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Abstract

The subject of this thesis is to study the Little Disk operad and the
Cacti operad and show that they are equivalent as operads as presented
by Kaufmann in the article [Kau05]. In doing so, we go through a
preliminary study of operads, what it means for them to be equivalent
and the problems involved. We introduce and use the Little Disk in
the process. We furthermore introduce and show results about the
recognition principle of Fiedorowicz that is used to compare operads
up against the Little Cube operad via a “ziq-zaq” through B∞ operads.
We introduce and study the Cacti operad in detail while providing the
means to finally apply the recognition principle. Throughout the thesis
we will be elaborate on the graphical structures involved. This is both
to fertilize the understanding of, but also to embrace the mathematical
ideas and metaphors in, the subject.

Resumé

Emnet for nærværende speciale er at undersøge Lille Disk opera-
den og Kaktus operaden samt vise, at de er ækvivalente som operader,
som det er præsenteret af Kaufmann i artiklen [Kau05]. I den forbin-
delse gennemg̊ar vi indledende studier af operader, hvad det vil sige,
at operader er ækvivalente, og de problemer, der er involveret i det.
Vi introducerer og anvender Lille Disk operaden i den proces. Deru-
dover introducerer vi og viser resultater om “genkendelsesprincipet”
af Feidorowicz, som der anvendes til at m̊ale operader om imod Lille
Kube operaden via en “ziq-zaq” gennem B∞ operader. Vi introduce-
rer Kaktus operaden i detaljer, mens vi fremstiller de betingelser, vi
har brug for, for endeligt at kunne anvende “genkendelsesprincippet”.
Gennem hele specialet er der fokus p̊a den grafiske fremstilling af em-
net. Det er for b̊ade at understøtte forst̊aelsen af, men ogs̊a for at hylde
de matematiske ideer og metaforer iboende i emnet.
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1 Introduction

1.1 Motivation

The goal for this thesis have been to show that the Little Disk operad and
the Cacti operad are equivalent. The spine of the study have been Ralph
M. Kaufmann’s article On several varieties of cacti and their relations –
especially the section 3.

In the process of undergoing this study I have found the need to study
and get comfortable with the general notion of operads as given by May, cf.
[May97]. But also a number of other mathematical preliminaries have I in the
process felt the desire to study and understand well before continuing. And
luckily this topic has allowed me to do so. As such one can say that a general
theme throughout this thesis is to straighten out facts and understanding,
visualizing presenting the mathematical ideas and metaphors that are in
play. And this is exactly what I find most enjoyable and fascinating aspect of
mathematics. If we could speak about the ontology of mathematical objects,
then that is what I lust for with respect to mathematics, and it has been
plentifully present in this study and will therefore also be plentiful present
in this thesis.

But that “only” deals with some almost aesthetic motivations for doing
this study. Natural questions to ask is “what are operads good for?” and
“what can equivalence of Cacti and the Little Disk operad be used for?”.
They give rise to the notion of an algebra over en operad. In short this
means that we can recover algebraic structure. For instance one of the first
examples of operads is the commutative operad often called Comm gives us
plain old commutative associative algebra with unit.

The main interest to algebraic topology, as an example, is how the Little
Disk operad acts on the based double loop space, and in that way one can
recover information about its structure. The Cacti operad of Voronov have
been used to make a structure on the free loop space. This is done via its
connection to (a flavor of) the Little Disk operad. Equivalence of operads
naturally allow us to compare the objects they involve.

1.2 Structure

Roughly speaking, I have divided the work into two main sections. The first
entitled Preliminaries and the second The Cacti Operad.

The first section contains all of the preliminaries to deal with the second
section. One motivation for this is, as mentioned, to compare the Little Disk
operad with the Cacti operad. Another is to introduce and discuss the Cacti
operad while measuring it up against the Little Disk operad. In this thesis
those to motives are equal. It is not to be thought of as a downgrade of the
Little Disk operad.
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As mentioned, we measure the Cacti operad up against the Little Disk
operad via the recognition principle due to Fiedorowicz, since, as we will see
in that subsection, what the recognition principle of Fiedorowicz does, is to
measure operads up against the Little Cube operad.

This is one reason that the Little Disk operad is put into the preliminaries
section. Another is that we also are developing the necessary language of
operads. The Little Disk operad then serves as a nice first example to study
and get comfortable with the notion of operads and the structure involved.
So the Little Disk is both introduced and used to introduce the concept of
operads. We can thus think of the preliminaries section as an introduction
to operads viewed through the Little Disk operad. But only in part because:

We also introduce general concepts that we need for to show the main
result. The Braid group and the Pure Braid group with their relation to
the symmetric group. All do they play a significant role in the recognition
principle. As well as in the introduction and initial study of the configuration
space that we also present in the preliminaries section.

Finally we study the recognition principle of Fiedorowicz in the first
section. It is arguable that this section is worthy of even its own entire
section due to the importance in this topic, but it serves as a nice round up
on the preliminary studies. It follows up on the discussion about equivalences
of operads that is presented in the conclusion of the Little Disk subsection.

In the section about the Cacti operad we follow in large the structure
of especially section 3 of [Kau05], but also initially present parts of section
2 of the same reference to introduce the Cacti operad before working with
it. The structure there is though derived from the examples of applying the
recognition principle that we have gone through in detail in the first section.

It is arguable that the subsection about the quasi-fibration since it is
concept from homotopy theory in general should be put into the preliminar-
ies section just as well as e.g. the Braid groups. But I find it natural and
nice to have it right at hand and fresh in memory when it is to be used.

The section end by wrapping it all up by assembling the bits and parts
to show main statement, that the Little Disk and the Cacti are equivalent
as operads.

1.3 Thanks

I would like to thank the Topology Group as well as the Centre for Symmetry
and Deformation for providing a welcoming and inspiring environment. It
is quite amazing what have happen through the last few years at the math-
ematical institute here in Copenhagen. Topology has become a genre that
one as a student can dive into with a safety line of people and courses. Gone
is the time where a single third year course in general point-set topology
acted as the nirvana.

My prime safety line and adviser for this thesis, Nathalie Wahl, I owe
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a great “thank you” for being so very patient and understanding when my
situation were less then optimal. It has been inspiring, fun and educating to
have her guidance though out the work on this thesis.

Finally I would like to thank my family, my girlfriend and our two boys
for having provided invaluable support, love and motivation. I can not ex-
press in words what it means.
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2 Preliminaries

In this section we will study preliminaries for the main part of the thesis that
come in the following sections. In the first subsection we will look at some
basic and needed definitions with respect to operads and the in the following
subsection we will give and study the Little Disk operad, that is central to
this thesis. In that section we will provide examples that elaborates on and
explain what is going on in the definitions of the previous subsection.

In the third subsection we introduce the braid group and the Pure Braid
group and give a graphical description of the element. In the forth subsection
we introduce the configuration space, that for its homotopic properties are
central and natural for this subject.

Finally we dive into the recognition principle and show in detail how it
works.

2.1 Operads

Operads live in a setting of symmetric monoidal categories and we can
loosely say, that an operad is a structure on some, more precisely a set
of, objects from a symmetric monoidal category. In the following we let the
tree-tuple of data, (C,⊗, κ), be a symmetric monoidal category, where ⊗ is
the product morphism and κ is the unit object that constitutes the unit
morphism, η : κ → C. For further insight on monoidal categories see my
’fagprojekt’ [Chr10] on 2dTQFT or for instance [ML98].

Definition 2.1. An operad,O, is a set of objects from a symmetric monoidal
category C, O(n) for n ∈ N, together with a unit morphism, η : κ→ O(1), a
Σn action on O(n) for each n and (operadic) composition:

ω : O(k)⊗O(n1)⊗ · · · ⊗ O(nk)→ O(n1 + . . . nk)

such that the following three properties are satisfied:

(i) Where n :=
∑k

i=1 ni, j :=
∑n

i=1 ji, gs :=
∑s

i=1 ni and hs := jgs−1+1 +
· · ·+ jgs for 1 ≤ s ≤ k, then the following diagram of associativity

O(k)⊗
(

k⊗
i=1
O(ni)

)
⊗
(

n⊗
r=1
O(jr)

)
O(n)⊗

(
n⊗
i=1
O(ji)

)

O(j)

O(k)⊗
k⊗
s=1

[
O(ns)⊗

(
ns⊗
q=1
O(jgs−1+q)

)]
O(k)⊗

(
k⊗
s=1
O(hs)

)

ω ⊗ 1j

shuffle

1⊗ ωn

ω

ω
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commutes.

(ii) That these two diagrams that express unitality

O(k)⊗ (κ)k O(k)

O(k)⊗O(1)k

∼=

1⊗ ηk
ω

κ⊗O(k) O(k)

O(1)⊗O(k)

∼=

η ⊗ 1
ω

commutes.

(iii) And finally that diagrams that express Σn equivariance

O(k)⊗O(n1)⊗ · · · ⊗ O(nk) O(k)⊗O(nσ(1))⊗ · · · ⊗ O(nσ(k))

O(n) O(n)

σ ⊗ σ−1

ω

σ(nσ(1), . . . , nσ(k))

ω

and

O(k)⊗O(n1)⊗ · · · ⊗ O(nk) O(k)⊗O(n1)⊗ · · · ⊗ O(nk)

O(n) O(n)

1⊗ τ1 ⊗ · · · ⊗ τk

ω

τ1 ⊕ · · · ⊕ τk

ω

also commutes where for σ ∈ Σk, τs ∈ τns , then σ(n1, . . . , nk) ∈ Σn

permutes k blocks, (1, . . . , n1), . . . , (nk−1 + 1, . . . , nk) via σ permutes
k letters and τ1 ⊕ · · · ⊕ τk ∈ Σn is the block sum or direct sum of
permutations.

Definition 2.2. Let O be an operad, then if we truncate the Σ action, we
will called it a non-Σ operad.

Following a diffrent source by Kaufmann, [Kau04, Def. 4.1.3] (or [Mar08])
we define:

Definition 2.3. A morphism or an operad morphism, f , between two op-
erads of the same symmetric monoidal category, P and O, is a collection of
morphisms fn : P(n)→ O(n) for n ∈ N, that respect the operadic operation,
are Σn equivariant and preserve the unit.
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Remark 2.4. To preserve the unit is to map it to the unit of the other operad.
I will explain in diagrams what it means to be Σn equivariant and to respect
the operation. For a operad morphism, f : O → P, to be Σn equivariant
means just that it commutes with the action of Σn. So for σ ∈ Σn that acts
O(n) and P(n) we want the following diagram to commute:

O(n) O(n)

P(n) P(n).

σ

fn

σ

fn

To respect the operation ω means that it also commutes with the operad
morphism and that it is well-defined, so we want the following diagram to
commute

O(k)⊗
⊗k

i=1O(ni) P(k)⊗
⊗k

i=1 P(ni)

O(
∑k

i=1 ni) P(
∑k

i=1 ni).

fnk ⊗
Ni=k
i1

fni

ω

fPi=k
i=1 ni

ω

Definition 2.5. An operad P is a suboperad of an operad O if there exists
an injective operad morphism from P to O. 1

Definition 2.6. An operad morphism, f : P → O, is an equivalence (of
operads) if for each n, then fn : P(n)→ O(n) is a (Σn equivariant) homotopy
equivalence. Also, we call

P → O ← . . .→ O′

a chain of operad equivalences if it is a chain of operad morphisms that all
are operad equivalences.

Remark 2.7. Also, since homotopy equivalence is an equivalence relation we
also get that operad equivalence is an equivalence relation, so if we have
a chain of operads P → O ← . . . → O′, surely P and O′ is equivalent
and the directions of the arrows are indifferent. Note that this notion of
equivalence makes sense because we deal with operads that take objects
from the category of topological spaces.

1See [Kau04, Def. 4.1.3]
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2.2 Little Disk

The Little Disk is a central object in this thesis, thus we will use that as an
illustrating example of operads as well as casting light on its properties.

Definition 2.8. Let Dn be the standard unit disk in Rn. For k ∈ N we call
Diskn(k) := {f :

⊔k
i=1D

n
i → Dn} the space of embeddings of k disjoint n

disks, where each f is a scaling and position-translation.

So f will take k discs, scale each of them to make them little and then
position them inside a disk. As such it makes sense to think of it as an (n)
disk with (k) little (n) disks disjoint inside. Sometimes we omit the type
of disk and focus on the number of disks in play, in those cases, or where
it is clear for which n in Diskn(k) we are talking about, we will just write
Disk(k) to refer to the operad of k disks.

With that settled we will make the following claim

Proposition 2.9. The set of objects {Diskn(k)}k∈N from the symmetric
monoidal category of topological spaces, (Top,×, ∗), with composition

ω : Diskn(k)×Diskn(n1)× . . .×Diskn(nk)→ Diskn(n1 + · · ·+ nk)

defined as

(f, f1, . . . fk) 7→ f ◦ (fn1 t · · · t fnk) =
k⊔
i=1

fDi ◦ fi,

unit morphism η : ∗ 7→ 1Dn ∈ Diskn(1) and Σk action for each k defined as
permutation of the label of the little disks is an operad. We will call it the
little disk operad.

Proof. We will show that it satisfies the required properties from definition
2.1. This will also work as an opportunity to do the exercise of getting dirty
hands by working with the definition and thereby comfortable.

First the associativity. We begin by presenting the diagram as it looks
in this setting with the term O(j) from the general diagram expanded and
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thus better suited for doing a chase around the diagram.

Disk(k)×
k∏
i=1

Disk(ni)×
n∏
r=1

Disk(jr) Disk(n)×
n∏
i=1

Disk(ji)

Disk(k)×
k∏
s=1

Disk(ns)×
ns∏
q=1

Disk(jgs−1+q) Disk(
∑n

i=1 ji)

Disk(k)×
k∏
s=1

Disk(hs) Disk(
∑k

s=1 hs)

ω ⊗ 1j

shuffle

1⊗ ωn

ω

ω

Where j∗, h∗ and g∗ are as in definition 2.1.
Clockwise around we get:

(fk, fn1 , . . . , fnk , fj1 , . . . , fjn) (fk ◦ (fn1 t · · · t fnk), fj1 , . . . , fjn)

(fk ◦ (fn1 t · · · t fnk)) ◦ (fj1 t · · · t fjn)

ω ⊗ 1j

ω

and counter clockwise:

(fk, fn1 , . . . , fnk , fj1 , . . . , fjn)

(fk, fn1 , fj1 , . . . , fjn1
,

fn2 , fjn1+1 , . . . , fjn2
, . . . ,

fnk , fjn1+···+nk−1+1 , . . . , fjn)

(fk, fn1 ◦ (fj1 t · · · t fjn1
),

fn2 ◦ (fjn1+1 t · · · t fjn2
), . . . ,

fnk ◦ (fjn1+···+nk−1+1 t · · · t fjn))

fk ◦
[
fn1 ◦ (fj1 t · · · t fjn1

)t
fn2 ◦ (fjn1+1 t · · · t fjn2

) t · · · t
fnk ◦ (fjn1+···+nk−1+1 t · · · t fjn)

]

shuffle

1×ωk

ω
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Left is to show the equality where the two halfes of the diagram meet.
Really the two diagrams above only picture the spaghetti-mess of indices in
the compact formulation of the diagram in the definition. I have found it
useful to at least once write it out to make it crystal clear, and that is the
motivation for also presenting it here. Then the remaining equality is where
the design of the operad composition is to show its worth. In short, since
the embeddings of little discs are also associative, then the equality holds.
We refer to example 2.10 to see the idea of how it works.

Next is the unitality. We are in the monoidal category of topological
spaces, Top, with unit ∗, so the concrete diagrams we want to chase is the
following

Disk(k)×∗k Disk(k)

Disk(k)×Disk(1)k

∼=

1× ηk
ω

∗×Disk(k) Disk(k)

Disk(1)×Disk(k)

∼=

η×1
ω

We note first that the upper arrows follow from the category being monoidal,
the natural identity morphism: (−×1Top) ∼= − and (1Top×−) ∼= −. We will
take the left diagram first.

(f, ∗k) f

(f,11, . . . ,1k) ω(f,11, . . . ,1k) = f ◦ (11 t · · · t 1k)

∼=

1× ηk

ω

and the right

(∗, f) f

(1, f) ω(1, f) = 1 ◦ f.

∼=

η×1

ω

Finally, that the operad satisfies the Σk equivariance property is imme-
diate as it is (just) permuting the labels, thus illustrating it in a diagram for
a general setting would literally be copying the definition. Instead we will
illustrate it in the concrete, but scaling, example 2.11.

The following two examples are to illustrate in a concrete way how the
operad composition of little disks satisfy the equivariance and associativity
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properties. Naturally included in that they also illustrate how the compo-
sition look works out pictorially. But also they exhibit how to read and
understand the general definition of operads.

Example 2.10. We let k = 2, n1 = 2, n2 = 1 and j1 = 2, j2 = 1, j3 = 2
and observe the following elements in Disk being the input of the upper
left corner of the diagram. In the example the disks are unlabeled to avoid
clutter, in return they are coloured and embedding history is preserved by
printing the disks that illustrated the old k-arry operation with a dashed
line. Imagine that they are ordered successively top to bottom, left to right.
First we go clockwise around:

(
, , , , ,

)

ω×13

7−→
(

, , ,
)

ω7→ .

And counter clockwise:

(
, , , , ,

)

shuffle7−→

(
, , , , ,

)
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1×ω2

7−→
(

, ,
)

ω7→ .

Example 2.11. Here we will see a quite concrete example of elements of the
Disk(k) operad with a concrete permutation of Σk satisfying the first of the
equivariant diagrams. The second is analogue in fashion and thus omitted
here.

Let k = 3, n1 = 1, n2 = 2, n3 = 3 and σ = (231), σ−1 = (312) ∈ Σ3.
Then

ω : Disk(3)×Disk(1)×Disk(2)×Disk(2)→ Disk(5),

σ×σ−1 : Disk(3)×Disk(1)×Disk(2)×Disk(2)→
Disk(3)×Disk(2)×Disk(2)×Disk(1) and

σ(2, 2, 1) : Disk(5)→ Disk(5) ∈ Σ5 by (23451).

Recall that the i’th disk, the disk labeled i, after the action of an element
σ is the σ(i)’th disk before the action.

Clockwise round we get:

( 1 2

3
,

1
,

1

2
,

1

2

)

σ×σ−1

7−→
( 3 1

2
,

1

2
,

1

2
,

1 )
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ω7→

1
2

3
4

5

.

And counter clockwise:

( 1 2

3
,

1
,

1

2
,

1

2

)

ω7→

2
3

4
5

1

σ(2,2,1)7−→

1
2

3
4

5

.

The little cube operad, C2, was briefly mentioned as it is part of definition
2.17. In short, C2, is very similar to the little disk operad. Σk acts on the
label the same way. On the space level we have little squares, instead of little
disks. Hence we can define the operad composition completely analogous.
The obvious next question would be to write down a morphism for each
C2(k) to Disk2(k). It is not hard to think of a morphism between squares
and disks, but it is harder to make it actually be a morphism of operads.
We will show later indirectly, via the recognition principle, that they are
equivalent as operads, but for now we will discuss some of the problems of
trying to define a direct operad morphism.

Our first natural idea is to define the morphism from Disk2 → C2 by
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putting squares inside the discs, like this:

.

Then it will not work out as it will not be well-defined. For example.

7→ .

So what if we do it the other way around, and put squares outside the
disks like

.

Then we will have analogous problems as it will not be well defined when
we go back. We could well have a little square near one of the corners, that,
when mapped back to Disk2, would place the little disk out side the unit
disk it should be embedded in. Or two little disks could so close that the
squares that are put around them would overlap.

So what if we mix those two approaches by putting the little square
inside the little disks but the big square outside the big disk. Like
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.

That will fail when composing, it will not respect the composition, so the
second diagram of remark 2.4 will be non-commutative by a scaling factor.
Observe the following example:


,




,



ω

f f

ω

6=

Instead one can define a bigger middle operad, where the spaces are a
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triples of cubes, disks and homotopies between them, that is equivalent to
each of the two. Hepworth does that for framed disks and cacti with spines
in [Hep10, Theorem A].

2.3 Braid groups

In this subsection we will introduce the braid groups. We will talk about
the normal braid group on n strands, with its connection to the symmetric
group. And thus also the pure braid group. All of them play a central role
in the rest of this text.

Definition 2.12. The braid group n stands can be specified by a set of n−1
generators and some relations, namely

Bk := 〈σ1, . . . σk−1 |σiσi+1σi = σi+1σiσi+1, σiσj = σjσi〉

where for the first relation 1 ≤ i ≤ n − 2 and |i − j| ≥ 2 for the second
relation. The σi’th generator looks like this:

i

i+ 1

i+ 1

i

n

Remark 2.13. So what it does geometrically is, that it takes the i’th and
i+1’th stand and braids them. It takes the i’th and moves it over the i+1’th
strand so that it transpose the ends of the i’th and the i + 1’th strand. If
we were going under instead of over, we would express the inverse of the
generator. Composing σi with σ−1

i yields the identity element of the braid
group, since it can be continuously deformed to become straight strands
taking i to i.

This also explains how the braid group can be surjectively projected to
the symmetric group: by forgetting how the endpoints of the strands are
transposed. We can write it up explicitly by sending generator to generator
but adding the relation that σ2

i = 1 as that expresses that we forget how
the transposition happens,

p : Bk → Σk by 〈σi ∈ Bk〉 7→ 〈σi |σ2
i = 1〉. (2.1)

On the other hand we can also lift a, say generator, of the symmetric
group by connecting the points from the domain to the image such that they
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become strands. We connect point i to point σ(i) to form a strand and also
choosing if we go over or under under when two strands are to cross each
other. So for the generator σi that transpose i and i + 1 of Σk we connect
the point i to the point σi(i) = i+ 1 and i+ 1 to σi(i) choosing to pass the
first strand over the other as they are to cross.

And finally the pure braid group:

Definition 2.14. The pure braid group is defined to be the kernel of the
projection from the braid group to the symmetric group as seen in equation
2.1.

The generators χi,j – that wraps the ith strand round the j’th strand
wise – are specified as

χj,j = σiσi+1 . . . σj−1σ
2
jσ
−1
j−1 . . . σ

−1
j (2.2)

where σ∗ are the generators of the braid group, and pictured as below.

i

i

j

j

n

See [KT08, p. 18f] for more information on this Coexter presentation of
the pure braid group.



Preliminaries 20

2.4 Configuration space

Lets start off with the definition:

Definition 2.15. The space

Confn(X) := {(x1, . . . , xn) ∈ X s.t. xi 6= xj if i 6= j}

is called the configuration space over X of n distinct labelled points.

What we are interested in is the configuration space over R2, Confn(R2).
It is quite straight forward to see that on a space level Confk(R2) is homotopy
equivalent to Disk2(k). In one way we shrink the disks to their center to get
points in the configuration space, and in the other way we blow up the points
of the configuration space to obtain little disks.

Now let us have a look at the homotopy groups:

Proposition 2.16. Confn(R2) is K(PBn, 1).

The proof of this fact might seem superficial in this paper, but it is
an good exercises for the proof of the similar statement for the spaces of
Cact(n). As the fundamental group of the configurations space of n points
in the plane is actually defining the Pure Braid group on n strands, the work
here will be a lot less. On a slightly anachronistic note: Another difference
is that here we can make use of a long exact sequence induced by a fibration
rather then a quasi-fibration which is needed in the case of Cact(n).

Proof. We will use with out proof here, see for example [Sin06, Lemma 3.4],
that the projection p : Confn+1(R2) → Confn(R2) that forgets a point by
mapping (x1, . . . , xn, xn+1) to (x1, . . . , xn) admits a fiber bundle structure
with fiber R2 with n points removed, which is homotopic to a wedge of n
circles. This fiber bundle then induces the following long exact sequence in
homotopy:

πi(
∨
n

S1)→ πi(Confn+1(R2))→ πi(Confn(R2))→ πi−1(
∨
n

S1)→

· · · → π0(Confn+1(R2))→ 0 (2.3)

The universal cover of
∨
n S

1 is, a tree, contractible, hence by [Hat02,
4.2] πi(

∨
n S

1) = 0 for i ≥ 2. So from the above long exact sequence we get
that

0→ πi Confn+1(R2)→ πi Confn(R2)→ 0

for i ≥ 3 implying that πi Confn+1(R2) ∼= πi Confn(R2) for i ≥ 3. So if
π3 Conf2(R2) = 0, then also π3 Conf3(R2) = 0, if π4 Conf2(R2) = 0, then
π4 Conf3(R2) = 0 and so on. We observe that Conf2(R2) ' S1. For example:
fix a point, then the other point can be anywhere else in the plain, which
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is homotopic to the plain with a point removed, that is homotopic to S1.
So πi Conf2(R2) = 0 for i ≥ 2. Hence πi Confn(R2) = 0 for i ≥ 2 and
n ≥ 2. Conf1(R2) ' ∗ so πi Conf1(R2) is trivial. Thus for any n the higher,
greater then 2, homotopy groups vanish, so what about the case i = 1:
π1 Conf1(R2) = 0, π1 Conf2(R2) = Z, and in general πi Confn(Rn) = PBn
by definition of the pure braid group.

2.5 Recognition principle

The overall subject of this thesis is to compare two operads, one of them
being the little disk. We will now look ways to recognize operads as operads
that are equivalent to the little disk, the same as saying that they are E2

as we shall see below. Finding concrete direct morphisms between operads
that will be equivalences is not easy. Means to classify them, or recognize
them, is useful. In [Fie98] Fiedorowicz presents the following definitions and
statements:

Definition 2.17. An operad, O, is called En for n ∈ {1, 2, . . . ,∞} if there
exists a chain of operad equivalences from O to Cn. Where the operad Cn
is the n-cube operad defined by Bordmann & Vogt, [BV73, p. 64].

Definition 2.18. An operad, O, is can be called a braid operad if we in a
natural way can swap the symmetric group with the braid group.

Thus for a braid operad spacesO(k) admits an action by the braid group,
Bk, such that we get Bk-equivariance.

Before we continue let us make sure we know what a braid operad mor-
phism is.

Definition 2.19. A braid operad morphism is an operad morphism between
two braid operads with the extension that it is equivariant with respect to
the braid group.

Now we will turn to the central points.

Definition 2.20. A braid operad O is a B∞ operad if it is spacewise con-
tractible and braid group Bk is free.

Theorem 2.21. An operad O is E1, if and only, if each path-component of
O(k) is contractible and the action of Σk on π0(O(k)) for each k is regular.

Theorem 2.22. An operad O is E2, if and only, if O(k) is connected for
each k and the induced family of universal covers, Õ(k), admits the structure
of a B∞ operad.

I shall not fully prove them here, but will refer to the original source (or
[SW03]) for the later statement.
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Instead we will go to the example below (proposition 2.28) from [Fie]. We
will use the method in this example as a template to show the main result.
This is almost what Kaufmann does, but he wants to distil the template
into a proposition for recognizing E2 operads, which I will diverged slightly
from. What he does, in his proposition 3.2.4, is to provide a criteria for an
operad to be liftable to a B∞ operad. This also means that we only need
a weaker version of the recognition of E2 from above, namely the direction
where we end up concluding the E2 property from having the B∞ structure
on the universal covers. Before we proceed to the promised example let us
look into how to prove the weaker version of theorem 2.22.

Lemma 2.23. A product of two B∞ operads are again a B∞ operad.

Proof. Let O and P be two B∞ operads. For the product to be an B∞ by
definition 2.20 above we need to see that it is contractible and that there
is a free braid group action. So both O and P are contractible, thus the
product O×P is also contractible. Also since for any k the action of the
braid group, Bk, on each of the spaces O(k), P(k) are free then it is also
free on the product.

Lemma 2.24. Any braid operad morphism between B∞ operads is an equiv-
alence of operads.

Proof. Take a braid operad morphism f : O → P where O and P are B∞
operads. Then since both O and P are contractible f is also a homotopy
equivalence as it can be factored through a point, hence an equivalence of
operads.

Proposition 2.25. Any two B∞ operads are equivalent as operads.

Proof. A direct consequence of the previous two lemmas is the following.
Suppose we have two B∞ operads O and P, then if we can produce an
operad morphism from the product to each from them, such that is forms a
chain of operad morphisms, like,

O ← O×P → P,

then both of these operad morphisms are operad equivalences, thus O and
P are equivalent.

Left is to see that we can produce such operad morphism. We claim that
the projection morphisms from the product is operad morphisms. We check;
the unit is preserved. Secondly the equivariance and composition require-
ments are met and well-defined due to contractibility of the B∞ operads.

The notion of equivariance worked with in the above is with respect to
action with the braid group, so it also works with a Σ action. Similar to the
concept of B∞ operads we have E∞ operads, hence:
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Remark 2.26. Any two operads that is space-vice contractible and where
the Σ action is free are equivalent. E∞ satisfies this.

Before we get back to the E2 case, lets get the E1 case settled. In the
little cube treatment below we also see that the little interval, C1 meets the
criteria in theorem 2.21. So if we could show that any operad that satisfies
these criteria is equivalent, then we would also have shown the direction of
theorem 2.21 that we use. The argument carries through as in the above
except, since it is not contractible, that the product that we want to factor
though is taken over the path-components. This is done to ensure that the
equivariance will be well-defined.

We will now return to the E2 case.

Proposition 2.27. Any two operads are equivalent if their universal covers
admit a B∞ operad structure.

Proof. Let O and P be operads such that their universal covers, p : Õ → O
and p

′
: P̃ → P, are B∞ operads. Then, by proposition 2.25 we can construct

a chain of operad equivalences form the universal covers. This chain can then
be extended to the following diagram:

Õ Õ × P̃ P̃

O (Õ × P̃)/PB P.

∼= ∼=

p p
′

The goal now is to see that arrows in the bottom row can be operad
equivalences. We will now see how they can be induced from the rest of the
diagram.

We will focus on only one side of the diagram. The other will be analo-
gous.

First, the outer vertical arrow stems from the universal covering. Take
universal covering p : Õ → O. We have a braid group action on C̃. We see
that when we quotient Õ with the pure braid group we get back O (if O is
connected), see e.g. [Hat02, p. 71f], with a Σ action.

Now let us consider the middle vertical arrow. As PB denotes the pure
braid group, the middle part of the bottom row, (Õ × P̃)/PB is the quotient
space. The map is the quotient map defined by sending points in Õ × P̃ to
orbits in (Õ × P̃)/PB.

The map, f : (Õ × P̃)/PB → O, induced by taking quotient, defined by
taking orbits to orbits is well-defined and homotopic. So left is only to verify
that it is also an operad morphism.

First we will check that (Õ × P̃) is an operad such that it makes sense to
talk about operad morphisms. We take the operadic composition to be the
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one induced by the quotient map of the composition in Õ × P̃, ω̃. In other
words defined through the following diagram:

(Õ × P̃)(k)×(Õ × P̃)(n1)× · · ·×(Õ × P̃)(nk) (Õ × P̃)(n)

(Õ × P̃)(k)/PB×
∏k
i (Õ × P̃)(ni)/PB (Õ × P̃)(n)/PB

eω

ω

So immediately all the needed structural properties required on ω is met
since they are assumed met for ω̃.

Then by analogous argument the map f carries the structure of an op-
erad morphism.

Hence we can conclude that O and P are equivalent.

Now as a corollary, if we plug in C2, while assuring that it has the needed
properties, which we show in proposition 2.28, then we have shown the
reverse direction of theorem 2.22.

Proposition 2.28. The little 2 cube operad, C2, is E2. Or more in the spirit
of [Fie]: The universal covers of the spaces of C2 admits a B∞ structure.

Proof. When given the C2 operad with an operad structure operation and
Σk action, then we look at the projection p : C̃2(k) → C2(k) where C̃2(k) is
the universal cover of C2. Now the goal is to construct the needed structure
for C̃2 to be a B∞ operad from the structure on C2. So per definition 2.20
C̃2 need: to have an operad structure, make sure that for each k, the spaces
C̃2(k) are contractible and to admit a free action by the braid group, Bk. In
other words we want to lift the operad structure of C2 to a B∞ structure on
C̃2 by lifting the composition, ω to a composition ω̃ and the Σk action on C
to a Bk action on C̃2.

Let C1 be the little 1-cube, or interval, operad. We see that each path-
component is contractible: For some k, a point in C1(k) consists of k small
(labelled) intervals embedded in the unit interval. Two points are in the
same path-component exactly when the sequence of their labels are the
same. Suppose for illustrative purpose that k = 2, then the sequence of the
labels can be either (1, 2) or (2, 1). A point in C1(2) that has the labels orders
as (1, 2) can not be moved to a point with the intervals labeled (2, 1) as they
live in R1 the little intervals can not be moved past each other. Then for
any path-component fix a point, then there is a path from any of the other
points to this point, thus each path-component is contractible. Also for any
two points, x, y ∈ π0(C1(k)) there is exactly one element, σ ∈ Σk such that
σ(x) = y, meaning that the action of Σk on π0(C1(k)) is regular. Hence per
theorem 2.21 it is E1.
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We can embed i : C1 ↪→ C2 as bottom line as we cross it with the unit
interval we get a point in C2 as in the following illustration.

1 2 · · · k

What we a seeking to construct is a lift of the map ω, call it ω̃, from the
diagram below

C̃2(k)× C̃2(n1)× · · ·× C̃2(nk) C̃2(n1 + · · ·+ nk)

C2(k)×Cn1 × · · ·× Cnk C(n1 + · · ·+ nnk).

eω
p

ω

p

For that we will use the one part of C1 being E1 namely that each path-
component is contractible.

When we take the non-Σ version of a E1 operad we get only one (con-
tractible) path-component. So in this case the non-Σ version of C1 is the
unordered little interval operad. This will act as a basepoint in C2.

The morphism ω̃ is a lift if, by definition of lift, ω ◦ p = p ◦ ω̃. By the
unique lifting property we need only, since the domain of ω is connected, to
specify what our lift does to the basepoint to ensure uniqueness of the lift.
It should be mapped to the basepoint in C̃2.

The fiber of C1(n), p−1(C1(n)) ⊂ C̃2, is a disjoint union of components,
since p is a covering. And hence p also maps each component homeomorphi-
cally to C1(n). Now for any n we pick one of the components of the cover and
call is C̃1. C̃1 is just a sheet in the cover, and should not be confused with
the entire cover over C1 even though it is an abuse of (standard) notation.

So we can define the unique lift ω̃ such that

C̃1(k)× C̃1(n1)× · · ·× C̃1(nk) 7→ C̃1(n1 + · · ·+ nk).

The situation is made visible in the following drawing. There have been
made a slight but compatible change of names. The dots in the top part of
the picture are to illustrate the fiber over the lower dot. The Y1 is included
in Y as the subspace that contracts to the basepoint; the dot next to Y .
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Ỹ X̃

Y Xω

p
ω ◦ p

ω

Y1

As we need to get the operad structure on C̃2 we need to construct the
identity in C̃2(1). We have a unit 1 ∈ C1(1) ⊂ C2(1) from the operad structure
on C2. So we pick in the fiber over the identity in C2(1), p−1(1), an element
such that it maps back to our original 1 by p. We will just call it 1, and thus
the unit morphism is η : ∗ 7→ 1.

Before we continue we will show that the unitality and associativity
requirements are met. I will now present the idea for the unitality diagram
from definition 2.1 and the other check carries through in a similar way.

The bottom line of unitality diagram, C̃2(k)× C̃2(1) ew−→ C̃2(k) can be
naturally extended by the commutative square from the definition of ω̃.

C̃2(k)×∗k

C̃2(k)× C̃2(1) C̃2(k)

C2(k)×C2(1) C2(k)

1× ηk f

eω
p p

ω

So we want to show that when f is an isomorphism, then the triangle
commutes. That is equivalent to showing that if we assume that the triangle
commute, then f is an isomorphism. We note that under that assumption
the entire diagram commutes.

The projection that constitutes the universal cover over C2 also gives a
map p : C̃2(k)×∗k → C2(k)×∗k, then by unitality in C2, where we denote



Preliminaries 27

the unit morphism η̂, we get the following big diagram of two triangles and
three squares.

C̃2(k)×∗k

C̃2(k)× C̃2(1) C̃2(k)

C2(k)×∗k

C2(k)×C2(1) C2(k)

1× ηk f

p

eω

1× bηk 1

p p

ω

Now from this diagram, we see that f is a lift of the 1 below it. We see that
the left square commutes by taking an arbitrary point in C̃2×∗k and map it
around. Since, as mentioned, the front square and the two triangle commutes
(the upper by assumption) and then also the right square commutes. So it
is a lift of the identity. Hence f is the identity if it is the lift that takes
basepoint to basepoint. In other words we want to map C̃1(k) in C̃2(k)×∗k
to C̃1(k) in C̃2(k) via f . Now again, since the upper triangle, by assumption,
commutes, checking the basepoint condition on f amounts to verify that
the basepoints maps the right way around via ω̃ ◦ 1× ηk. And this happens
exactly due to definition of ω̃. First it will be mapped to C̃1(k)× C̃1(1) that
is mapped to C̃1(k) by ω̃.

We recall that for C̃2 to be a B∞ operad we first of all need to confirm
that it admits an operad structure. Then we need to show some additional
properties of the structure are satisfied. Normally for operads they have a
Σk action, but what we are setting out to give C̃2 is an action of Bk, the
braid group. Now the braid group can be projected to the symmetric group.
Supplying an action of the braid group is in a sense giving more than we
are asked for, as it can be projected to a normal Σ action. Sometimes an
operad with a braid group action, instead of just a symmetric group action,
is called a braid operad. The requirements are almost the same. The unital
and associativity requirements coincide and the equivariance requirement is
naturally modified to match (see [Fie, definition 3.2]). As we need to show
a property of this action, that it is free, we will thus define it.

We are looking to define the action C̃2(k)×Bk → C̃2(k). The braid group
can be specified by a set of k − 1 generators and some relations, namely

Bk := 〈σ1, . . . σk−1 |σiσi+1σi = σi+1σiσi+1, σiσj = σjσi〉
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as seen in definition 2.12. To construct the braid group action on the little
cubes we will do exactly as discussed in remark 2.13. Metaphorically this is
exactly what we will be doing in the following.

We have the Σ action on C2. And, again, we want to lift that action.
It suffices to lift the generators to describe the action. We pick therefore a
point in C1, c, that by i sit in C2. The first picture in the series below is
an illustration of such point i(c). The last picture illustrates σi(i(c)). The
two pictures in between show how i(c) can be moved to σi(i(c)) in a path
α : I ×C2 → C2.

1 · · · i i+ 1 · · · k 1 · · ·

i

i+ 1

· · · k

1 · · ·

i+ 1

i

· · · k 1 · · · i+ 1 i · · · k

In the path we see how we have chosen to move little square labelled i
over the one labeled i + 1 hence completely compatible with the metaphor
we have in play for the braid group, mentioned above. We also note how the
size of the little intervals in the bottom of the pictures end up having the
same size in analogous to how the strands moved around in braid group.

Since C1 is E1 we know that the Σ action on the path-components is reg-
ular. This means that the choice made above can be arbitrarily made. When
we apply the chosen σi we do not go to the same point (up to homotopy, as
mentioned previously, due to the other property of being E1.)

Now due to unique path lifting, we get, when we lift the constructed
path α to a unique path in C̃2 which describes the braid action on C̃2.
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Following up we will now show that we can apply the same series of
arguments to Disk2.

Proposition 2.29. The universal cover of Disk2 admits a B∞ operad struc-
ture.

Proof. The embedding of Disk1. The little 1-disks are really little intervals
embedded in the unit interval. We can thus embed Disk1 in Disk2 in the
following way. The unit interval that is hosting the little intervals we embed
as the diameter of the unit disk that hosts the little 2-disks. Then for each
little interval we pick the center and use that as center for a disk that has
radius half the length of the little interval. An label-less example is pictured
below.

Disk1 is a suboperad of Disk2. The embedding from above is an inclusion
on space level, i : Disk1 → Disk2, and it makes Disk1 a suboperad of Disk2.
By definition it is injective, so to satisfy definition 2.5 of being a suboperad,
then we lack only to verify that it is an operad morphism. Clearly the in-
clusion does noting to the labels, and hence the Σ action on the labels is
not touched and hence still Σ-equivariant. Also the operad composition on
Disk2 commutes with the inclusion and preserves also the unit. Here is an
example, that will scale to the general case, to visualize:

( , )


,



ω

ω

i i
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Disk1 is E1. As in proposition 2.28 we need to show this property as we
need it to be contractible as non-Σ operad and have regular Σ action on
the path-components. Let us start by showing that each path-component
is contractible. Since on space level Disk1 and C1 are clearly homotopic as
they are identical, hence also Disk1 is contractible. The k! path-components
of Disk1(k) can be named by the order of the labels. In other words, the
elements of a path-component is exactly those elements of Disk1 where the
order of little 1-disks are labelled the same. Hence, as in the cube case, the
Σk action is regular.

With universal cover p : D̃isk2(k) → Disk2(k) and ensuring that the
needed properties of Disk1 are met, we can now construct the lift of the
composition in Disk2 to an operad composition in D̃isk2 in the same way as
was done in the cube case. So ω̃ is the lift that makes the following diagram

D̃isk2(k)× D̃isk2(n1)× . . .× D̃isk2(nk) D̃isk2(n1 + · · ·+ nk)

Disk2(k)×Disk2(n1)× . . .×Disk2(nk) Disk2(n1 + · · ·+ nk)

eω

ω

commute. And it is unique by the following choice of basepoint

D̃isk1(k)× D̃isk1(n1)× . . .× D̃isk1(nk) 7→ D̃isk1(n1 + · · ·+ nk)

that can be done due to Disk1s ability to act as a basepoint. We recall that
D̃isk1 is not the cover over Disk1 but only a sheet in the cover over Disk1.
Also we have unique unit element of D̃isk2(1) to be 1 from the sheet D̃isk(1)
that will be projected down to the identity element of Disk1 ⊂ Disk2.

As for the cube case the unit and composition admit to the operad
structure. For complete braid operad structure we need to define the braid
action. Again we will lift it from the Σ action on Disk2 by describing a path
I ×Disk2 → Disk2 that induces the braid action when that path is lifted
to the cover. So to get dirty, we move the disk labelled i + 1 over the disk
labeled i and leave the other disks unmoved. The following series of pictures
illustrate, as we read them left to right.
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i i+ 1

i

i+ 1

i

i+ 1
i+ 1 i

Is the braid action free? We see quite clearly only the identity element
in the braid group will fix a point in the cover, so it is.

The last but not least point we have to make is to show that the cover
is contractible. We recall from the recognition principle that this was a
important step in constructing the actual equivalence of operads.

The first thing we note is that the fundamental group of the universal
cover, D̃isk2 is simply-connected. This follows from the definition of universal
cover. So left is to deal with the homotopy groups for n ≥ 2. About them we
know, that the projection that constitutes the universal covering also induces
isomorphism on the fundamental groups, πn, for that range of n, see [Hat02,
Prop. 4.1]. Since Disk2 is K(PB, 1), then that implies that πn(Disk2) is
trivial for n ≥ 2. In other words all the homotopy groups of the universal
cover are trivial.

By Whitehead we know that if a map between CW complexes induces a
weak homotopy equivalence then it is a homotopy equivalence. We also know,
if a space is homotopic to a CW complex, then the cover of that space is
homotopic to a CW complex. Disk2 is (homotopic to) a CW complex. Hence
it follows that the the universal cover is homotopic to a point.

Lemma 2.30. Disk2 is connected.
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Proof. It is homotopic to Conf(R2) that by proposition 2.16 is K(PB, 1)
hence simply-connected, thus Disk2 is connected.

Corollary 2.31. The operad Disk2 is E2

Proof. This follows directly from applying lemma 2.30 and proposition 2.29
to theorem 2.22.

Now as a reminder, and almost too redundant, I will like to mention the
following immediate corollary that follows strait from the definition of E2,
2.17:

Corollary 2.32. The operads Disk2 and C2 are equivalent.

It is still worth to highlight as an end of the preliminaries section as it
ties it all up: We have shown that Disk2 and C2 can be linked together via a
chain of operad equivalences in a specific ziq-zaq way that will link them to
any (connected, topological) operad which has a universal cover that admits
a B∞ structure. So when we in the next section apply the same method to
the (soon to be properly defined) topological operad Cact, then we will have
shown that it is E2 by the recognition principle theorem 2.22 and hence also
equivalent to Disk2, which was the original goal.
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3 The Cacti Operad

In this part of the thesis I will introduce and discuss the cacti operad, Cact,
and show that it is equivalent to the little disk operad, Disk2.

3.1 Definition and operad structure

Definition 3.1. A spineless cactus with n lobes is a planer rooted tree-
like configurations of n S1’s with labels such that the zero point of each S1

intersects with another S1 below except for the lowest S1 for which the zero
point is called the global zero. The i′th lobe is the circle labelled i. By the
outside circle of a cactus we shall understand the circle with boundary of
the same length as the boundary of the cactus.

That it is tree-like means that if the circles where disks, ie. solid, the
cactus would be contractible. Also due to the tree structure each node in
the tree, here lobes in the cactus, has a natural orientation towards the,
specified, root. And this gives rise to a partial ordering of the lobes.

The orientation of the outside circle induces an orientation of the lobes.
But is also a feature of being planer as a tree, i.e. a tree embedded in a plane,
since then the lobes can be given a cyclic order, or simply just orientated.
Each individual lobe and the outside circle also has an orientation given by
for example a parametrization of the circles, over the interval 0 to 2π the
unit circle can be described as the points (cos ν, sinν) were ν runs through
that interval. For ν = 0 we have the zero point of the circle.

Definition 3.2. For each lobe in each cacti the segments of the lobe that
is between each intersection point, between intersection point and the zero
point, or, if there is no intersection points, from the zero back to itself,
is called the arcs. The arc a representing a vertex v is the arc segment
immediately after in the order of the outside circle.

The above definition allows us to talk about the length of the arcs of a
lobe. Notice that when the arc goes from zero and back to itself, then as the
definition talks about arcs of specific lobes, we are not passing zero points
of other lobes in the way back.

Definition 3.3. The space of all cacti with n lobes we denote Cact(n).

In this setting all lobes have the same length as S1, or in other words
they have unit radii. We assign a word to that:

Definition 3.4. We call the set Cact for the set of normalized cacti if all
lobes have unit radii and denote it Cact1

Example 3.5. Below is an example of an element in Cact(4). The lobes
labelled 4 and 2 intersect the lobe labelled 1 in the same place, whereas the
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lobe labelled 3 intersects the lobe 1 in a different place. The lobe labelled
1 has the global zero as its zero. The lobes labelled 2, 3, 4 have one piece of
arc, while the lobe labeled 1 has tree arc pieces. One form the (global) zero
to the intersection with the lobes 4 and 2, one from the intersection point of
the lobe labeled 3 to the zero point and one in between the two intersection
points.

1

34
2

This definition of cacti is in the literature often called spineless cacti.
This is due to the fact that the original definition of cacti was with, so-
called, spines and due to Voronov in [Vor05]. It echoes here as follows:

Definition 3.6. A cacti with spine is a cacti where the intersection points
need not be the zero points and added a basepoint to one of the lobes.

So the literature often deals with cacti and spineless cacti where the
former is assumed to be with spines. Here we focus on spineless cacti, so we
will refer to then as cacti and the others as cacti with spines if we want to
mention them. I will not go into detail about it here, but mainly mention it
to avoid confusion.

We will now be more specific about how any cactus can be made into a
tree of a special kind.

Definition 3.7. A graph can be considered coloured if the vertices are
coloured. It is bi-coloured if it is coloured by two colours. By a black and
white tree we shall understand a bi-coloured tree with the colours back and
white.

So in the definition there is no restriction on how the vertices are to be
connected. In the definition below we establish a restriction by constructing
a black and white tree from a cactus.

Definition 3.8. Given a cactus we can construct the dual black and white
tree of it. It is done in the following way. Each lobe is made into a white
vertex. And each intersection point is made into a black vertex. The edges
of the tree are then constructed in the following way. We connect each black
vertex, that marks the intersection point of some lobes with the white ver-
tices that represent the lobes that were intersecting in that point.

The word dual works fine here because we deal with normalized cacti.
If the cacti were not normalized, then the word dual would be slightly off,
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since the graphs we deal with are not assumed to be metric. The metric
information, that of the size of the lobes, will not be forgotten, but encoded
differently as we will see later.

Example 3.9. The following example is the dual black and white tree of
the previous (and only so far) illustrated example of a cactus. The circles
with the numbers in them are the white lobes with their labels, the black
square is the black vertex that is also the global zero and the round dots are
the remaining black vertices.

1

4 2 3

The illustration is cheating a little bit, because the white vertices looks like
small circles and hence we could measure the arc lengths between each edge.
This information is not supposed to be included in the black and white tree,
as it it not metric. We could have done that, but instead it is encoded
differently as we will see later.

First we shall continue with more notation with respect to the black and
white trees that will aid the construction of the encoding of the arc lengths.

We recall that we have a partial ordering of the vertices such that we
have en orientation to the global root. Also a general notion from graph
theory is that an edge, ev is said to be incident to a vertex v if the one end
of the edge is connected to the vertex independently of a possible orientation
of the graph. In contrast when we go to a vertex by an edge we will be true
to orientation.

Definition 3.10. For a dual black and white tree of a cacti we call the edged
that go from a black vertex to a white vertex of a white edge, and we denote
the set of withe edges Ew. The set of white vertices we denote Vw. For a
white vertex, v ∈ Vw, we call the number of edges going to v for |v|. The set
of dual black and white trees with n labelled white vertices we will simply
denote T (n). If the dual black and white tree τ ∈ T (n) is derived from the
cactus c we will sometimes refer to it as τc to get the genesis straight. If the
set of white vertices, Vw, is associated to a tree τ , we denote it Vw(τ). If the
set of white edges, Ew, is associated to a tree τ , we denote it Ew(τ). And
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finally the set of edges of a tree τ ∈ T , independent of colour, is denoted
E(τ).

Remark 3.11. For a white vertex v, note that |v| is both the number of white
edges incident to v and the total number of edges incident to v minus one.

Example 3.12. The dual black and white tree from example 3.9 is an
element in T (4).

The moral of these constructions is expressed in the following definition
about the topological type of cactus.

Definition 3.13. By the topological type of a normalized cactus c ∈ Cact1(n)
we mean the tree τc ∈ T (n) where the labels are induced from the labeling
of the lobes of c.

This means that given two cacti with the same number of lobes, then we
can compare them up to the central topological features by comparing their
associated dual black and white tree.

What we are missing is to deal with the length of the arcs in the cactus.
We can think of that as a mere geometric feature of a cactus. So to differ-
entiate between cacti with the same topological type but with varying arc
lengths, we shall need the following lemma.

Lemma 3.14. A normalized cactus is entirely described by its topological
type and the length of the arcs.

Proof. We are to show a bijective correspondence, so first assume that we
have a cactus. Then from that cactus, c, we have constructed the tree, τc,
that is the topological type of c. Definition 3.8 show how that is done. As
mentioned the remaining data that is not encoded in the topological type is
the arc length of the arcs of the cactus.

Now we need to show that we have an inverse method to get back to
that exact cactus. So we take the tree. Then we blow up the white vertices
such that they become unit circles. While we do that we make sure they do
not intersect with each other, for instance by extending the edges suitably.
We label the circles according to the labelling of the white vertices. Then
contract the edges that are not white. By doing that the black vertices will
meet the circles. The point where this happens will mark the root point of
each circle. There is a black vertex to each white, so it is well-defined. The
circle for which the special square black point meets the circle will be the
global zero of the cactus. Left is to contract the white edges. While doing this
deforming the circles might be necessary such that they do not intersect in
new places. When this is done we have a cactus, and the (possibly deformed)
circles are the lobes. To make it the same cactus as we started with we slide
the intersection points around such that the arc length matches.



The Cacti Operad 37

We would like to be more specific about how to encode the lengths of
the arcs. This is the motive for lemma 3.16 below. For that lemma to make
sense, we first need to extend our language with the concept of simplices.

Definition 3.15. By ∆n we denote the n-simplex, where by |∆n| denotes
the realization in Rn+1 as the point set {(t1, . . . , tn+1)} where

∑
i ti = 1.

The interior of |∆n| is denoted |∆̊n|.

Lemma 3.16. The length of the arcs of a lobe in a normalized cactus, c,
that correspond to a white vertex v in the black and white tree of c is in a
bijective correspondence with the open simplex ∆̊|v|.

Proof. This follows almost immediately from the definitions. The points in
the simplex is a n + 1 tuple whose sum is 1. The sum of the length of the
arcs of any given lobe in a normalized cactus is 1. Any lobe can be divided
into |v|+ 1 arc segments, as mentioned in 3.11. Thus it follows.

Example 3.17. As an example, take the lobe labelled 1 from the example
3.5. As discussed there, it has 3 arc segments. In example 3.9 we have the
tree representing its topological type. The white vertex of that tree that is
labelled 1 has 2 white edges going to it, and 3 edged incident to it.

Remark 3.18. Suppose we did not restrict to the interior of the simplices. It
would then be allowed to take a point on the boundary of the simplex. While
this point would be a n+ 1 tuple where the sum would be 1 as required, it
would imply that one arc segment should have length 0. That would mean
that the corresponding lobe would be divided into only n arc segments,
which would be a mismatch.

Now for each tree we will define a product of simplices derived from the
tree. This is the feature we have been seeking to encode the arc lengths of
an entire cactus.

Definition 3.19. For each τ ∈ T (n) we define the following product

∆(τ) =
∏

v∈Vw(τ)

|∆|v||

of realizations of simplices. And similarly for the interior;

∆̊(τ) =
∏

v∈Vw(τ)

|∆̊|v||.

Remark 3.20. The product has an order while the index set, the white ver-
tices, does not in it self carry an order. But sine a ∆(τ) is associated a τ
then we get the order from the orientation of the tree.
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Example 3.21. For the three, τ , from example 3.9, we get the following
product

∆(τ) = |∆2| × |∆0| × |∆0| × |∆0|.

Example 3.22. Not any product of realizations of simplices gives rise to a
tree τ ∈ T . Take as an example the product |∆2| × |∆0|. If we try to read
back a tree it would give the following

which, although being a black and white planer tree, is not an element of T .

Proposition 3.23. On space level Cact1(n) =
∐
τ∈T (n) ∆̊(τ).

Proof. By definition 3.19, lemma 3.16 and 3.14 this follows.

The notion of topological type can be extended further to the notion
that answer the indexing question when we later will equip Cact1 with a
CW complex structure.

Definition 3.24. The set of dual black and white trees with n white vertices
and k white edges is denoted T (n)k.

Example 3.25. As an example of the above definition; the following two
trees, τ1, τ2, are the elements from T (4)1. For this illustration the actual
labels of the vertices are not relevant, hence not printed.

We will now talk about what we will mean by degeneration of a cactus,
and how it is done for the tree τ ∈ T counterpart.
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Definition 3.26. Given a cactus, c, with an arc segment, a, such that |a| <
1, then we say that we degenerate it by the arc a when we homotopically
contract it to a point.

Remark 3.27. We observe that for a cactus, c, as in the above definition we
need in order to have an arc segment of non unit length to have at least one
intersection point away from the global zero. Naturally also c ∈ Cact1(n)
for n > 1.

Also when we degenerate a cactus, c, as in the above definition, then we
still keep the number of lobes and all the indices intact.

Now to the analogous concept for trees.

Definition 3.28. Given a tree τ ∈ T (n). Let the edge e be incident to an
white vertex vw with |vw| > 0. Let vb be the other vertex incident to e. Then
let e

′
be the edge (also) incident to vw but preceding e when considering the

orientation of the tree. Name the other vertex incident to e
′
v
′
b.

The degeneration of τ by the edge e is then defined to be the tree τ
′

by
contracting the edge e of τ while making the tree temporarily disconnected
and then identifying the vertex vb with the vertex v

′
b. Then the tree is again

connected and belonging to T (n) and the ordering of the branch above v
′
b

are kept intact.

Example 3.29. The preceding two definitions are illustrated in the follow-
ing. It is showing almost literally the situation of the definition of degener-
ating a tree.

v
′
b

vw

vb

e

e
′

v
′
b

vw

e
′

v

a

c c′
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The cactus illustration is the cactus counterpart. This also illustrates
the general case as this small tree/cactus can be seen as a sub-tree/-cactus,
where there would just be appended more “vegetation” in either place where
it makes sense.

We will now define a CW complex and then show its relation to the set
Cact(n). This is a milestone in this section. By that we gain a topological
structure on Cact and with little more work a composition of cacti that
equip Cact with an operad structure.

Definition 3.30. Call ∆(τ) a cell. By the v’th face of ∆(τ), where v is a
white vertex of τ , we mean the subset of ∆(τ) that has the v’th coordinate
equal to zero.

Example 3.31. The subset that has the v’th coordinate equal to zero really
is just the subset that goes on dimension down in the product of simplices.
So if ∆(τ) = |∆r1 | × · · · × |∆rn | then the v’th face lives in say ∆ri . Then
when this has one of the coordinates equal to zero, it means that the v’th
face of ∆ri is the set, where {(to, . . . , tri)|

∑
tj = 1, tl = 0} that equals ∆ri−1.

Hence the v’th face of ∆(τ) is the subset |∆r1 | × · · · × |∆ri−1| × · · · × |∆rn |.

We need this concept such that the attaching maps in the following CW
complex construction makes sense.

Definition 3.32. Let K(n) be the CW complex that has as k-cells C(τ) :=
∆(τ) indexed by τ ∈ T (n)k. Where τ is the topological type of a cactus c
with a vertex v and an arc segment a at v, then τ

′
is the topological type of

a cactus c
′

that is the degeneration of the cactus c by the arc a. We attach
by identifying the v’th face of ∆(τ) to ∆(τ

′
). We call the the attaching map

eτ and its restriction to the interior for e̊τ .

Example 3.33. In this example we will look at the CW complex K(3) in
order to shed some light on the definition of the CW complex K(n).
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cτ

τ ∈ T (3)

|Ew(τ)| 0 1 1 2 2

In the table above, in the first row, is listed the different “types” of nor-
malized cacti of 3 lobes, then in the second row is their associated topological
types. Note that this list is exhaustive. Note also that this list correspond
to that of Cact(3), meaning that the cells of the CW complex match the
elements of Cact(3). Below that is listed the number of white edges in the
trees. This is the number that indicates the CW complex cell dimension.

Theorem 3.34. The CW complex K(n) and the set Cact1(n) are in a
bijective correspondence.

Proof. Follow now directly from the proposition 3.23 and definition.

Definition 3.35. Σn acts on Cact1(n) by acting on the labels.

Definition 3.36. Let η : ∗ → Cact1(1) be the unit morphism.

Definition 3.37. As composition of cacti from Cact1 consider the following
map

◦i : Cact1(n)×Cact1(m)→ Cact1(n+m− 1)

defined by the following way. It takes a cactus cn ∈ Cact1(n) and cm ∈
Cact1(m). We want to glue in the cactus cm into the i’th lobe of cn. So we



The Cacti Operad 42

rescale the i’th lobe of c to have the same size as the outside circle of cm
and then we can glue in cm by identifying the outside circle of cm to the
scaled i’th lobe of cn such that the global zero of cm is assigned to the zero
point of the scaled lobe. While gluing we shift the labels such that the labels
of the glued in part will be i, 1 + i, . . . ,m − 1 + i. The first i − 1 labels of
cn will stay intact and the last part will be shifted by m, so they become
m+ i,m+ i+ 1, . . . ,m+ n− 1.

Example 3.38. We take an element cn ∈ Cact1(3) and cm ∈ Cact1(2) and
display the composition cn ◦2 cm.

1

23

◦2

1

2

=

1

4

3

2

In the cactus cn we see that the lobe labelled 2 has two arc segments, the first
of 1/4 length and the second of 3/4 length. That means that when gluing in
the cactus cm that consists of two lobes, then we need to glue in the point
that is half the way around of the lobe labelled 1 to the previous mentioned
point of intersection that divide the lobe labeled 2 of cn into two segments.
In this case this turns out to be exactly the point of intersection between
the lobes of cm as they meet halfway around the lobe (of cm) labeled 1.

While the composition ◦i is not quite what we might have hoped for in
order to realize Cact1 as an operad. But due to [Mar08, Proposition 13] it
suffices with such composition given it satisfies an associativity requirement:

Proposition 3.39. Given a composition

◦i : O(n)⊗O(k)→ O(n+ k − 1)

that satisfies the following associativity requirements: for each f ∈ O(a),
g ∈ O(b) and h ∈ O(c),

(f ◦j g) ◦i h =


(f ◦i h) ◦j+c−1 g for 1 ≤ i ≤ j,
f ◦j (g ◦i−j+1 h) for j ≤ i < b+ j and
(f ◦i−b+1 h) ◦j g for j + b ≤ i ≤ a+ b− 1,
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then there can be constructed a composition of operads

ω : O(k)⊗O(n1)⊗ . . .⊗O(nk)

from ◦i in the following way,

ω : (f, g1, . . . , gk) 7→ (· · · ((f ◦k gk) ◦k−1 gk−1) · · · ) ◦1 g1.

where f ∈ O(k) and gi ∈ O(ni) for 1 ≤ i ≤ k.

So we are back on track and can state this conclusive corollary:

Corollary 3.40. Cact1 is an (topological) operad.

Until now we have dealt with normalized cacti (without spine). Now we
will run though the construction for the general (spineless) cacti of lobes of
varying radii, Cact. We already have defined it, and now claim that:

Lemma 3.41. As spaces Cact(n) = Cact1(n)×Rn
>0.

Proof. This is fairly easily shown as we realize that we can describe the
general cacti from Cact(n) by a normalised cacti from Cact1 by adding
the information of how much we need to rescale each lobe, which can be
described by a point in Rn

>0. The reason to limit Rn to positive coordinates
is to make this well-defined. For example a zero coordinate would kill a lobe
and a negative coordinate would make the parametrization run in reverse
direction and hence make clutter. In the other direction; we could likewise
factor out the information in a general cacti to a normalizes and the point
in Rn

>0.

Remark 3.42. From lemma 3.41 we see that Cact1 induces a topology on
Cact.

Remark 3.43. The method of gluing we defined for normalized cacti works
also in the setting of cacti with lobes of varying radii. We will call it by the
same name,

◦i : Cact(n)×Cact(m)→ Cact(n+m− 1).

We can give a direct construction analogous to that of normalized cacti. We
can also define it though lemma 3.41 by going back and forth while using
the gluing defined for normalized cacti.

Thus we arrive as the following final statement:

Proposition 3.44. The gluing, ◦i, makes Cact an operad.
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3.2 Corolla cacti

In this subsection we will define and study the corolla cacti. We will show
that it is an E1 sub-operad of Cact.

In the literature the corolla cacti is often referred to as the spineless
corolla cacti. In the previous section we have chose to contract the term
“spineless” because we deal mainly with spineless cacti so it would by
hideous to carry that term around. For the same reason we contract the
spineless corolla cacti to just corolla cacti. Should we need to, we can talk
about a corolla cacti with spine.

Kaufmann defines it the following way.

Definition 3.45. A corolla cacti is a cacti that where all the intersection
points are at the global zero. The set of corolla cacti with n lobes is denoted
CC(n).

Example 3.46. We notice that this is equivalent to cacti with |Ew| = 0,
thus we have as an example the following image of a corolla cacti from
CC(3).

2

3
1

Lemma 3.47. CC is a suboperad of Cact.

Proof. First we observe that as spaces, for any n, CC(n) ⊂ Cact(n), which
we can use as an injective map, i : CC(n) → Cact(n). Left is, by definition
2.5 to verify that this map can be seen as a morphism of operads respecting
the definition 2.3.

It preserves the unit. And is also Σn-equivariant. But let us exercise
the composition we have defined on Cact to verify that is respected by the
inclusion.

We do not need to show it for ω but only for ◦i as the corresponding
diagram for ω will commute accordingly if the one for ◦i commutes. So
observe the following diagram:
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CC(n)×CC(m) CC(n+m− 1)

Cact(n)×Cact(m) Cact(n+m− 1)

◦i

ii

◦i

When we compose to corolla cacti, cn, cm via ◦i, for 1 ≤ i ≤ n, then
we get exactly a corolla cacti in CC(m + n − 1). Thus it is clear that ◦i
commutes with the inclusion.

Proposition 3.48. Corolla Cacti, CC(n), is E1.

Proof. By theorem 2.21 we have our check list. First we need to see that the
path-components are contractible. First we notice that there is n! number
of path-components. For each point in CC(n) the lobe are labelled. And
whenever any two points in CC(n) have a different linear ordering of the
labels then they belong to two different path-components, as there is no
path in CC(n) between them. In return any two points of the same path-
components are connected by a path where the lobes are homotopically
deformed from the one to the other. In other words, then path-components
are all contractible.

Lastly we need to see that the action of Σn on π0(CC(n)) is regular.
So consider two points x, y ∈ CC(n), then there exists exactly one element,
σ ∈ Σn that moves the one to they other, σ(x) = y. The action works on
the labels, and due to contractibility of the path-components we can view
CC(n) as Σn.

3.3 Forgetful map

In this subsection we will construct a projection p : Cact(n+ 1)→ Cact(n)
called the forgetful map. Also we will compute the fiber and show a few
properties we will exploit later on.

Definition 3.49. For a cactus c ∈ Cact(n) the following construction based
on it is called the completed chord diagram of c. And we will denote it as
Chord(c).

We start by the global zero of the cactus c. Then we take the outside
circle of c. While we traverse the outside circle we mark all the zero points on
the outside circle. We recall that all the zero points are intersections points
between two or more lobes of the cactus, except that the global zero might
not be an intersection point.

All the marked points on the outside circle will correspond to intersection
point of n lobes there will be n marked points. If the global zero was not an
intersection point it will be addition point on the outside circle as well.

All the arc segments on the outside circle will be of length corresponding
the lobe segment they originate from.
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Between all the n marked points that come from the same intersection
point we will insert a n− 1 simplex such that the vertices of the simplex is
identified with the marked points. What we have then is the complete chord
diagram of the cactus c.

The complete chord diagram is an object in the category of topological
spaces.

Before we continue with its sister definition we will see some examples.

Example 3.50. I will show the following three examples to illustrate the
definition. By combining the idea presented in them it should be easy to
construct the chord diagram of any cacti.

r1

r2

r1 r2

r1

r2

r3

l

j

k

l

j

k r2

r1 r3

l2
l1

r2

r1

k

r2

r1

k

l2l1

Definition 3.51. The subspace of a completed chord diagram of a cactus
called the spine of the completed chord diagram is the following: For each
simplex we locate the barycenter and then we connect that by a straight
line to each of the vertices of the same simplex on the outside circle.

Example 3.52. In this example is illustrated a cactus and the spine of the
completed chord diagram of the cactus. The completed chord diagram is
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drawn underneath in a light grey colour to aid the illustration. It is not part
of the spine.

Lemma 3.53. A cactus is homotopic to its completed chord diagram and
to the spine of the completed chord diagram.

Proof. First consider the completed chord diagram and its spine. By the
definition of the spine we see, that this subspace is a deformation retraction
of the complete chord diagram it sits in. Hence they are homotopic.

Then the spine and the cactus case. All the straight lines in the spine
are contractible. By collapsing those we get exactly the original cactus back.
And we can do the inverse as follows: Take a cactus, c. We then produce
the completed chord diagram of c as a template. Then the barycenters of
the simplices of the chord diagram are well-defined, and we can identify the
vertices of c to the barycenters. With the barycenters in the right place we
can blow up the vertices by a line for each lobe incident to the intersection
that specifies the vertex. We do that in a way such that we do not alter the
length of the arcs of the lobes and until we arrive at the outside circle.

We will now continue with defining forgetful maps. We need, as men-
tioned, a map projecting cacti to cacti of one lobe less. That will be defined
though a projection on trees.

Definition 3.54. The map

pT : T (n+ 1)→ T (n)

that maps a tree τ ∈ T (n + 1) to the image pT (τ) ∈ T (n) we will call
forgetful. The image is the tree pT (τ) ∈ T (n) we get from the original τ by
forgetting the vertex labelled n + 1 and corresponding edges. We do that
be forgetting the label and colour the vertex black and contract the edges
incident to it. The black vertex immediately above and below (the former
white edge labelled n + 1, now black unlabelled) will then be identified. If
the vertex n+ 1 has only one edge incident to it, then we contract down to
the first white edge.

Example 3.55. Here the forgetful map pT is illustrated by taking a tree
τ ∈ T (4) and mapping it to T (3).
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1

2 4

3

1

2

3

'

1

2 3

The map pT : T (n + 1) → T (n) induces a similar forgetful map on the
simplex representation, ∆(τ):

Definition 3.56. Where τ ∈ T , e ∈ E(τ), then let

p∆(τ) : ∆(τ)→ ∆(pT (τ))

be given by
∆(τ) 3 (xe) 7→ (x′e) ∈ ∆(pT (τ))

where the edges of the original tree τ that is not contracted are identified
with the edges of pT (τ).

We recall that we have a bijection e̊τ between c ∈ Cact and ∆(τc) fol-
lowing theorem 3.34. So we can go from a cactus til its point in a simplex
representation and back again. The simplices are associated to trees. So by
the map p∆(τ) : ∆(τ)→ ∆(pT (τ)), then we can make the following definition
of a forgetful projection on Cact:

Definition 3.57. Define a map

p′ : Cact1(n+ 1)→ Cact1(n)

through the composition

Cact1(n+ 1) 3 c′ 7→ e̊pT (τ) ◦ p∆(τ) ◦ e̊−1
τ (c′) ∈ Cact1(n).

Let c = (c′, (r1, . . . , rn+1)) and define the map

p : Cact(n+ 1)→ Cact(n)

through p′ by
c 7→ (p′(c′), (r1, . . . , rn)).
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Proposition 3.58. The fiber of the forgetful map p over a cactus c ∈ Cact
is homotopic to the completed chord diagram of c times Rn

>0; p−1(c) '
Chord(c)×Rn

>0.
The fiber of the forgetful map p over a cactus c′ ∈ Cact1 is homotopic to

the completed chord diagram of c′; p−1(c′) ' Chord(c).

To motivate the proof of this lemma, we will look at the fiber over a
specific point to illustrate its nature.

Example 3.59. Let us consider the cactus c ∈ Cact(2) pictured as:

1

2

In this example we shall see some of the points in the fiber over c as
an illustration and where they fit as points in Chord(c). In short the fiber
consist of cacti of 2 + 1 lobes where the extra lobe is what we will present
now. Around the outside circle of c there is a continuum of places where an
extra lobe could intersect. Metaphorically we can say that we add a lobe
by the global zero and then slide the intersection point around the outside
circle. The following illustration displays some cacti of such path.

3

1

2

1

2
3

1

2
3

1

2

3

1

2
3

1

2 3

If we took the first four of those cacti, ignored the labels and rendered
the topological types of them, then those types will span the fiber. With the
labels, and also metaphorically and essentially differently, we need the cacti
where the extra lobe is added in between the two original lobes:



The Cacti Operad 50

1

2

3

Hence the entire fiber as the complete chord diagram over c, where the
points used to illustrate are pinned to, are:

1
2

3

4

5

6

7

Inspired by the above example here is a proof in short.

Proof. First of all we notice that between the normalized version and the
non-normalized is a factor of R>0 that scales the chord diagram. So we can
deal with the rest of the non-normalized case and that for normalized cacti
in one go.

We consider an arbitrary cactus c in Cact1(n). We want to give a de-
scription of the fiber over it by the forgetful map, and see how it is Chord(c).
Like in example 3.59 we can attach the n + 1’th lobe at any point around
the outside circle of c, hence that is a subset of fiber over c.

Left is to consider the possible intersection points of c. For any such point
of intersection of lobes in c, there is a zero point. We can take this point and
blow it by a k simplex, if we assume, there is k+ 1 lobes intersecting at this
point. We do that for each point of intersection until we reach the outside
circle. Any point in those simplices will be in the fiber as, when attaching
the n+1’th lobe there, would be a point in the fiber, as it would be the same
as splitting c at an intersection point and glue in the extra lobe in an order
preserving manner with respect to lobes of c. In short: We have described
the possibilities of adding a lobe to c to make it a point in the fiber over c
and seen that this actually describes Chord(c).
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Corollary 3.60. The fiber of the forgetful map p over c ∈ Cact is homotopic
to the cactus c ∈ Cact(n) that further is homotopic to a wedge of circles,∨
n s

1.

Proof. Clearly the later statement holds since we can define a homotopy
that slides all the lobes of the cactus by intersection points down to the
global zero.

The first statement follows from the previous proposition and lemma
3.53.

Now that we have computed the fiber of the forgetful map, p, we will
as promised in the beginning of this subsection continue to show further
properties with respect to it which we will use in subsection Homotopy type
of Cacti 3.5.

Definition 3.61. Let c and c′ be cacti from Cact1 and let τ and τ ′ be their
associated topological type. If

eτ ′(∆(τ ′)) ⊂ eτ (∆(τ)) ⊂ Cact1 (3.1)

where are the maps e− that stem from definition 3.32 (through theorem
3.34), then we say that c′ is derived from c and likewise that τ ′ is derived
from τ .

Further; if the inclusion is strict then we call c′ a degeneration of c, and
also τ ′ and degeneration of τ .

Here is a few examples to illustrate the definition and to show that this
notion of degeneration is compatible with the one we have defined previously
for trees that represent a topological type of cacti in definition 3.28.

Example 3.62. This example aims to illustrate the simple case of equality
in equation (3.1). So the setting is that we have to cacti c, c′ ∈ Cact1(n) with
associated topological types τ, τ ′. Suppose τ = τ ′, then ∆(τ) = ∆(τ ′) =∏
i |∆ri | by definition 3.19. Now since there is equality ∆(τ) = ∆(τ ′) then

also eτ (∆(τ)) = eτ ′(∆(τ ′)).
So the cacti c and c′ are cacti with the same number of lobes, same

topological type, meaning that for them to be different the length of the arc
sections between intersection points are not all identical.

Of course the case where the inclusion is strict is of most interest. In
fact:

Remark 3.63. When the inclusion, from equation (3.1), is strict then it
induces a partial order on the trees in T : τ ′ ≺ τ if τ ′ is a degeneration
of τ .
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Example 3.64. Let the cacti c and c′ be as in examples 3.29. We let their
topological types be τ and τ ′. In the example 3.29 c′ was a degeneration of
c. We you like to see that this still holds with the notion of definition 3.61,
both to exercise the use of the definition but also, to observe how the two
notions are compatible. Hence we would like to verify that

eτ (∆(τ)) ( eτ ′(∆(τ ′)). (3.2)

The equation (3.2) holds by definition of the inclusion in equation (3.1)
if the inclusion of spaces ∆(τ) ( ∆(τ ′) does. As we have that ∆(τ) =
|∆2| × |∆0| × |∆0| and ∆(τ) = |∆1| × |∆0| × |∆0|, we see it does hold.

This also mean that τ ′ ≺ τ .

Definition 3.65. For a tree τ ′′ ∈ T such that c, c′ ∈ eτ ′′(∆(τ ′′)), then we
say that c and c′ (and τc and τ ′c′) share the common type τ ′′.

Example 3.66. The following pairs of cacti with their topological types
illustrate definition 3.65 above

c

∆(τ) = |∆0|

τ c′

∆(τ ′) = |∆1| × |∆0|

τ ′ c′′

∆(τ ′′) = |∆2| × |∆0| × |∆0|

τ ′′

Definition 3.67. Where c and c′ are cacti with common type τ ′′, then by
dτ ′′(c, c′) we denote the distance between c and c′ when lifted to the product
of realization with respect to τ ′′, i.e. ∆(τ ′′).

Definition 3.68. Let c ∈ Cact(n) and τ ∈ T (n) be such that c ∈ eτ (∆(τ))
and let ε > 0, then we define the following sets:

U(c, ε, τ) = {c′ ∈ eτ (∆(τ)) st. dτ (c, c′) < ε}

and
U(c, ε) =

⋃
τ st. c∈eτ (∆(τ))

U(c, ε, τ). (3.3)

Further if c′ ∈ U(c, ε) implies that c is a degeneration of c′, then we call ε
small for c.
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Remark 3.69. Assume that ε is small for a cactus c, then that implies that
any c′ ∈ U(c, ε) will be a degeneration of c.

The following lemma collects three properties regarding U(c, ε).

Lemma 3.70. 1. For ε is small w.r.t. c then U(c, ε) ' ∗.

2. For c ∈ Cact1 the sets U := {U(c, ε)} is an open covering of Cact1.

3. For U(c, ε), U(c′, ε′) ∈ U then to each c′′ ∈ U(c, ε)∩U(c′, ε′) there exist
an ε′′ such that c′′ ∈ U(c′′, ε′′) ⊂ U(c, ε) ∩ U(c′, ε′).

Proof. The first claim follows from a homotopy, H : U(c, ε)× I → U(c, ε),
given as: We take a point c′ ∈ U(c, ε) with corresponding topological type
τ ′. And then we think of c′(t) as the lift to ∆(τ ′) that is ε− t/ε away from
the lift of c in ∆(τ ′). Now this straight lined path of c′(c) contracts to c.
Note how this visualize the sets U(c, ε).

The second claim is trivial.
The third claim. Let τ, τ ′ and τ ′′ be the topological types of c, c′ and c′′.

Further let d1 = dτ ′′(c, c′′) and d2 = dτ ′′(c′, c′′). Then we choose an ε′′ <
min(

√
ε2 − d2

1, ε
2 − d2

2). We now need to show that U(c′′, ε′′) ⊂ U(c, ε) ∩
U(c′, ε′), but that follows from the partial order between the topological
types that has been induces by the standard partial order induced by inclu-
sion of sets. Clearly U(c′′, ε′′) is included in both U(c, ε) and U(c′, ε′).

Before we continue we will have more concrete look at the space U(c, ε)
in an example.

Example 3.71. We can think of the space U(c, ε) as a “ball” around the
cactus c by lifting to the ∆(τc) level. Then we can think of balls around a
point somewhere in the product of realizations of simplices. The conceptual
tricky thing here, and the reason we take union over the topological types,
is, that the balls can somewhat go through boarders of simplices. Consider
the following illustration of three quite similar cacti:

c′ c′ c′′

They look close to be the same, right? The arc segment between the lobes
that does not contain the global zero for c′ and c′′ is quite small, and collaps-
ing that we have c as the middle between them. We would like this sense of



The Cacti Operad 54

closeness to be guiding. The problem is then, that the topological type and
thereby the associated ∆(τ)-space is different from each other. The topolog-
ical type of c′ and c′′ is up to labelling identical, but they differ from that of
c. We have that ∆(τc) = |∆2| × |∆0| × |∆0| and ∆(τc′) = |∆1| × |∆0| × |∆0|.
For this reason we union over τ ∈ T where the distance when lifted is small.

Lemma 3.72. (p′−1(U(c, ε)), p′−1(c)) is homotopic to (U(c, ε), c).

We have an obvious map from (p′−1(U(c, ε)), p′−1(c)) to (U(c, ε), c) that
is p itself. Then a section, s, the other way could be a the map that attaches
a lobe labelled n+ 1 at the global zero of c. As the global zero can be seen
a canonical basepoint this is well defined. Clearly s is a section as p ◦ s = 1.
The goal is then to be convinced that s◦p ' 1. This is how Kaufmann does
it. Alternatively:

Proof. We have just found that U(c, ε) is contractible, hence also the rela-
tive homotopy groups πi(U(c, ε), c) are trivial. In other words, if we can ar-
gue that p′−1(U(c, ε)) retracts to p′−1(c) then the relative homotopy groups
πi(p′−1(U(c, ε)), p′−1(c)) are also trivial. This means they are weakly homo-
topic and as everything is CW complexes we can conclude that they are
homotopic.

Think of c ∈ Cact1(n). Then think of some c′ ∈ U(c, ε). Now by the
same argument as when we define the homotopy in lemma 3.70 and idea as
in example 3.71 then points in the fiber over c′ can be retracted to a point
in the fiber over c.

3.4 Quasi-fibration

In this subsection we will introduce a concept like that of a fibration called
quasi-fibration, but weaker: A fibration is a quasi-fibration. The conclusion
of this subsection is, however, that the quasi-fibration induces a long exact
sequence in homotopy like a fibration does.

On to the formalities. First the definition according to [DT58].

Definition 3.73. A surjective map p : E → B, where it holds that for each
x ∈ B, y ∈ p−1(x) and i ≥ 0, then

p∗ : πi(E, p−1(x)) ∼= πi(B, x),

is called a quasi-fibration.

And then the proposition that we need. An argument for it can be found
in [May90, page 93].

Proposition 3.74. A quasi-fibration, p as in the above definition, admits
a long exact sequence in homotopy:

· · · → πi+1(B, x)→ πi(p−1(x), y)→ πi(E, y)→ πi(B, x)→ · · · → π0(B, x).
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Now Dold and Thom continues with the following criteria for quasi-
fibration, that we, while following Kaufmann, steered to satisfy in the pre-
vious subsection and as we will exploit in the following subsection.

Definition 3.75. Let p : E → B be a map. Let a subset U ⊂ B having the
property that both U ⊂ p(E) and for each x ∈ U , y ∈ p−1(x) and i ≥ 1 then

p∗ : πi(p−1(U), p−1(x)) ∼= πi(U, x).

Then U is called distinguished.

We can re-phrase this as: U is called distinguished if the restriction of p
by p−1(U), pU : p−1(U) → U , is a quasi-fibration. Both Dold & Thom and
May formulate it as such, and the word distinguished is borrowed form May
as a translation of the German word ausgezeichnet used in [DT58, definition
2.1].

Then the criteria we were seeking, [DT58, Satz 2.2]:

Proposition 3.76. Let p : E → B be map and let U = {Ui}i∈N be a family
of distinguished open sets that has the following properties:

• The family U is an open cover of B and

• for Uk, Um ∈ U then to each x ∈ Ui ∩ Uk there exists a Um ∈ U such
that x ∈ Um ⊂ Ui ∩ Uk,

then B is distinguished, thus p is a quasi-fibration.

3.5 Homotopy type of Cacti

.

Proposition 3.77. The forgetful maps p : Cact(n + 1) → Cact(n) and
p : Cact(n+ 1)→ Cact(n) are quasi-fibrations.

Proof. Due to lemma 3.70 and 3.72 it follows from proposition 3.76 that p′

is a quasi-fibration.
Take a point c = (c′, r) ∈ Cact(n). By the definitions of c and Cact1 we

have that

πi(Cact(n+ 1), p−1(c)) = πi(Cact1(n+ 1)×Rn+1
>0 , p−1(c′, r)).

As Rn+1
>0 ' ∗ then Cact1(n + 1)×Rn+1

>0 ' Cact1(n + 1) also p−1(c′, r) '
p′−1(c′), so

πi(Cact1(n+ 1)×Rn+1
>0 , p−1(c′, r)) = πi(Cact1(n+ 1), p′−1(c′).

As p′ is a quasi-fibration, then per definition 3.73,

πi(Cact1(n+ 1), p′−1(c′) = πi(Cact1(n), c′).
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Finally we can get back to the domain of Cact: As (Cact1(n), c′) is homotopic
to the pair (Cact(n), (c′, r)) = (Cact(n), c).

So all in all we have that

πi(Cact(n+ 1), p−1(c)) = πi(Cact(n), (c))

that by definition 3.73 means that also p is a quasi-fibration.

Proposition 3.78. For each n the space Cact(n) is K(PBn, 1).

Proof. By proposition 3.77 we have that p : Cact(n + 1) → Cact(n) is a
quasi-fibration. Then by proposition 3.74 p induces a long exact sequence in
homotopy. Take πi(p−1(c)) = πi(

∨
n S

1) as the fiber over c, then we get:

· · · → πi(
∨
n

S1)→ πi(Cact(n+ 1))
p∗−→ πi(Cact(n))→ πi−1(

∨
n

S1)→

· · · → π0(Cact(n)). (3.4)

The higher homotopy groups of S1 are trivial, that is πi(
∨
n S

1) = 0 for
i ≥ 2. So for i ≥ 3 we get a series of short sequences as

0→ πi(Cact(n+ 1))→ πi(Cact(n))→ 0,

implying that πi(Cact(n+ 1)) ∼= πi(Cact(n)) for i ≥ 3.
We have dealt with πi(Cact(n) for all n ≥ 1 and i ≥ 3. Now we will

look into the i = 2 case. Analogous to the argument in the proof of propo-
sition 2.16 we see that Cact(1) ' ∗ and Cact(2) ' S1, that implies that
π2(Cact(1)) = 0 and π2(Cact(2)) = 0. When we plug that into the relevant
part where i = 2 and n = 2 of the long exact sequence in (3.4) we get

0 π2(Cact(3)) π2(Cact(2)) π1(
∨

2 S
1)

0

f g

which is exact at π2(Cact(3)) hence 0 = img(f) = ker(g) = π3(Cact(3)).
Then by induction over n we get trivial groups all the way, so π2(Cact(n)) =
0 for n ≥ 1.

Summing up we have πi(Cact(n)) = 0 for i ≥ 2 and n ≥ 1, and hence
lack to deal with the case where i = 1, which we will do in the following.

We aim to show that π1(Cact(n)) = PBn for all n. As a start we see that
π1(Cact(1)) = 0 = PB1 and π1(Cact(2)) = Z = PB2. We want to show it by
induction over n. So we want to show that if we assume π1(Cact(n)) = PBn
then also π1(Cact(n + 1)) = PBn+1. As the tool to do that observe the
following diagram:
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0 ker(PBn+1 → PBn) PBn+1 PBn 0

0 π1(Chord(cn)) π1(Cact(n+ 1)) π1(Cact(n)) 0

The upper row in the diagram comes from the fibration p : Confn+1 →
Confn where

∨
n S

1 is the fiber. We have used this in the proof of proposition
2.16 previously as it is part of the long exact sequence (2.3). We can also
think of left most part of that sequence as the kernel of the projection
PBn+1 → PBn - the free group on n variables denoted Fn. We display it as
ker(PBn+1 → PBn) to get a better sense of the elements.

The bottom row comes from the long exact sequence (3.4), where we plug
in that both π2(Cact(n)) and π0(

∨
n S

1) are trivial. In this case it makes
more sense to display the fiber as the chord diagram over the basepoint as
it emphasizes what kind of elements we are to talk about in the following.
All in all, the diagram is a diagram of short exact sequences.

The groups PBn and π1(Cact(n)) are assumed to be isomorphic. If we
can specify an isomorphism between them, such that the right square of the
diagram commutes, and also point out the isomorphism between the groups
on the left side of the diagram such that also the left square commutes,
then also the middle arrow will be an isomorphism, and that will prove the
proposition.

In other words we have some constructing and checking to do.
We are to map elements to the fundamental group of Cact(n), so we are

to specify what will happen to homotopy classes of loops in Cact(n).
First pick a corolla cacti of n lobes where all the lobes are are of unit

length and are labelled 1, 2, . . . , n, cn, that sits in Cact(n). An illustration
is given below. We let that be the basepoint of Cact(n).

1

i i+ 1

n

Then by a path in Cact(n) we will understand series of deformation of
a cacti, one for each t ∈ I, such that it complies with the standard notion
of a path. In this way we can reach any element in Cact(n) by a path from
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the basepoint by deforming the basepoint by moving the lobes around by
moving there intersection points.

Now the path below, that is pictured below in a series from illustrations
to be read from left to right, illustrates a path from the basepoint to the
point that is the basepoint acted on by a transposition from the symmetric
group, τi ∈ Σn. We will call the path described αi.

1

.

.

.

.

.
.

i
i+ 1

n

. .. .. .

1

i
i+ 1

n

.

.

.

.

.

.

1

i+ 1
i

n

Then we notice that if we quotient Cact(n) by the symmetric group,
we have Cact(n)/Σn. We can think of Cact(n)/Σn as the analogous to the
unlabelled configuration space. In Cact(n) the path αi starts and ends at
different points, but in Cact(n)/Σn αi starts and ends at the same point
and hence it is a loop in there.

This inspires to claim that the map that sends σi ∈ Bn to [αi] ∈
π1(Cact(n)/Σn) is an isomorphism. It is not the one we sought for, but
we will deal with that later. First we need to see that this map is well-
defined. We have just seen how αi can be thought of as a generator of the
braid group and thus describes the braid action on Cact(n)/Σn. Then what
we need to do is to check that the relations on the generators of the braid
group are respected when mapped into paths in Cact(n)/Σn. Hence we want
to check that following relations on homotopy classes

(i) [αi][αj ] = [αj ][αi] for |i− j| ≥ 2 and

(ii) [αi][αi+1][αi] = [αi+1][αi][αi+1]

holds.
For the first requirement to be satisfied observe the following illustrative

diagram of loops in Cact(n)/Σn where j = i+ 2:
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αi

αi

αj αj

i

i+ 1 j

j + 1 i+ 1

i j

j + 1

i

i+ 1 j + 1

j i+ 1

i j + 1

j

The relation must hold when the distance between i and j are greater than
or equal to 2. So the illustration above deals with the border case. But for
greater distance between i and j lobes between the i’th and the j’th will not
be touched at all, so as such the illustration scales.

That the second requirement, (ii), is satisfied is verified in the following
illustration that shows that composition of paths are path-homotopic as
both paths from cn to τiτi+1τi(cn) and τiτi+1τi(cn) ends in the same point.

τi(cn) τiτi+1(cn)

cn τiτi+1τi(cn)

τi+1(cn) τiτi(cn)

αi

αi+1

τi(αi+1)

τiτi+1(αi)

τi+1(αi)

τi+1τi(αi)

In conclusion it is well-defined. Also we see that it is surjective and the
inverse is also surjective. Any cacti in Cact(n)/Σn can be hit by a suitable
composition of generators of the braid group. And then, as seen, we can hit
all generators in the braid group by paths of cacti that satisfy the braid
relations.

We can now go on to define the map from PBn to Cact(n) from this iso-
morphism. Since p : Bn → Σn is surjective, then Σn is isomorphicBn/ ker p =
Bn/PBn, thus we can quotient the isomorphism by Σn to induce an isomor-
phism from PBn → πi(Cact(n)). This is the same as restricting to PBn, so
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we map PBn generator χi,j to [αi,j ] ∈ πi(Cact(n)). See definition 2.14 for
the specification of the pure braid group. The middle map is then defined as
the map that sends generator χi,j+1 to [αi,j+1] ∈ πi(Cact(n+ 1)), and these
will make the right square commute by assumption.

On to the left square. Take an element χi,n+1 ∈ ker(PBn+1 → Pn), as
illustrated below.

n

i

i

n+ 1

n+ 1

Then when we map it along the inclusion into PBn+1 and then down
by the map just described then we get to same point [αi,n+1]. When we
map down to Chord(cn), we need first to give the isomorphism. The map
given by χi,n+1 7→ [αi,n+1] is exactly that isomorphism as generators of
pi1(Chord(cn)) are exactly the paths αi,n+1 as we recall that the fiber is
the cacti with the n+ 1th lobe attached. And αi,n+1 is the path where the
n + 1 lobe loops around the i’th lobe. So when we further include that in
π1(Cact(n + 1)), we get to the same point as the other way around. Hence
it commutes.

3.6 Equivalence with Little Disk

Now we have gone through lengths of issues with the Cact operad. In this
final part of the thesis I will wrap it up to conclude that the Disk operad
and the Cact operad are equivalent – as operad.

We have just seen that they are homotopic, since also Cact is K(PBn, 1),
and they both admit CW complex structure. To ever hope for a morphism
of operads between them to also be an operad equivalence, then that is a
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necessary condition. We will, of cause, make use of the recognition principle
to establish this statement, and not give a direct morphism. We will use the
same procedure as we went through in detail in proposition 2.28 and 2.29,
hence therefore also be brief here.

To apply the recognition principle we need to have a suboperad CC
of Cact that is E1. This first fact is show in lemma 3.47 and the later in
proposition 3.48.

As we let C̃act be the universal cover of Cact we can thus use the CC
as a basepoint such that we can lift the operadic composition on Cact to a
composition on C̃act. As we have seen in the proof of proposition 3.78, that
from the Σ action on Cact we can construct paths in Cact that correspond to
the generators of the braid group. And hence be the path lifting property we
can lift those to a braid action on C̃act. The situation can thus be illustrated
in the following diagram, that as such is fundamental for this thesis:

C̃act(n)

Cact(n)

' ∗

= C̃act(n)/PBn = K(PBn, 1)

Bn

Σn

This means that the universal cover of the Cact operad admits a B∞
operad structure, and that means by theorem 2.22 – or just proposition 2.27
– and 2.29 that:

Theorem 3.79. The Cact and Disk operads are equivalent as operads.
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