in Homx(Cs(Q")Q’, Cs(Q)Q). Note that as PQ C Cs(Q)Q,
we get that ¢(PQ) C Cs(p(@)e(Q) = Cs(Q)Q', so the map ¢ i— o p €
Homz(PQ,Cs(Q)Q) is well-defined. It satisfies that ¢'|q = Y| () 0 vl = idg, so
¢'|p € Home, () (P, Cs(Q)). As P is assumed to be Cz(Q)-centric we have that
Ceia)(¢'(P)) € ¢/(P). Thus

Cs(¢'(PQ)) = Cs(¢'(P)Q) = Cs(¢'(P)) N Cs(Q)
= Ceg(@)(¢'(P)) € ¢'(P) C ¢/ (PQ).
Since ¢’ = 1) o ¢, the inclusions above implies that

D(Cs(p(PQ))) € Cs(¢'(PQ)) € ¢'(PQ) = ¥(p(PQ)).

As 1 is injective, we deduce that Cs(p(PQ)) C ¢(PQ). As this holds for any
¢ € Homz(PQ, S), we conclude that PQ is F-centric.

By part (a) we have that PQ is F-centric whenever P is Cz(Q)-centric, so the
morphism sets of Cr(Q) are well-defined. Composition of morphisms is induced
from L, since if ¢ € Morg, (g)(P, P') and 1 € Morg, (q)(P’, P"), then o ¢ €
Morg(PQ, P'Q) with ©(12 0 )(P) = n(u)(r(¢)(P)) € m(b)(P") C P" and (3o
©)|lg = 7(W¥)|g o m(p)lo = idg. Since 1pg € Mor,(PQ, PQ) satisfies m(1pg) =
idpg, we have that 1pq € Morg,. (q)(P, P) for any C'z(Q)-centric subgroup P. Let
this be the identity morphism in Cx(Q). With the given composition and identities
it follows directly from the fact that £ is a category that C(Q) is a category. Let
w: Ce(Q) = Cx(Q) be given for any P, P’ C Cg(Q) which are Cr(Q)-centric and
¢ € Morg,. (@)(P, P') by setting 7(P) = P and 7(p) = 7(p)|p € Home, (q)(P, P').
As m: L — F is a functor, the same holds for 7: Cr(Q) — Cx(Q). For a Cx(Q)-
centric subgroup P, consider p € P. Then n(dpg(p)) = ¢, € Autz(PQ). As
P € C5(Q), we have ¢p|g = idg. Clearly we also have that ¢,(P) = P, hence
(5PQ(p) S AUtCL(Q)(P)- Thus by setting dp: P — AutCL(Q) (P) to be p — JPQ(p)
we get a well-defined monomorphism. With this definition we have that 7(dp(p)) =
cplp € Aute, (@) (P) for any Cx(Q)-centric subgroup P, hence property (B) holds.
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Consider any P, P’ C Cs(Q) which are Cx(Q)-centric. As the action of Z(P) on
Morg, () (P, P') is induced by the action of Z(PQ) on Mor,(PQ, P'Q), is it free
with orbit set

Morc, (p.py /Z(P) = {¢ € Mor£(PQ, P'Q) | n(¢)|p € Home, (q)(P, P')}/ Z(P)
= {p € Moz (PQ, P'Q) | m(¢)|p € Home, (q)(P. P')}/ Z(PQ)
>~ {¢ € Morz(PQ, P'Q) | ¢|p € Home, g\ (P, P')}
= Morc,.(g)(P, P')

as Z(P) = Z(PQ) and any ¢ € Morz(PQ, P'Q) such that ¢|p € Home, () (P, P’)
is determined by its values on P. Hence property (A) holds for C(Q). For property
(C) consider ¢ € Morc, () (P, P'). Then for g € P C PQ the diagram

P

PQ ———~ P'Q

dpq(9) dpq(m(¢)(9))

PQ—* +PQ
commutes and with the given definitions it is exactly the diagram corresponding
to Cr(Q). Hence we conclude that (C) holds, and thus C(Q) is a central linking
system associated to Cx(Q). O

5.1. Centralizer fusion systems and elementary abelian p-groups. When
@ is an abelian group, we have that Z(Q) = @, hence the conditions required to be
Cr(Q)-centric from the previous proposition is simply to contain Q. We will now
study the centralizer p-local finite group in the case of a fully centralized elementary
abelian subgroup.

Definition 5.5. For a fusion system F over a p-group S, let F¢ be the full subcat-
egory of F on the objects which are the nontrivial elementary abelian p-subgroups
of S. Similarly let F¢ be the full subcategory of F on the objects which are the
nontrivial elementary abelian p-subgroups of S which are fully centralized in F.

Lemma 5.6. Let (S, F,L) be a p-local finite group. Then for E,E' € F¢ and ¢ €
Homgz(E', E) the homomorphism Cg(¢) € Homg(Cgs(E),Cs(E’)) from Lemma
5.1 give rise to functors Cx(p): Cr(E) — Cx(E’) and Cr(p): Ce(E) — Ce(E')
satisfying o Cr(p) = Cr(p) om.

Proof. Let E,E’ € Ob(F*¢) and ¢ € Homz(E', E). Define ¢ := Cs(¢) € Homz(Cs(E),Cs(E"))
using the map from Lemma 5.1. Observe that E' = @(¢(E’)) C ¢(E).

Let P C Cs(E). Then ¢(P) C Cs(E"). A ¢ € Home, (g)(P, P’') has an ex-
tension ¢ € Homz(PE, P'E), which is the identity on £. Then oo g™t €
Homz(@(P), ¢(P')) and as E’ C @(E) we have an extension potpop—t € Homx(@¢(P)E’, (P')E")
which is the identity on E’. Hence by setting Cx(p)(P) = @(E) and Cx(p)(¢)) =
poop ! we get awell-defined functor from Cr(E) to Cx(E").

Let P C Cg(E). Then by Proposition 5.4 we have P € C(E) if and only if
E C Pand P € L. Consider a P € Cr(FE). Then @(P) C Cs(E’) for which
E' C ¢(F) C ¢(P), and as @ is a morphism in F, we also have that g(P) € L. By
the above this implies that §(P) € Cr(F’)
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For any P € C(E), we have that P,@(P) € L, so we can choose 85" €
Morz(¢(P), P) such that 7(85') = @ '. Lemma 3.1(a) implies that there ex-
ists Bp € Morz(P,@(P)) such that 7(8p) = @ and Bp' 0o Bp = 1p. Let P,Q €
Cr(E) and consider o € Mor¢, () (P, Q). By the definition o € Mor, (P, Q) and
m(a)|g = idg. Then BgoaoBp' € Morz(@(P), 5(Q)), such that

m(Bgoacfpl)le =n(fq) om(a) on(Bp!) e = pom(a) o g™ | =idp
since " 1(E’) C E. Thus Bgoaofp' € Morc, (m)(#(P), (Q)). Hence by mapping
P — @(P) and a — g o ao Bp' we get a functor from Cr(E) to Cz(E'), which
satisfies mgr 0 Cr(p) = Cr(p) o mg. O

Note that the functors from the previous Lemma do not in general satisfy Cz(¢)o
Cr(¥) = Cr(v o ) for ¢ € Homx(E, E’) and ¢ € Homxz(E', E"), and therefore
it is not a functor from (F¢)°P to Cat. We will instead consider a category, where
this is the case.

Definition 5.7. Let (S,F,L) be a p-local finite group. For a E € Ob(fe) we
define Cr(E) to be the category with

Ob(CL(E)) = {(P,a) | P € Ob(L),a € Homz(E,Z(P))}
and
More, () (P, @), (@, 8)) = {¢ € Mor.(P, Q) [ w(p) o a = B},
and the composition of morphisms and the identity morphism is given by those in

L.

Lemma 5.8. Let E € F° where (S, F,L) is a p-local finite group. The functor
F: Cr(E) = C(E) defined by F(P) = (P,tgzp)) and F(p) = ¢ is an equiva-
lence of categories and hence induces a homotopy equivalence |Cr(E)| — |Cr(E)|.

Proof. Let (S, F, L) be a p-local finite group and let E € F¢. A P € C,(F) satis-
fies that P € £ and E C P < Cg(FE). The last condition implies that F C Z(P),
so the inclusion tp_,z(py € Homz(E,Z(P)), and hence (P,ip_zp)) € Cr(E).
By definition of C(E) we have that ¢ € Morc, g (P, Q) is a morphism in £
such that 7(p)|p = idg. This implies that 7(¢) o tp_zp) = tE—z(Q), 50 ¢ €
Mor@L(E)((P, tE—7(P)), (Q,tE—7(@))). From this we conclude that F' is a well-
defined functor. For any ¢ € Mor, (P, @) the condition n(p)|g = idg is equiv-
alent with 7(¢) o tp_z(p) = tE—z(Q), thus F' induces an isomorphism on the
morphism sets. Consider (P, ) € Cz(E). By Lemma 5.1 there exists a Cg(a) €
Homz(Cs(Z(P)),Cs(E)). As P C Cg(Z(P)), we have P’ := Cs(a)(P) C Cs(E).
As P’ is F-conjugate with P, we have that P’ is F-centric. Since a(E) C P
and Cs(a) is an extension of =1 we get that £ = Cs(a)(a(E)) C P’. Hence
P" € Cr(P). Choose ¢ € Morg (P, P') such that 7(¢) = Cs(a). As Cs(a)|ar) =
o Ha(r) we get
m(p)oa = Cs(a)oa =1pzp),

hence ¢ € Morg,, (g ((P, ), F/(E')) and is an isomorphism. Thus F' is an equiva-
lence of categories and therefore induces a homotopy equivalence on the geometric
realizations by |3, III Corollary 2.2(b)]. O

Lemma 5.9. Let (S, F,L) be a p-local finite group. Then Cp(—): (F¢)°P — Cat
s a functor.
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Proof. Let E,E' € Ob(F*) and ¢ € Homz(E',E). Define Cr(p): Cr(E) —
Cr(E") by Cr(@)(P,a) = (P,aop) for (P,a) € Ob(CL(E)) and Cp(p)(¢) = ¢ for
Morg, (g (P, @), (@, B)). Then Cr(p) is a functor and it follows easily from the
definitions that C(—) is a functor from (F¢)° to Cat. O

5.2. The centralizer decomposition.
Theorem 5.10. Let (S, F, L) be a p-local finite group with S # 1. Then the map

hocolim |Cz(E)| — | L]

Ee(Fe)er
induced by the forgetful functor F: Cr(E) = L given by F(P,a) = P and F(p) = ¢
for any E € F¢ is a homotopy equivalence.

Proof. Let (S, F,L) be a p-local finite group with S # 1. First we consider the
category L with objects the set of pairs (P, E) where P C S such that P is F-centric
and F is a nontrivial elementary abelian subgroup of Z(P). For (P, E),(P',E') € L
we set

Mor s ((P, E), (P, E")) = {¢ € Mor (P, P') | E' € m(p)(E)}.

With this definition there is clearly a functor T: £ — £ given by T(P, E) = P,
and T(¢) = ¢. To define a functor S: £ — £ we set for any nontrivial subgroup
P of S £(P) to be the subgroup of generated by the elements of order p in Z(P).
Note that as P is a nontrivial p-group we have that 1 # £(P) and it is elementary
abelian. Now for P € £ we have that (P,£(P)) € £ and for any ¢ € Morz (P, P')
we remark since P and P’ are F-centric that

m(@)(Z(P)) = L(m(p)(P)) = Cs(n(¢)(P)) = Cs(P') = Z(P"),
so by considering elements of order p, we conclude that m(p)(E(P)) > E(P’). Thus
by setting S(P) = (P,E(P)) and S(¢) = ¢ we get a well-defined functor S: £ — L.
With the above definition ToS = id; and SoT': £ — L is given (P, E) — (P,£(P)).
By definition E C &£(P) for any elementary abelian subgroup E C Z(P). So for
any (P,E) € £ we have 1p € Mors((P,E(P)), (P, E)) and this morphism gives a
natural transformation from S oT to id; as the following diagram commutes:

(P.E(P) L (P.E)

¥ ®

1p

(P, &(P")) — (P, E)

This implies that |S|: |£| — |£| is a homotopy equivalence.

For (P, F) € L we have that E is a non-trivial elementary abelian p-group and for
¢ € Mor;((P,E),(P',E')) we have that 7(¢)~! € Homz(E’, E). Thus by setting
7(P,E) = E and 7(p) = n(¢)~" we get a well-defined functor 7: £ — (F¢)°P.
By [23, Theorem 5.5] we have that hocolim;(+) = hocolimpe zeyon [T | E|, as
E — |7 ] E] is the left homotopy Kan extension of the trivial functor over 7. We
now want to construct a natural transformation between the functors |C’£( )| and
|7 | —|, which are both functors (F¢)° — Top. For this pick an F € F¢. Then
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the category 7 | E has objects {(P,E',a) | (P,E') € L, € Homz(E, E')} and
morphisms

Mot p((P, E', ), (Q. F', B)) = { € Mor (P, '), (Q, F")) | m(¢) " 0 p = a}.

By comparing definitions we see that by setting Fg(P,a) = (P,a(E),a) and
Fr(p) = ¢ we get a well-defined functor F from C(E) to 7 | E. Similarly,
setting Gg(P, E',a) = (P,a) and Gg(p) = ¢ gives a well-defined functor from
71 E to Cz(E). Note that G o Fp = ide, () and there is a natural transfor-
mation from id, g to Fg o Gg given by idp: (P, E,a) — (P, E,«). From this we
conclude that |Gg|: |7 | E| = |Cz(E)| is a homotopy equivalence.

Consider any ¢ € Morz(E', E). For (P,E",«a) € 7 | E, we have that

Ge((r L Y)(PE",a)) = Gp/(P,E",a o) = (P,a o)
= Ce(¥)(P,e) = CL(¥)(GE(P,a)).
As the involyed functors act as the identity on morpmsms we conclude that Ggr o
(t 1 ¥) = Cc(¢) o Gg as functors from 7 | E to Cg(E'). Hence G_ is a nat-
ural transformation from 7 | (=) to Cz(—), and so it induces a homomorphism
hocolim(|G—): hocolim e zeyop [T % E| = hocolimpe 7)o [CL(E)]. As [GE| is a
homotopy equivalence for any E € F°¢, we furthermore have by [17, IV Proposition
1.9] that hocolim(|G_|) is a homotopy equivalence.
From the results above we get

|£] 2 |£] = hocolim(x) 2 hocolim |7 | E| 22 hocolim |C(E)|.
£ Ee(Fe)or E€(Fe)op

This equivalence is induced by the following functors, where (P, ) € C(E):

(Pa) —LE (Pa(E),a) — (P,a(E)) — P.
O

Corollary 5.11. Let (S, F, L) be a p-local finite group with S # 1. Then the map

hocolim |Cz (E)| — |£
hocolim [Ce(E)| — |£|

induced by the forgetful functor F: Cr(E) — L given by F(P,a) = P and F(p) = ¢
for E € F° is a homotopy equivalence.

Proof. Let (S, F,L) be a p-local finite group with S # 1. Let ¢: F¢ — F¢ be
the inclusion functor. For E € F¢ there exists an E € F¢ and an isomorphism
¢ € Morx(E, E). In the category (1 | E) the pair (E, ) is a terminal object, as
for any (E’,a) € (¢ | E) the diagram

E E

aop ! id

E—* . F
is in F and commutes. Since (E | t°?) = (1 | E)°, the category (E | 1°P)
has an initial object and thus |E | °P| is contractible. As this holds for any
E € F¢, the functor (°P: (F¢)°? — (F)°P is right cofinal, and hence the map
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hocolimge(reyor |Cr(E)| — hocolim pe e )op |C(E)| induced by (P, ) — (P, a) is
a homotopy equivalence by [22, 19.6.7]. The result now follows directly from the
above theorem. O
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6. OBSTRUCTION THEORY AND HIGHER LIMITS

Consider ¢ € Homz(P,Q). As both @ and ¢(P) are F-centric, we conclude

that Z(Q) = Cs(Q) € Cs(p(P)) = Z(¢(P)) = ¢(Z(P)). Note for any g € Z(Q)
and h € Q we have that (c; 0 ) 1 (g) = ¢ (cp-1(g)) = ¢ (g). This implies that
the following is well-defined.

Definition 6.1. Let F be a fusion system on a p-group S. We define the functor
Zr: OF)? — Ab by Zx(P) = Z(P) and for ¢ € Morper)(P, Q) we set Zx(p)
to be the composition
incl ot
Z(Q) — Z(p(P)) — Z(P)
6.1. An obstruction theory for central linking systems. The next proposi-

tion gives an obstruction theory for the existence of a central linking system in
terms of higher limits of this functor.

Proposition 6.2. Let F be a saturated fusion system over a p-group S. Then
there exists an element n(F) € l'&%c(}_)(zf) such that F has an associated centric
linking system if and only if n(F) = 0. If such a central linking system exists,
them the group @ZC(I)(Z}-) acts freely and transitively on the set of isomorphism

classes of central linking systems associated to F.

Proof. By [3, Proposition 5.3] we conclude that the higher limits of Zz can be
computed via the normalized chain complex for Zz, i.e.

lim “(Z7) = H'(C*(O%(F); Z5),d),
0% (F)
where the chain complex is defined as C"(O%(F); Zx) = HPonaPn Zx(Py) for
any n. Note that we consider w € C"(O¢(F); Zx) as a map sending a sequence
(Py = -+ = P,) € N(O(F))n to a element in Z(Fy) satisfying that if (Py — -+ —
P,) contains an identity morphism, then the image is 1 € Z(FP). The differential
is given by
n+1 ) R
dw(Py =¥ Py--+— Pyyqy) = Z(—l)%u(Po == P = Pyy)
i=1
+ Zr(pw(Pr — - = By).

We first construct an element [u] € L 0 (F Z #) and prove that the construction

is independent of the choices made. Let o € Mor(@“(f)) — Mor(F¢) be a section,
which sends identity morphisms to identity morphisms. We use the notation o(¢) =
@. For each pair P,Q € F¢ we set X(P,Q) = Q x Morpe(r)(P,Q) and define a
map 729 X(P,Q) — Homz(P,Q) by 7% (g,¢) = ¢, 0 ¢. For each pair of
maps ¢ € Morpe(r)(P,Q) and ¢ € Morpe(7)(Q, R) we have that Yo @ and z/1<p
determine the same class in O°(F), hence there exists a t(¢,1) € R such that
w op= Co(p,) © wgo Since ¢ sends identity morphisms to identity morphisms, we

may require that ¢(p, ) = 1 if either ¢ or ¢ is the identity. We now define maps
x: X(Q,R) x X(P,Q) — X(P,R) by

(hy ) * (g,0) = (- ¥(g) - t(p, V), Vy).
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For each triple of objects P, @, R € F¢ we can consider the diagram:

X(Q, R) x X(P,Q)

X(P,R)

7@ R x 7PQ ypikaid
Homz(Q, R) x Homz(P, Q) — Homx(P,R)
For any ((h,), (9,¢)) € X(Q, R) x X(P,Q) we have that

7@ R(h, ) o nPR(g,0) = o oc 0 f =iy 0 0P

= Ch'JJ(g)t(g@,'Lp)w oY= Wf’R((hv 1/J) * (97 SD))7

hence the diagram commutes. By the commutativity of the diagram we have for
any triple of composable maps ¢ € Morpe(r)(P, @), ¥ € Morpe(7)(Q, R) and x €
Moroe(7) (R, T) that 727 agrees on (1, x)*(1,9))*(1, ¢) and (1, x)=((1,)*(1,¢)).
If (9,), (¢', @) € X (P, R) satisfy that 7% (g, a) = 755 (g, @), then ¢,-1, = idy(p)
and thus g~1g’ € Cs(P(P)) = Z(@¢(P)). If we set u = ¢~ 1(g71g’') € Z(P), we see
that (g,¢) = (¢',¢) * (u,idp), since t(idp, ¢) = 1. We remark that u is the unique
element with this property. As the second components of ((1,x)*(1,4))*(1,¢) and
(1,x) * ((1,9) * (1, ¢)) agree, we conclude that there exists a unique u,¢(p,%, x) €
Z(P) such that

(LX) * (L,4) + (1, 0) = [(1,x) * ((1,4) * (1, 9))] * (ot (@, ¥, X), 1dp)
and by the definition of * we conclude that
XV (a1 (0,1, X)) = t(te, X) 7 X(Hp, 1)) 7 1w, X) -ty X1).

For any g € P,h € Q,k € R the first component of ((k,x) * (h,1)) * (g, p) respec-
tively (k, x)  ((h,9) * (g,%)) is

g = kXM, X)x¥(9)t(e, x¥)

g’ = kX (R, X)XP(9)t(¥, )~ X (t(e0, )t (e, x)
while the second is xt)p. We remark that (¢') g = us (0,1, x), hence

(1) (R, x) * (B, ) * (g, 0) = [(k, x) * ((h, ) % (9, )] * (uei (0,4, X), 1dP)

as well. Note the requirements on ¢ imply that Xf%(ua,t(cp,w,x)) = 1 when at
least one of the morphisms is the identity. As ¢ is injective, we conclude that in
this case uy (¢, %, x) = 1, hence u,, € C*(O°(F), ZF). If

v oY g X p_ Y ¢y

is a sequence of morphisms in O¢(F), then by the definition of the differential on
C*(O°(F), ZF) we have that du(p, ), x,w) is the element

P

w(tpp, x,w) - u(e, X, w) - ulp, ,wx) T u(e, v, x) - ¢ uly, X, w))
in Z(P). By computing the image of each of the five components under o(wxy)
using the defining property of ¢ and the definition of u, + to compare the factors, we

conclude that o(wxy)(du(p, ¥, x,w)) = 1. As o(wxye) is injective, we conclude
that du(p, 1, x,w) =1 and hence [u] € @?QC(]__)(Z}-).
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We now want to show that the class [u] is independent of the particular choice of
t. If for each pair of morphisms ¢ € Morpe(r)(P, Q) and 1 € Morpe(5)(Q, R), we
have made another choice of elements ¢'(p, 1) in R, such that ¢’ satisfies the same
conditions as ¢, then we have that ¢y, ) = cp/(p,4) O @(P) By similar arguments
as before this implies that there exists a c(¢, 1) € Z(P) such that t'(p, ) = t(p,v)-
@(c(np, ¥)). As t and t’ is the neutral element when either ¢ or ¢ is the identity
and 12470 is injective, we have that ¢(p, 1) = 1 when either of the maps is the identity,
hence ¢ € C?(O%(F); Z7). Let v/ = u,p € C3(O°(F); Z7) be defined in the same
way as before. We then get the following relation between ¢’ and u/':

XU (o (9,0, X)) = 1 (0, X) ™1 X (0,9)) 71 -1 (19, X) - ' (10, X0).

By inserting the relation ¢/ (¢, v) = t(p,¥) - @(c(cp,z/))) into the above and using
the fact that v and ¢ satisfy a similar relation we conclude that:

X (u(e, 1, x) - §Helw, X)) - e, x¥) = x¥p(c(o,¥) - (b, x) - 0 (9,4, X))

As xyp is injective, we conclude that the above relation still holds without the x .
This is a relation between elements in the abelian group Z(P), so by comparing with
the definition of the differential, we conclude that u~! - u’ = de. Hence [u] = [v/] in
@20 (F) (Z}')

Assume that o’: Mor(O¢(F)) — Mor(F) is another section sending identity
morphism to identity morphisms. Set @' = o/(p). As both o, ¢’ are sections, we can
for every ¢ € Morpe(r) (P, Q) choose a g, € @ such that ¢ = ¢, @' and giq, = 1 for
any P € F¢. Let t(p,v) € R for any ¢ € Morpe(r)(P,Q) and ¢ € Morpe 7 (Q, R)
be a choice of elements corresponding to the section o as before. By defining

t'(0,0) = ' (90) 7" gt - (0, 0) - Gy

we get an element of R, such that ¢/¢’ = ct/(%w)ﬂ;@/and t' is the neutral element
when one of the morphisms is the identity. Consider the map F: X(P,Q) —
X(P,Q) given by F(h,) = (hg,, ). Then 759 = 7529 o F. Let * and ' be the
compositions defined by t and ¢'. Then F((h,¢) % (g9,¢)) = F(h,¢) " F(g,). As
F(g,idp) = (g,idp) and F is a bijection, we conclude that the relation (1) holds
for +" as well with the same u. Thus 4,/ ¢ = Uy, so the class [u] € l'&néc(}_)(Zf)
does not depend on the choice of section.

We will now prove that the class [u] vanishes exactly when there exists a central
linking system associated to F. We first assume that [u] = 0 and construct a central
linking system associated to F. By assumption there exists a ¢ € C?(O°(F); ZF)
such that dc = u. If u = u,¢ we may set t'(p,v) = t(p, w)@(c(w,d))_l) for any
¢ € Morpe(r)(P,Q) and 1 € Morper)(Q,R). As c(p,7) € Z(P) this will be
another choice of ¢ corresponding to the section o, and by the above calculations
we have that u;% Uy = de= 1. As Uq ¢+ = dc, we conclude that u, 4 = 1. Let £ be
the category with objects F¢ and morphism set X (P, @), where the composition
is defined using t'. By the definition of the composition we see that (1,idp) is a
neutral element. Combining this with (1) and the fact that u, = 1, we conclude
that the composition is associative. Let m: L — F¢ be given by the identity on
objects and m = 7, for morphisms. Then n(1,id,) = idp and by a previous
result 7((h,v) * (g,¢)) = w(h,9¥) o 7(g,¢), hence 7 is a functor. For P € F°
let 6p: P — X(P,P) be the map ,(g) = (g,id,). We then have that dp is a
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monomorphism of groups. Consider a ¢ € Morz.(P, Q). Let @ be the corresponding
class in O°(F). As o is section, there exists a g € @, such that ¢ = ¢4 0 o(p).
The element (g,¢) € X(P,Q) and 7(g,9) = ¢, so 7 is surjective on morphisms.
Assume that the elements (g, ), (h,¢) € X(P,Q) satisfy that w(g,¢) = w(h, ).
Then ¢ = 9 and thus g~ 'h € Z(@¢(P)). Let u = ¢ 1(g7th) € Z(P). Then
(g,9) = (h,¢) * (w,idy) = (h,¢) * §p(u). As 7(p(g)) = ¢4 for any g € P, we
conclude that 7 is in fact the orbit map for the Z(P)-action on X (P, Q) induced by
0p. For any (g,¢) € X(P,Q) and h € P we have that (g, ) = (g, ¢) *J,(h) implies
that ¢(h) =1 and thus h = 1. So the action of Z(P) on X (P, Q) is free. For any
(9,¢) € X(P,Q) and h € P we also have that

(9,¢) % 6p(h) = (g-B(h), ) = ((cg 0 §)(h),1dq) = (g9, ) = da(m(g, ) * (9, ¢)
Thus L is a central linking system associated to F. Note that the map
G: Morpe(r)(P,Q) — Morg (P, Q)

given by &(¢) = (1,¢) is a section, which lifts o and we have for any ¢ €
Moroe(r) (P, @) and ¢ € Motoe ()(@, R) that 5(1) 0 5(¢) = Sr(t'(¢, 1)) o B(4p).

Now assume that there exists a central linking system L associated to F. We
want to prove that this implies that [u] = 0. Let o: Mor(O¢(F)) — Mor(F¢)
be a section and 6: Mor(O°(F)) — Mor(L) be a lift of this. We assume that
both sections send identity morphisms to identity morphisms. Let G: X (P, Q) —
Morz (P, Q) where (g,v) +— d¢g(g) o 6(¢0). Consider a ¢ € Morg(P, Q) and let ¢
be the class of 7() in O°(F) and ¢ = 5(1)). Then 7(¢)) and 7(y) determines the
same class in O°(F), so by Lemma 3.1 (b) there exists a unique element g € Q,
such that ¢ = d¢g(g) o ¢. Then G(g,v) = ¢, so G is surjective. Assume for
(9,%),(¢",¢'") € X(P,Q), that dg(g) o 5(¢) = dg(¢9') o 5(¢)'). As & is a section,
we deduce that ¢ = 1)/, and thus by the above uniqueness result we have g = ¢,
hence G is injective as well. By Lemma 3.1 (b) we also conclude that for any pair of
morphisms ¢ € Morpe(r)(P, Q) and ¥ € Morpe(r)(Q, R) there exists a t(¢,v) € R
such that

5(¥) 0 6(p) = or(t(p, ¥)) 0 5(p1)).

Then t satisfies the previous conditions with the section o, hence we can define a
multiplication on the sets X (P, Q) using t. Then the map G is easily seen to respect
the multiplication. As L is a category, the multiplication in £ is associative, hence
the same holds in X(P,Q), so by the equation (1) we conclude that (r, x¢) *
(uot(p, 1, x),idp) = (1, xtp) for any triple of composable maps in O¢(F). By the
definition of the multiplication combined with the fact that maps in F are injective,
we conclude that u, (e, ¥, x) = 1. Hence the class [u] € li&%c(}_)(zf) is trivial.

For a proof of the second part of the proposition we consider two central linking
systems associated to F, denoted m;: £; — F for i = 1,2. Let o: Mor(O¢(F)) —
Mor(F) be a section as before and let &;: Mor(O°(F)) — Mor(L;) be corre-
sponding lifts. As in the previous paragraph we can for any pair of morphism
¢ € Morpe(r) (P, Q) and 9 € Morpe () (Q, R) choose unique t;(¢, ) € R such that

Gi(1) 0 3i(p) = O (ti(p, 1)) 0 Fi()
for i = 1, 2. Furthermore we have that ¢; is compatible with ¢ and the corresponding
Ugt; = 1. By a previous part we conclude that there exists a ¢(p, ) € Z(P) with

ta(p, ) = t1 (0, )p(c(p, )
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and dc = u;llumg =1, s0 [ € @éc(f)(zf). Assume that &, for ¢ = 1 or 2
is another lift of the section ¢ to £;. Then for any ¢ € Morpe s (P, Q) we have
that m;(55(p)) = o(p) = mi(6:i(¢)), hence by condition (A) for £; there exists a
unique element w(p) € Z(P) such that 6.(¢) = 7i(p) o §6(w(yp)). As &; and &)
agree on the identity morphisms, we conclude that w(id,) = 1 for any P € F°¢,
hence w € CY(O°(F), Z7). Let t; be defined similar to ;. Then for any pair of
morphisms ¢ € Morpez) (P, Q) and 1 € Morpe(r)(Q, R) we have that

S (P (w () @(w(@)ti(0,1)Fi(1ep)) = 0 (3 (w () dd(w(p))5:(1)5:())
= (0 (¢35 (w(v))a z(so)é‘(
= 0p(571(¢)5}(p)) = 0 (ti (¢, )5 (V)
= 0 (t (0, V)0 (w(9))5 (1))

By the uniqueness part of Lemma 3.1 (b) we conclude that

D (w())P(w(p)ti(, 1) = th(0, ) (w (i)

and thus by the relation ¢, (, ) © wgo = 1) o ¢ we conclude

i) i) = €y (B () - PB(w (1)) - dip(w(tp)) !
= (@ (w(¥)) - w(p) - w(te) ™) = Yp(dw).

A change of &; will only change ¢ by a coboundary and so it does not change the
class [c] € @é ) (Z7). Hence for any fixed section o there corresponds a unique

class [c] € lg%p ( F)(Z 7) to any pair of central linking systems £; and Lo associated

to F.

Assume that £; and L5 are two isomorphic central linking systems associ-
ated to F. Let F': L1 — Lo be the functor corresponding to the isomorphisms.
Let &1: Mor(O°(F)) — Mor(Ly) be a lift of the section o. Then 62 = F o
G1: Mor(O¢(F)) — Mor(Ls) and g 069 = me 0o Fog; = mp 061 = 0. For
any P € F¢ we have that 62(idp) = F(61(idp)) = F(1p) = 1p, since F(P) = P.
Thus &5 is a lift of o as well. We remark that

G2(¥)52(p) = F(51(4)51(9)) = F(0p(t1(0,¥))51 (b)) = 07 (t1(,9))52(¥p)

for any pair of morphisms ¢ € Morpe(z) (P, Q) and 1 € Morpe(r)(Q, R), hence
t1 = ta.

Conversely assume that £ and Lo are two central linking systems associated
to F, for which there exists lifts of the section o called &; for ¢ = 1,2 such that
t1 = ta. Let G;: X(P,Q) — Morg, (P, Q) for i« = 1,2 be the bijection given by
(g,9) — dg(g9)d:(¢). By definition * by t; = t2 we get a category with object set
F¢ and morphism set X (P, @) such that G; and G;l for i« = 1,2 all are functors.
Thus FF = Gs o Gl_l: L1 — Lo is a well-defined functor, which is the identity on
objects and bijective on morphism sets. As 7;0G; = 7, and G;(p,idp) = 6% (p) for
p € P, it follows that F' commutes with 7; and %, and is a isomorphism of central
linkings systems.

We conclude that two linking systems associated to JF are isomorphic if and only
if there exists lifts of the section o such that t; = t5. If t; = t5, then by the definition
of ¢ we conclude that [¢] = 0. If ¢ = dw, then by setting 7 (¢) = 71(p)w(y)
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and letting ¢, be the elements corresponding to this section, then for any pair of
morphisms ¢ € Morpe(r) (P, Q) and ¢ € Morpe(r)(Q, R) we have that

(0, %) = t1(, V)bp(dw(p, ¥)) = ta(p, ¥).

Thus two linking systems are isomorphic if and only if [c] = 0.
Let £ be a central linking system and & a lift of the section . Let [] €

Lii%c ( H(Z}-) be any class. If ¢ is the choice of elements corresponding to &,

we can for any ¢ € Morper)(P,Q) and ¢ € Morper)(Q, R) set t'(p,1)) =
t(p, V)Yp(c(p,¥)). Then t' is compatible with o and u,y = de-uey = 1 as £
is a category. Similar to before there exists a central linking system L. associated
to F with a section . such that the corresponding elements are exactly ¢'. If we
replace £ with an isomorphic linking system or choose another representative for
¢ the above arguments imply that the change in ¢ will be by a coboundary, so
the resulting linking system will be isomorphic to £.. Thus we have a well-defined
action by l&né ( }_)(Z}-) on the set of isomorphism classes of central linking sys-

tems by setting [¢][£] = [L.]. The above results implies that this action is free and
transitive. g

6.2. Higher limits and O¢(F). The above proposition shows that the ability to
compute higher limits of functors over orbit categories is very useful in the study
of fusion systems. We recall the following definition of graded groups A*(T'; M),
which are central in the study of higher limits.

Definition 6.3. Let I' be a finite group and M a Z,)[I']-module. Let O,(I) be
the full subcategory of O(T') with object set the orbit T'/P where P is a p-subgroup
of I'. Let Z,)-mod be the category of additive functors from Z,y — Ab. Note
that this is in bijection with the category of Zy)-modules. We define the functor
Fr: Op(T)°P — Zgy-mod by Fr(T'/1) = M and Fp(T/P) =0 for P # 1. The
morphism set Autp (ry(I'/1) =T, so we define the functor Fas(vy) by the ~~1 action
on M. We then set
AT M) = lim * (Fay).
Op(T)

The following proposition is an example on how useful these groups are, since it
shows that for certain higher limits over the orbit category of a fusion system, we
may replace the category by O,(I')°P for a suitable group I

Proposition 6.4. Let F be a saturated fusion system over S. Let ®: O°(F)°P —
Zp)-mod, which vanishes except on the isomorphism class of some F-centric sub-
group Q@ C S. Then

lim *(®) = A" (Outr(Q); #(Q)).

O°(F)
Proof. For an F-centric subgroup @ we have that Inn(Q) = @/ Z(Q), hence given
two isomorphic F-centric subgroups @ and @’ we have that Outx(Q) = Out+(Q’).
We also have that ®(Q) = ®(Q’) and the action of Outx(Q) on ®(Q) corresponds
to the action of Outz(Q’) on ®(Q’) under this isomorphism. Thus the groups
on the right hand side only change up to isomorphism when replacing Q by @',
hence we can without loss of generality assume that @ is fully normalized in F.
As F is saturated we have that Auts(Q) € Syl,(Autz(Q)) and thus Outs(Q) €
Syl,(Out#(Q)). To simplify the notation we set I' = Out #(Q) and T';, = Out5(Q).
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Note that the proposition now concerns comparing higher limits of functors over
the categories O°(F) and Op(I'). Let Or,(I') be the full subcategory of O,(I)
on the orbits I'/I”, where I'" C I',. By Sylows theorems we have that every p-
subgroup I'” of T' is I'-conjugate to a I'' C I'y, and if 'Y = I" then the map
hI"" — hg~'I" is a I-isomorphism from I'/I"” to I'/I". Hence the categories Or, (T')
and O, (T') are equivalent. For any category C let the category of finite formal sums
be denoted Ci;. Then by the orbit decomposition we see that Set,(I') = Op(I')u
is the category of finite I'-sets, where all isotropy subgroups are p-groups, and the
morphisms are I'-maps. As the inclusion i: Op,(I') — O,(T') is an equivalence of
categories, we have that the same holds for the inclusion i: Op, (I')ir — Get,(T').
Let s: Get,(I') — Or, (I')u be an inverse.

We now want to define a functor a: Or, (I')u — O°(F)u. We set

a(l/I") = NE(Q) = {z € Ns(Q) | [es] € I}

for any T" C T', = Outg(Q). Note that T = {[¢,] | z € N5 (Q)}. We have that
@ C Ng(Q) and for any g € @ we see that [¢,] =1 € I, hence N};(Q) contains
the F-centric subgroup @, and is therefore F-centric. A I-map f: T'/T" = T'/T" is
determined by [¢] € T such that f(I') = [¢]I"". The conditions for I-maps imply
that [p] ~'T[¢] C T". Then for every € NI (Q) we have that [p~'oc,0p] € T". In
particular ¢~ loc,o0p € Auts(Q). As @ is fully normalized this ensures the existence
of an extension ¢~': Homz(N§ (Q),S) of ™', Then cs-1() = ¢ ' oc, 09
for any z € Ngl(S), so the image of @~ ! is contained in NS”(Q). A different
choice of ¢ corresponding to f may only differ with an element in [cy] € I'”, where

g € Ng//(Q). Then extension of (¢ o ¢g)™" is ¢;' 0 @', so the I-map [ defines

a unique class [p71] € MOTOC(]?)(Ng/(Q)7Ng”(Q)). We set a(f) = [p~1]. The
identity T-map corresponds to the identity in I" and for I'-maps f: I'/T — T'/T”
and f': T'/T” — T'/T" corresponding to [¢] and [¢’] we see that the composition
f o f corresponds to [ o ¢']. From this we conclude that & is a functor.

Our next goal is a functor §: O°(F)ir — Get,,(I'). For any P € F°© we have a well-
defined I action on Rep z(Q, P) be setting [¢] - [¢)] = [op™1] for [¢)] € Rep£(Q, P)
and [p] € T' = Out#(Q). Assume for [¢] € Rep(Q, P) we have that [p] € T lies
in the isotropy subgroup of [¢)]. Then [¢) o ¢~!] = [¢] in Rep£(Q, P), so there
exists an € P such that 1) o p~! = ¢, o%. Then for any n > 0 we have that
Yo ™ =cyno1). As P is a finite p-group we have that |x| = p™, so the equation
for n = p™ is Y o " = 1. As 9 is injective, we conclude that o P" = idg, so
[¢] € T has p order. Hence all the isotropy subgroups are p-subgroups of I'. Note
that for any [x] € Rep (P, P’) the map [p] — [xo¢] is a [-map from Rep »(Q, P) to
Rep £(Q, P’), hence we get a well-defined functor 8: O¢(F)y — Set,(I') by setting
B(P) = Repz(Q, P) and B([x]) = [x] o -

We will now construct an isomorphism
(2) Mor e (z)(a(T'/T), P) = Morg., ) (i(T'/T"), B(P))

which is natural in I'/T" € Or,(I') and P € O°(F). Fix aIV C T, and P € O°(F).
As before Q C N S/(Q, P), so we may consider the restriction

11: Rep£(N§ (Q), P) — Rep#(Q, P).
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By [10, Lemma A.8] we have that u[p] = ple’] if there exists a y € Z(Q) such that
@ =¢' ocy. Then

[e] = [T o [ey] = [epr ] 0 [¢'] = ],
hence p is injective. As before we have I' action on the set Rep z(Q, P). For any
(0] € Rep~(NL'(Q), P) and [¢,] € I” we have that

[cz] - pulp] = [plg 0 cp-1] = [cp@—1) 0 9] =[]

as x € Ng/(G). Thus we see that im(x) € Rep(Q,P)". Now we consider a
(o] € Rep~(Q, P)™ and 2 € N5 (Q). Then [¢,-1] € I” and

[p] = lco—1] - [¢] = [ 0 ca]

s0 et € Inn(P)|y0) € Auts(p(Q)). As Q is fully normalized, it is fully
centralized. Since @ is F-centric, the same holds for ¢(Q) and Cs(Q) = Z(Q) =
Z(0(Q)) = Cs(9(Q)), hence (Q) is fully centralized as well. As NL' (Q) C N, we
conclude that there exists an extension ¢ € Hom#(N& (Q), S) of . Forz € N5 (Q)
we have that poc, = cz(4) 0, s0 by the above [p] = [cs(4) 0] in Repx(Q, P). This
implies that there exists a y € P such that ¢(x)y € Cs(0(Q)) C »(Q) C P. Hence
the image of ¢ is contained in P, so we may consider [¢] € Repz(NE (Q), P). Then
w1[@] = [p], so p is a bijection between Repf(N};/(Q), P) and Rep(Q, P)F/.

For any x € RepJ_-(Q,P)F/ the map f,: I'/T" — Rep~(Q, P) given by f,(vI') =
v-x is a well-defined I’-map, and conversely for every I'-map f: I'/T" — Rep+(Q, P)
we have that f(I') € Rep-(Q, P)F/, hence we have established a bijection

po: Repr(N§ (@), P) 2 Mapp (I/T', Repr(Q, P))

by [¢] by mapping to 7IV — 7 - [p|g]. This bijection is clearly natural in the
second variable with respect to morphisms Rep (P, P'), since this is simply post-
composition. To see that it natural in the first variable consider f € Moro,. (r)(I'/T",T'/T")
given by f(I') = [l and [¢] € Repx(NL (Q), P), then puo([¢]) o f is given by

I+ [th|g o] while poa(f) is given by I = [(o g~ 1)|g]. As @ is an extension

of ¢ € Aut(Q) the result follows.

As 7 is an equivalence of categories we have a bijection

(3) MOIGetP(F) (Z(S(X))v ﬂ(P)) = MorGet,,(F) (Xv B<P))

which is natural in the first variable. It is also natural in the second variable as
before. We set o = & o s: Get,,(I') = O°(F)u. Then we get directly from (2) and
(3) that the functors « and /8 are adjoint.

For any category C we let C-mod be the category of functors C? — Ab. Any
functor F from C to C’ will induce a functor from C’-mod — C-mod by pre-
composition with F°P. Thus we have functors a*: (O°(F)i)-mod — Get,(I")-mod
and 8*: Gety(I')-mod — (O°(F)u)-mod induced by o and §. As a and 3 are ad-
joint, the same holds for a* and $*. The category Ci-mod contains a subcategory
of functors F' satisfying that F([[, ¢;) = @;F(c;) and similarly for morphisms and
natural transformations. This subcategory is equivalent to C-mod. As both func-
tors « and (3 on a formal sum is defined as the formal sum of the images, we see
that a® and * are functors between the subcategories of this form. Thus using
this equivalence we get adjoint functors between Op(I')-mod and O°(F)-mod. If

FR— -2 R
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is an exact sequence in O°(F)-mod and X € O,(T') with a(X) = [], P;, then
Fj(Oé(X)) = @lFJ(P'L) and

is exact for all i. As 7(aX) = ®;(7(F;)), we get that the sequence

Tow® cow
Floaw> FQOO{" F300[
is exact as well, hence o* preserves exact sequences. A similar argument holds
for 5*. As p* is a functor it thus preserves split exact sequences, and as injective
objects can be characterized by split exact sequences, we conclude that S* sends
injectives to injectives.
Consider a*® € O,(T')-mod. As s(I'/1) = I'/1 we have that

a(l/1) = a(/1) = N§(Q) = {z € Ns(Q) | co € Inn(Q)} = Q,

hence a*®(I'/1) = @®(Q). Observe that Autp,r)(I'/1) = T' = Outz(Q) and
a([¢]) = [¢~!]. The same holds for a°? so we see that a*®([¢]) = ®([p~!]),
which is the action of [p] on ®(Q). If I C T is a non-trivial p-subgroup, then
s(T'/T") =T/T” where I'" is isomorphic to I'V. In particular I # 1, so there exists
an z € NL'(Q) so ¢, ¢ Inn(Q), i.e. = ¢ Q. Then Q € N5 (Q), so NI (Q) is not
F-conjugate to Q. Hence we have that o*®(T'/T’) = ®(NL"(Q)) = 0. Thus we
conclude that a*® = Fy (), where we consider ®(Q) as a Z,) [I']-module.

Let Z be the constant functor on O°(F)°P sending all objects to Z and all mor-
phisms to the identity on Z. As « sends objects of O,(T") to objects in O¢(F) and
not a formal sum, we see that a*(Z) is the constant functor on O,(I")°P. For any
D € C-mod, where C is either O°(F) or O,(T") we have that

1im° (D) = Home-med(Z, D).

p
C

Let I, be a injective resolution of a*®. Then we may compute the higher limits
as the cohomology of Home (r)-mod(*(Z), I.). As 3% respects exact sequences
and sends injectives to injectives we have that §*I, is an injective resolution of
B*(a*®), so we can compute the higher limits of 8*(a*®) as the cohomology of
Hompe(r)-mod(Z, *1+). As the adjunction between « and 3 is natural in both
entries, the same holds for the induced functors a* and * between O, (I")-mod
and O¢(F)-mod, hence the adjunction induces an isomorphism between the chain
complexes Homo, (1)-mod (Z, 8 1) and Hompe (7)-mod (0" Z, I..). Thus we see that for
any i,

lim *(8**®) = H'(Homoe (7)-mod (2, 1)) = H' (Homo, (r)-mod (@ Z; I.)
O°(F)

Il

lim (0" ®) = A¥(I3 8(Q)).
Op(T)
It is therefore sufficient to prove that 8*(a*®) = ®.

For any P C S which is F-centric we choose m € N and ¢; € Repr(Q, P) for
1 < i < m such that Repr(Q,P) = [[\=, T - ¢; is a orbit decomposition with
respect to the I'-action. For any 1 <¢ < m let I',, be the isotropy subgroup of ;.
Then the orbit I'- ¢; is isomorphic to I'/T'y,. For any [¢)] € Outp(;(Q)), where @;
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is a representative for the class ¢;. We see that

_—1 _ _ -1 - _

(i cvo@i]-[@i] = [ o] = [@i]

as 1) is an element of Inn(P), hence ¢; ' (Outp(@;(Q)))p:; C I'y,. Assume that
?:(Q) is a proper subgroup of P. Then by results of finite p-groups we have that
there exists x € Np(¢(Q))\@:(Q). As Q is F-centric we conclude that Cs(¢;(Q)) =
i(Q), so we have that ¢, ¢ Inn(@;(Q)). Then the class [¢,;] € Autp(p;(Q)) is non-
trivial, so Autp($;(Q)) # 1 and similarly we have that ¢; ' (Outp(?;(Q)))¢: # 1.
Thus we conclude that I'y,, # 1.

Assume that P is not F-conjugate to @. Then @;(Q) # P for all 1 < i < m,
so 'y, # 1 for all 1 < ¢ < m. By the previous results we have that o*®(T" - ¢;) =
a*®(T'/T'y,) = 0, and therefore §*(a*(®(P))) = 0. Assume that P is F-conjugate
to @, and let ¢ € Repr(Q,P). Then for any ¢ € Repr(Q, P) we have that
v lop €T and ("' oy) ¢ = 1, hence Repx(Q,P) = T - ¢. Furthermore
for any 1 € T we have that ¢ = ¥ - ¢ = @ o ~! implies that ) = 1 as ¢ is a
bijection. Hence Rep z(Q, P) consists of only one free orbit and thus we have that
s(Rep£(Q, P)) = T'/1. Then the natural isomorphism between idp, (ry and ios will
provide an isomorphism ip between Repz(Q, P) and I'/1, which is natural with
respect to B(Repx(P, P’)) if P is F-conjugate to Q. We choose for any P which
is F-conjugate to Q a ¢p € Repr(P,Q) such that ip(¢p) = 1p. Then for any
1 € Rep (P, P') where both P and P’ are F-conjugate to @ the following diagram
commutes:

ir . p

Rep]—'(Qa P)

)
Repr(Q, P') F—

The commutativity of the diagram combined with the fact that the i’s are isomor-

phisms implies that s(3(x)): T' — T is the [-map given by 1 — (¢p' oy Lopp/)-1.

We now see that a(3(1)) = ¢p! 01 o ¢p, so the following diagram commutes in

O°(F):

aBP)=Q L~ p

a(B(¥)) (0

/
a(B(P) = Q v P!
By applying ® to the corresponding diagram in the opposite category, we get iso-
morphisms ®(P) — *(a*(®(P))) for any P F-conjugate to @, which are natural
with respect to morphisms in Rep (P, P’), if P’ is F-conjugate to (). As both
B*(a*(®)) and ® are trivial for any P € F° not F-conjugate to ) the uniqueness
of module morphisms, where either the source or target is trivial, implies that this

can be extended to a natural isomorphism of functors ® and 8*(a*(®)). O
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6.3. Projective summands in the Steinberg complex. We will in this chapter
analyze the projective summands of the Steinberg complex to give some simple
requirement for the vanishing of A*. We consider the following complex:

Definition 6.5. For any finite group G let S,(G) be the category of p-subgroups
where the morphisms are inclusions. Then we set st.(G) called the Steinberg com-
plex of G to be the reduced normalized simplical chain complex C(|Sp(G)|, Z(y))-

A reformulation of a special case of [18, Theorem 1.1.] is that for any Z,)-module
M we have that A*(G, M) = H"~ ' (Homg(st,(G), M). Thus, to compute the higher
limits of the form A* we will investigate the structure of the Steinberg complex. By
[35, Theorem 2.7.1] we conclude that st.(G;Z,) = D. & P., where D, is a Z,[G]-
split acyclic complex and P, is a complex of projective Z,[G]-modules. The ring of
p-adic integer Z, is a complete discrete valuation ring. When G is a finite group,
we have that the Z,-algebra Z,[G] is a finitely generated Z,-module, hence Kriill-
Schmidts Theorem holds for Z,[G]-modules by [13, Theorem 6.12]. This also holds
for bounded chain complexes of Z,[G]-modules. So there exists a unique minimal
P, with this property. We denote this st.(G;Z,).

Note that H'~'(Homg (st.(G), M)) = H" ' (Homg(st.(G), M)) for any Z,[G]-
module M, so for our purpose we need to investigate which projective modules
may occur in P,. The following lemma will be central in this regard.

Recall that for a R-module M the socle of M, writtenSoc(M), is the sum of
all semi-simple submodules of M. Dually the radical of M, written Rad(M), is
the intersection of all submodules with semi-simple quotients, and we have that
the head of M is M/Rad(M). Any f: M — N of R-modules satisfies that
f(Soc(M)) € Soc(N) and f(Rad(M)) C Rad(N). When M is semi-simple we
have that Soc(M) = M so we note that Homg(M, N) = Hompg(M, Soc(N)) when-
ever M is semi-simple. Similar if M is semi-simple then Rad(M) = 0, so for
any f: N — M we have that f(Rad(N)) = 0, and thus we get a bijection
Homp(N, M) = Homp(N/Rad(N), M).

In our case R will be group-rings k[G], where k is a field and G is a finite
group. Let Pg be the projective cover over k[G] of a simple nontrivial k[G]-module
S. Then both the socle and head of Pg is isomorphic to S by [5, Proposition
3.1.2]. As a simple module T is semi-simple as well the above remarks implies that
Homg (T, Ps) = Homg(T,S) and Homg(Ps,T) = Homg(S,T). As both S and
T are simple, a k[G]-morphism between them is either an isomorphism or trivial,
so we conclude that Homg (T, Ps) and Homg (T, Ps) are nontrivial if and only if
T = S and in this case we can identify it with Endg(T).

Lemma 6.6. Let k be a field of characteristic p, and assume that H is a subgroup
of a finite group G. Let S be a simple k[G]-module and let T be a simple k[H]-
module. Let Pg and Pr be the respective projective covers. Then [Endg S : k] times
the multiplicity of Ps in T Tf] equals [Endy T : k| times the multiplicity of Pr in
S1§

Proof. As the field k is a complete discrete valuation ring, the Kriill-Schmidt The-
orem holds for the group ring k[G] by [13, Theorem 6.12]. Thus every k[G]-module
has a unique decomposition as a finite direct sum of indecomposable modules. Let
Qo(M) be the direct sum of all the non-projective indecomposable components.
Then Qo(M) does not contain any projective summands, and M = Qy(M) & P,
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where P is projective. By [34, Chapter 14.3. Corollary 1| we have that the in-
decomposable projective k[G]-modules are exactly the projective covers of simple
k[G]-modules. Furthermore, [34, Chapter 14.3. Proposition 41] implies that two
projective covers are isomorphic if and only if the corresponding simple modules
are isomorphic.

Write S |5= Qo(S 1§) @ (#gmgPs), where S are distinct simple non-trivial
k[H]-modules and mg is the multiplicity of the projective cover Pz. Then the co-
kernel of the inclusion Homp (T, Q0(S 1%)) < Homp (T, S 1%) can be identified
with Homp (T, ®gmgPg). As noted for S # T we have that Homy (T, Pg) = 0, so
we see that

dimy, Hompy (T, ®gmgPs) = dimy, Hompy (T, m7rPr) = Z dimg Hompg (T, Pr)
my

= myq dimy, Hompg (T, T) = mp dimg End g (7))

Thus we conclude that the multiplicity mr of Pr in S |§ times [Endg(T) : k] is
the dimension of co-kernel of Hompy (T, Qo (S 1%)) < Hompy (T, S |%) over k. By a
similar argument we conclude that the multiplicity of Ps in 7' 1% times [Endg(S) :
k] is the k-dimension of co-kernel of Homg(Qo(T 1%),S) — Homg(T 1%,S).
By Frobenius reciprocity [5, Proposition 3.3.1] we have that Homg(T 1%,5) =
Homp (T, S |%), so the result follows if Homeg(Qo(T 1%), S) = Homy (T, Q0(S 1§
)), since we get a bijection between the co-kernels. The way will be through the
stable module category.

Let a € Qo(T 1%) — S be a k[G]-map that factors trough a projective module P,
i.e. there exist k[G]-maps o’: Qo(T 1%) — P and B: P — S, such that a = Boa/.
Assume that « is non-trivial. Then 8 must be non-trivial as well. Since S is simple,
we conclude that g is surjective. Let v : Ps — S be the epimorphism from the
definition of projective cover. As P is projective there exists a ¢: P — Pg, such
that 1) o) = 8. By setting & = ¢ o o Qo(T 1) — Ps we see that « factors
through Ps via @ and the essential homomorphism 1. As « is non-trivial we have
that « is surjective. Assume that & is not surjective, then im(&) # Ps so by
definition of essential homomorphism we conclude that im(«) = im(1) o &) # S and
a contradiction arises since « is surjective. Hence we conclude that « is trivial.

Let f,g € Homg(T Tfl, S) and assume that they agree on the non projective
summand Qo (T 1%). Then f —g is trivial on Qo(T 1%), so using the projection onto
the projective summand, we conclude that f—g factors trough a projective module.
Similarly let f,g € Homg(T 1%,S) such that f — g factors trough a projective
module, then the same holds for f—g restricted to Qo(T 1% ). So by the above f = g
on Q(T 1%). Thus f and g determine the same class in Hom (T 1%, S) if and only
if they agree on Qo(7T" 1% ), hence we have a bijection between Hom (T 1%, S) and
Homg (Q0(T 1), S5). A dual argument gives a bijection from Homy (T, S 1§) to
Homp (T, Q0(S 1%)). The result now follows by Frobenius reciprocity in the stable
module category [1, page 74]. O

We know that the ring of p-adic integer Z, is a local ring with factor ring F,,.
By Proposition [34, Proposition 42, 4.14], we now conclude that there is a bijec-
tion between projective F,[G]-modules and projective Z,[G]-modules. Using the
correspondence and the above lemma, we get:
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Proposition 6.7. Let Pg be the projective module over Z,[G) corresponding to the
projective cover over Fp[G] of a simple Fp[G]-module S. Assume that Ps appears
as a summand in st,,(G;7Z,). Then the following holds:

(1) No elements of order p in G act trivially on S.
(2) There exists an elementary abelian p-subgroup V of G with tkV > m + 1
such that S \Lgs(V) contains the projective cover Py, of the trivial Fp[Cs(V)]-

module F,,. Furthermore, dimg, S > |Cs(V)|, > p™**.

Proof. As st,,,(G) is a G-set, the orbit decomposition implies that st,,(G;Z,) =
D, Z,[G/G,,] for some o; € |Sp(G)|m. The projective cover over Fy[G] of S is
irreducible, so by [34, Corollary 1 4.14] we have that Pg is irreducible. As Pg is a
summand of st,,(G;Z,), there exists some o € |S,(G)|,, such that Ps is a direct
summand of Z,[G/G,]. Then the projective cover Ps = Ps/pPs of the simple
F,[G]-module S is a direct summand of F,,[G/G,].

Set K = ker(G — Aut(S)) and assume that there exists an element of order p
in K. We have that ¢ corresponds to a chain Py C --- C P, of p-subgroups of G.
Let P be a Sylow-p-subgroup of G' containing the chain. A Sylow-p-subgroup of K
is maximal among the groups P N K, where P € Syl,(G). As G acts transitively
on Syl (G) by conjugation and K is normal in G, we see that the groups PNK
all agree. In particular P N K € Syl,(K). As there exists element of order p in
K we conclude that PN K # 1. Then PN K is a normal subgroup of a p-group,
so it has nontrivial intersection with the center Z(P). Let g € K N Z(P) be non-
trivial. Then g € Ng(P;) for 0 < i < m, so g € ()i-; Na(P;) = G,. Let F,, be
the trivial F,[G,]-module. In particular it is a simple module. As both S and
F, are nontrivial modules, we have that both [Endg(S);F,] and [Endg, (F,);F,]
are non-zero. Furthermore the induced representation F), 1& = F,[G/G,], so the

multiplicity of Pg as a summand in F,[G/Gs] is non-zero. Lemma 6.6 now implies
that the multiplicity of the projective cover Py, of ), in S ¢ga is non-trivial. Then
S iga contains a projective summand F', which is a direct summand of a free

FplGol-module. As Fy[Go] 105= @g. .0 Fl(9)], we conclude that F |73 is a

direct summand of a free F,[(g)]-module and thus projective. So restriction S i(%

contains the projective summand F ¢<C;3. Since g € K the action of (g) on S ¢<C;> is

Go
(9)
summand of a free F,[(g)]-module, so the (g)-action is free as well. Hence (g) =1

and a contradiction arises.

Let A,(G) be the category of non-trivial elementary abelian p-subgroups of S
with inclusion. By [31, Proposition 2.1] the inclusion |A4,(G)| to |S,(G)] is a ho-
motopy equivalence. Furthermore it respects the G-action, so the chain complexes
C(| A, (G)]; Z(py) and st (G) are G-homotopy equivalent. Thus C(| A, (GQ)]; Zp)) ®
Zy, and st.(G;Z,) are Zpy[G]-homotopy equivalent. Let f, be a chain homotopy
equivalence. Then H,(f) is an isomorphism.

The [35, Theorem 2.7.1] holds for C'*(|AP(G)|;Z(Z,)) ® 7Z, as well. Let P, be the
minimal projective module, such that C.(|4,(G)[; Z¢)) ® Zp is the direct sum of
P, and an acyclic split complex. Then the induced map H.(P,) — H.(st.(G;Z,))
from f, must be an isomorphism, since the other two summand are acyclic. An
argument similar to [6, Lemma 5.17.1.] gives a splitting of P, = C’ & P! and

*

st.(G;Z,) = D’ @ Q',, where P! and @/, are exact sequences of projective modules

*

trivial, hence the action on every direct summand is trivial. But F' |;{ is a direct
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and the restriction of f from €’ — D’ is an isomorphism. As P, and st.(G;Z,)
are projective chain-complexes, the same is true for C! and D). The minimality
requirements on P, and st, (G;Z,) imply that both P, and Q) are trivial, so we
conclude that P, and sjc*(G;Zp) are isomorphic. By the uniqueness part of the
Kriill-Schmidt theorem we conclude that Pg is a projective summand of P, as well.

Similar to before, we see that there exists some o € |A,(G)|,, such that Pg is
a direct summand of Z,[G/G,|. Let o be given by the non-degenerate m-simplex
Py C P --- C P, in A,(G). As this contains m strict inclusions between non-trivial
elementary abelian p-groups, we conclude that V = P,, is an elementary abelian
p-subgroup of G with rkV > m + 1. Note that V C Cg(V) so |Cg(V)|, > p™*L.
By an argument similar to the one used in (a), we see that S iga contains the
projective cover Py, of the trivial F,[G,]-module F, as a direct summand. As
Ca(V) C Ng(F;) for 1 < i < m we have that Cq(V) C %, Na(P;) = G5. Then
the further restriction S igc(V) contains the projective module Py, igg (v) @ a
direct summand.

By the above we have that if P is a projective [, [Q]-module, where @ is finite
group, then P | is a projective F,,[R]-modules for R € Syl,(@). For a finite p-group
R the ring F,,[R] is local, hence the only projective F,[R]-modules are the free ones
by [25, Theorem 2|, and thus P |;;= F,[R]™ for some n. Then dimg, (F,[R]) = |R|
is a divisor of dimg, (P |1;). Note that dimg, (P |};) = dimg, P.

Combining these results we conclude that

dimg, S > dimg, Pr, > |Ca(V)], > p™ .

O

For any finite group G and any field k, we have that k[G] is a finitely generated
k-algebra, so k[G] is Artinian. Then every finitely generated k[G]-module M is both
Artinian and Noetherian. The Jordan-Ho6lder theorem implies it has a finite filtra-
tion with simple quotients. For a simple k[G]-module S and an finitely generated
k[G]-module M we observe that if none of the simple sub-quotients from the filtra-
tion are isomorphic to S, then there exist no non-trivial elements of Homeg (S, M).
Then by induction on the length of the filtration with simple quotients we conclude
for finitely generated k[G]-modules N and M that if Homg(N,T) = 0 for every
simple sub-quotient in the filtration of M, then we have that Homg (N, M) = 0.

Corollary 6.8. Let G be a finite group and M a finitely generated Z,-module.
Assume that there exists a filtration 0 = Mg C My C -+ C M,, = M of M such
that for each 1 < i < m we have that either
(1) ker(G — Aut(M;/M;_1)) has order divisible by p.
(2) The module M;/M;_1 is generated over Z, by strictly less than p* elements,
or

Then Homg (sty_1(G), M) = 0 and A*(G; M) = 0.

Proof. First note that as st;_1(G) is a projective Z,-module, we have that the
functor Homg (sty_1(G), —) is exact. Then for any 1 < i < m by applying this
functor to the short exact sequence 0 — M;_1 — M; — M;/M;_1 — 0 we get the
exact sequence

HomG(sjuk_l(G), Mi—l) — Homg(étk_l(G),Mi) — Homg(s%k_l(G), Mz/Mz—l)
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Since the filtration is finite, we deduce that it is sufficient to show that for all
1 <4 <m we have Homg(sty_1(G), M;/M;_1) = 0.

Let 1 <i <m and set N = M;/M;_1. As M is a Noetherian module, we have
that NV is a finitely generated Z,-module. Consider the exact sequence

N—P N - N/pN

of Z,-modules. Then

0

Homg (str_1(G), N) x Homg (st_1(G), N) — Homg(sty_1(G), N/pN) —— 0

is also exact. Assume that Homg(sts_1(G), N/pN) = 0. As G is a finite group,
we have that st;_1(G) is a finitely generated Z,-module. Since N is also a finitely
generated Z,-module, we conclude that it is true for Homg(sty—1(G), N) as well.
Note that Z, is a commutative local ring with maximal ideal pZ,. The above
exact sequence implies that (pZ,) Homg (str—1(G), N) = Homg(sty—1(G), N). By
Nakayama’s Lemma we now see that Homg (sty_1(G), N) = 0. So it is sufficient to
show that Homg (sty_1(G), N/pN) = 0. Set N = N/pN.

By Proposition 6.7 we have that the projective summands in sty_1(G) are of
the form Pg where Ps = Pg/pPs is the projective cover of a simple F,[G]-module
S. We now consider Homg (Ps, N). Assume that Homg(Ps, N) # 0. For any f €

Homg (Ps, N) we have that f(pPs) C p(N) = 0, hence we get a bijection between
Homg(Ps, N) and Homg(Ps, N), so Homg(Ps, N) # 0. Note that both Ps and
N have a structure as Z,/(pZ,)[G] = F,[G]-modules. Furthermore they are both
finitely generated as F,,[G]-modules as well. By the previous observation this implies
that there exists a simple sub-quotient of N called T, such that Homg(Ps, T') # 0.
As T is simple we conclude that 0 # Homg(Soc(Ps),T) = Homg(S,T) and thus
S =T as Fp[G]-modules. If (1) holds then ker(G — Aut(N)) contains elements of
order p, thus the same is true when we replace N with N and any sub-quotient T’
of N/pN. So ker(G — Aut(S)) has an element of order p. If (2) holds, then N is
generated over Z, by strictly less than p* elements, so N is generated by strictly
less than p* over F,. As this is true for any sub-quotient of N, we conclude

dimg, () < dimg, (N) < pr.

Both conditions give a contradiction in relation with Proposition 6.7, so we conclude
that Homg(Ps, N) = 0. As this holds for any projective summand of stj._1(G), we
get that Homg (sty_1(G), N) = 0 and the result follows by the previous reductions.

As noted we have that A*(G, M) = H*~!(Homg (st.(G), M)), which is a quotient
of Homg (sty_1(G), M), we conclude that it is trivial as well. O

6.4. Consequences. As O°(F) is a finite category, we will now show when a func-
tor O°(F) — Zp)-mod vanishes in terms of the groups A, as described in the
following corollary.

Corollary 6.9. Let F be a saturated fusion system over a p-group and
F: OC(]:)OP — Z(p)-mod

be a functor. If for some i we have that A (Outz(P), F(P)) = 0 for all P € F¢,
then @%c(r) F=0.
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Proof. Let I': O°(F)? — Zy-mod be a functor and let Py,...,P, be the F-
conjugacy classes in O¢(F) ordered after the size of the subgroups they contain,
ie. if P € P;j and P’ € Py with j <k, then |P| < |P’|. We now set for 1 < j <mn
Fj: O¢(F)° — Zy)-mod to be given by F;(P) is F(P) it Pe Ui:l Pi and 0 oth-
erwise, and for ¢ € Repr(P, P') with both P, P’ € | J;_, Px we set Fj(¢)) = F(1)
and else the 0-morphism. Note that for a ¢ € Rep (P, P’) either P and P’ are F-
conjugate or |P| < |P’]. Thus the ordering of the ]—'—conjugacy classes implies that if
Y € Repx(P,P") and P ¢ |J;._, Px, that P’ ¢ | J]_, Pr. Then F; as defined above
preserves composition of functors and thus it is a functor itself. Let for 1 < j <n
F : (90(]—")01’ — Zp-mod be the restriction of F' to the conjugacy class P;. Note
that F; = Fy. By Proposition 6.4 we have that hmo “(F) Ej; =2 A (Out#(Q); Fj(Q))

for any @ € P;. By the assumptions we conclude that L 0 (F) .7-' 0 for every
1< <n.

For every 1 < j < m we have a short exact sequence of functors 0 — F;_; —
- F 7 — 0. From the long exact sequence of higher limits we get that for every
i there is an exact sequence

lim “(Fj_1) = lim "(F;) = lim *(F}),

0¢(F) O<(F) O<(F)
hence LOC(I (F;) = 0 if the other two are zero. As both LO((F) =0 for all j
and Lov Fi =0, we conclude that LO‘(F) = 0. But F;, = F, so the result
follows. O
Definition 6.10. A category C has bounded limits at a prime p if there ea:zsts an
integer d, such that for every functor ®: C°? — Z,y-mod we have that L =0
fori>d.

Corollary 6.11. Let F be a saturated fusion system. Then the category O¢(F)
has bounded limits at p.

Proof. For any finite group G let £(G) be the maximal rank of an elementary
abelian subgroup of G. Set N = max{E(Outz(P)) | P € F°}. Then N is a
integer. We will now prove that for any functor F': O°(F)°? — Z,)-mod we have

that @OC(}_)(F) =0 for ¢ > N. By Corollary 6.9 it is sufficient to show that for

every Q € F¢ and Z,)[Out#(Q)]-module M, we have that A*(Outz(Q); M) = 0.
A reformulation of [18, Theorem 1.1] is with the notation from the previous chapter

A (Out#(Q), M) = H' ' (Homo s (g) (st (Out £ (Q)), M)).

Every elementary abelian subgroup of Outz(P) has rank at most N. So for i > N
there exists no elementary abelian subgroup of Outz(P) of rank ¢ + 1 and thus
by Proposition 6.7 we have that st;(Outz(Q)) has no indecomposable projective
summands. Since st;(Outx(Q)) is projective, we conclude that st;(Outz(Q)) = 0.
Then the isomorphism implies that A*(Outz(Q), M) = 0 for any i > N. O

Corollary 6.12. Let F be a saturated fusion system over a p-group S. If rk,(S) <
p3, then there exists a central linking system associated to F. If tk,(S) < p* there
exists a unique central linking system associated to F.
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Proof. Assume that rk,(S) < p" for an € N. Let Q € F° Since Z(Q) is
a p-subgroup of S, we have that rk,(Z(Q)) < p”. Thus Z(Q) is generated by
strictly less than p™ elements as a module over Z,). Corollary 6.8 implies that
A (Out£(Q),Z(Q)) = 0 for all i > n. As Z7(Q) = Z(Q), Lemma 6.9 now implies
that @1106(}_)(2}-) =0 for all ¢ > n. If n = 3, then @ZC(I)(Z;) = 0, so the
class n(F) from Proposition 6.2 is zero, and thus there exists a central linking sys-
tem associated to F. If n = 2, then ]'g%c(}_)(zf) =0 and @écm(zf) =0, so
Proposition 6.2 implies that there exists a unique central linking system associated
to F. O

Definition 6.13. Let F be a fusion system over S. Then a subgroup P C S is
F-radical, if Outz(P) contains no normal nontrivial p-subgroups.

Lemma 6.14. Let F be saturated fusion system over a finite group S. Let Fy C F¢
be a full subcategory containing all F-radical subgroups of S. Furthermore assume
that Fy is closed under taking JF -centric over-groups, in the sense that if P C P’ C S
with P € Ob(Fy) and P’ € Ob(F¢), then P’ € Ob(Fy). Let i: O(Fy) — O°(F) be
the inclusion. Then for any functor F: O°(F)° — Z,y-mod the inclusion induces
an isomorphism @06(}‘) F to ILH(’)(]:O) F o,

Proof. For any F': O°(F)? — Z)-mod let Fy: O°(F)°P — Z,)-mod be given by
Fy(P) = F(P), if P € Ob(Fp) and zero otherwise and similarly for morphisms. The
over-group condition implies that Fj respects the composition and thus is a functor
itself. The inclusion of O(Fp) into O°(F) gives an isomorphism of Lim__ ) Fy and
@;(R) F o, Similarly let F/Fy: O%(F)? — Zg)-mod be given by Fy(P) =
F(P), if P € Ob(F¢) \ Ob(Fp) and zero otherwise and similarly for morphisms.
As Ob(F¢) \ Ob(Fp) is closed under taking under groups, this implies that F/Fj
respects the composition and is a functor. Note for any P € Ob(F¢) \ Ob(Fo)
we have that Outz(P) is not p-reduced. By [24, Proposition 6.1.(ii)] we see that
A*(Outz(P); F(P)) = 0, so using Lemma 6.9 we conclude im’(‘oe(}_)(F/Fo) =0. By
construction we have a short exact sequence of functors 0 — Fy — F — F/Fy — 0.
The long exact sequence for the higher limits combined with lglzc ) (F/Fy) =0

implies that l&ngc ( }_)(FO) = ]&ngc = F, and the lemma follows from the above. O

Corollary 6.15. Let (S,F,L) be a p-local finite group. Let Lo C L be a full
subcategory containing all F-radical F-centric subgroups of S. Furthermore assume
that Lg is closed under taking over-groups. Then the inclusion |Lo| C |L] is a mod
p equivalence.

Proof. Let Fy be the full subcategory of F¢ on the objects Ob(Ly). By Proposition
4.2 we have decompositions |£| ~ hocolimpe(xy(B) and |Lo| ~ hocolimex,)(B)
where B is a lift of the homotopy functor P — BP. Then for all P € F¢ we have
that H*(BP;F,) = H*(P;F,). As both £ and L, are finite categories the spectral
sequence for cohomology of the homotopy colimit [7, XII.4.5] gives spectral se-
quences E¥ (L) and E¥ (L) converging to H (| £|;F,) respectively H (| Lo|; F,,)
such that
EY(L) = lim "(H/(—Fy)), Ey(Lo) = lim "(H'(—Fp)).
O°(F) O(Fo)
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The inclusion of categories i: O(Fy) — O¢(F) induces a morphism of spectral
sequences i,: E¥(L) — E¥(Ly), such that in: E% (L) — E%(Ly) corresponds to
the map induced by i*: H"™ (|£]) — H"™7(|Lo|) on the successive quotients of their
filtrations.

We may consider H*(—;F,): O°(F)? — Zy-mod. Lemma 6.14 implies that
io: E;"j (L) — E;’j(ﬁo) is an isomorphism. Then 4,.: EbI (L) — E%I(Lg) is an iso-
morphism for any r > 2, and thus in: EJ (L) — E%J(Ly) is an isomorphism. By
Corollary 6.11 we conclude that E;J (£) has only finitely many non-zero columns.
By the construction of spectral sequences we see, that £%7 (L) has only finitely many
non-zero columns. The isomorphism iy implies that the same holds for E%7(Lo)
for r > 2, hence the filtrations of H™/(|Lo|;F,) and H"(|£|;F,) are both finite.
Successive elements in the filtration of H'*/(|£];F,) together with their quotients
form a short exact sequence and the restriction of ¢* induces a map to the corre-
sponding short exact sequence of H'*7(|Lo[;F,). On the quotients i* agrees with
1o and thus they are isomorphisms. As both filtrations start with the trivial group
and the filtrations are finite, using the 5-lemma a finite number of times implies
that i*: H'Y(|L];F,) — H™(|Lo|;F,) is an isomorphism. O
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7. THE MAPPING SPACE Map(BQ, |L]))

In this chapter will provide a description of homotopy classes of Map(BQ, |£[}))
for any p-local finite group (F, L, S) and p-group @ in form of a bijection with a
orbit set of Hom(@Q),S). This can be seen as an extension of the classical bijection
Rep(@, S) = [BQ, BS]. The central idea will be results giving conditions under
which the homotopy colimit and mapping space with respect to BQ) commute and
afterward use the existence of the homotopy decomposition of |L].

Remark that all cohomology in this chapter is with coefficients in IF,.

7.1. Homotopy colimit, p-completion and mapping spaces.

Lemma 7.1. Let p be a prime number, and set V.= 7Z/p. Let C be a finite category
having bounded limits at p. Consider a functor F: C — V-Spaces, such that for
any ¢ € C both F(c) and the homotopy fix points F(c)"V are p-complete spaces with
finite mod p cohomology in each degree. Then there is a homotopy equivalence:

[hocolim (F(—)"*)]; = [(hocolim(F(=)));]"" .

Proof. Set X = hocolime¢(F(—)) and Z = hocolime (F(—)"V). As

X=(JT TI F(co)xar]|/~

n>0co—>--—+Cn

we have a filtration of X by the i’th skeleton

K3
X, = <]_[ 11 F(co)xA">/~.
n=0co—+---—Cn

For all ¢ € C we have that F'(c) is a topological space with an action of the group V/,
so the same holds for X and X; for all i. Furthermore the inclusion X;_; — X, is a
map in V-Spaces. So we can consider the space EV x X; with the diagonal V-action
and the orbit set (X;)py = (EV x X;)/V. Then -+ C (X;)pv C (Xit1)ny € -+
is a filtration of Xy . By definition Hj, (X;) = H*((EV x X;)/V) so by a staircase
diagram of the long exact sequences for the pairs ((X;+1)nv, (X;)ny) similar to the
one on [20, page 3|, we get an exact couple C(Xpy ) of the form:

Dy (x) Py (x)

N

@H*V(XiJrlaXi)

For any V-Spaces X we have that the collapsing map X — % is a V-map and it
induces a K-morphism from H*(V) = Hj, () to Hj,(X). The composition of the
collapsing map with a V-map is the collapsing map of the source, hence we way
consider the functor Hy,: V-Spaces — H*V \ K, where H* V' \ K is the under-
category H*V | idx. Let H* V-U be the category of unstable modules X over
the Steenrod algebra A,, which are equipped with the structure of a H* V-module
induced by an Ap-linear map H*V ® X — X. The morphisms are both 4, and
H* V-morphisms. As noted in |26, 4.4.1] the forgetful functor K — U induces a
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functor H* V \ K — H* V-U. The exact couple thus is in H*(V)-U, in the sense
that it consists of unstable modules over the Steenrod algebra, which also have
a structure as a H*(V)-module and the maps are H*(V)-module morphisms. Let
E**(Xpv) be the induced spectral sequence by this exact couple. Each page of
E*(Xpy) corresponds to an exact couple, where both modules are a direct sum
of modules in H*(V)-U and the corresponding restriction of the morphisms are in
H*(V)-U as well. So each column in of Ef*(X,y) and the differential d, are in
H*V-U.

Similarly let Z; be the corresponding i’th skeleton of Z. Then we have an exact
couple C(2)

Dz D)
NS

PH* (Zii1, 2:)

Let EX*(Z) be the induced spectral sequence.

Let ¢ € C. Then F(c)"Y' = homy (EV, F(c)), so we have a map ¥.: EV x
F(c)"V' — F(c) by (z,¢) + @(z). By giving F(c)"V the trivial V-action, we
get that this is a map between V-Spaces, such that for any v € V, x € EV and
© € F(c)"V it satisfies

(0, 9)) = Wol(vz, ) = @(vn) = va() = vl (2, ).

Thus ¥, is an equivariant map. For any ¢ € Mor¢(c, ), we have that
F()"V: homy (EV, F(c)) — homy (EV, F(c))

is composition with F'(v), so the following diagram commutes:

.

EV x F(c)"V' —~ F(c)

id x F ()" F(y)

.,
EV x F()"V —~ F(¢)

This implies that ¥ induces a well-defined map FV x Z; — X; for any ¢ > 0, and
if we let V' act trivially on Z;, this map will be equivariant as well. Thus it induces
an equivariant map EV x Z; — EV x X; by (z,¢) — (z,¥(z,¢)), that factors
though to the orbit spaces BV x Z; = (EV x Z;)/V — (EV x X;)/V = (Xi)nv
and we remark the map commutes the inclusions of the filtrations, i.e. the diagram
commutes for all i:

BV x Zi—l I Xi—l

BV x 7

X;
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We note that this implies that we have a map of pairs ((X;)nv, (Xi—1)nv) —
(BV x Z;,BV X Z;_1). Since we are taking cohomology with coefficients in a
field, we thus have maps Hy, (X;) — H*(BV) @ H*(Z;) as well as Hj, (X;, X;_1) —
H*(BV)®H"(Z;, Z;—1) that commute with the associated long exact sequence in
cohomology. We remark that all these modules and maps are in H* V' | idx. By
the adjunction involving Lannes Fix-functor [26, Theorem 4.6.3.1.] they are adjoint
to Inorphisms FIX(H*V(X,)) — H*(ZZ) and FIX(H;(X17X7_1)) — H*(Z7, Zz'—l) and
as the adjunction is natural it commutes with the morphisms originating from the
long exact sequence. Since Fix is exact by [26, Theorem 4.6.1.1.], we have that
Fix(C(Xpv)) is also an exact couple. As the maps in the exact couples are derived
from the long exact sequence in cohomology for pair, we thus get a map between the
two exact couples Fix(C'(Xpy)) and C(Z). This induces a morphism between the
induced spectral sequences. Since Fix is exact the spectral sequence corresponding
to Fix(C(Xny)) is Fix(E*(Xpv)), where we have applied Fix to each column of
EX*(Xpv).

As the filtration of the homotopy colimit used to define the two exact couples
are the same as in [7, XI[.4.5] we have that the Fy-pages are identified as follows:
B3 (Xnv) = k%njﬂé(F(—)% Ey(2) = ki?m]H*(F(—)W)

As C has finite limits at p, we see that both spectral sequences have only a finite
number of nonzero columns on the E5, and hence for every E, with r > 2. Thus
both spectral sequences are convergent and the E..-page has only finitely many
non-zero columns. Note that they converge to H}, (X) and H*(Z) respectively.
Then Fix(EX*(Xpy)) converges to Fix(Hj (X)).

We consider the map ®: Fix(E* (X)) = Ef*(Z) of spectral sequences, which
is induced by the adjoint of ¥. Let ¢ € C. The map ¥.: EV x F(c)"V — F(c)
induces a map .. (F(e)"V)p — (F(c)p)™V as in [26, 4.3.2]. It is the adjoint to
the upper composition in the following diagram

id v.)”
EV x (F(e)"™V)) Yy xid BV x (F()"V)h 2 (EV x F(c)"V)) (Fely F())
id X¢(F(C))hv YF(e)
hV \I]C
EV x F(c) ~ F(c)

where 1 the map from the natural transformation corresponding to p-completion
and « is the map from [7, I 7.2]. As a is compatible with the triple structure of
p-completion, we have that a o (Ypy X Y(p(e))nv) = Ypyxp@E)rv. So the above
diagram commutes as 1 is a natural transformation. By assumption F(c) and
F(c)"V are p-complete and BV is p-complete by [3, III 1.4 Proposition 1.10]. Hence
Yr(e)s Yr(env and Ppy are all homotopy equivalences. Likewise a is a homotopy
equivalence by [7, I 7.2], hence the adjoint U, is a homotopy equivalence if and
only if it holds for the adjoint of ¥... The adjoint of ¥, from F(c)"" to itself is the
identity and therefore clearly a homotopy equivalence, and thus the same is true
for U.. As F(c) and F(¢)"V have finite mod p cohomology, |26, Theorem 4.9.1.]
implies that the induced map Fix H},(F(c)) — H*(F(c)"V) is an isomorphism. As
this isomorphism is natural in ¢, we get that EJ*(Z) = lgljc Fix Hj,(F(—)). As ®
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is defined by ¥., we have that ®y: Fix(E)* (X)) — EJ*(Z) corresponds under
this isomorphism to the natural map:
Fixp?ij‘*,(F(—)) — %nj Fix Hy (F(-)).

Since C is a finite category the bar resolution to compute higher limits is a finite
product of spaces in each degree [3, III Proposition 5.3.]. Since Fix is exact it
commutes with cohomology and finite products, so the map ®5 is an isomorphism
for all j. This implies that ®, is an isomorphism for all » > 2. Both spectral
sequences converge, so @, is well-defined and also an isomorphism.

Similarly we have that ¥ induces a map EV x X — Z, which by adjoint-
ness induces a map ®: FixHj,(X) — H*(Z). This preserves the filtrations from
the spectral sequences, and the induced map on the quotients are exactly ®..
Both F-pages have only a finite number of nonzero columns, so the filtrations of
Fix H' (X) and H(Z) are finite for each i. Let 0 = Fy C --- C F,, = Fix H' (X) and
0=F},C--- CF! =H(Z) be the filtrations. Then ®: F, — F}) is an isomorphism,
and by applying the 5-lemma to

0 - F; > Fip1 —— Fi/F; 0
o o o,
0 - F} - Fi/+1 - Fi/+1/Fi/ 0

we conclude that ®: F; — F/ is an isomorphism for all . In particular we have
that ®: FixHj,(X) — H*(Z) is an isomorphism.

By assumption F(c)"V has finite mod p cohomology in each degree for all ¢ € C.
Since C is finite, we conclude that each entry of E5(Z) is a finite dimensional
vector space over IF,,. As the following pages are formed by taking quotients of the
previous one, we see that this is true for all F,.(Z) where r > 2. In particular it
holds for E..(Z). So for any i the quotients of the finite filtration of H*(Z) are finite
dimensional vector spaces over F,, and thus the same holds for Hi(Z ). Then by
[26, Theorem 4.9.1.] we get that Z) — (X]')"V is a homotopy equivalence, which
with our notation is exactly the statement of the lemma. O

Proposition 7.2. Let p be a prime and Q a p-group. Let C be a finite category
having bounded limits at p. Consider a functor F': C — Top, such that for any c € C
and Qo C Q the space Map(BQy, F(c)) is p-complete with finite mod p cohomology
in each degree. Then the natural map

[hocglim(Map(BQ,F))]I/]\ — [Map(BQ, (hoc((j)lim(F))l/)\)]

is a homotopy equivalence, where Map(BQ, F): C — Top is the functor given by
¢ > Map(BQ, F(c)) and ¢+ ¢ o (~)

Proof. We have that |Q| = p™ for some n > 0. The statement will be proven by
induction on n. If n = 0 then BQ = #, so Map(BQ, X) = X for any space X, hence
both the considered spaces are (hocolime (F'));) and the natural map is the identity,
which is a homotopy equivalence. Assume that n > 0 and the statement holds for
n — 1. As the finite p-group @ is solvable, there exists a normal subgroup Qg, such
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that [Q, Qo] = p. As BQoy = EQ/Qo and |Qo| = p"~! the induction hypothesis
implies that the natural map

fo: Ihocglim(Map(EQ/Qo, )] = [Map(EQ/Qu, (hocglim(F))})]

is a homotopy equivalence. Let V = @Q/Qo. The action of @ on EQ induces
an action of V on FQ/Qo. This in turn induces an action of V on the two
spaces above, which makes fy an equivariant map. By definition the homotopy
fix-points space is X"V = Map,, (EV, X) for any V-space X, so an equivariant
homotopy equivalence between two V-spaces induces by post-composition a ho-
motopy equivalence between the homotopy fixed point spaces. In particular fy
induces a homotopy equivalence between ([hocolime(Map(EQ/Qo, F))]))"Y and
(Map(EQ/Qo, (hocolimc(F));\))hV.

For any space Y we have that Map(BQo,Y)"" = holimgy Map(BQo,Y). By
[7, Proposition XII 4.1] we conclude that

Map(BQo, V)"V = holim Map(BQo,Y) ~ Map(ho%?/lim BQy,Y).

We want to prove that in fact hocolimgy BQo ~ BQ. Let w: BQ — BV be the
projection. Then by [23, Theorem 5.5] we have that

BQ@ ~ hocoli = hocoli —)|.
Q o%%lm(*) ocolim |74 (—)]

In this case the overcategory m | oy is the category with objects v € V, and
morphisms v — v’ are elements ¢ € @ such that v = v' - 7(¢q) in V. The full
subcategory on the object 1 has a morphism set isomorphic to @y, so we may
identify this with BQo. Let o: V' — @ be a section, such that (1) = 1. Comparing
definitions we get a well-defined functor G: 7w | oy — BQo by setting v — og
and ¢: v — v’ is mapped to o(v') - ¢ - o(v)™! € Qo. This is the identity on
BQo, and o(v): v — 1 gives a natural transformation from id, ., to incloG. By
considering the geometric realization we conclude that BQ is a deformation retract
of |m | oy|, and thus hocolimgy |7 | ()| =~ hocolimgy BQy, hence we see that
Map(BQo, Y )"V ~ Map(BQ,Y).

For any ¢ € C we have that Map(FQ/Qo, F'(¢)) is a V-space by the induced action
from @. Then for any ¢ € Mor¢(¢, ¢) post-composition with F(y) will be a V-map.
Hence we have a functor F': C — V-Spaces given by F'(¢) = Map(EQ/Qo, F(c))
and F'(p) = F(p) o (—). For any ¢ € C we have that

F'(¢) = Map(BQo, F(c)), F'(c)"V ~ Map(BQo, F(c))"V ~ Map(BQ, F(c)),

which are p-complete spaces with finite mod p cohomology in each degree by as-
sumption. Since V = Z/p we can apply Lemma 7.1 to this functor, resulting in a
homotopy equivalence

[hocglim(Map(BQ, )y ~ [(hocglim Map(EQ/Qo, F));\]hv.
Thus we conclude that

[hocolim(Map(BQ, F))J; = [(hocolim Map(EQ/Qo, F);1""

~ (Map(EQ/Qo, (hocglim(F));))""
~ Map(BQ, (hocglim(F))/\).

p



FUSION SYSTEMS AND THEIR CLASSIFYING SPACES 45

7.2. Mapping space and p-local finite groups. We will now apply the previous
results to the case of p-local finite groups.

Proposition 7.3. Let p be a prime. Let (S,F, L) be a p-local finite group and Q
a finite p-group. Define a category Lg by setting Ob(Lg) = {(P,a) | P € F°,a €
Hom(Q, P)} and
Morz,, (P, ), (P, @) = {¢ € Morz(P, P') | o/ = m(p) o a € Hom(Q, P')}.
Let @: Lo x B(Q) — L be given by
O((P,ar),0) = P, @(p: (Pya) = (P,a),x) = podp(a(z))
Then @ is a well-defined functor and the adjoint to |®| after p-completion
@[ [Lql, — Map(BQ, [L[})
is a homotopy equivalence.

Proof. By property (C) for the p-local finite group, we conclude that for any (p, z) €
MorCQ((Pv a)a (Plv O/)) X Q we have that

podp(a(z)) =dp (m(p)(a(x))) o v = dp(a’(z)) o,
so for ¢ € Morz,, ((P, ), (P',a')),¢" € Morg,, (P, ), (P", ")) and z,2" € Q we
have

(¢ op,a'x) = ¢ opodp(afz'zr)) = ¢ odp(d(x")opodp(afz))
= d(¢', ") 0 B(p, 2)

We see that 1((pa).0,) = (1p,1) and since ®(1p,1) = 1p o dp(a(l)) = 1p, we
conclude that ® is a well-defined functor.

Consider the functor 7: £ — O¢(F), which is 7 composed with the projection
onto the orbit category. Define 7g: Lo — O°(F) to be the functor given by
7o(P,a) = P and 7g(p) = 7(p). Let Bg, B: O°(F) — Top be the left homotopy
Kan extensions of the constant functor *: £ — Top over 7 respectively the left
homotopy Kan extension of #: Lo — Top over 7g. Then B = |7 | ()| and
Bg = |7g | (-)|- By [23, Theorem 5.5] we have that |£| ~ hocolimpe()(B) and
‘£Q| >~ hOCOlimOc(}-)(BQ).

Now we consider the diagram

Lo x B(Q) 2

L

pry m
Lo —% O%(F)
where pr; is the projection onto the first component. Both ways map ((P, ), 0q)
to P, and for (¢, x) € Morz, ((P, ), (P',')) x Q we have that

T(@(p,2)) = 7(p 0 dp(a(z))) = (7(¢) 0 Ca(a)) In(P)
= 7(p) Inn(P) = 7q o pry (¢, ),
hence the diagram commutes. As 7g o pr; | (—) can be identified with 7¢ |

(=) x B(Q), the left homotopy Kan extension to g o pr; over the constant func-
tor is exactly Bg(—) x BQ. The commutativity of the diagram implies that &
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induces a natural transformation from g opr; | (=) to 7 | (—). We denote this
®': Bo(—) x BQ — B. The adjoint map ®: By — Map(BQ, B) is then also a
natural transformation. We consider the diagram:

- hocolim (®)

(hgcolim(Bo)); % (hocolim Map(BQ, B)))) =~ Map(BQ, hocolim(B);)
. Kk .
Lol - Map(BQ, |£[})

For any functor F': C — C’ and ¢ € C' there is a functor F' | ¢/ — C that forgets
the structure from C’. Denote this functor pry. For any P € Ob(F,) the upper
composition is induced by the map

- - Prz
Bo(P)x BQ 2w B(py ML, g
while the lower is induced by

| pry, | x id ||

Lol x BQ —— |£].

Bqo(P) x BQ

These maps are identical, so the diagram commutes. By Proposition 4.2 we have
that for any P € F¢ the space B (P) is homotopy equivalent to BP. Thus for any
Qo C @ we have that Map(BQy, B(P)) ~ Map(BQo, BP). By [9, Proposition 2.1]
we have that the components of Map(BQq, BP) are in bijection with Rep(Qo, P)
and for any p € Hom(Qo, P) we also have that Map(BQo, BP)p, ~ BCp(p(Qo)).
As P is a finite p-group the space BCp(p(Qo)) is p-complete and has finite mod
p cohomology in each degree. Then Map(BQy, BP) is an finite disjoint union of
p-complete spaces with finite mod p cohomology in each degree, so the same is true
for Map(BQo, BP) and thus also for Map(BQo, BP). We have that O¢(F) is a
finite category and by Corollary 6.11 it has bounded limits at p. Then Proposition
7.2 implies that w is a homotopy equivalence. As the vertical map in the diagram
are p-completion of homotopy equivalences, they are in particular p-completion of
p-equivalences. Thus by [7, Lemma I 5.5.] they are homotopy equivalence. We
conclude by commutativity of the diagram that |®|" is a homotopy equivalence if
hocolim ® is. As we are working the category of simplicial sets and maps we have
by [17, IV Proposition 1.9] that this holds if ®(P) is a homotopy equivalence for
any P e F°.

Let &: Mor(O°¢(F)) — Mor(L) be a section, such that §(idp) = 1p for any
P € F¢. In the proof of Theorem 4.2 we constructed a functor ¥: 7 | P — B/(P)
for any P € F¢, where B'(P) is the full subcategory of # | P on the object
(P,idp) by setting W(R,x) = (P,idp) and ¥(y) = 0p(g,). Furthermore the map
d(x): (R,x) — (P,id) is a natural transformation from idz p — inclo¥, so BP ~
|B'(P)| C |7 | P|is a deformation retract. We will now make a similar construction
on g | P. Note that 7g | P is the category with objects (R, c, x) where R € F¢,
a € Hom(Q, R) and x € Repr(R, P), and morphisms

Morz, p((R, o, x), (R, &', X)) = {¢ € Morg(R,R') | &' = w(p)oa,x = X o7t(p)}.
Let By, (P) be the full subcategory on the objects (P, ,id) where o € Hom(Q, P).
Let (R,a,x) € 7g L P. As m(6(x)) € Homz(R, P) C Hom(R, P) we have that
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(P, m(6(x))oa,id) € By (P). Let ¢ € Morz,  p((R, o, x), (R, a’,X')). By definition
gy € P is the unique element such that 6(x) o ¢ = ,(9,) 0 5(x). Then

m(0p(gp)) o m(G(x)) 0o a =7(5(X)) o m(p) 0 v = (G (x')) 0

and as 7(d,(g,)) € Inn(P), we conclude that d,(g,) is a morphism from (P, m(&(x))o
a,id) to (P,m(6(x')) o ¢/,id). Thus we can define a retraction functor ¥q: 7g |
P — By (P) by setting Vq(R, a,x) = (P,m(5(x)) o a,id) and ¥q(p) = dp(gy). As
& is a section we see that &(x) will be a map from (R, a, x) to (P, 7(5(x)) o a,id)
and the definition of g, implies, that this is in fact a natural transformation
iz, p — incloWq. Hence |Bg(P)| C |7iq | P| is a deformation retract.

We remark that ®((P,«),0g) = P, so the induced map on the over-categories
will map Bb(P) x BQ into B’(P). The adjoint map after geometric realization

Do (P): |B,(P)| — Map(BQ, |B'(P)|) makes the following diagram commute:

B,P)| 2P ap(BQ, 1B/(P))
incl inclo(—)
Bo(P) 2L Map(BQ, B(P)

As both inclusions are homotopy equivalences, it is sufficient to show that the same
holds for ®y(P).

Consider two objects (P, «,id) and (P,o/,id) in Bg(P). A morphism between
these is a ¢ € Mor, (P, P) such that o/ = 7(¢) o @ and 7(p) = id. Thus 7 (p) €
Inn(P), hence a and o' are conjugate in P. Similarly if o/ = ¢, o @ for some
p € P, then dp(p) is a morphism between (P, «,id) and (P, o/, id) in B (P). Thus
there exists a morphism between (P,«,id) and (P,a’,id) in B (P) if and only
if @ and o' agree in Rep(Q, P). The connected components of B, (P) are thus
in bijection with the set Rep(Q,P). Let « € Hom(Q, P). As the maps from
(P, cp o a,id) to (P, ,id) are isomorphisms, we see that the connected component
of B’Q(P) containing (P, a,id) deformation retracts onto the full subcategory on
the object (P, «r,id). By the above we have that an automorphism of (P, «,id) is a
¢ € Autz(P) such that 7(p) = ¢, for some p € P and o = ¢,oc. The first condition
implies that ¢ = §p(pp’) for some p’ € Z(P) while he second condition implies that
p € Cp(a(Q)). As Z(P) C Cp(a(Q)) we conclude that the automorphism set is
exactly dp(Cp(a(Q)). Since dp is injective, we thus have that full subcategory
on the object (P, «,id) is isomorphic to BCOp(a(Q)). As this applies to all the
connected components of B (P), we conclude that

Bo(P)l~ ] BCr(a(@)

a€Rep(Q,P)

Hence it is sufficient to show that ® restricted to Hoerepo,p) BCP(a(Q)) is a
homotopy equivalence.

We remark that |B'(P)| ~ BP and the restriction of ®: BCp(a(Q)) x BQ — BP
for any oo € Hom(Q, P) under the given identification satisfies that

@' (p,z) = ®(6p(p),x) = dp(p) 0 dp(a(z)) = p- a(z).
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It thus corresponds to incloa: Cp(a(P)) x @ — P. By [9, Proposition 2.1] the
adjoint map BCp(a(Q)) — Map(BQ, BP)p. is a homotopy equivalence. The
Proposition also implies that the connected components of Map(BQ, BP) are in
bijection with Rep(Q, P), then the map [[,crep(0,p) BCP(a(Q)) = Map(BQ, BP)
induced by incloa ranging over a@ € Rep(Q, P) is a homotopy equivalence and it
corresponds to the restriction of . From this the proposition follows. O

We will now give a description of Map(B@, |£|;,\) and some of its connected
components. The case of the components may be considered as a generalization of
the result BCp(a(Q)) =~ Map(BQ, BP)p, for any a € Rep(Q, P).

Theorem 7.4. Let (S,F,L) be a p-local finite group. Let 0: BS — L be the

functor induced by o5 and let f = ¢z 0 |0]: BS — |L]}), where ¢ is the natural
transformation from p-completion. Then the following holds for any p-group Q.
(a) Each map BQ — |L]}) is homotopic to f o Bp for some p € Hom(Q, S).

(b) Given any two p,p’ € Hom(Q, S), then f o Bp and f o Bp' are homotopic

as maps BQ — |L|} if any only if there exists x € Homz(pQ,p'Q) such

that p’ = x o p.
(¢) For each p € Hom(Q, S) such that pQ € F¢, the adjoint to the composite
incl -B
B7(pQ) x BQ 2P0 gy T gy

is a homotopy equivalence B Z(pQ) — Map(BQ, |L]})) foB,-
(d) The evaluation map Map(BQ, |L]}))riv — L]} is a homotopy equivalence.

Proof. Using the notation from Proposition 7.3, we have that the map |®|': [Lq|) —
Map(BQ, |L£]})) is a homotopy equivalence. For (P,a) € Lg the image of [®'| on
the vertex corresponding to (P, ) in |Lgql) is the map

BO Ba BP 0p| ] Ple) 1l
where 0p: BP — L is the functor induced by ép. By property (C) for the linking
system, we conclude that any lift of the inclusion i: P — S to £ will give rise to
a natural transformation from 6p — 6 o Bi. Thus we have that |6p| ~ |0 o Bi.
Hence the above map is homotopic to f o B(i o @) where i o o« € Hom(Q, S). A
map from (P, ) and (P’, ') in Lg corresponds to a x € Homz(a(Q), ¢'(Q)) such
that oo = y o . Two vertises (P, ) and (P’,a/) in Lg are connected in |Lg]| if and
only if there exists a chain of maps connecting them in L£g. Note that direction
of the maps may alternate, but the composition of the corresponding yx;’s or the
inverse of y; in case of opposite direction will give a x € Homz(aQ, o’Q) such that
a=xoa.

Let ¢ € Hom(BQ, |L]}). As |®|" is a homotopy equivalence, we have that |®|’
is a bijection on the connected components, so the connected component of ¢
contains the image of a connected of |Lql;). This connected component of [Lg|)
contains some vertex of the form (P, «), thus the connected component of ¢ in
Map(BQ, |L]})) contains |®|(P,a). Then ¢ =~ [®'(P,a) ~ f o B(i o a), where
ioa € Hom(Q,S). For any two p,p’ € Hom(Q, S), we have that f o B(i o a) ~
foB(ioa) if and only if (P, «) and (P’,a’) are connected in L, so part (b) follows
as well.

Let p € Hom(Q, S), such that p@Q € F¢. Then (pQ,p) € Lo and let (Lg)(,0,0)
be the connected components containing (pQ, p). Let o: Mor(F) — Mor(L) be
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a section such that o(id,g) = 1,g. For any (P,a) € (£g)(,q,q) there exists a
X(P,a) € Homz(pQ, aQ) such that x(pq)op = a. Assume that x(,q,,) = id,q. For
any morphism ¢ € (P,a) — (P',a) in (£g)(,0,q), we have that 7(¢) o x(pa) =
X(P',a) 00 pQ. Let ¢ = X&Dl, o) © 7(©) © X(P,a)- By Lemma 3.1 (a) there exists a
unique 1 € Autz(p@) such that

P L4 P

o(X(Pa)) o(x(p,a1))

Y

pQ pQ

commutes with 7(1)) = v. Comparing definitions we get that ) € Autz, (pQ, p).
Thus we get a well-defined retraction functor R from (£q)(,0,q) to the full sub-
category on the object (p@,p) using the above construction on the morphisms.
Similar to previous cases o(Xx(p,o)) Will be a natural transformation from incloR to
id(£g) (0.0 50 BAutz, (pQ, p) will be a deformation retract of |(£Lg)(,q.@)l- Then
by property (A) for £ we have that

Autr, (pQ,p) = {p € Aute(pQ) | 7(p) = idpq} = 6,0 (Z(pQ)).

As d,q is injective we conclude that |(£g)(,0,@)| has the homotopy type of B Z(pQ).
Then the component of [Lg |$ containing (p@, p) has the homotopy type of (B Z(pQ))Q
which is the same as B Z(pQ), since Z(pQ) is a finite p-group so the space B Z(pQ)
is p-complete [3, III 1.4 Proposition 1.10]. The restriction of |®|" to the compo-
nent containing (p@, p) is a homotopy equivalence onto the component containing
|®]'(pQ, p), which is exactly Map(BQ, |£]}}) joB,- We note that ® on the full sub-
category of Lo on the object (pQ, p) is

incl -B(p) ald

0
BZ(pQ) x BQ Bp@ el 2EL

which is homotopic to the map stated in part (c), so the results follows.

The vertises (P,1) for P € F° lie in the same component of Ly. For any
(P,a) € Lg there exists a path to (P, 1) in L if there is a x € Hom(1, a(Q)) such
that « = y o1 = 1. Hence (P,1) for P € F¢ constitutes a connected component
of Lg. This component is equivalent to £ and the restriction of ® onto £ x BQ
is just the projection onto the first component. Thus the adjoint map |®|" on this
component is the map from = € |£]}) to the constant map at = in Map(BQ,|L])),
which lies in Map(BQ, |£|}))triv, thus by the above this is homotopy equivalence
from L]} to Map(BQ,|L[))wiv- We note that this has the evaluation map as an
inverse. (]

Definition 7.5. Let (S,F, L) be a p-local finite group. For any finite p-group Q,
p,p € Hom(Q,S) are F-conjugate if there exists a x € Homz(pQ, p'Q) such that
p = xop. This is an equivalence relation and we denote the set of equivalence
classes Rep(Q, L).

Observe that as all conjugation maps are JF-morphisms, this also induces an
equivalence relation on Rep(Q, P). So we may call elements of Rep(Q,P) F-
conjugate. With this definition we get the following reformulation:
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Corollary 7.6. For a p-local finite group (S, F,L) and finite p-group Q, the map
Rep(Q, L) — [BQ,|L]|}] given by p € Rep(Q, L) is mapped to ¢z o |0] o Bp is a
homotopy equivalence.
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8. THE COHOMOLOGY RING OF FUSION SYSTEMS

In this chapter we will define the cohomology ring for a fusion system, and
prove that it is Noetherian. Furthermore in the case of a p-local finite group, it is
isomorphic to the cohomology ring of the p-completion of its classifying space. In
the following chapter cohomology will always be with F,-coeflicients.

Definition 8.1. For a fusion system F over a p-group S, we define the cohomology
ring as
H(F) = Jim H(—).
O(F)
We note that it is a subring of H*(BS).

Observe that for any finite group @ and ¢ € @ the element ¢ gives a natural
transformation between the identity functor on BQ and Bcg, so ¢; = id on H*(Q).
Hence H*(—) is a functor on O(F)°P, so the above limit exists. Furthermore we
have that the category O(Fs(S)) has a unique morphism between each pair of
elements, and as S is a maximal element, we see that H(Fg(S)) = H*(BS).

Lemma 8.2. Let (S, F, L) be a p-local finite group and let 0: BS — L be the functor
induced by 0s: S — Morg(S). Let P C S and ip: P — S be the inclusion. Then
the collection of maps i% o |0|*: H*(|L|) — H*(P) induces a map Re: H*(|L]) —
H*(F).

Proof. For P,Q € F and ¢ € Homz(P, Q) it follows by Theorem 7.4 that ¢ o|6]o
B(ig o) and ¢z o |6| o Bip are homotopic as maps from BP to |L]). As |L] is p-
good, we have that qﬁrﬁl is an isomorphism, so we conclude that ¢*0ig,o|0|* = i}p0|0]*
as maps H*(|£]) — H*(P) and thus induces a map to the limit over O(F). O

The main theorem is then that R, is an isomorphism.

8.1. The cohomology ring Noetherian. In this section we will prove that the
cohomology ring for any fusion system over a finite group is Noetherian. The central
tool will be F-isomorphisms as defined in [29, Chapter 3].

In the following £(S) will for any p-group S denote the set of elementary abelian
subgroups of S.

Proposition 8.3. Let F be a fusion system over a p-group S. Let F¢ denote
the full subcategory of F over the elementary abelian subgroups of S. Then the
restriction

Ar: HY(F) — I&HH*(—)
Fe
is an F'-isomorphism.

Proof. Let F be a fusion system over a p-group S. Let () be a p-group and F¢, be
the full subcategory of Fq(Q) over £(Q) and consider the restriction A\g: H*(Q) —
lim ., H*(—). By comparing definitions the map of [29, Theorem 6.2] with X equal
to anoint is exactly Mg, so we have that Ag is an F-isomorphism. As F§ is
subcategory of F¢ we have that ker(\r) C ker(\g). Since Ag is an F-isomorphism,
the kernel consists of nilpotent elements, so the same holds for the kernel of Ar.
Now consider x = (2g) pepe € lim -, H*(—). We will now prove that there exists

k> 0 such that x* ¢ im(Az). Let P C S. Then xp = (zg)rcp € r&lp H*(-).
e



52 ISABELLE LAUDE

Since Ap is an F-isomorphism, there exists kp > 0 such that (XP)ka € im(Ap). By
definition of Ap it means that there exists yp € H*(P) such that ¢p*(yp) = (a:E)ka
for any elementary abelian £ C P and ¢ € Homp(FE, P). Since S is a finite group,
it has only finitely many subgroups. Hence for k = max{kp | P C S} we can for

any P C S replace yp by (yp)pkfkp and kp by k in the above and the statement
still holds.

Let ¢» € Homz(P, @). For an elementary abelian subgroup F C P the restriction
¢: E — 4(E) is a morphism in F¢, so zﬂ*(mw(E)) = zg. Consider ¢*(yg) € H*(P).
As ¢(FE) C Q is elementary abelian we see that

5V (yQ)) = 0 ir) (yq) = (iym) © V)" (y) = ¥ (i) k) (¥a))
=0 ((wym)") = (@p)" =i5(yr).
Hence Ap(¢¥*(yg)) = Ap(yp). As Ap is an F-isomorphism, we have that ¢*(yo)—yp
is nilpotent, in particular there exists m > 0 such that 0 = (¢*(yg) —yp)? . As we
are in characteristic p, we conclude z/)*(yQ)pm = y’l’)m. Since there are only finitely
many morphisms in F, we can choose m sufficiently large, such that w*(ygn) = ygn

for all P,Q C S and ¢ € Mor#(P,Q). Theny = (% )pcs € H*(F) with

m metk etk
Ar(y) = (g Jpere = (@ pere =P

O

Lemma 8.4. Consider a commutative diagram of commutative rings of character-
istic p of the form

A B

Aa AB

A B’
where the horizontal maps are inclusion and both Ay and A are F-isomorphisms.
If the extension A’ — B’ is integral, then the same holds for the extension A — B.

Proof. Let b € B. We want to produce a monic polynomial in A[z] having b as a
root. As Ap(b) € B’ and the extension A’ C B’ is integral, there exists a monic
polynomial f € A’[x] having Ap(b) as a root. Since f only has finitely many
coefficients, there exists a k > 0 such that a?" € im(Ay4) for every coefficient in a of
f. As A is is a commutative ring of characteristic p, we have that the polynomial
f7" € A'lz] has coefficient of the form a?", where a is a coefficient of f. Hence
there exists a monic polynomial f € Afz] with A(f) = #7". By commutativity of
the diagram, this implies that

~ ~. k k
Ap(f(0)) = Aa(F)(AB()) = f¥ (Ap(b)) = f(AB(D))" = 0.
As Ap is an F-isomorphism we have that f(b) is nilpotent. Hence there exists
N > 0, such that f(b)Y =0. Then f € A[z] is monic with b as a root. O

Proposition 8.5. Let F be a fusion system over a p-group S. Then the ring
H*(F) is Noetherian and the inclusion H*(F) — H*(BS) makes H*(BS) a finitely
generated H* (F)-module.
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Proof. Consider F a fusion system over a finite p-group S. Let n be the maximal
rank of an element in £(5) and set V = (Z/p)™. Then GL(V) acts on V' and induces
an action on H*(BV). We now define a map 7: H*(BV)SL(V) — [I5ees) H (BE)
by choosing monomorphisms ¢g: E — V for all E € £(S) and setting 7(z) =
(WE(x))pees). If for E € £(S) we consider any monomorphism Vp: E =V,
then ¢ (F) and 45 (F) are two subspaces of the finite dimensional F,-vector space
V' of the same dimension, so the isomorphism between them induced by zﬁE(E)
and ¢¥g(E) can be extended to all of V. Hence there exists ¢ € GL(V) such
that ¥ = @ o 1p. For z € H*(BV)SV) we have that ¢*(z) = 2 and therefore
V() = i (e*(x)) = ¥E(z). So 7 does not depend on the particular choice of 9.

Any map ¢ € Mor z.(E, E’) is injective, so ¢ zop and ¥ g are two monomorphisms
from E to V. By the above we get that ¢ (z) = ¢* (Y% (2)) for x € H*(BV)SEV),
which implies that 7(x) € lim - H *(=). Note that there exists E € £(S) such that
F has the same rank as V. For this particular E the map g is an isomorphism,
so the same holds for ¢},. So we see that the map 7 is injective.

Let H**(BV') be the elements of H*(BV) of even degree. We have by [19, Thm
page 500] that H*(Z/p; F,) equals F,[z] ® Ag, [y] for some y € H'(Z/p;F,) and = €
H?(Z/p;F,) for p an odd prime while H*(Z/2; Fy) equals Fo[z] for a x € H'(Z/p; F,,).
As the classlfymg spaces of finite groups are CW-complexes we have by the Kunneth
formula [19, Theorem 3.16] that H*(BV) is a finite tensor product of H*(Z/p) over
F,. So in both cases H*"(BV) is a finitely generated polynomial algebra over F),.
In the theory of commutative rings one of the basic results is that for an integral
ring extension B C A where A is finitely generated B-algebra, we have that A is
a finitely generated B-module [4, Proposition 5.1]. For B = H*(BV)SL(Y) and
A =H®(BV) for an « € H*(BV) the polynomial [],cqy,y (¢t — o(2)) is monic,
has z as a root and coefficients in H*(BV)S*(V) | s0 we conclude that H*(BV) is
a finitely generated H’(BV)S“(V)_module. Then by [2, Theorem 1] we conclude
that H*(BV)G (V) is a finitely generated F,-algebra. By Hilbert’s basis Theorem
this implies that the ring H*”(BV)S“V) is Noetherian.

For each E € £(S) we have a chosen an injective map ¢p: F — V. The
fundamental theorem of finite abelian groups implies that V = ¢ g(E) & V' for
some subgroup V' of V. Hence there exists a group homomorphism ¢g: V — E
given by (Vg (g),v’) — g satistying g op = idg. Then ¢} 0 ¢} = idy= (g, s0 ¥
is surjective. In particular ¢}, : H®(BV) — H®’(BE) is surjective, so the image of
the generating set for H*”(BV) as a H* (BV)“(V)_module, will be a generating set
for H*'(BE) as a H*(BV)S“V)_module, where the module structure is induced
by ¢. As £(S) is a finite set we get that [[pce(g) H(BE) is finitely generated
as a H*(BV)S(V)_module by the map 7.

AsimTt C @Ee}"e H*(BE), the map 7 can be see as the composition

H*(BV)SL V) L Jim HY(BE) — lm H*(BE) — [[ W(BE)
EeFe EeFg Ee&(S)
Ar As

H*(F)

H*(BS)
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where all other horizontal maps are inclusions and the notation agrees with the
one used in the proof of Proposition 8.3. As HEES(S) H®(BE) is finitely generated

as a H®(BV)SH(Y)_module, every element of [peesy H(BE) is integral over

H(BV)SL(Y) | In particular every element of the submodule hm_ . H(BE)is

€Fg
integral over H*"(BV)S*(V), Let w € fm . H*(BE) be a root of the monic non-
S

trivial polynomial f € H®(BV)S“(V)[z]. The map 7 is injective, so the polynomial
7(f) will be a monic non-trivial polynomial with coefficients in fm -, H®(BE)

having w as a root. So every element in lim H®(BE) is also integral over

EcFg
@Eeﬁe H®(BE). By Proposition 8.3 both the maSs Ar and Ag are F-isomorphisms.
For any of the above rings the subring of elements of even degree is a commutative
ring of characteristic p. By Lemma 8.4 used on the square in the diagram restricted
to the elements of even degree, we conclude that the extension H®(F) C H®(BS)
is integral.

As S is a finite group and F, is Noetherian [15, Corollary 6.2] implies that
H*(BS) is a finitely generated Fj-algebra. Hence is it also a finitely generated
H®(F)-algebra. For any w € H*(BS) of odd degree, we have that w? € H”(BS), so
there exists monic f € H®(F)[z] with f(w?) = 0. In particular f(z?) € H*"(F)[z]
will be monic with w as a root, so the extension H®(F) C H*(BS) is integral. From
this we conclude that H*(BS) is a finitely generated H*”(F)-module and hence also
a finitely generated H*(F)-module.

We have that H*(B.S) is finitely generated as a F-algebra. The elements of even
degree will be generated by the generators of even degree and in the case of p = 2
also by the all products of two generators of odd degree. In all cases H®(BS) is a
finitely generated [F)-algebra. As the extension H®"(F) C H®(BS) is integral, this
implies that H®(F) is a finitely generated F,-algebra. Hilbert basis theorem then
implies that the ring H®”(F) is Noetherian. The ring H*(B.S) is a finitely generated
H®(F)-module, and therefore Noetherian. As H*(F) is a submodule of H*(BS)
this implies that H*(F) itself is Noetherian. O

8.2. R, is an F-isomorphism.

Lemma 8.6. Let (S, F,L) be a p-local finite group. Then there exists a spectral
sequence converging to H*(|L|), where the columns of the E1-page are finite products
of H*(BP) for P C S, and the Es-page has only finitely many non-zero columns.

Furthermore the homomorphism Ry: H*(|L|) — H*(F) is an F-isomorphism
and it makes H*(F) into a finitely generated H* (|L])-module.

Proof. By Proposition 4.2 it follows that |£| ~ hocolimpe () B, where B: O°(F) —
Top satisfies BP ~ BP. Using the spectral sequence for the cohomology of the
homotopy colimit [7, XII1.4.5] we get a spectral sequence converging to H*(|£]) with

PyG--CP,CS Oc¢(F)

As S is a finite group, there exists only finitely many strictly increasing chains of
subgroup, so the products on the Fj-page are all finite. Since F is saturated, it
follows from Corollary 6.11, that O¢(F) has bounded limits at p and therefore by

considering the functor H*(B(—)): O°(F)? — Z,)-mod we get that the Ex-page
has only finitely many non-zero columns.
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The spectral sequence for the cohomology of the projection hocolimpe, ;)(B) —
|O¢(F)| uses the same filtration of the homotopy colimit as the spectral sequence
for the cohomology of hocolim used above. So the two spectral sequences agree and
by [8, IV 6.5] they are multiplicative.

As F is saturated, it follows by Alperin’s fusion theorem for saturated fusion
systems [10, Theorem A.10] that every morphism in O(F) is the restriction of
a morphism in O¢(F), so H*(F) = limpez H*(—). Thus we have that E9* =
H*(F). The spectral sequence converges to H*(]£|) and for a k we consider the
largest submodule FF in the resulting filtration different from H*(|£]). Then the
isomorphism H*(|£])/Ff — E%F € H¥(F) is exactly Rz So EQF = R, (H*(|L]))
and FF = ker(R;)NH"(|£]). Hence the image of R, is generated by the permanent
cycles.

Now consider a x € FF = ker(Rz) N HF(|£]). As E. has only finitely many
nonzero columns, we have that E*Y = 0 for all N > M for some large M. Using
the notation from [20, Chapther 1.2] we have 0 = FfM = ... = FFM since all their
quotients are zero. Using the multiplicative structure we have 2™ € I ]’ffM . So we
conclude that 2 = 0 and hence nilpotent. As any element in ker(R.) is a finite
sum of homogeneous elements, we conclude that the kernel consists of nilpotent
elements.

Consider z € H*(F) = EJ* and assume that  is not a permanent cycle. Then
there exists r > 2 such that d,.(z) # 0. Let r > 2 be the smallest integer such that
this holds. If both p are k are odd, we have that 22 = 0, so P = 0 and hence
is a permanent cycle. Assume that either p or k£ is even. Then by the Leibnitz
formula for the differential we get that d,.(z?) = pa?~ld.(z) = 0, so dy(2P) = 0
for all 2 < N < r. By iterating the process we get that there exists a M > 0 such
dT(xpM) = 0 for all 7 less than the number of non-zero columns of the spectral
sequence. Then all higher differentials are trivially zero, so we get that 2P is a
permanent cycle and so " e im(Rz). As we are working in characteristic p, this
implies that for every finite sum of homogeneous elements, there exists a M > 0,
such that the p™-power of the element is in im(R).

By Proposition 8.5 H*(BS) is finitely generated as both a H*(F)-module and
as Fp-algebra, so we have that H*(F) is finitely generated as a F,-algebra. Let
{z1,...,2,} be a set of homogeneous algebra generators for H*(F). Then by the
above there exists m; > 0, such that =" € im(R.). Hence we get that the finite
set {z) |1 <i<n,1<j<m;} will generate H*(F) as a im(R)-module. O

8.3. Characteristic (Sx 5)-set for a fusion system. In the chapter we will focus
on the characteristic (S x S)-set for a saturated fusion system F over a p-group
S. Such a (S x S)-set always exists and gives rise to a left inverse of the inclusion
H*(F) — H*(BS). Note that in the literature one traditionally considers the
corresponding (.9, .5)-biset. As there is a bijective correspondence between (S, .5)-
bisets and (S x S)-sets and all proofs are done for the associated (S x S)-sets, we
will choose only to work with (S x S)-sets.

Lemma 8.7. Let F be a saturated fusion system over a p-group S, and let H be a
set of subgroups of S which is closed under taking subgroups and F-conjugacy. Let
Qo be a S-set with the property that if P,Q C S are F-conjugate and not elements
of H, then |QF| = |Qg2| Then there exists a S-set ) containing o, such that
|QF| = |Q9| for each pair of F-conjugate subgroups P,Q C S and if P ¢ H, then
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OF = QF. In particular we have for all P C S and a € Homz(P,S) that
considered as a P-set via restriction and via a are isomorphic.

Proof. The proof will be by induction on the number of F-conjugacy classes in H.
If H = () we have that Q = Q satisfies the conditions. Assume that H is not empty
and the lemma holds for any set H’ with the number of F-conjugacy classes less
that H. Pick a maximal subgroup P € H, which is fully centralized in F. Let H' be
the subset of H containing all subgroups not F-conjugate to P. Then H’ satisfies
the conditions of the lemma and the number of F-conjugacy classes in H' is less
than in #, so we can apply the induction hypothesis to H’'.

Consider a Q C S and a g € Q. Then for any w € ng we have that ¢~ lw €
Qg_ng. Since the map g~*: Q¢ — Qg_ng is bijective, we have that |QF| =
195 IQQ\ for any g € S. For the S-set S/Q we have that sQ € (S/Q)% for some
Q' C Sifand only if s71Q's C Q. So |(S/Q)?'| # 0 if and only if s7*Q’s C Q for
ases.

If for a Q C S there exists an s € S, such that s71Qs C P, then Q € H. Hence
for Q ¢ H we have that (S/P)? = (). Consider a P’ which is F-conjugate to P.
If s7'P’'s = P for some s € S, then |QF| = |QF| and |(S/P)F'| = |(S/P)P| =
|Ng(P)/P|. If P" is not conjugate to P, then |(S/P)F'| = 0. So we may add orbits
of the form S/P to Q, such that [QF| > |QF'| for any P’ which is F-conjugate to
P and this does not change the sets Q? for Q ¢ H, so the conditions still holds for
such a modified €.

Fix a P’ which is F-conjugate to P. Then there exists a ¢ € Homxz(P’, P). As
F is saturated, we get by the Sylow condition, that there exists a » € Autz(P)
such that

{(Wp)eg(v) ™" | g € Ns(P')} C Auts(P)

Then ¥ € Homx(P’, P) where P is fully normalized and hence fully centralized, so
there exists an extension ¢ € Homz(Ny,, S) of ¢¢. By the above Ng(P’) C Ny,
so we can consider ¢ € Homz(Ng(P’), Ng(P)) with @(P’) = P. For all P’ C Q C
Ng(P’) we have by maximality that Q ¢ H. As @¢(Q) and Q are F-conjugate we
have by assumption, that |QF| = \Qg(Q)L

The group Ns(P')/P’ acts on the set Qf'. Under this action an 2 € QF has
isotropy subgroup of the form @Q/P’ for some P’ C @ C Ng(P’), hence it lies
in a non-free orbit exactly when the stabilizer subgroup is of the form Q/P’ for
some P’ C Q C Ng(P’). Thus the set of elements in non-free orbits are exactly
{zeQf | P'CQC Ng(P)}. Likewise Ng(P')/P’ acts on QF via @ and the set of
elements in non-free orbits are in this case {z € QgQ | PP € Q C Ng(P')}. Hence
by the above, Q8" and QF have the same number of elements in non-free orbits, so
Q8| and |QF| only differ by a number of free Ng(P')/P’-orbits. The free orbits
all have |Ng(P')/P’| elements hence

Q' 1= 18| (mod |Ns(P')/P')).

P P!
Put np = %, and note that np, > 0 by assumption and np = 0.
The set of subgroups which are F-conjugate to P is closed under conjugation

with elements from S, so we can pick a set of representatives for the conjugacy
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classes {P = P,...,P,}. We now consider the S-set

0 = [[(J ] e (S/P)).-
=1

As Q4 only differs from Qg by orbits of the form S/P’, where P’ € H, we get that
Qv = QOQ for any @Q ¢ H. For P’ which is F-conjugate to P’, we have that P’ is
S-conjugate to some P; and

1| = 1907 = 19"+ np](S/P)"| = 95" + np, |Ns(P) /P = 19| = |07

Then [QF| = |QF| for any F-conjugate pair of subgroups of S, which are not
elements of H’, so by applying the induction hypothesis to this pair, we get a S-set
Q satisfying the conditions of the lemma.

Assume that Q and Q' are finite G-sets, where G is a finite group satisfying
|QF| = |Q'F| for any subgroup P of G. Burnside’s Lemma implies that Q and
Q' have the same number of orbits. We will prove that  and Q' are isomorphic
G-sets by induction on the number of orbits. We see that Q@ = @ if and only if
I2/G| =0, so Q and €’ are isomorphic G-set if they have no orbits. Assume that
1Q/G| = |Q/G| > 0, and for any pairs of G-sets Q and Q' with [QF| = |Q'F| for all
P C G, where [Q/G| < |2/G| we have that Q and Q' are isomorphic. As Q/G # 0,
we have that |QF| where P C G are not all empty. Pick z € |QF], where P is a
maximal subgroup of G, such that |[QF| # (). Then the isotropy subgroup of x is
exactly P. As |QF| = |Q'F|, we can choose 2’ € Q' with isotropy subgroup P. Then
we define a map F': Gx — Gz’ by sending gr — gz’. As both elements have the
same isotropy subgroup, F' is injective and the orbits have the same length namely
|G|/|P|, so F is a G-isomorphism. Note that y € 2 we have that y € |Q%| if and
only if @ is a subgroup of the isotropy subgroup of y. For any g € G we have
that the isotropy subgroups of gz and gz’ agree, so by the above remark we have
that the G-sets 2\ Gz and '\ Gz’ satisfy the induction hypothesis. Thus there
exists a G-isomorphism between them. By extending this isomorphism using F', we
conclude that Q and ' are isomorphic G-sets.

Let P C S and a € Homg(P,S). For any P’ C P the P'-fix-points for Q
considered as a P-set via restriction is QF /, while the P’-fix-points for Q considered
as a P-set via o is Q*(P). As P and a(P') are F-conjugate, we have that [QF'| =
1Q(P)|. By the above result, we have that the two P-sets are isomorphic. O

For P C S and a € Inj(P,S) we define A% = {(z,a(z)) | x € P}, which is
a subgroup of S x S. Hence we may consider the (S x S)-set (S x §)/A%. The
S x S-set of this form will be central in the following Proposition.

Proposition 8.8. Let F be a saturated fusion system over a p-group S. There
exists a (S x S)-set Q where the following holds
o Every orbit is of the form (S x S)/A% for P C S and o € Homz (P, S).
o For all P C S and ¢ € Homz(P,S) we have that Q as a (P x 5)-set via
restriction and via ¢ X idg are isomorphic.
e |Q]/|S| =1 (mod p)
Furthermore there exists a Fo € End(H*(BS)), which is idempotent, H*(F)-linear

and a homomorphism of modules over the Steenrod algebra A,. Furthermoreim Fo =
H*(F).
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Proof. As F is saturated we have that S is fully normalized and so Autg(S) =
Inn(S) € Syl,(Autz(S)). Since Outz(S) = Autz(S)/Inn(S), we conclude that
| Out #(.S)| is prime to p. So there exists k > 0 such that k| Out#(S)| = 1 modulo

p. Let {a1,...,a|0u,(s)} Where a; € Autz(S) be a set of representatives for
Out £(5). Consider the (S x S)-set
[ Out = (5)]
Q=k J[ (Sx9)/A%
i=1

For any 1 < i < |Outz(S)| we have that |AS'| = |S], so [(S x S)/AS
|Q] = k| Out=(S)||S| and hence |Q]/|S| =1 (mod p).
By the definition of orbit we see that
(5 % 8)/AF)5S" = Nsws(AF)/AT

A (g,h) € Ngxs(AY) if (9zg~ ! hay(x)h™t) € A for all z € S. This im-
plies that a;(g)ca;(z)a;(g)~t = hay(z)h=! for all x € S, so a;(g) = hz for some
z € Z(ay(S)) = Z(S). We conclude that the normalizer Ngyxs(Ag') has order
|AGH| Z(S)|. Then |((S x S)/Agi)Agi = | Z(S)|. Note that for an o € Aut#(5) we
have that A¢ is S x S-conjugate to A’ for some ¢ if and only if o and «; determines
the same class in Out#(S). So ((S x S)/A%)A5 # § if and only if o and «; deter-
mine the same class in Outz(S) and in this case |((S x S)/AS)A5| = | Z(S)|. As

the a;’s are a set of representative for Out#(.S), we conclude that |Q()Ag| = k| Z(5)|.
Consider the following set of subgroups of S x S:

H={A% | PCS,a€Homz(P,S5)}.

= |S|. Then

A subgroup of A} € H is by considering the definition of A} of the form A%lQ,
where @ is a subgroup of P and «|g is the restriction of @. Then a|g € Hom#(Q, S),
hence AgIQ € H. As A% C P x a(P), a morphism ¢ € Homzy r(A%,S x 9) is
of the form ¢ = (1 X p2)[ae, where 1 € Homz(P,S) and 2 € Homz(a(P),S).
Thus

o(A2) = {(¢r(2), pra(e)) | # € P} = AZEET

Since ¢4 is injective, we have that (1 (P) is a proper subgroup of S, so p(A%) € H.
Hence the set H is closed under taking subgroup and F x F-conjugacy. Consider
a subgroup ) C S x S which is not an element in H. Assume that () = Ag for
some a € Autx(S). An F x F-conjugate Q' to Q is then of the form Agl for some
o € Autz(S). By the above we have that |Q(?| = k|Z(S)| = |Q§?,|. Assume that
@ is not of the form Ag. Then @ is not S x S-conjugate to a subgroup of Ag' for
all 1 < i <|Outz(S)| and therefore Q(? = (. As the same is true for any F x F-
conjugate of @, we conclude that |Qg2| = \QOQI\ for any pair of F x F-conjugate
subgroups of S x S which are not in H. Since the fusion system F x F is saturated
[10, Lemma 1.5], it follows from Lemma 8.7, that there exists an (S x S)-set €2
containing € such that [Q9| = |QQ'| for any pair of F x F-conjugate subgroups of
Q,Q" C S x S and furthermore QF = Qf for all r C S x S with R ¢ H. Then we
get directly that the isotropy subgroups of elements in 2\ Qg are elements of H.
Likewise the lemma implies that for all P C S and o € Homz(P, S) we have that
Q as a (P x S)-set via restriction and via « X idg are isomorphic.
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Every orbit of  is isomorphic to (S x S)/A% for some P C S and «a €
Homx (P, S). So we have that 2 is isomorphic to Hi]il(S x 8) /A% for some N > 0,
P, C S and o; € Homgz(P;, S) for 1 <i < N. The orbits in Q \ g have this form
where furthermore P C S. As |A%| = |P| they satisfy [(S x S)/A%| = |S|[S : P],
where p | [S : P], so we see that |Q] = |Qo| = |S| (mod p|S|). Then |Q]/|S] =1
(mod p).

For P C S and o € Homz(P, S) we define Fp o) € End(H"(BS)) as the com-
posite

H*(BS) —» H*(BP) —% H*(BS)
where trf is the transfer map. By the definition of H*(F) we have that for any
other o € Homz(P,S) we have a* = o on H*(F). In particular this holds for
the inclusion ip € Homz(P,S) and therefore o*(r) = i%(r) = resp(r) for any
r € H*(F). Then for r € H*(F) we have using [16, Proposition 4.2.2.] that

(S x 5)/A%

Fipay(r) = trf3(a*(r)) = trfp (vesp(r)) = [S : Plr = 5] .

Now define Fo = Zf\il F(p, a;)- As both o* and the transfer maps are homomor-
phisms of modules over the Steenrod-algebra, the same is true for Fg.
Then for r € H*(F) we have that

(S % S)/AY
o) = 3 DL - By

i=1

and since we are in characteric p and |2|/|S] =1 (mod p), we conclude that F(r) =
r for all r € H*(F).

Let r € H*(F) and € H*(BS). Then we have that for any P C S and
a € Homz(P, S)

Fipa)(re) = trfﬁ(a*(rm)) = trff,,(oz*(r)a*(:c)) = trfﬁ(resln(r)a*(x))
= rtrf}g(a*(ac)) =rF(pa)(z)

by using the transfer formula [11, V 3.8], since P has finite index in S. As Fy is a
finite sum of such maps, we conclude that Fq is H*(F)-linear.

Let P C S and o € Homz(P, S). We will now prove that a* o F = res? oF. Let
1 <4 < N, andlet D; be a set for the double cosets representatives S = Uzep, PrF;.
Then by [16, Theorem 4.6.2] we have that

N

N
Py
resp oFg = E resp otrf% op = E E trf by pe O TES i pe OCH_1 0 ]
=1 i=1xz€eD;

Note that we have D; x 1 is a set of double coset representatives for S x § =
Up,x1(P x S)(z,1)A%. Consider the (S x S)-set (S x S)/A% as a (P x S)-set
via ip x idg. Then the above coset representation implies that/(S x S)/AL as a
(P x S)-set is the disjoint union over orbits (P x S)(z,1)A%’, where x € D;. Thus
for any € D; the isotropy subgroup of the element (z, l)Afé{f with respect to the
(P x S)-action is

(P x8)N(AF) ™Y = (P x 8)N{(ca(y), i(y)) |y € P} = ApTp "
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Then (S x §)/A% as a P x S-set is isomorphic to [[,cp (P x S)/A;ﬁ;’f{l. Com-
paring with the above formula we conclude that resf; of = FQiP,i ag where ;. idg
is Q as a (P x S)-set via ip x idg. We have that ;, ;a5 and Q4 iqg are isomorphic
s (P x S)-sets.
So we want to investigate the (P x S)-set Q4a5. For 1 < i < N let D; be
a set of coset representatives S = Uz.p a(P)ZP;. Then, as before, Qg a5 is the
disjoint union over orbits (P x S)(Z, 1)A%!, where 1 <i < N and & € D;. Similarly
for any Z € D; the isotropy subgroup of the element (Z, 1)A%; with respect to the
P x S-action is

(a7 xids)((a(P) x §) N (AF)ED) = AZEE

Isomorphic P x S-sets have the same orbit representation, so we conclude that

(AR 11SiS Nwe D} = {ALSE 0 ey 1S i< NG € Di)

Now using that the transfer map is independent of the choice of coset representa-
tives, we conclude that
N

resp oFq = E E tranPim OTeSppype OC,-1 O ¥
i=1 D;

Z Ztrf ~(a(P) r‘]PI (a|a*1(o<(P)r‘|Pf),a(P)ﬂPf)* ores I(P)mpl 002*1 © 90;(

T

E (o * o trf ™ ores’i oct_, of
Pa(P)) (y(P)ﬁPT a(P)npi %C-1 © Pi

\\Mz

= (a|P,a(P)) © resa(P) oFq =a’oFy

Then for every x € H*(BS), and ¢,9 € Homz(P,S) we have that o*(Fo(z)) =
res? (Fo(z)) = *(Fo(x)). So the image of Fo C H*(F). As Fy is the identity on
H*(F), we conclude that im F = H*(F) and Fy, is idempotent. O

8.4. The quotient fusion system. For a p-local finite group (S,F, L) and a
central subgroups V' C S we will now construct a p-local finite group, that in some
sense can be considered as the quotient of the original.

To prove that the construction gives in fact a saturated fusion system, the fol-
lowing lemma will we used. There exists equivalent conditions for a fusion system
to be saturated, than the one used here, and the lemma is a part of the proof that
they are is fact equivalent.

Lemma 8.9. Let F be a fusion system on a p-group S satisfying axiom I and the
extension axiom for fully normalized subgroups. Then F is saturated.

Proof. To prove that F is saturated let ¢ € Homx (P, S) be a morphism in F, such
that @ = im ¢ is fully centralized in F. We now choose R C S which is F-conjugate
to @ and fully normalized in F. Let ¢ € Homz(Q, R). Then ¢ Auts(Q)y~! is a
p-subgroup of Autrz(R), and as R is fully normalized in F there is by axiom I
a x € Autz(R) such that ¥ Auts(Q)y~tx~' C Autg(R). This implies that
N,y = Ng(Q). By the extension axiom for fully normalized subgroups we conclude
that x extents to a morphism ¢ € Homz(Ng(Q), Ng(R)). Similarly we have that
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Ny € Nyyys s0 X extends to a morphism 7 € Homz(N,, Ng(R)). Consider
x € Ny. Then ey~ ! = ¢, for some y € Ng(Q) and

Cr(a) = XUpea(XPP) ™! = Xty (X¥) T = cogy).
Thus 7(x) = o(y)z for some z € Cg(R). Since Q is fully centralized, we conclude
that o(Cs(Q)) = Cs(R), and in particular z = o(v) for a v € C5(Q) C Ng(Q).
Then 7(z) € o(Ns(Q)), so 7(N,) C 0(Ng(Q)). Thus o~'7 € Homz(N,, Ns(Q))
and is an extension of . O

Lemma 8.10. Let (S, F,L) be a p-local finite group and V- C S a subgroup of
order p, such that F = Cx(V'). The induced fusion system F/V on S/V has as
morphism set Homg v (P/V,Q/V) = {¢/V | ¢ € Homz(P,Q)}. Let L/V be the
category with objects P/V C S/V | where P is F-centric and
Morg v (P/V,Q/V) = Morc(P,Q)/6p(V).

Let Lo C L be the full subcategory of L, on objects P C S, such that P/V is (F/V)-
centric, and (L/V)¢ C L)V the full subcategory of L/V, on objects P/V C S/V,
such that P/V is (F/V)-centric. Then the following holds:

(a) The fusion system F/V is saturated and (L/V)° is a central linking system

associated to F |V .

(b) The sequence BV — |Lol;, — [(L/V)°|) is a fibration sequence.

(c) The inclusion |Lol)y € |L]) is a homotopy equivalence.

(d) If Rz vye is an isomorphism, then Ry is an isomorphism.

Proof. Let V' C S be a subgroup of order p such that 7 = Cx(V). Since Cx(V)
is a fusion system on Cg(V') we have that V' is normal in S. We note that S/V is
then a p-group. Furthermore we have that any ¢ € Homz(P, Q) can be extended
to a @ € Homx(PV,QV') which is the identity on V. So for P,Q C S containing V'
and ¢ € Homz (P, @), the map (¢/V)zV = ¢(x)V is well-defined. It then follows
easily that F/V is a fusion system over S/V.

As ¢, € Auty(S) for any g € S this implies that V' C Z(S). For a F-centric
subgroup P, we have that

V CZ(S)CCs(P) C P
so by the above any morphism in F¢ is the identity on V. Then for P,@Q € £ and

f € Morz(P,Q), we have that 7(f)|y = idy. Hence for any v € V we get that the
following diagram is commutative by the property (C) for L:

P f Q

5P(’U) 5@(’0)

P f Q
Then f € Morz(P,Q), g € Morg(Q, R) and v,v" € V will satisfy gdg(v') fép(v) =
gfép(v'v). So the composition of morphisms in £/V is well-defined, and it follows
easily that it is a category.
For any V' C P C S we have a map Autz(P) — Autz,v(P/V) by ¢ — o/V.
Let I'p denote the kernel of this map. Let N3(P) ={g € Ns(P) | ¢, € I'p}. Then
for any g € N2(P) we have that idp,y = ¢g/V = cgv, s0 NY(P)/V C Csv(P/V).
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Similarly any gV € Cg/v(P/V) will satisfy that gPg~' C PV = P and ¢,/V =
idP/V, SO Cs/V(P/V) g Ng(P)/V and thus Cs/v(P/V) = Ng(P)/V

Consider a pair of subgroups P, C S containing V', such that P/V is fully
centralized in F/V and @ is fully normalized in F. Since I'g is a kernel, it is
a normal subgroup of Autz(Q). Let ¢ € I'g and ¢ € Q. Then ¢(q) = qv for
some v € V. Since ¢(v) = v and |V| = p we have that ¢P(q) = quP = ¢q. Thus
I is a normal p-subgroup of Autr(@) and hence contained in every Sylow-p-
subgroup. As @ is fully normalized and F is saturated, it follows from the axioms
for saturation that I'g C Autg(Q). Let ¢ € Homz(P, Q) be an isomorphism. As @
is fully normalized and hence fully centralized, we have by the extension axiom for
saturated fusion systems that ¢ extends to a ¢ € Homz(N,,S). Let g € NJ(P).
Then g € Ns(P) and ¢,/V =idp/v, so

(pocgoe™)/V=0p/Vocy/Vol(p/V) ' =p/Vol(p/V)™ =idgv

Hence pocyop~t € I'g C Auts(Q) and we conclude that NJ(P) C N,,. Note that
for any g € NJ(P) we have @(g) € Ns(¢(P)) = Ns(Q). Thus for any q € Q we see
that

o) (@) = 2(9)ap(9) " = (pocgop™)(q)

qP
and 50 ¢z(q)/V = idg,v. Hence ¢(N(P )) C N2(Q), and by this we can con-
sider the restriction ¢ € Homz(NJ(P), NJ(Q)). By the previous remark ¢/V €
Homz v (Cg/v(P/V),Cs/v(Q/V)). Since P/V is fully centralized in F/V we have
that |Cg/y(P/V)| > |Cs/v(Q/V)|. As the map ¢/V is injective, we conclude that
it is in fact an isomorphism and |Cg,y(P/V)| = |Cs/v(Q/V)|. In particular we
get that Q/V is fully centralized in F/V. This implies that [NJ(P)| = |[N2(Q)|.
forcing the injective map @ to be an isomorphism as well. Since I'g C Autg(Q),
we see that I'g = {c, | g € N2(Q)} so

Lp=¢ 'Top={¢ "cgp| g€ NJQ)} = {cs-1(9) | g € N3(Q)}
={cy | g € NY(P)} C Auts(P)

As fully centralized and fully normalized are maximality conditions on the F-
conjugacy classes, such elements always exist, so we have proven the following
implications:

Q fully normalized in F = Q/V fully centralized in F/V = ' C Auts(Q)

We will now prove that F/V is saturated. Let V C P C S be a subgroup, such
that P/V is fully normalized in F/V. We have that Ng,y(P/V) = Ns(P)/V. Since
V is central in F, any F-conjugate to P also contains V. This implies that P is fully
normalized in F. By the proven implications we conclude that P/V is fully cen-
tralized in 7/V and I'p C Autg(P). We have that Autz/y (P/V) = Autz(P)/T'p
and this restricts to Autg,y (P/V) = Auts(P)/T'p. As Autg(P) € Syl,(Autz(P)),
the isomorphisms implies that Autg, (P/V) € Syl,(Autr,v(P/V)). By Lemma
8.9 it is sufficient to prove the extension axiom for fully normalized subgroups of
S/V. Let ¢ € Homg,y (P/V,S/V) be a morphism in F/V, such that im ¢ is fully
normalized in F/V. We choose ¢ € Hom (P, S) such that ¢/V = ¢. Set Q = im ¢.
Then im ¢ = Q/V is fully normalized in F/V, so by the above we conclude that
Q is fully normalized in F. By axiom I for F, we get that @ is fully centralized in
F, s0 ¢ extends to a ¢ € Homz(Ng,S). Hence ¢/V € Homg,y (Ng/V,S/V) is an
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extension of . Consider 2V € N,. Then x € Ng(P), and it satisfies
(Peap™ )V = pepve ™t € Autg/y (P/V) = Auts(P)/Tp,

thus g, o~ € Autg(P) and hence z € N. So N, C N;/V and therefore ¢/V €
Homz /v (Ny, S/V) is an extension of ¢ on the proper target. Hence the extension
axiom holds for fully normalized subgroups and we conclude that F/V is saturated.

We now turn to the central linking system. Let 7w/V: (L/V)¢ — F/V be the
functor induced by n: £ — F, hence (w/V)(P/V) = P/V and (7/V)(¢/dp(V)) =
7(p)/V. For any v € V we have that n(ép(v)) = ¢,|p = idp, so the func-
tor 7/V is well-defined on morphisms. Similarly for P/V € (L/V)¢ we define
dpyv: PV — Aut(z vy (P/V) by 6pyv(zV) = 0p(x)/6p(V). Then ép/y is a well-
defined monomorphism. By definition we have that 7/V is the identity on objects
and surjective on morphisms, since the same is true for 7. We need to prove that
7/V is in fact the orbit map for the free action of Z(P/V') on Mor (. /vy (P/V,Q/V)
via 6py (Z(P/V)). For this let P/V,Q/V € (L/V)¢ and consider the diagram

MOI'E(P, Q) M

MOr(L/V)C (P/V, Q/V)
7 = [6p(Z(P)) /v

T
Morr(P, Q) —L22+ Motz - (P/V. Q/V)

where we indicate that three of the maps are in fact orbit map with respect
to the indicated groups. The diagram commutes, as both sides represent the
map f ~ 7(f)/V. Now consider ¢/d0p(V),v/dp(V) € Mor v)(P/V,Q/V)
such that (7/V)(¢/0p(V)) = (xn/V)(¢/dp(V)), i.e. 7(p)/V = w(¢p)/V. As the
lower horizontal map is the orbit map by I'p there exists an o € I'p such that
m(p) = w(¢)a. Since P/V is F/V-centric, i.e Cg/v(P/V) C P/V, the same
holds for any F/V-conjugate to P/V, thus the centralizer for P/V is isomorphic
to the centralizer for any F/V-conjugate and hence P/V is fully centralized. By
a previous implication we have that I'p C Autg(P), so o = ¢4 for some g € S
satisfying idp = ¢4/V = c¢qv. Hence gV € Z(P/V) and thus ¢ € P. Now
() = 1(Y)eg = () o w(0p(g)) = w(¥ 0 dp(g)). As m is the orbit map w.r.t.
Z(P) we conclude that there is a ¢’ € Z(P) such that ¢ = ¢ 0 dp(gg’). Hence
©0/0p(V) =4/5p(V) o dp,v(gg'V). Using the fact that ¢’ € Z(P) and V C Z(P)
we conclude that ¢’V € Z(P/V) and therefore g¢'V € Z(P/V). Hence 7/V is the
orbit map for the action of 0p/y Z(P/V') on Mors v (P/V,Q/V).

We will now prove that this action is indeed free. For this let ¢/dp(V) €
Mor(z/v-(P/V.Q/V) and gV’ € Z(P/V) satislying 0/0p(V) = o/8p(V)3pv (gV).
We then need to prove that ¢ € V. By the definition of orbit maps there ex-
ists a v € V, such that ¢ = wdp(gv). Then by applying m we conclude that
7(p) = m(¢)cgy in Morx(P, Q). Since 7(¢p) is injective we deduce that ¢4, = idp,
so gv € Z(P). As the action on Z(P) on Mor,(P,Q) via dp is free, we conclude
from ¢ = pdp(gv) that gv = 1. Hence g = v~! € V, so the action of Z(P/V) on
Mor /vy (P/V,Q/V) via dp,y is free. The category (£/V)¢ then satisfies axiom
A for central linking systems.
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Consider zV € P/V where P/V € (L£/V)¢. Then we have by axiom (B) for £
that

(x/V)Brpv (@V)) = (1/V)(8p (@) /5p(V)) = 7(6p(2))/V = c0/V = cov

so axiom B holds for (£/V)¢ as well. Consider V € P/V and f = f/5p(V) €
Mor vy (P/V,Q/V). Then by axiom C for F we get that

Fodo(m/V(F)aV)) = (fodq(m(f)(2))/0,(V) = (f 0 6p(2))/6(V)
= fodpv(zV)
so axiom C' is also true in (£/V)¢. Hence (L£/V)¢ is a central linking system for
F/V.

To prove part (b) we consider the functor F': Lo — (£/V)€ given by F'(P) = P/V
for P € Ly and F(p) = ¢/dp(V) for p € Mor, (P, Q), and remark that F' is well-
defined due to the definition of £y. Let P/V € (L£/V)¢ and consider the undercat-
egory P/V | F. The objects are {(7,Q) | Q@ € Lo, 7 € Mor(z/v)-(P/V,Q/V)} and
the morphisms from (79, Qo) to (71, Q1) is the set

{w € Morg, (Qo, Q1) | ¢/dq,(V) o0 = 71}

Let B'(V) be the subcategory of P/V | F with a unique object (1p,y,P) and
morphisms dp(V). Since dp is injective, we get that B'(V') is equivalent to the
category B(V). We will now construct a functor G: P/V | F — B'(V). For this
purpose we choose for any pair Qo, Q1 € Lo a section o: Morg,y(Qo/V,Q1/V) —
Mor.(Qo, Q1), satisfying that o(1g,v) = 1g for any Q € Lo. Let (70,Qo) and
(11,@1) be objects of P/V | F and ¢: (19,Qo) — (71,Q1). Then ¢ o o(7p) and
o(71) have the same image under F, so there exists v € V such that ¢ o o(79) =
o(11) o dp(v). Assume that v’ € V satisfies the same property. As the morphisms
in £ are monomorphisms in the categorical sense Lemma 3.1, this implies that
dp(v) = ép(v'). Since dp is injective, we conclude that v = v’. So the particular v
is unique and we denote it v,. Hence we can define G by G(7,Q) = (1p,v, P) and
G(p) = dp(vy). Let (7,Q) € P/V | F. Then 1q: (1,Q) — (7,Q) and it follows
from the definition of o that § p(le) = 1g. To see that G is in fact associative, let
v1: (170,Q0) — (11,Q1) and wa: (11,Q1) — (72, Q2) and consider the diagram:

P 7(m0) Qo
1p ®1

M o(r1) 0 p(vy,) o
1p ©2

P _0(12) 2 8p(v5,) 00p(vp) = 0(12) 0 0 (Vpnin) ().

As the morphisms in £ are monomorphisms, we conclude that dp(v,,) 0 dp(vy, ) =
0p (Vipyy, ), and thus G(p1) 0 G(p2) = G(p20¢1). Hence G is a well-defined functor
from P/V | F = B'(V). As 0(1p;y) = 1p is follows directly from the definition of
G that G is the identity on the subcategory B'(V'), hence Foincl = idg/(y). For any
(1,Q) € P/V | F we have that o(7): (1p;y, P) — (7,Q), and by the definition of
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G on morphisms this will induce a natural transformation from incloF' to idp v p.
Hence |F| is a deformation retract of |P/V | F| to |B' (V)| = BV.

Now consider 8 € Mor(, v (P/V, P'/V). It induces a functor g | F': P'/V |
F — P/V | Fby (1,Q) — (7 0 8,Q) and being the identity on morphisms. We
will prove that |8 | F| is a weak homotopy equivalence. For this we consider the
following composition of functors:

Bov) 2L pv  p B piv e Sl oy

It sends (1p/ /v, P') to (1p;y, P). To see what it does on morphisms, we have to
identify G(dp/(v)), where dp/(v) is an automorphism of (8, P’). By property C for
L and the fact, that V is central in F we have that

o(B)op(v) = bp(m(0(B))(v))o(B) = bp (v)o(B).

Hence G(6p/(v)) = 0p(v). So the above composition of functors is a homotopy
equivalence, and in particular a weak homotopy equivalence. As both incl and G
are weak homotopy equivalences as well, we conclude that the same holds for 5 | F.
By [30, Quillen’s Theorem B| we conclude that BV is the homotopy fiber of the map
|F'|: |Lo] = |(£/V)¢]. By Proposition 3.3 we have that m1(|(£/V)¢]) is a quotient
group of S/V and thus a finite p-group. As V is cyclic of order p we have that
H;(BV;F,) is a finite p-group for any 7. Then by [7, Example II 5.2] 7 (|(£/V)°])
acts nilpotently on H;(BV;F,) for any ¢. The fibration satisfies the conditions of
the mod-R fiber lemma [7, IT 5.1], so we conclude that BV, — [Lol; — [(L/V)°)[)
is a fibration. Since BV is p-complete by [3, III 1.4 Proposition 1.10], we have
that BV, and BV are homotopy equivalent, so we may replace BV, by BV in the
given fibration.

If £ = Ly part (c) is trivial, so we assume that £ # L, and pick a P C S such
that P € £\ Ly. Hence P is F-centric but P/V is not F/V-centric. By definition
of centric subgroup this implies that there exists a P’ C S which is F-conjugate to
P, and Cgy (P')V) # Z(P'/V). Let gV € Csv(P'/V)\Z(P'/V). Then g € S\ P’
and satisfies [g, P'] C V. Consider ¢, € Autz(P’). If ¢, = ¢, for some z € P’, we
would have that gr=1 € Cg(P’) \ P’. As P’ is F-centric, this set is empty, so a
contradiction arises. Hence we conclude that ¢4 is not an inner automorphism of
P'. So the class of ¢, in Outz(P’) is non-trivial and as gV’ € Cg,y (P’/V) the class
lies in the kernel K for the map Outz(P’) — Outx,y (P’/V). Since S is a p-group
the class of ¢4 in Outz(P’) has p-power order. So the elements in Z(K) of p-order
is a nontrivial p-group, which is characteristic in K. As K is normal in Outx(P’)
we conclude that this is a nontrivial normal p-subgroup of Outz(P’). Hence P’ and
likewise P is not F-radical. Thus £y contains every F-centric subgroup, which is
also F-radical. By Corollary 6.15 this implies that the inclusion |Lg| < |£] is a mod
p-homotopy equivalence. By [7, Lemma 1.5.5] this implies that the p-completion
|Lol; < |L];) is a homotopy equivalence.

For part (d) we choose a S x S-set Q with the properties from Proposition 8.8.
Then V acts on Q by vw = (v,v)w. The fix-point set for any w € Q is of the
form A% for some o € Homz(P,S). As V is a group of order p, either V' C P or
PNV = 1. Since ¢|y = idy for any ¢ € Homz(P, S) with V' C P, we conclude that
the fix-point set any w € ) under the action of V' is either V, in the case V C P,
or 1 in the case V' ¢ P. Hence OV consists exactly of the orbits from € of the
form (S x S)/A% where V C P and is therefore also a (S x S)-set. Then the first
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property from Proposition 8.8 clearly holds, while the second is a consequence of
the fact, that an isomorphism of sets with a group action induces a bijection on the
fix-point sets. The difference between Q2 and QV is orbits of the form (S x S)/A%,
where V' ¢ P. They have |S|[S : P] elements, and as P ¢ S, we have that this is
a multiple of p|S|. Hence |Q2V|/|S| = |Q|/|S| =1 (mod p). So the properties from
Proposition 8.8 also hold for 2V, hence we replace by QV in the following.

We now set Q = Q/(V x V), which may be seen as (S/V x S/V)-set in natural
way. Since the orbits of Q are of the form (S x S)/A% where V C P C S and

a € Homz(P, S), we see that the orbits of Q) are of the form (S/V x S/V)/A;//‘é.
The isomorphism between ) as a (P x S)-set via inclusion and «a X idg for any
a € Homg(P,S) respects the action by V' x V, since a|y = idy. Thus it will
induce a well-defined bijection on , which is in fact a isomorphism between (2 as a
(P/V x§/V)-set via inclusion and o/V xidg,y for any a/V € Homgz y (P/V,S/V).
The orbit (S/V x S/V)/Ayy, consists of |S/V|[S/V : P/V] = |S|[S : P]/|V]
elements, which multiplied by |V is the number of elements in (S x S)/A%. Hence
Q| = |2||V], and so |Q]/|S/V| = |92]/|S| =1 (mod p). Hence the (S/V x S/V)-set
() satisfies the properties from Proposition 8.8 and has the same number of orbits
as Q.

Let M, be a free Z[S]-resolution of Z, and M, be a free Z[S/V]-resolution of
Z. Choose a subgroup P C S containing V. A set of coset representatives for
V will constitute a basis for Z[S] as a module over Z[V], in particular it is a
free Z[V]-module. Then M, will also be a free Z[V]-resolution for Z and thus
H"(V;F,) = H"(Homgy (M, Fp)) for all n. Similarly let M, be a free Z[S/V]-
resolution for Z , and it can be used to compute the cohomology of P/V in the
same way. The Lyndon-Hochschild-Serre spectral sequence for the extension

1-V—>P—-P/V—1
converges to H*(P;F,) and has the following Es-page:
Eg’q(P) = HP(P/V,HI(V, Fp)) = Hp(HomZ[P/V] (Mla Hq(HomZ[v] (M*’]Fp))))

The hom-tensor adjuction Hom(M’', Hom(M,F,))) = Hom(M' @ M,F,) in con-
nection with the fact that Homg (M, F,) = Hom(M,F,)? for any group Q and
Z[Q)]-module M, implies that for all i, j

Homgzp v (MZI, Homgzy, (M;,Fp))) = Homgp (MZI ® M;,Fp).

The adjuction is natural in all entries so the given isomorphism commutes with the
differentials in M, and M., and thus is a isomorphism of double chain complexes.
Hence the spectral sequence is induced by the double complex Homyp)(M] @
M,,Fy). The transfer map Homgp)(M; ® M;,F,) — Homgg (M; @ M;,FF,) given
by f—= > gifg; 1 where g;’s is set of coset representative for P, is a well-defined
homomorphism. Since the differentials of M, and M| are Z[S] and Z[S/V] mor-
phisms receptively, we see that they commute with the transfer map. Hence the
transfer map induces a homomorphism of double chain complexes Homgzp)(M; @
M,,F,) — Homgs)(M] & M,,F,), and therefore a homomorphism of spectral se-
quences trf: E,(P) — E.(S). Since V = Z/p we remark that HY(V;F,) is either IF,,
or 1.S0 arow of E5(P) is either H*(P/V) or trivial. If it is H*(P/V') the correspond-
ing row of E3(S) is H*(S/V) and by definition of the transfer map for cohomology
we see that transfer map of the spectral sequences on this particular row is in fact
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the transfer map H*(P/V) — H*(S/V) from group cohomology, since g;V will be
a set of coset representatives for P/V. Similarly trf: Eo(P) — Ex(S) is the map
induced by the transfer map H*(P) — H"*(S) on the filtration.

An o € Homzg(P,S) will induce a map from Z[P] to Z[S], and thus a map
Homgys) (M ® My, F,) — Homgp)(M,® M,,F,) of double chain complexes. Hence
we get a map o*: E,(S) = E.(P). On the Ey page this is induced by the map
(a/V)*: H*(S/V) — H*(P/V) on the rows, while a*: Eo(S) — Eo(P) is the
map induced by the map a*: H*(S) — H*(P) on the filtration.

If Q = [[;(S x §)/A% we define Q..: E.(S) — E.(S) as the sum ), trfp, o]
By the previous we have that Qg: F2(S) — E3(S) on rows of the form H*(S) is
the sum ), trfp, )y (a;/V)* and thus Fg from Proposition 8.8. The Proposition
implies that Fg is idempotent. As Q3 on E3(S) is 25 on a quotient of a subset, it
is also idempotent. Hence by induction 2, is idempotent for all > 2. Then for all
p,q and r > 2 the sequence

0 — ker(Q,) — EPY(S) — Q,.(EPI(S)) — 0

is split-exact, so EP? = ker(€,.) ® Q,.(EP1(S)). As Q. is a morphism of spectral
sequences, this splitting respects the differentials and thus gives a splitting of the
spectral sequence E,(S) = ker Q. ® imQ,. On E3(S) we have that EYI(S) =
HP(S/V;HY(V)). As we are working with coefficients in F, and H?(V) is either I,
or 0, we have that E5?(S) = HP(S/V)® H(V). By the Proposition 8.8 we see that

02(E31(S)) = Fo(H"(S/V)) ® HY(V) = H(F/V) @ H!(V)

On Eo(S) we have that  is induced by Fq, so the spectral sequence Q. (E.(S))
converges to Fo(H"(S)) This is H*(F) by Proposition 8.8.

By part (b) BV — |Lo| — [(£L/V)¢| is a fibration. As both w1 (|(£/V)¢|) and
H'(BV;F,) for any i are finite p-groups, we have that 7, (|(£/V)¢|) acts nilpotently
on H'(BV;F,) for any i. By the definition of nilpotent action [7, IT 4] it means that
there exists a filtration of H'(BV;F,,) for any i such that the induced action on the
quotients is trivial. As Hi(BV;IFp) is either Z/p or 0 the filtration has length at
most one. Thus the action of 71 (|(£/V)¢]) on H'(BV;F,) is trivial for any i. We
have that S/V is F/V-centric and for any P/V C S/V, which is F/V-centric there
exists a ¢ € Morg,y (P/V,S/V), for example the orbit of a lift of the inclusion
P — S to L. Hence the category (£/V)€ is connected, so the geometric realization
|(£/V)¢] is path-connected. Thus we may take the Serre spectral sequence E, for
the fibration to obtain a spectral sequence that converges to H*(|Lg|) with

BfY = HP((£/V) R HAYV)) 2 HP((L/V)]) @ HA(Y).

Since S € Lo we have that 0s: BS — Lo. As Og/v: B(S/V) — (L/V)¢ is given by
ogyv + S/V and gV — 65(g)/ds(V) the following diagram commutes

BV - BS — B(S/V)
id 05| 0sv|
BV |Lo| —— [(L/V)°]
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and thus by naturality of the Serre spectral sequence [20, Chapter 1, page 18]
induces a morphism |0|.: E, — E,(S). The naturality also implies that

6157 HP(|(L£/V)° s HY(V)) — HP(S/V; H(V))

is exactly |0g/v|* = Rz/v)e. In particular the image of |05 is contained in
HP(F/V;HY(V)) = (imQ5?). So |0|. is morphism of spectral sequences from
E, to imQ,. We also have that the map [0]*: H*(|Lo|) — H*(F) induces a
map on successive quotient groups agreeing with |0|,,. We now assume that
Rizpvye: H((L/V)¢]) — H*(F/V) is an isomorphism. Then |f]; is an isomor-
phism, which implies that |f|, is an isomorphism for every r > 2. In the spectral
sequence the differentials are eventually zero, so we conclude that for any p, ¢ there
exists N such that EX? = EX!. Then |02 = |0|} and thus is an isomorphism. As
both BS and Ly are finite categories, we have that H*(BS) and H*(|£|) are finite
dimensional by cellular cohomology. We have that H*(F) is a subring of H*(B.S),
so the same holds for H*(F), as F,, is Noetherian. Thus the filtrations of H*(|£])
and H*(F) from the spectral sequences all have finite length. The map induced by
|6]*: H*(|Lo|) — H"(F) on the successive quotients is an isomorphism, and as the
filtration is finite, so is |0|*.Let ¢: Lo — L be the inclusion. Then Ry = |0]* o ¢*,
and hence is an isomorphism by the above and part (c). O

8.5. Lannes T-functor and the cohomology ring of a fusion system. Let
E be an elementary abelian p-group. Lannes Tg-functor by [26, Corollary 2.4.5]
is the left adjoint to H*(BE) ® — and in particular for any unstable algebra X,Y
over A, we have that

Homy (Tg(X),Y) =2 Homy (X, H(BE) ® Y)

Then for any map f € Homy (X, H*(BE)) we have the adjoint map ad(f): Tg(X) —
F, In particular it induces a ring morphism T%(X) — F, and we define Tx(X; f) =
Tg(X)®70 (x)Fp, where the TY(X)-module structure on F, is induced by ad(f). We
call this the component of Tx(X) at f. If Homy (X, H*(BE)) is finite then by |28,
page 3] we have that Tr(X) = [[ Te(X; f) where f ranges over Homy (X, H*(BE)).
So every in this case every map Tr(X) — Y induces a map Tg(X;f) — Y for
f € Homg (X, H*(BE)).

For any finite group P we have by [26, Theorem 3.1.5.2] that the map ¢ — ©*
from Rep(E, P) to Homy (H*(P), H*(F)) is a bijection. According to [26, Chapther
1.8] we have that T%(H*(P)) is a p-boolean algebra. We let B be the category
of p-boolean algebras. Furthermore for any p-boolean algebra the functor B —
]Fgomg (BF2) i the composition of an equivalence of categories and its inverse, so it
is an isomorphism. Note that IF;? is the set of continous functions from S to IF,,. By
degree considerations, as noted in [26, 1.8.3], we have that

Homp (T (H*(P)), F,) = Homy (T (H" (P)), F,)

The adjunction implies that this set is in bijection with Homx (H*(P), H*(E)), so we
conclude by the above that T9(H* (P)) = F?CP(E’P). Note that IFECP(E’P) has the set
of indicator-functions of the elements of Rep(E, P) as a basis, so T2 (H*(P)) has a
[F,-basis of elements x, for p € Rep(E, P). Let p, p € Rep(E, P) be different. Then
with our identification we have that ad(p*) on T (H*(P)) satisfies that ad(p*)(z,) =
1 and ad(p*)(z,) = 0. Furthermore z, is the unique element with this property
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So Tp(H*(P);p*) = Tr(H"(P)) ®r9m-(p)) Fpzp, which can be identified as
Tg(H*(P))x,. Then the isomorphism

TpH*(P)= [ Te@(P)p").
pERep(E,P)

from [28] on Tr(H*(P)) — Te(H"(P); p*) given by y — yz, for any p € Rep(E, P).

Let ¢ € Hom(P, Q) be an injective group homomorphism. We want to determine
how Tg(¢*): Te(H*(Q)) — Tr(H*(P)) behaves on the components. Note that
composition with ¢ induces an injective map Rep,,: Rep(E, P) — Rep(F, Q). Thus
we get a map FEQP(E’Q) — ]F?ep(E’P) by g € Map(Rep(E,Q),F,) is mapped to
p+— g(pop). In particular the indicator function of p’ € Rep(F, Q) is mapped to
the indicator function of p, where p € Rep(E, P) with p’ = p o p, if such a p exists
and to the zero function otherwise. Note that Rep,, is injective, so there exists at
most one p with this property. All maps used in the identification of T%(H*(P)) as
FpP®P) are natural in P, so we conclude that T (¢*): TO(H*(Q)) — TY(H* (P))

is corresponds to the map FRep(E @ ]F‘Rep(E’P) from above. Thus for p’ €
Rep(E, Q) we have that, if there exists a p € Rep;l(p’) then Tr(¢*)(z,y) = z,
and if Repgl(p’) = ( then Tg(¢*)(z,) = 0. Then we see that Tr(¢*) factors
through the components of Tr(H*(Q)) to the components of Tr(H"(P)) as the
maps Tp(¢"): Te(H*(Q); ¢ 0 p) = Te(H*(P); p) given by yweo, = Tr(¢")(y)z,
and the zero map on all other components of Tg(H*(Q)).

We want to see how this translates to Tx(H"(F)) for a fusion system F over a
p-group S. The first step is to identify Homx (H*(F), H*(E)).

Definition 8.11. Let F be a saturated fusion system over a p-group S. Define
Rep(E, F) = colimpeco(r) Rep(E, P).

Recall that we say p,p’ € Rep(E, P) are F-conjugate if there exists a ¢ €
Homz(p(E), p'(E)) such that ¢ o p = p’ and remark that this is an equivalence
relation. Let Rep(FE,S)/F be the set of equivalence classes of Rep(F,S) under
F-conjugation.

Lemma 8.12. Let F be a saturated fusion system over a p-group S, then Rep(E, F)
is Rep(E, S)/F.

Proof. For any ¢ € Morp(s) (P, Q) and ¢ € Rep(E, P) we have that ¢ o1 and
1 considered as elements of Rep(FE, S) are F-conjugate. So the map sending ¢ €
Rep(E, P) to the class of ip o9 in Rep(E,S)/F gives a co-cone of the diagram
Rep(E, —). Furthermore for any co-cone of the diagram Rep(F,—) we have for
¢ € Morp(r)(P,S) and ¢ € Rep(E, P), that Ws(ip o) = Vp(¥) = Ys(p o), so
it factors trough Rep(E, S)/F. Hence Rep(E, S)/F = Rep(E, F). O

Proposition 8.13. For any fusion system F over a p-group S we have that the
map [p|r — p* o is a bijection from Rep(E,F) to Homy(H*(F),H*(F)), where
[pl7 is the class of p € Rep(E, S)/F.

Proof. By definition we have that H*(F) = @O(}_) H*(-), where O(F) is a finite
category. Then [32, Corollary 3.8.8.] implies that the natural map

colim Homs(TR(H"(P)).F,) - Homs(Th(H' (F)):E,)
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is an isomorphism. By the above stated results we have that the map p — ad(p*)
is an isomorphism from Rep(E, P) to Homg(T%(H*(P)),F,). This is natural in
P with respect to maps from O(F), so we conclude that colimer) Rep(&, P) =
colimpeco(r) Homp (TS (H*(P)),F,) induced by p — ad(p*). For any unstable al-
gebra K we see by degree considerations that elements in Homy (K, F,) are trivial
exepct for K%, so Homy (K, F,) = Homp(K°, F,). Then we conclude that

Rep(E, F) = c(g(l%a Rep(E, P) = Homg (T (H*(F)),F,)
= Homy (Tg(H*(F)),F,) = Homy (H*(F), H*(E))

and the isomorphism is given by [p]# € Rep(F,F) it mapped to p* ov: H*(F) —
H*(P). O

Note that the above proposition implies that Homy (H*(F), H*(E)) is finite. As
the previous discussion holds for any unstable algebras with Homy (X, H*(E)) finite,
we have for any f € Homy (H*(F), H*(E)) a unique element z; € T%(H*(F)) such
that T (ad(f))(x) = 1 and Tx(ad(f))(z;) = 0 for any other f € Homy (H*(F), H*(E)).
Note that by argument similar to the previous any injective p: E — E’ between
elementary abelian p-groups induces a map Rep,,: Rep(E’, F) — Rep(FE, F), and
the induced map T,: Th(H"(F)) = Th, (H*(F)) is exactly zy = > prerepst () TS
Next we identify the elements z; € Th(H*(F)) for a f € Homy (H*(F),H*(E))
and the corresponding components.

Proposition 8.14. Let F be a fusion system over a p-group S. Let fi,..., fn
be a set of representatives for Rep(E,F) = Rep(E,S)/F. For any P C S and
1 < i < nlet T, be the set of p € Rep(E, P), such that [ip o p|x = [fi]7. Then

Te()(Tf0) = ZpeTg x, and Tg(H* (F); ffov) = @Peo(}_) HpET}i T (H*(P); p*).

Proof. By [26, Theorem 2.4.1] the functor Tg is exact, so it commutes with equal-
izers over a finite set of morphisms. Furthermore [26, Theorem 2.4.3] implies that
Tk commutes with finite products. A limit over a finite category may be expressed
as a equalizer of a finite product over a finite set of morphisms. Hence T com-
mutes with finite limits. By definition H*(F) is a finite limit, so we conclude that
Tp(H*(F)) = @O(F) Te(H*(—)). We now need to identity the image of xy:,,
under the isomorphism.

Let ¢ € Repr(P,Q). We now want to show that Rep;l(’%) =Th Let p €
Té and assume that p’ = @ op for a p € Rep(E, P). Then there exists a ¢ €
Homz(f;(E), p'(E)) such that f; =1 op. Then potp € Homz(f;(E), p(E)) has the
wanted property, so we see that p € T3, Similary for a p € T} the corresponding
Y € Homz(f;(E), p(E)) composed with ¢~ € Homz(¢ o p(E), p(E)) will imply
that Rep,(p) € 7.

Now for P C S and 1 <i < n set y5 = ZpeT}i z, € TR(H*(P)). Then for every

¢ € Repz(P, @) we have by the previous discussion that
Tr(¢*)(yo) = Z Ty = pr =yp.
pERep; (T4) Tr

Hence (yp)pcs € @10(}_) Tr(H*(—)). Furthermore Tg(f})(ys) = 1 while we have
Tr(f;)(ys) = 0 for any j # i. As every f € Homy (H"(F),H"(E)) is of the form
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[ o for an i, we conclude that Tp(t)(zs+0,) = (yp)pcs. Then

(v}
Te(H"(F); fi o) = Te(H*(F))z g0, = lim Tp(H(P
PeO(F)

= lim II =@ (P);p).
PeO(F) pET}

O

If E is a elementary abelian subgroup of S, we may consider the group homomor-
phism mult: Cs(E) x E — S given by (z,y) + zy. It induces a map H*(BS) —
H*(BE) @ H*(Cg(E)). Let ®g: Tg(H*(BS)) — H"(Cs(E)) be the adjoint to
the map induced by mult. By [21, Corollary 0.3] the map ®g: Tg(H*(S);i) —
H*(Cs(F)) is an isomorphism. The following lemma is the analog for fusion sys-
tems.

Lemma 8.15. Let F be a saturated fusion system over a finite p-group and E C
S a elementary abelian subgroup, which is fully centralized in F. Then the map
OpoTg(1) is an isomorphism Tg(H*(F);i% 0) = H*(Cx(E)), where ig: E — S
is the inclusion.

Proof. Set Tp for a P C S to be the set of p € Rep(F, P), such that ip o p is
F-conjugate to ig. Now we define Og(F) to be the category with objects (P, p),
where P C S and p € Tp, and morphism set

Moro, 7 (P, p), (Q,p") = {a € Rep£(P,Q) | o p=p'}

Then by the above considerations we have a well-defined functor from Og(F) — K
by setting (P, p) — Tr(H*(P);p*) and o — Tr(a*). Comparing the given defini-
tions we see that limo , () Te(—) = limpco(r) B e, Te(H"(P); p*). Proposition
8.14 now implies that T (H"(F);i} 01) = lime, () Te(—).

For any (P,p) € Og(F) we have that p: E — p(E) is a morphism in F, so
p is injective. This implies that Tg(H"(P);p*) = T,g)(H"(P),i) by the map T},.
We have that FP is a P-CW complex with only finite number of cells and finite
isotropy groups. As EP is contractible, we see that it is mod-p-acylic. Then by [21,
Corollary 0.3] we conclude that the map ®,g): T,g) (H*(P);i) — H*(Cp(p(E)) is
an isomorphism.

Note that for any a € Morp, 7 ((P, p), (Q,p')) we have that a(Cp(p(E))) C
Co(p'(E)), so we have a functor on Og(F) by setting (P, p) — H*(Cp(p(E))) and
a = o Let (P,p),(Q,p") € Op(F) and a € Morp,r)((P,p),(Q,0')). In the
diagram

, D,
To(H(Q): p') 55 Ty (HY(Q):) 2B H*(Cop (0 (E)))

(
Tr(a™) a*\

) 7 oy LeE)
Ti(H*(P); p) —" Tym)(H*(P);i) —=—= H*(Cp(p(E)))
both compositions are adjoint to maps induced by the following group homomor-
phisms:

Cr(p(E)) x B VL Cpip(m)) x pm) ™M v p 4 L g
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Cr(p(E)) x B MU oo (5(m)) x B XL g (1)) x () TN

Q

As a0 p = p' the homomorphism agrees, so the above diagram commutes. Thus
the two functors on Og(F) are isomorphic.

Under the isomorphism Tg(H*(F); jp) = limp, (r) Te(—) the map g o Tr()
on the component Tg(P; p) is exactly the composite ®,(z) o T}, and since they form
a natural isomorphism, we get that

(®p o Tp(1)(Te(H*(F);je)) = lim HY(Cp(p(E)).
Og(F)

Og(F). Then as E is abelian, we have that p(FE) is abelian and

(E)). Let O%R(F) be the full subcategory of Og(F) on ob-
jects (P, p) where P C Cgs(p(FE))). We have a functor F on Og(F) by setting
(P,p) = (Cp(p(E)), p) and o € Morp () ((P, p), (Q, p")) to the restriction of a as
amap from Cp(p(E)) to Cq(p'(E)). As Cp(p(E)) = Ccppr)) (p(E)) we have that
I.&HOE(H H*(Cp(p(E))) = @OE(I) H*(Cr(p)(p(E))). The image of F is in O%(F)
and as it is the identity on O’;(F) the limit ]'gloE(}_) H*(Cp(p(E))) does not change
when restricting to the subcategory O (F). Note that for (P, p) € O%(F) we have
Cp(p(E)) = P. Hence

(@p o Tr()(Te(H"(F); jr))

1%

lim H*(P).
(—
O (F)

Let (P,p) € O%(F). Since E is fully centralized there exists by Lemma 5.1 an
F morphism Cs(p): Cs(p(E)) — Cs(E) such that Cs(p) on p(E) is p~1. Hence
Cs(p) € Repr(P,Cs(p)(P)) is a morphism in O%(F) from (P, p) to (Cs(p)(P),1).
As Cs(p) is injective, this is an isomorphism in O% (F). Thus O (F) is equivalent
to the full subcategory on objects (P,i). We denote this subcategory O'(Cr(E)).
Then the above limit does not change when replacing O (F) by O'(Cx(E)).

The subcategory O'(Cx(E)) has the objects P C Cg(F) containing F while
the morphisms are elements in Rep (P, Q), which are the identity on E. Thus
it is a subcategory of O(Cx(E)) as well. Note that for any P C Cg(E) we have
that PE is an object of O'(Cx(FE)) containing P as a subgroup. By definition
of the centralizer fusion system we have that for any ¢ € Home, (g (P, Q) there
exists a lift ¢ € Home, (p)(PE,QE). Consider the map 1'&10,(0?(13)) H*(-) —

I.&HO(C;(E)) H*(—) given by (z@)qeor(cr (k) = (ipe, ppTPE) PeO(C(E))- For any
a € Rep (P, P') we have that

* * [ ek -k ~ % Sk
o (xp) = & (ipre,prp¥pE) = ipe,pp TPy = ip , ppTPE;

so the map is well-defined. For an object P of O'(Cx(E)) we have that PE = P,
so the given map has an inverse induced by the inclusion O’ (Cx(E)) — O(Cx(E)).
Thus i, ¢, gy H (=) = Mgy, ) H(2)-

By combining the stated results we conclude that

(®p o Te()(Te(H"(F)ije)) = lm H'(-)=H(Cr(E)).
O(Cx(E))
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8.6. Main Theorem on the cohomology ring of fusion systems. We will now
prove the main theorem about the cohomology ring of fusion systems, namely the
identification with the cohomology ring of its p-complete classifying space, when it
exists.

Let KC be the category of unstable algebras over the mod p Steenrod algebra A,.
Let K € K. We now define A(K) to be the category with objects the pairs (E, f),
where E is a nontrivial elementary abelian p-group and f € Morx (K, H*(BE)),
which makes H*(BE) a finitely generated K-module. As morphisms we consider

Mor 4(x)((E, f), (E', ) ={p: E— E'| ¢ is a monomorphism, o* f = f}.

The proof of the main theorem relies on the work in [14] on the reconstruction
functor o: A(H*(F)) — A,. The category A(H*(F)) can in a natural way be
identified with F°¢, as described in the following lemma.

Lemma 8.16. Let (S, F, L) be p-local finite group. Let F¢ be the full subcategory of
F on the set on non-trivial fully normalized subgroup of S. The functor B: F¢ —
A(H*(F)) given by B(E) = (E,i} o) and B(p) = ¢ is then an equivalence of
categories.

Proof. Let E € F°. Both the inclusion ¢: H*(F) — H*(BS) and the map
i%: H*(BS) — H*(BE)

are maps of unstable algebras over A,. By Proposition 8.5, ¢ gives H*(BS) the
structure of a finitely generated module over H*(F). For a homomorphism ¢: E —
S it follows by [29, Corollary 2.4| that ¢*: H*(BS) — H*(BE) makes H*(BE)
into a finitely generated H*(BS)-module if any only if 1 is injective. As ip is
injective, this implies that 3, induces a finitely generated H*(BS)-module structure
on H*(BE). Thus we conclude that (E,i% 0ot) € A(H*(F)). A ¢ € Morge(E, E')
is by definition a monomorphism. Both ig,ig o € Homz(E,S). So by definition
of H*(F) as 1&“0@) H"(—) we have for any « € H*(F) that i};(z) = (igop)*(x) =
p*oi}, (x), and hence (i 0t) = ¢*o(i}, ot). Thus we conclude that ¢ is a morphism
from (E,i501) to (B, 5 00) in A(H*(F). So B is well-defined and clearly a functor.

To prove that § is an equivalence of categories, we will first consider some other
functors.

First we let A(|£[) denote the category with objects the pairs (E, f), where E
is a nontrivial elementary abelian p-group, and f € Mortop(BE, \£|ZA,), which makes
H*(E) a finitely generated H*(|£[})-module. As morphisms we consider

MorA(wm)((E,f), (E', ")) ={p: E— E'| ¢ is a monomorphism, f’ o B(p) ~ f}.

Let 6: BS — |L| be the inclusion induced by the canonical monomorphism

6s: S — L. Then 6* is the composition
* R»C * L *
H*(|£]) — H*(F) — H'(BS)

By Proposition 8.5 and Lemma 8.6 both these maps induce a finite module structure
on the target, so the same holds for 6*. By the above remark Bigp: BE — BS
satisfies that (Big)*: H*(BS) — H*(BE) induces a finite module structure. As
|£| is p-good by Proposition 3.3, we have that ¢/ : H*(|£])) — H*(]£]) is an
isomorphism. Set fz = ¢|z| o |0]. From this we conclude that if we set B(E) =
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(E, froB(ig)) then B(E) € A(|£]}). By Theorem 7.4 (b) we have that for E, E €
JT_'e

MOYA(\L\A)(B( ), B(E"))
={¢ € mj(E,E') | fz o Blip) = fr o B(ip) o By}
—{ € Wj(E, B') | 3x € Homr(E, ¢(B)), iw 0 9 = x o i}
={p € mj(E, E') | ¢|p,p(r) € Homz(E, o(E))} = Homz(E, E').

By the above we get a well-defined functor B(—): F¢ — A(|L]}) by setting B(E) =
(BE, fzoB(ig)) and B(¢) = ¢, which is an isomorphism on the morphism classes.
Consider a (E, f) € A(|£];) . By Theorem 7.4 there exists a p € Hom(E,S)
such that f ~ fr o B(p). Then f* = (fz o B(p))*: H*(|L])) — H*(BE), so
(E, fcoB(p) € A(|£]}). This implies that B(p): H*(BS) — H"(BE) induces a
structure as a finitely generated module, so by the above remark we see that p is
injective. Then p(FE) is non-trivial elementary abelian subgroup of S, so (p(E), fro
B(iyg))) € A(IL]p) and plg ey : (B, f) = (p(E), fr o B(iyg))) is an isomorphism
in A(|£[}). Furthermore there exists an isomorphism ¢ € Homz(p(E), E'), where
E' is fully centralized in F. Then Theorem 7.4 also implies that fz o B(i,(g)) ~
feoB(ig ov) Then y: (p(E), froB(iyg))) — B(FE’) is an isomorphism i A(IL])-
So we conclude that B(—) is an equivalence of categories.

Let (E,f) € A(|£])). Then H*(f): H*(|L])) — H*(BE) induces a finitely
generated module structure, so the same holds for H*(f) o (¢|*£|)_1: H*(1£]) —
H*(BE). Hence if we set H*(E, f) = (E,H*(f) o ( Tm)_l) then H*(E, f) €
A(H(|£])). Since any ¢ € Mora(gis)((E, f), (E', f')) is injective and satisfies
f' o Bp ~ f, applying H* gives that ¢* o H*(f") = H*(f), so H*(p) := ¢ is also
a morphism from H*(E, f) to H*(E’, f') in A(H*(|]£])). Hence we have a functor
H*(—): A(|L]y) — A(H*(|£])) by the above definitions. As £ only has finitely
many objects and each morphism set is finite, it follows from cellular cohomology
that H*(|£|) is finite dimensional in each degree. By [26, Theorem 3.1.1.] the map
H*(—)o (¢|*L|)_1 induces a bijection from [BE, |L]})] to Homx (H*(|£]), H*(BE)).
Then for (E, f), (E', f') € A(|£];)) we have bijections

Mor -y (H* (B, f), H*(E', f'))
={p e (B, E') [ 9" o H'(f") o (¢]) "  =H"(f) o (8z) "}
={p € mj(E,E") | f'o By~ f}
=Mor iy ((E, f), (E', f)).

Consider a (E, f) € A(H*(|£])). The bl_]eCthIl also ensures that there exists an
[f] € [BE; |£]5], such that H*(f) o ( \ﬂ\) =f. As @[¢) is an isomorphism, the
assumptions on f imply that (E, f) € A(|L]5). Hence (E, f) = H*(E, f).
therefore conclude that H*: (|£|;,\) — A(H*(|£])) is an equivalence of categories.
The map R.: H*(|£]) — H*(F) is a morphism of unstable algebras which in-
duces a finite module structure. So it induces a functor A(R.): A(H*(F)) —
AMHE*(|L])) by (E, f) — (E, fo R.) and the identity on morphisms. By Lemma 8.6
R, is an F-isomorphism. By [27, Corollary 6.5.2] precomposition with R, induces
a bijection from Homy (H*(F), H*(E)) to Homx (H*(|£]), H*(E)) for all elementary
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abelian p-groups E. By arguments similar to the case of the functor H*(—), we
conclude that A(R,) also is an equivalence of categories.
Now we consider the composition

B

A
Fe (Rﬁ)

A(H*(F)) —— A(H*(|L]))

which sends E € F¢ to (E,i}; ot o Rg) and is the identity on morphisms. As
0* = 1o R, it follows from the above definitions of functors that this composition
agrees with H*(—) o B(—): F¢ — A(H*(|£])). As the composition of 8 with an
equivalence of categories is itself an equivalence, we conclude that the same holds
for .

|

Theorem 8.17. For any p-local finite group (S,F, L) the homomorphism
Re: HY (LI F,) — 1 (F)
is an isomorphism and H*(|L|));Fp) is a Noetherian ring.

Proof. Let (S, F, L) be a p-local finite group. It follows from Proposition 8.5 that
H*(F) is Noetherian, so it is enough to show that R, is an isomorphism.

Define a relation on p-local finite groups by (S’, F', L") < (S, F,L) if |[§'] <
|S| or if F' is a proper subcategory of F in the case S’ = S. This relation is
irreflexive. As S is a finite group and F only contains finitely many morphisms any
descending chain ending in (S, F, L) is finite. Hence the relation is well-founded,
so the induction principle applies.

The minimal element with respect to this relation is the p-local finite group
(1, F1,L1), where F; is the category with Ob(F;) = {1} and Morx, (1,1) = {id; },
and £1 = F;. Then O¢(Fy) = Fi, so

H*(F) = ££n H*(—;F,) = H*(BL;F,).
Oc(F1)

As £y = B(1), we have that H*(|£,]));F,) = H*(B1,;F,). The map
RL13 H*(|,C1 ;\;Fp) — H*(]:l)

is in this case ¢7, where ¢ : B1 — B1/) is the map from the natural transformation
id — (—)IA). Since 1 is a p-group, we have that B1 is p-complete by [3, TIT 1.4
Proposition 1.10], i.e. the map ¢; is a homotopy equivalence. Then R,, = ¢7 is an
isomorphism.

Let (S, F, L) be a p-local finite group, and assume that R,/ is an isomorphism
for any (S',F', L") < (S, F,L). The proof of R being an isomorphism splits into
two cases.

First assume that there exists 1Q C Z(S), such that @ is central in F and
non-trivial. Let V' C @ be a subgroup of order p. Then V C @ C Z(S5), so
Cs(V)=S. Then Cx(V) and F are both fusion systems on S. Let P, P’ C S and
¢ € Morxz(P, P'). As @ is central in F, there exists ¢ € Morz(PQ, P'Q) such that
@|lp = ¢ and @|g = idg. The restriction ¢ = ¢|py € Morxz(PV, P'V) then satisfies
@lp = ¢ and @ly = idy, so ¢ € Morg,(v)(P, P’). Hence F = Cx(V), so V is
central 1 F. By Lemma 8.10 (a) (S/V,F/V,(L/V)¢) is a p-local finite group. As
|S/V| < |S| the induction hypothesis implies that Ry/y is an isomorphism. Thus
we conclude by Lemma 8.10 (d) that R, is an isomorphism.
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Now assume that F contains no non-trivial central subgroup. Consider a Q C S
which is fully centralized and non-trivial. Then the fusion system Cz(Q) is either
a fusion system on Cg(Q) < S or a proper subcategory of F. Hence we have
(Cs(Q),Cr(Q),Cr(Q)) < (S,F,L), so the induction hypothesis applies to this
fusion system.

Recall that F°¢ is the subcategory of F on the non-trivial elementary abelian
subgroups of S which are fully centralized in F. For E € F¢ we have the forget-
ful functor from C,(E) to L given by (P,a) — P. According to Corollary 5.11
these induce a homotopy equivalence hocolimge (zeyer |C(E)| — |£]. Hence by |7,
XI1.4.5] there exists a spectral sequence E¥ with

By = lim H'(C(B)), i€z
Ee(Fe)er

converging to H*(|£|). We will now prove that the zero column is the only non-zero
column on the Fs-page and that this column is isomorphic to H*(F).

For (E, f) € A(H*(F)) we have f € Morx(H*(F),H*(BE)), so we can consider
component Tx(H*(F); f). Lannes T-functor is natural in E so a homomorphism
¢: E — E’ induces a map T,: Tp(H*(F)) — Tp (H*(F)). By previous remarks

we have that
Tp(xy) = Z Tg =Ty + Z Zg,
gE€Rep, ' (f) g€Rep,* (f),9#1"

and since zpxy = 0 for g # f' and xpxp = xy, we have that T, (zs)zp = xp.
We have a projection Tg (H*(F)) — Tg/(H*(F); f') given by y — yaxy. The
composition with T, on Tg(H*(F); f) is then yx s — Ty(yxy)xs = Ty(y)zs. So
T, induces a well-defined map Tr (H*(F); f) = Te/ (H*(F); f') by yx s — Tp(y)x s
Hence there is a functor a: A(H*(F)) — K given by «(FE, f) = Tg(H*(F); f) and
a(p) =T,.

Let 8: F¢ — A(H"*(F)) be the equivalence of category from Lemma 8.16. The
functor awo f: F¢ — K is given by E + T(H"(F);i} o). Consider E € F¢. By
Lemma 8.15 there exists an isomorphism ®g: Tr(H*(F);i50t) — H (Cr(E)). By
the induction hypothesis Re, (gy: H*(|Cz(E)|) — H*(Cr(E)) is an isomorphism.
Lemma 5.8 gives an isomorphism H*(|F|): H*(|Cz(E)|) — H*(|Cz(E)|). So the
two functors o o 8 and H*(|Cz(—)|) from F¢ to K have isomorphic images for all
objects. To see that these isomorphisms induce a natural isomorphism, we consider
the following diagram (A), where ¢ € Homxz(E, E’):

Rom) H*(1F))

Tp(H (F): i 01) — 2o HY (Cr(E)) H*(|C2(E))) H*(|Ce (B)))

T, Csle)” H(IC2(¢)) H(1Ce(¢))
T (H (F): ity 00) 4 1 (0 (B)) 20w (j0p))) - UED. w1y

Here, Cs(p): Cs(E") — Cs(E) is the map from Lemma 5.1. We will now prove
that all squares in the diagram commute and as all the horizontal maps are isomor-
phisms, this implies that o o 8 and H*(|C(—)]|) are isomorphic functors.
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To show the first square commutes we consider the diagram (B)

Tp(H (F)) 25 1 (Cs(E))

T, Cs(p)*

T (0 (F) 50 1 (Cs(')

As the algebra map ®5 on Tg(H*(F); f) is an isomorphism and (yzyr)zy = yxy
for y € H*(F), we have that ®p(z;) € HY(Cs(E)) is the unit. The same is
true for ®p/(zs) € HY(Cs(E')). As Cs(p)* is a ring morphism, we conclude
Cs(p)* o ®g(xy) = Prr(xs). So from the definition of T, on the components, we
conclude that it is sufficient to show that diagram (B) is commutative.

For this we consider the adjoint maps H*(F) — H*(E) @ H*(Cg(E’). By the
definition of ® i the adjoint map corresponding to the upper right triangle is induced
by the group-homomorphism

id xC 1t

B x () 92950) poogm B, g
and post composed with ¢: H*(F) — F*(5). As the adjunction is natural in E the
adjoint to ® g 0T, is the adjoint to ® g composed with ¢* ®id. Hence the adjoint
map corresponding to the lower triangle is induced by

x id 1t
ExCs(E) 225 pxogE) 2 v s
and afterward composed with ¢: H*(F) — F*(S). If p: E — E’ is an inclusion,
it follows that the same is true for Cs(yp): Cs(E’) — Cs(FE). Then the two group
homomorphisms agree and hence induce the same map on cohomology. In the case
where ¢ is an isomorphism, we have that Cs(¢)|g = ¢!, so the diagram

id It s
ExCs(E) —2 220 o og(B) BN og(m) 2P0, g
id Cs(p)
id xC. It i
B x () 2950 g oy U oy my LB, g

commutes. This implies that the second square in the diagram

sk

H' (F) — e HY(S) ~C2, gv(cg(my) LAECs V) omult ey o s (7))
id Cs(0)* id

©* ®id) o mult*

* L * ZES(E,) * / ( * * /
HY(F) —— H'(S) ——— H'(Cs(E")) - H'(E) @ H' (Cs(E"))
commutes. The first square commutes by definition of H*(F) as both inclusions
and the map Cg(¢) are F-morphisms. So the two horizontal maps agree, and they
are exactly the adjoint maps corresponding to the original diagram. As a map in
F¢ is a composition of an isomorphism and an inclusion, we have that the diagram
(B) commutes for any morphism, and hence the first square of (A) is commutative.
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In case of the second square of (A) pick a P C Cg(E’). Then the maps are
induced by two functors BP — C(F). In both cases the object of BP is mapped
to Cs(E). A p € P is mapped to dcy(g)(Cs(w)(p)) respectively Beg(pr) © 6oy (pry ©
BE;(E/)' As m(Beg(r)) = Cs(yp) it follows from property (C) for the central linking
system L that the two morphisms are equal. So the two functors agree and hence
the induced maps in (A) commute.

For the third square of (A) the maps are induced by functors from C(E’) —
Cz(E). On the objects they are given by P — (Cs(9)(P), tp—sz(cs()(p))) and
P — (P,p). It follows easily from the definition of the functors, that Sp €
Morz (P, Cs(p)(P)) for P € Cr(E’) gives rise to a natural isomorphism of the
two functors. Thus their geometric realizations are homotopic, which implies the
commutativity of the third square.

We conclude that the functors ao 8 and H*(|Cz(—)|) from F¢ to K are isomor-
phic. So the induced map l.&n;e(ﬁ)w H*(|Cz(E)]) to @;e(}‘e)or’ ao B(E) is an
isomorphism for any i € Z. As §: F¢ — A(H*(F)) is an equivalence of categories
by Lemma 8.16, it induces an isomorphism @;(H*(ﬂ))op a— lﬁlee(P)aP ao g for
any ¢ € Z. So we have proven that the i’th column in the F»-page for the spectral
sequence for |£| is isomorphic to mA(H*(f)))OP a.

To identify the limits of the functor a, we consider the map «: H*(F) — H*(BS)
of K-algebras. By Proposition 8.5 the map makes H*(BS) into a finitely generated
H*(F)-module. As S is a finite p-group, we have that H*(BS) is a finitely gener-
ated FF,- algebra, so by the inclusion of rings F,, C H*(F) C H*(BS) we get that
H*(F) is a finitely generated Fj-algebra. The map fo: H*(BS) — H*(F) given by
Proposition 8.8 is both a morphism of H* (F)-modules and a morphism of unstable
modules over the Steenrod algebra .A,. Since it is idempotent, is it a left-inverse
to the inclusion ¢. The finite p-group S has nontrivial center. Choose g € Z(S) of
order p. Then the pair (Z/p, f) € A(H"(BS)), where f: H*(BS) — H*(Z/p) is in-
duced by the group homomorphism Z/p — S given by 1 + g. This will be a monic
central map in the sense of [14, Definition 4.1] and hence the algebra H*(BS) has
non-trivial center. Then ¢: H*(F) — H*(BS) satisfies the conditions of [14, Theo-

rein 1.2], s? the groups @A(H*(I)))"P a = 0 for ¢ > 0 and there is an isomorphism
H*(F) — l&nA(H*(}_)))Op o induced by the maps

TosE Yy yxy 7
— — Iy

H*(F) = To(H"(F))

for (E, f) € A(H*(F)).
Hence only the zeroth column on the Es-page for the spectral sequence is nonzero,
so Ee = Ep. As the spectral sequence converges to H*(|£|) the zero-column is
isomorphic to H*(|£]), and the isomorphism H*(|L]) — T&lz}_e)w H* |Cr(—)] is

Te(H*(F)) (H(F); ) = a(E, f)

induced by the forgetful functor. So by combining the the stated results, we see
that H*(]£|) and H*(F) are isomorphic. To see the resulting map is in fact R, we
will look more carefully at the maps involved.
Let E € F°. Then the composite
T L. D .
H'(F) =% a0 f(E) = Tu(H(F),ij) —+ H'(Cx(E))
is the lower composition in the diagram (B) in the case where ¢ is the inclusion of
0 into E. As the argument only depends on ¢ being an F-morphism, we conclude
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that

H*(BS)
TosE (ics(m))*

1o (7)) 25 1 (Cs(8)
commutes. By definition @ is the adjoint to idg, so it is the inclusion ¢: H*(F) —
H"(BS). Hence the composition ® 0Ty, g is the restriction of if,_ ) : H"(BS) —
H*(Cs(E)). Thus the map

1 (1c) 2 1 (F) D28 (), i) 22 B (CR(E))

is equal to ¢, py o to Re = ig ) o H'(|6]), which is to say that it is induced

by the functor B(Cs(E)) — L given ocypy — S and g — d5(g). Similarly the
composition

H*(|£]) Jorget H*(|CL(E)]) H*(|CL(E)) H*(Cr(E))
is induced by the functor B(Cs(E)) — L given by ocgg) + Cs(E) and g
dcs(m)(9). Let %CS(E) € Mor.(Cs(E), S) be alift of the inclusion. By property (C)
for the linking system £ this is in fact a natural transformation between the two
functors B(Cs(E)) — L. So they induce the same map in cohomology. Hence the
induced maps on the limits agree making the following diagram commute.

H(|F) A

R
H*(|L]) =5 H*(F) lim aof —— lim H'(Cr(E))
(]:e)op (]:e)op
id id

H*(|£]) — lim H*(|Ce(B)]) — lim HY(|CL(E)]) — lim H*(Cr(E))
(]:e)op (]:e)op (]:e)op
We remark that all maps but R,y are already shown to be isomorphism, so we
conclude that R, is an isomorphism. O
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9. A TOPOLOGICAL CHARACTERIZATION OF p-LOCAL FINITE GROUPS.

In this chapter we will show the main theorem. Any p-local finite group (S, F, £)
is up to isomorphism determined by the homotopy type of |£| Q. The principal step is
to construct a isomorphic p-local finite group that depends nicely on the homotopy
type of |L]).

Definition 9.1. Let S be a finite p-group, X a space and f: BS — X. We define
Fs,;(X) to be the category with objects the subgroups of S and

Homyz, ; x)(P.Q) = {¢ € mi(P.Q) | flsr = flsg o By}.

Lemma 9.2. Let (S, F, L) be a p-local finite group and f = ¢jzjo|0s|: BS — |L]),
where ¢ the natural transformation from p-completion and 6: BS — L is the functor
from Definition 3.2.

Define Ex: F — Fs,5(|L])) to be the functor Ex(P) = P and {7 () = . Then
F is well-defined and an isomorphism of categories, hence Fs ¢(|L]7)) is a saturated
fusion system over S.

Proof. Note that {7 is a bijection on the objects, so we only need to consider the
morphism sets. Let P, @Q be subgroups of S. As f|gp = f o Bip, where ip: P — §
is the inclusion, we have by Theorem 7.4 that

Homz, (22 (P, Q) = {v € mj(P,Q) | flzp =~ f|pq o By}
—{p €Wi(P,Q) | f o Bip ~ fo Blig o)}
= {p € Inj(P, Q) | Ix € Homz (P, p(P)),x 0ip =iq o v}
={p € j(P, Q) | 3¢l pp(q) € Homz(P,¢(P))}
= Homz(P, Q)
Note the last equation follows from axiom 2 for fusion systems. Then £ is well-
defined on morphisms and an isomorphism on the set of morphisms, so we conclude
that 7 is a isomorphism of categories. As Fs f(|£[) has the same objects and

morphisms as F, it trivially satisfies the conditions for a saturated fusion system
over S. |

The corresponding definition for central linking systems is the following:

Definition 9.3. Let S be a finite p-group, X a space and f: BS — X We define
Ls §(X) to be the category with objects the Fg ¢(X)-centric subgroups of S and
Morg (x)(P, Q) be to the set

{(¢,[H]) | ¢ € Homz (P, Q), [H] € Mor,n\tap(Br,x)) (fIBP, flBG © BY)}-

with composition defined as

(0, [H]) (@, [H']) = (¢" 0 ¢, [(H' 0 Bp)H])
where we use the standard composition in m(Map(BP,|L|})), and H' o Byp: BP x
I — |L]) is the map (x,t) — H(Bp(x),t).

Observe that follows easily from the definition that Lg ¢(|£]})) is in fact a cate-
gory with identity object (1p, [Hp]), where Hp is the constant path at f|pp.

Let P,Q be F-centric subgroups of S and ¢ € Morg(P,Q). Axiom (C) for
the central linking system L implies that there is a natural transformation n,
from p: P — L to g o w(p): BP — L given by n,(op) = ¢. Then |0p| and
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|0q| o Bm(p) are homotopic by a homotopy given by 7, [Proposition 2.1|[33]. We
denote this |n,|. For any ¢ € Morg(P,Q) and ¢ € Morg(Q, R) we have that
Mg = (10 BR(2)) 0 10 50 s] = (] 0 Be())Im| where we use the standard
way of composing homotopies. Furthermore for an F-centric P, we have that
M, = idgp, so |n1,| is the constant path at |0p|.

Note that this implies that |#p| ~ |0s| o Bip for any F-centric subgroup P. By
choosing a fixed lift tp € Mor(P,S) of the inclusion, we get a homotopy |7,,|
between between these maps, so if we set [, = @2/(|m.] © B(m ()]0 ]71)
we have a homotopy between f|pp and f|pgo By, where f is the map from Lemma
9.2. Since we are using a fixed homotopy for every F-centric subgroup P we still
have that |7y, | = (|7y] 0 Bm(¢))|n,| for any ¢ € Morz (P, Q) and ¢ € Morz(Q, R)
and that |71, | is homotopic to the constant path at f|gp. If we furthermore assume
that 1g = 1g, then |7),| = |n,| for any ¢ € Mor,(S, S).

Proposition 9.4. Let (S, F, L) be a p-local finite group. Set f: BS — |L|} to be
the map from Lemma 9.2 and let §g: L — Ls f(IL])) be given by ££(P) = (P)
for any F-centric subgroup P and &c(p) = (7(p), [[N4]]) for any ¢ € Mor,(P,Q).
Then & is an isomorphism of categories. Furthermore if we let ©': Ls ¢(|L])) —
Fs.t(IL]) be given by 7'(P) = P and n'(¢,[H]) = ¢, and for any F-centric
P we let 6p: P — Morg, (122 (P) be given by 0p(g) = (cg; [[Tlsp(g)l]), then
Ls f(|L]}) is a central linking system associated to Fs y(|L];)). Furthermore the
triple (ids,&x,&c) is an isomorphism of the p-local finite groups (S,F,L) and
(S Fs s (IL15), L, (1£]3))-

Proof. For any ¢ € Mor,(P,Q) and ¢ € Morz(Q, R) we have that
Ec(vp) = (m(ve), [ITpel]) = (w(¥) o m(), |7y © Bellniol]) = Ec(v) 0 &c(e),

so &, respects the composition. As for any centric P we have that [|n;,|] contains
the constant path at f|pp, we also see that & (1p) = (7(1p),[|f1,]]) is the unit
element of Morﬁsﬁf(wg)(P, P). Hence &, is a well-defined functor. Let P, Q be F-
centric subgroups of S. With the given definitions the following diagram commutes:

&
Morz (P, Q) =+ Morz (izi2) (P, Q)

£
Hom gz (P, Q) RN Morz, ,(113) (P, Q)
If for some (¢, [H]), (¢',[H']) € Morgg ,(cin)(P,Q) we have that 7'(¢,[H]) =

m(¢',[H']), then ¢ = ¢’ and [H] = [H'][H], where [H] € 71 (Map(BP, IL])) 150+ By
Theorem 7.4 we have that Map(BP,|L|})|,, is homotopy equivalent to BZ(P).
The map inducing the homotopy BZ(P) x BP — |L|} sends g € Z(P) consid-
ered as the 1-simplex g X op to ¢|£|d5(g). By property (C) for the central linking
system, we have that ds(g) o tp = tp 0 dp(g), where tp € Morg (P, S) is the cho-
sen lift of the inclusion. The map I x BP — |L£| induced by ¢g € Z(P) is then
100 1M5(g)| 0] 1. So the induced map I x BP — |L]}) is exactly |7s,(q)|- Hence
the map of homotopy groups Z(P) — 71 (Map(BP, |L|}) f|,) is then g = |75, (g)|-
As the map is a homotopy equivalence, this is an isomorphism. Hence there exists

g € Z(P) such that [H] = [|75,(g)|]. As g € Z(P) we have that 0%(g) = (idp, [H]),
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and we get that (¢, [H]) = (¢',[H']) o é%b(g9). Note that n'(6p(g)) = idp for
any g € Z(P), so as 7’ respects the composition, we conclude that 7’ is the or-
bit map for the Z(P)-action on MOI’LS,f“ﬁ‘I/)\)(P,Q) induced by 0%. Observe that
if (o,[H]) = (¢,[H]) 0 §%p(g) for some g € Z(P), then the above implies that
M5p()] = |Mp| in m(Map(BP, |L]}))f|,,) and thus g = 1. Hence the Z(P)-
action on Morg, ,(jzjn) (P, Q) is free. Furthermore we have that the Z(P)-action on
Morﬁs,f(mm)(P, Q) is defined in terms of the Z(P)-action on Mor, (P, Q) via &¢, so
&c is a Z(P)-map. The commutativity of the above diagram in connection with the
lower horizontal map being a bijection and the vertical maps are orbit maps with
respect to the Z(P)-action, now implies that £, is a bijection as well. Thus & is
an isomorphism of categories.

As & is a bijection on morphisms and d%(g) = ££(dp(g)) for any F-centric
subgroup P and g € P, we have that Jp being injective implies that ¢ is injective
as well. Likewise the property (C) for £ implies the corresponding property for
Ls,¢(|£]5). In the previous paragraph we have already proved that Ls ¢(|L[))
satisfies property (A) and (B) for central linking systems, so Ls ¢(|£[})) is a central
linking system associated to Fg ¢(|£]})). Furthermore we have that

(ids, &7, 82): (S, F, L) = (S, Fs s (IL]), L. (1£13))

are isomorphisms that agree on the subgroups of S. The above commutative dia-
gram implies that this triple commutes with the projections on the linking systems
and by definition ¢ = £ o dp. So we conclude that this is in fact a isomorphism
of p-local finite groups. O

Theorem 9.5. Let (S, F, L) and (S, F', L") be p-local finite groups. Then (S, F, L)
and (S', F', L") are isomorphic if and only if |L]}) ~ |L'|}.

Proof. It (S, F, L) and (S, F', L) are isomorphic as p-local finite groups, then there
exists a isomorphism of categories from £ to £. Then [3, Corollary 2.2 (b)] implies
that |£| ~ |£’|. As a homotopy equivalence is a mod-p-equivalence, we have by [7,
Lemma 1.5.5] that L[} ~ [L']).

Conversely assume that [£|) ~ |£'|, and let g: |L]) — |£'];) be a homotopy
equivalence. Let fs = ¢jzj o |0s]: BS — |L|) and fs = ¢z 0 |0s/|: BS" — [L']},
where ) is the natural transformation from p-completion. Then go fs: BS — |L'[),
so by Theorem 7.4 we have that g o fs ~ fs/ o Bp for some p € Hom(S,S5").
Let ¢': |L'|) — |L]) be a homotopy inverse to g. Similarly there exists some
p' € Hom(S’,S) such that ¢’ o fg' ~ fs o Bp'. Now

fs=~g'ogofs~g'ofsoBp=fsoB(pp).

Using Theorem 7.4 (b) we conclude that p'p € Homg(S, pp'(S)). Thus we have
that p’p is injective, so p is injective. Similarly we conclude that p’ is injective. As
both S and S’ are finite groups, we get that |S| = |S’| and the injective map p is
in fact an isomorphism.

We now define a map pr: Fs,fs(IL])) = Fs 5o (IL'])) by pr(P) = p(P) for any
subgroup P C S and for ¢ € Mor}-s,fs(wm)(P, Q) we set pr(p) = p|Qo<pop—1|p(P).
For any ¢ € Hom(P, Q)) we have that

fslpp =~ fslpg o B = go fs|pp ~ go fs|pq o By
> fS’|Bp(P) OBP|BP ~ fS"Bp(Q) OBP|BQ OBQD
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We see that for ¢ € Morg, ,_(1zj5)(P, Q) we have pr(p) is an element of the set
Mor}-S,‘fS/ (215 (p(P), p(Q)). Hence pr is well-defined. It clearly is a functor, which
is bijective on objects and injective on the morphism-set. The similar construction
with p’ is injective on the morphism-sets as well. Since these sets are finite, they
must have the same number of elements. Hence pr is a bijection on the morphism-
sets and thus an isomorphism of categories.

To construct a functor from Lg s (|L])) to Ls: p., (|£'])) we choose a homo-
topy H, from go fs to fsr o Bp. We set pr: Ls p5(IL])) — Lsrp,, (I£])) to
be pc(P) = p(P) for any Fg s, (|L[}))-centric subgroup of S, and for (¢, [H]) €
Morz , (1c1p) (P Q) we set pz(p, [H]) to

(plgowop opy, [(Hyo Blop™ ") pp))go HoBp~ ') (H, " o Bp~ | ,p))])-

As pr is an isomorphism of categories and Cg/ (p(P)) = p(Cs(P)) we conclude that
for any Fs f(|£];)-centric subgroup P C S we have that p(P) is an Fs s, (|£']})-
centric subgroup of S’. We conclude that p. is a well-defined map and it is straight-
forward to see that it respects composition and sends the unit to the unit element,
and thus is a functor.

We now want to consider pz(ch, |7ls¢(n)|) for any h € S. Observe that pocyop™t =
Cp(h), 50 the first factor of pz(cn, |7isg(ny|) and (o), |75 (o(n))|) agrees. We will now
show that in fact they are the same element. Consider the natural transformation
X between the functor idgs and B(cp) on BS by setting xp(0s) = h. The map
Ixn|: BS x I — BS satisfies |x|(z,0) = « and |x|(z,1) = Beg(x). Furthermore
05 © Xn = TNss(n)» 50 fs o |xn| = |Mss(n)|- Note similarly for h’ € S” we have that

fsr o [xw| = Mg ny| Consider F: BS' x I x I — |L'|}) given by F(z,s,t) =

H,(|xn|(Bp~!(x),t),s) Then we get a map with the property that
F(x,s,0) = H,(Bp (), s)
F(z,1,t) = fsr o Bp(lxul (B~ (2),1)) = fsr (Ixptm (2, ) = 755, (o) | (2, 1)
F(z,0,t) = go fs(Ixnl(Bp™" (2),)) = g o lilss )| (Bp~" (), 1)
F(l’,s, ) P( (Chop 1)(1’),8)

By a reparametrization we get a homotopy between
(Hy o B(cn o p™))(g o lilssml o Bp~')(H, ' o Bp™")

and |75, (p(h))|, which is constant on BS” x {0,1}. With our definitions we con-
clude that pz(ch, [Mssm)|) = (Con)s M54 (p(n))])- For a general Fg r(|L]7))-centric
subgroup P C S and h € P we have that

755y | = Y121 © (IMip | © B(enlsp)) Mspml1me 1) = Yiep © Meposp | 1mip ™"

By property (C) for £, we have that tp o dp(h) = dg(h) o tp, so we see that
M50y = (W12 © M55y ) BP = (1l55(n)|)| P Similar results hold for (S, 7", L)
and thus pz(ch, |75, (m)]) = (Co(n)s 15,0, (o(n))|) for all Fs r (| L]};)-centric subgroups
P C Sandh e P. Let mg, ms: be projection map corresponding to 7 in Proposition
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9.4. Then the diagram

pL
Morz ; (eip) (P, Q) — Morey, . (i3 (p(P), p(Q))

s’

TS TS’

Homyz, , (i) (P, Q) 2 Homz,, | () (0(P), p(Q))
commutes for any pair of F-centric subgroups P, ). Furthermore 7g is the orbit
map for the free Z(P)-action induced by 0%(h) = (cp, |5, (n)|) while ms/ is the
orbit map for the free Z(p(P))-action induced by (5;(P)(h) = (Chs M6,y |)- As
p is an isomorphism, we have that Z(p(P)) = p(Z(P)). For h € Z(P) we have
that 6’p(P)(p(h)) = pr(0p(h)), so we may consider mg is the orbit map for the
free Z(P)-action induced by pz(65(h)). Then pg is a Z(P)-map and as pr is
a bijection, we conclude that p, is a bijection as well. Hence p, is an isomor-
phism of categories. As p, respects the projections and 5;)(13) (p(h)) = pe(dp(h)),
we conclude that (p,pr,ps) is a isomorphism between the p-local finite groups
(S, Fs,15 (IL12), Ls, 75 (1£]2)) and (S, Fsr,po, (IL'2), Lsr 54, (I£']2)). Then by Propo-
sition 9.4 we conclude that (S, F, L) and (S’, ', L’) are isomorphic. O

Theorem 9.6. For a topological space X have we have that X ~ \£|;\ for some p-
local finite group (S, F, L) if and only if X is p-complete and there exists a p-group
S and a map BS — X such that the following conditions hold.

(a) The Fg,¢(X) is a saturated fusion system
(b) There exists a homotopy equivalence between X and |Ls ¢(X)|7).
(c) For every Fg ¢(X)-centric subgroup P the map

flep o (—=): Map(BP, BP)iq — Map(BP, X)

fBP

is a homotopy equivalence.

When these conditions hold, we have that (S, Fs ((X),Ls (X)) is a p-local finite
group.

Proof. First assume that X ~ |£]}} for some p-local finite group (S, F, £). Observe
that the conditions (a)-(c) only depend on the homotopy type of X, we may assume
that X = |£|}}. By Proposition 3.3 we have that |£| is p-good, so | L[/} is p-complete.
Let f = ¢z 00]: BS — [L];. By Lemma 9.2, we have that F and Fg ;(X)
are isomorphic, and hence Fg ;(X) is a saturated fusion system. Similarly by
Proposition 9.4 we have that £ and Lg ¢(X) are isomorphic categories and we see
that X = [L]}) ~ |Ls,;(X)]). Since F and Fg ;(X) are isomorphic, we conclude
that P C S is F-centric if and only if it is Fg s(X)-centric. According to Theorem
7.4 (c) we have that the map BZ(P) x BP — |L|} given by (g, h) — f(gh) induces
a homotopy equivalence ®: BZ(P) — Map(BP, X) Note that the map agrees
with

fep*

It Bi
By xgp M, pp B pe  J

- 1Ll
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Thus the adjoint diagram commutes:

i
B7Z(P) — Map(BP, X)

fBP
ld lePO_

BZ(P) — Map(BP, BP)iq

The upper horizontal map is as noted a homotopy equivalence, and the same is
true for the lower horizontal map by [9, Proposition 2.1]. So by commutativity we
conclude that (f|pp o —) is a homotopy equivalence as well.

Assume that X is a p-complete space, S a finite p-group and f: BS — X such
that the conditions hold. Set F = Fg (X) and £ = Lg ;(X). Then by (a) we
have that F is a saturated fusion system over S, and L[} ~ X by (b). So we only
need to prove that L is a central linking system associated to F. By construction
the objects of £ are the F-centric subgroups of S. Let P C S be a F-centric
subgroup and g € P. We get a natural transformation 7, between the functor
idgp and B(cg) on BP by setting n4(op) = ¢g. Thus |ng|: BP x I — BP, and
we define Hy; = f o |ng|: BP x I — X.We observe that H,(—,0) = f|gp and
Hy(—,1) = flepoB(cy), so we can define 6p: P — Aut,(P) by dp(g) = (cq, [Hy]).
Note that this is a morphism of groups. By condition (c) and the noted classical
result we have that

Map(BP, X);|,, ~ Map(BP, BP)iq ~ BZ(P)
induced by the map
It Bi
Py xpp W, pp Bir gy S, £/

By considering this map we conclude that the induced isomorphism of fundamental
groups Z(P) — mi(Map(BP, X)¢|,,) is exactly g +— (cg, [H,]). Similar to the
arguments from the proof of Proposition 9.4 we now see that the natural projection
m: L — F satisfies condition (A). If g € P with dp(g) = 6p(1), then ¢, = idp,
so g € Z(P) and by the above isomorphism, we conclude that ¢ = 1. Hence dp is
injective for all P. By construction 7(dp(g)) = ¢4 for any F-centric subgroup P
and g € P. So it suffices to prove condition (C), i.e. for all (p,[H]) € Morz(P, Q)
and g € P the following diagram commutes:

p_ o)

(cg, [Hy]) (co9): [He(g)])

b tedm)

We have that ¢ oc, = c,(g) 0 ¢ and by setting F': BP x I x I — X to F(x,s,t) =
H(|ngl(x,t),s) we get a map with the property that

F(z,s,0) = H(x,s), F(x,1,t) = Hyg (Bp(x),t)

F(x,0,t) = Hy(x,1), F(z,s,1) = H(Bcy(x), ).
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So by a suitable reparametization we get a homotopy from (H ) o By)H to (H o
Bcg)Hy relative to the endpoints. Then the diagram commutes and we conclude
that £ is a central linking system associated to F. d
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